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Marcus M. Seldin and G. William Wong*

Department of Physiology and Center for Metabolism and Obesity Research; The Johns Hopkins University School of Medicine; Baltimore, MD USA

Keywords: myokine, myonectin, skeletal muscle, energy balance, CTRP15, lipid uptake, fatty acids, FATP, FABP

Abbreviations: CTRP, C1q/TNF-related protein; FATP, fatty acid transporter; FABP, fatty acid binding protein; UCP1, uncoupling
protein-1; FGF-21, fibroblast growth factor-21; Insl6, insulin-like 6; Fstl-1, follistatin-like 1; LIF, leukemia inhibitory factor;

IL, interleukin

The integrated control of animal physiology requires intimate
tissue crosstalk, a vital task mediated by circulating humoral
factors. As one type of these factors, adipose tissue-derived
adipokines have recently garnered attention as important
regulators of systemic insulin sensitivity and metabolic
homeostasis. However, the realization that skeletal muscle
also secretes a variety of biologically and metabolically active
polypeptide factors (collectively called myokines) has provided
a new conceptual framework to understand the critical role
skeletal muscle plays in coordinating whole-body energy
balance. Here, we highlight recent progress made in the
myokine field and discuss possible roles of myonectin, which
we have recently identified as a potential postprandial signal
derived from skeletal muscle to integrate metabolic processes
in other tissues, such as adipose and liver; one of its roles is to
promote fatty acid uptake into cells. Myonectin is also likely an
important mediator in inter-tissue crosstalk.

Skeletal muscle, the largest organ in the human body, plays a vital
role in maintaining whole-body metabolic homeostasis. In
particular, in response to insulin this organ takes up a major
proportion of the circulating postprandial glucose via GLUT4-
mediated transport, then metabolizes or stores it in the form of
glycogen.1 Impaired insulin responsiveness in muscle is a hallmark
of type 2 diabetes.2 The recent discovery that skeletal muscle
secretes a variety of myokines which can act in an autocrine, a
paracrine and/or an endocrine fashion to regulate metabolic and
inflammatory processes, gives a new dimension to the role of
muscle in coordinating integrated physiology.3 Further, proteo-
mics approaches to cataloging the secretome of cultured mouse
and human myotubes have revealed hundreds of secreted
proteins,4,5 many of which likely play roles in diverse cellular
processes. The inter-tissue crosstalk mediated by myokines
undoubtedly provides a greater sense of appreciation for the

complexity of metabolic circuits governing systemic energy
balance.

Myostatin, the first described myokine, is a secreted protein
belonging to the TGF-β superfamily and a negative regulator of
muscle growth.6 A loss-of-function mutation in myostatin in human
or absence of myostatin in knockout mice results in a striking
doubling of muscle mass.6,7 Since the discovery of myostatin, the
functions of other myokines such as IL-6,3 FGF-21,8,9 insulin-like 6
(Insl6),10 follistatin-like 1 (Fstl-1; also known as TSC-36),11 LIF,12

IL-7,13 IL-15,14 musclin15 and irisin16 have been described. These
myokines either act locally within skeletal muscle, serving as
autocrine/paracrine factors, or circulate in blood as endocrine factors
linking skeletal muscle to regulation of physiological processes in
other tissues. In the context of metabolism, IL-6 is the most
extensively characterized myokine.3,17,18 Secreted by skeletal muscle
fiber in response to exercise, IL-6 improves whole-body insulin
sensitivity and dampens inflammation, providing a link between
exercise and improvement in systemic metabolic parameters.17-19

However, the contrasting role of IL-6 as a pro-inflammatory
cytokine that induces hepatic insulin resistance has yet to be fully
reconciled.20,21 In mice, Fstl-1 links skeletal muscle to the
vasculature, promoting endothelial cell function and revasculariza-
tion in ischemic tissue.11 A gain-of-function mouse model
demonstrates a role for muscle-derived IL-15 in regulating fat mass
in response to metabolic insults resulting from high fat-feeding,14

highlighting a muscle-adipose axis, which controls systemic energy
balance.

