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Sampling-based probability construction explains individual differences in risk
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Nisheeth Srivastava (nsrivast@iitk.ac.in))
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Abstract

Contemporary models of subjective probability distortions as-
sume that distortions arise during probability encoding. How-
ever, such assumptions are inconsistent with the ability of
humans to retrieve probabilities veridically in some elicita-
tion formats. We present a sampling-based model of prob-
ability judgment for risky prospects that assumes that prob-
ability distortions occur because people read out probabil-
ity judgments as biased averages from working memory con-
tents. Simulations demonstrate that this model shows the clas-
sic inverse-S shaped distortion of probability judgments using
only retrieval-stage assumptions. The model further predicts
that observers with greater working memory capacity would
show larger probability distortions on average, which should
lead to a particular fourfold pattern of risk preference as a
function of working memory capacity. Using cognitive abil-
ity measurements as a proxy for working memory capacity, we
conducted an experiment with human participants and found
results consistent with the model’s predictions as well as previ-
ous empirical studies. Our results support a role for sampling
during assessment of risky prospects, which in turn explains
differences in probability distortions seen across different elic-
itation methods.

Keywords: risk preference, cognitive ability, computa-
tional modeling, prospect theory, probability judgments

Introduction
People systematically overweight low probabilities and un-
derweight high ones, demonstrating an inverse-S shaped re-
lationship between objective probabilities and their subjective
estimation in simple frequency estimation tasks as well as in
risky decisions (Tversky & Kahneman, 1992). Since many
household-level financial decisions involve probability judg-
ments, microeconomic models are beginning to benefit from
accommodating this stylized fact about peoples’ behavior in
combination with observations about loss and risk aversion,
in the form of prospect theory (Barberis, 2013).

Given recent advances in our ability to estimate individual-
level parameters for prospect theory (Nilsson, Rieskamp, &
Wagenmakers, 2011), it is striking to note that prospect the-
ory parameters show high inter-temporal consistency within
individuals, suggesting that they correspond to stable individ-
ual differences in cognition (Glöckner & Pachur, 2012).

However, we are only beginning to understand the cog-
nitive processes that prospect theory parameters map on to.
Recent work using process tracing has shown that the rel-
ative extent of attention paid to gains and losses is signifi-
cantly related to participants’ estimated loss aversion (Pachur,

Schulte-Mecklenbeck, Murphy, & Hertwig, 2018). Specif-
ically with reference to probability distortions, Zhang and
Maloney (2012) have shown that assuming a linear log odds
representation of probability in the brain is sufficient to ac-
count for probability distortions seen across a wide variety
of studies. However, this representational claim is consistent
with a large number of theoretical possibilities, (Fox & Tver-
sky, 1998; Fox & Rottenstreich, 2003; Martins, 2006) and
thus does offers limited process-level understanding.

Furthermore, the view that probabilities are encoded in
a distorted manner in the brain is inconsistent with ev-
idence that people are actually able to reproduce proba-
bilities veridically when these are elicited using graphical
methods (Goldstein & Rothschild, 2014) and motor move-
ments (Trommershäuser, Maloney, & Landy, 2003) . Taken
in conjunction with classic studies showing that frequency en-
coding in humans is significantly veridical (Hasher & Zacks,
1984), such findings suggest that cognitive processes during
retrieval may be more likely to produce probability distor-
tions.

Outside the specific theoretical frame of prospect theory,
multiple studies have sought to characterize individual differ-
ences in risk aversion profiles (Frederick, 2005; Burks, Car-
penter, Goette, & Rustichini, 2009; Dohmen, Falk, Huffman,
& Sunde, 2010). A common observation across these studies
is that people with higher cognitive ability have a high-risk
appetite in certainty-equivalence experiments with low prob-
able gains (Frederick, 2005; Burks et al., 2009) and are risk-
averse in high probability gains (Frederick, 2005; Dohmen
et al., 2010). As a paradigmatic example, experiment partic-
ipants who scored high on Frederick’s Cognitive Reflection
Test also showed a greater propensity to accept risky choices
leading to gains, both when a simple expected utility calcu-
lation favored the risky option, but also crucially, when it did
not (Frederick, 2005).

From the viewpoint of probability estimation, such be-
havior is congruent with participants in the experiments in
Frederick (2005) over-weighting their estimate of low prob-
ability options. For low probability gains, participants with
greater cognitive ability appear to be more risk-seeking, con-
sistent with over-weighting of the low probability gain op-
tion. For high probability gains, such participants are more
risk-avoidant, consistent with over-weighting of the low prob-
ability non-gain option. Figure 1 outlines the relationship of
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Figure 1: Risk sensitivity increases with measures of cog-
nitive ability, as described in a number of behavioral stud-
ies. Multiple measures of risk preference and cognitive abil-
ity have been used in different studies. This figure plots the
expected variation in the coefficient of relative risk aversion
(CRRA) with increase in cognitive ability in the four patterns
of behavior observed in the prospect theory view of risk aver-
sion along with references to field studies that support the pre-
diction in the particular quadrant.(HP - High Probable, LP-
Low Probable, G- Gain, L- Loss )

risk aversion with cognitive ability we would expect for both
gains and losses if the source of risk preference lies in over-
weighting of low-probability lottery outcomes. The papers
referenced in the Figure show evidence consistent with the
prediction relevant for each quadrant. Thus, convergent ev-
idence across studies suggests a relationship between cogni-
tive ability and probability distortions. In this paper, we de-
velop a model of probability judgment that illuminates this
relationship.

Probability by sampling
The empirical foundations of prospect theory show us that,
when given a choice between risky prospects, people behave
as if they were constructing a subjective probability estimate
w(p) based on the stated prospect risk p. If we take this
process hypothesis seriously, we must ask: how do people
map p to w? We propose that they do this by sampling from
mental simulations, a possibility that has recently proven suc-
cessful in explaining peoples’ understanding of physical sit-
uations (Smith & Vul, 2013), as well as biases in probabil-
ity judgments (Zhu, Sanborn, & Chater, 2020). Focusing
on probability judgments for evaluating binary prospects, for
simplicity, our probability-by-sampling model assumes that,

1. Observers possess a veridical, possibly noisy, internal
probability scale.

2. When asked to reflect on a risky binary prospect, ob-
servers sample multiple abstract lotteries parameterized by
the prospect risk, as read off the internal scale.

3. The outcomes of these simulated lottery draws are stored
in working memory.

4. Observers sample from the lottery until either working
memory capacity is reached1, or both prospects have oc-
curred at least once during sampling.

5. Observers read out the average occurrence of the salient
option as their subjective probability estimate for it.

Of these assumptions, #1 follows standard psychophysi-
cal premises, #2 is the key sampling assumption of our ap-
proach, #3 follows standard assumptions about the role of
working memory made in nearly all symbolic cognitive ar-
chitectures (Ye, Wang, & Wang, 2018), #4 is a novel assump-
tion made based on a recent observation that observers mak-
ing risky decisions after explicitly sampling them also tend
to wait until they have seen all possible prospects at least
once before terminating sampling (Srivastava, Müller-Trede,
Schrater, & Vul, 2016) and #5 is standard. Thus, the novelty
of our model lies in assumptions #2 and #4.
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Figure 2: Subjective probability judgments extracted from the
probability-by-sampling model for cohorts of 1000 observers
sampled from low (blue) and high (red) working memory ca-
pacity pools.

Formally,

w(p) =
1

|M |

M

∑
m

Im, (1)

where Im is an indicator function that takes the value 1 if the
low probability outcome is sampled in the mth memory slot,

1If memory sampling fails to retrieve a sample of the low prob-
ability outcome by the time capacity is reached, the model returns a
probability of 0.01 for the low probability outcome.
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and 0 otherwise. Also, M represents the set of memory slots2

in working memory filled up at the time w(p) is read out (up
to maximum capacity), which in turn is determined by the
number of samples it takes to see two distinct outcomes dur-
ing sampling. For each memory sample,

Im ∼ N(p,σp), (2)

where σp is noise in the internal Thurstonian magnitude scale.
In the simulation results reported below, we use σp = 0.5∗ p.

Figure 2 shows indicative results from an in silico exper-
iment using our probability-by-sampling model. We con-
ducted the experiment by sampling 1000 probability-by-
sampling observers with working memory capacities sampled
from normal distributions with means µlow = 5,µhigh = 10 and
SD = 1. Observers from both low and high WM capacity
groups then responded to binary prospects across all possi-
ble probability values (quantized in steps of 0.01), producing
subjective probability estimates for all these values. Figure 2
plots the average of these estimates for both WM size groups.

Two observations are salient. One, probability-by-
sampling observers produce an inverse-S shaped distortion
of probabilities (Tversky & Kahneman, 1992), based on as-
sumptions about how they are retrieved. This is consistent
with the fact that it is possible to elicit probabilities veridi-
cally in some elicitation formats (Trommershäuser et al.,
2003; Goldstein & Rothschild, 2014). Two, we note that the
high WM group shows greater probability distortion than the
low WM group. These observations remain constant across
multiple numeric values of our simulation parameters, but
with probability distortions fading away for working mem-
ory sizes larger than 12.

The explanation for these observations is straightforward.
Since observers sample simulated outcomes until they have
seen both outcomes at least once, and then average over the
outcomes sampled so far to read out the lower probability,
there are two main possibilities. They will either not sample
the low probability option at all, and read out zero, or sam-
ple the low probability option once and terminate sampling.
In the latter case, the read out probability will be inflated by
the small number of samples drawn. For example, suppose
a lottery has an objective probability of 0.2 to pay out. The
probability that the low-probability outcome will not be sam-
pled even once in a working memory of size 4 is 0.84 = 0.41,
so the read out probability will be zero less than half the time.
However, in the majority of cases that the outcome is sam-
pled, the read out probability will be heavily inflated, e.g. if
it is sampled on the second simulation, the probability will be
read out as 0.5. Averaged across the population, this asym-
metry yields probability over-weighting. For a larger working
memory, say of size 8, the probability of not encountering a
single sample of the low probability outcome reduces still fur-
ther to 0.88 = 0.17. In 67% of cases (1 - 0.85 = 0.67), the ob-
server will sample the low-probability outcome at least once,

2While we use an explicit fixed slot interpretation of working
memory in our exposition, probability-by-sampling is consistent
with richer representations also (Ma, Husain, & Bays, 2014).

and read out a subjective probability estimate equal or greater
than the objective probability. The probability will be read
out as zero in much fewer instances for high WM observers
than for low WM observers. Averaged across observers, this
leads to greater probability over-weighting for high WM ob-
servers.