Much excitement and discussion have surrounded the identifi-
cation of Fndc5/Irisin, a gene whose expression is regulated by the
transcriptional co-activator, PGC1-a.16 Indeed, it was discovered
as a gene upregulated in skeletal muscle of mice overexpressing a
PGC1-a transgene. Fndc5 is synthesized as a type I transmem-
brane protein; proteolytic processing generates a soluble form
(designated as irisin) that circulates in blood. Exercise increases
circulating levels of irisin in humans and mice. Remarkably,
adenovirus-mediated overexpression of irisin turns on the
thermogenic program in subcutaneous fat depots by inducing
the “browning” of white adipose tissue. However, only a subset of
cells within the white adipose tissue acquires brown adipocyte-like
phenotype; thus, the extent of “browning” of white adipose tissue
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may be variable. An increased number of uncoupling protein-1
(UCP-1)-expressing brown adipocyte-like cells within the white
adipose tissue enhances fat oxidation, resulting in enhanced
energy expenditure and improved systemic insulin sensitivity.
Thus, the metabolic action of muscle-derived irisin on fat depots
provides one molecular mechanism accounting for the benefit of
exercise. However, despite a major resurgence in the study of
brown fat,22 the purported role of this tissue in maintaining
energy balance by burning off excess calories remains a hotly
debated issue.23

Unlike other myokines, whose expression is not restricted to
skeletal muscle, myonectin is a novel myokine expressed
predominantly by the skeletal muscle.24 We identified myonec-
tin/CTRP15 as a novel secreted protein possessing a globular C1q
domain, the signature feature shared by other recently-charac-
terized C1q/TNF-related proteins (CTRP1–14),25-28 several of
which are fat tissue-derived adipokines with important metabolic
functions.29-31 The term “myonectin” was inadvertently used to
re-designate CTRP5 in a recent study.32 To prevent confusion in
nomenclature, CTRP5 retains its original designation25,33,34 and
CTRP15 be referred to as myonectin. Of the CTRPs, myonectin
is the only one whose expression is restricted to skeletal muscle.
Interestingly, oxidative, slow-twitch muscle fibers (e.g., soleus)
tend to express a higher transcript level of myonectin relative to
glycolytic, fast-twitch fiber types (e.g., plantaris).

Expression and circulating levels of myonectin are subjected to
metabolic control. Overnight fasting substantially reduces, while
re-feeding dramatically increases, its mRNA and serum levels.
Intriguingly, circulating levels of myonectin are increased to the
same extent when overnight-fasted mice are gavaged with a bolus
of glucose or emulsified lipid, suggesting that myonectin
expression and secretion is highly responsive to an acute alteration
in the metabolic state of skeletal muscle after nutrient intake.
Similar transcriptional upregulation of myonectin expression can
be recapitulated in cultured mouse myotubes upon the addition of
glucose or free fatty acids (e.g., palmitate), suggesting that
myonectin may be a nutrient-responsive myokine secreted in
response to nutrient flux through skeletal muscle.

Exercise is known to have profound beneficial effects on
improving systemic insulin sensitivity and other metabolic
parameters, but the underlying molecular mechanism remains
incompletely understood.35 Interestingly, mice given access to a
running wheel for two weeks display elevated myonectin
expression in skeletal muscle and in circulation compared with
mice with access to a locked wheel. However, it remains to be
determined whether an acute bout of exercise is directly coupled
to increased expression of myonectin, or upregulated expression of
myonectin mRNA and protein is secondary to increased meal
consumption following each bout of voluntary exercise,36 thus
mimicking the “re-feeding” state known to induce myonectin
expression and secretion.

Additionally, administration of recombinant myonectin to
mice reduces circulating free fatty acid levels without affecting
adipose tissue lipolysis.24 It appears that myonectin does so by
promoting free fatty acid uptake into cells. In cultured adipocytes
and hepatocytes, recombinant myonectin enhances fatty acid

uptake through transcriptional upregulation of genes (e.g., CD36,
FATP1, Fabp1 and Fabp4) known to be involved in fatty acid
uptake, an effect comparable to that in cells constitutively
overexpressing those proteins (e.g., CD36, FATP1, FATP4).37

Given that its expression and circulating levels are acutely elevated
by feeding, we propose that myonectin functions as a novel
postprandial signal derived from skeletal muscle to integrate
metabolic processes in other tissues, such as adipose and liver, and
one of those functions is to promote free fatty acid uptake into
cells (Fig. 1). Future studies using gain- and loss-of-function
mouse models will further clarify the function and mechanism of
action of myonectin in normal physiology and in disease states.

Analogous to the importance of fat tissue-derived adipokines in
regulating systemic insulin sensitivity and glucose and lipid
metabolism in multiple tissue compartments,38 skeletal muscle-
derived myokines are poised to play an equally important role in
mediating inter-tissue crosstalk to control integrated physiology.
In a broader context, elucidating the myokine-regulated metabolic
circuits will provide valuable insights into complex networks
governing energy homeostasis, the disruption of which likely
contributes to metabolic diseases.
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Figure 1. A proposed model of myonectin function. Nutrient intake by
skeletal muscle upregulates the expression and secretion of myonectin,
resulting in an increased circulating level of the protein. Myonectin
induces the expression of CD36, fatty acid transport proteins (FATP), and
fatty acid binding proteins (FABP) in hepatocytes and adipocytes,
resulting in enhanced fatty acid uptake into hepatocytes and adipocytes.
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