An Experimental Test
As we note above, the key novelty of the probability-by-
sampling account of probability distortions is the assumption
that observers mentally simulate lottery outcomes until they
have seen at least one instance of both lottery prospects. We
see in the simulation results above that this assumptions leads
to a clear prediction relating working memory capacity to risk
preferences - greater working memory capacity should lead
to greater over-weighting of small probabilities. It is well-
known that working memory capacity is strongly correlated
with general cognitive ability, as measured by progressive
matrices tests (Fukuda, Vogel, Mayr, & Awh, 2010). There-
fore, treating cognitive ability as an empirical proxy for work-
ing memory capacity, our model predicts the specific relation-
ship between cognitive ability and risk preference shown in
Figure 1. While previous studies partially support the exis-
tence of the fourfold pattern illustrated in Figure 1, differ-
ences in protocols, analysis methods and operationalization
of both independent and dependent variables make it difficult
to assess the net weight of the evidence. To address this con-
cern, we conducted an experiment to measure risk aversion
as the CRRA coefficient of isoelastic utility functions in cer-
tainty equivalence problems selected to represent each of the
four quadrants for participants with different cognitive ability
levels, as measured by RSPM. We expected to see our depen-
dent variable show the specific pattern of behavior predicted
in Figure 1 as the outcome of this experiment.

Subjects
We solicited participants via email and social media. 103 par-
ticipants (41 female, 62 male) responded and provided con-
sent for participation. Out of 103 participants who appeared
for the IQ test, 80 participants (32 female, 48 male) expressed
interest to participate in the online risk-preference study.The
mean age of the participants was 23.83 years. Since this was a
between-subject design, participants were assigned to one of
the four quadrants randomly at the time of experiment partic-
ipation. All experimental protocols were approved by an In-
stitutional Review Board. Participants signed a consent form
describing all experimental procedures before participating in
the study. Each participant was compensated for their time.

Measuring cognitive ability
To measure cognitive ability, we used Raven’s Standard Pro-
gressive(SPM) Matrices (Raven, Court, & Raven, 1989) con-
taining 60 questions and designed a website to administer the
test online. Participants were shown puzzles from SPM one
by one on the screen with corresponding options. They had
to answer the puzzles by clicking one of the options. The raw
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scores (number of correct responses) obtained for each par-
ticipant were converted to standard SPM percentiles using the
SPM manual. There was no time limit for the test. Out of 80
participants, SPM’s standard score for three participants was
5. These were excluded from analysis since their test duration
was less than four minutes for 60 questions, suggesting ran-
dom responding leaving us with 77 participants(30 female, 47
male) for the risk preference experiment, assigned randomly
to the four quadrants of the experiment. The average time to
complete the IQ test by the participants was 35.3min and our
sample’s average SPM percentile score was 62.4, suggesting
that it was representative.

Measuring risk preference
We measured risk preference for each participant using
choice table, which had 20 rows. Every participant pro-
vided their preference for each row of the table.(Dohmen et
al., 2010). The choice tables used follow the ones used in
Dohmen et al. (2010).

For gain-based problems, we asked the participants to
choose whether to buy a lottery ticket that could fetch them
lottery money with some uncertainty or accept the safe
amount. Each quadrant had a set of five choice tables, with
different lottery amounts and payoffs. The lottery amounts
and payoffs for all the choice tables were derived from
Frederick study 1 and then converted to equivalent local cur-
rency by considering Purchasing Power Parity in 2005 and
inflation (2005-2021). The choice tables in these quadrants
represent either high probable or low probable gain condi-
tions. The order of the choice table presented to each partic-
ipant was randomized. In a choice table, the lottery amount
remained the same while the safe option increased systemat-
ically for every row; a rational agent would be willing to take
risks until the safe amount is less than the expected value of
the gamble and then switches to the safe option. We presented
participants one row at a time and asked to choose whether
’to buy the lottery ticket (risky)’, which can fetch them a lot-
tery amount with some uncertainty, or ’Not to buy the lottery
ticket (safe)’ and accept the safe amount.

Once the participant switched from risky option to safe op-
tion, the algorithm asked the participant whether they would
accept all higher safe amounts or not (see also (Dohmen et
al., 2010)) if they responded as yes, the algorithm considers
all other safe options in the table as their preferences, and
the participant was progressed to the new choice table. Oth-
erwise, the participant had to decide for the rest of the table
manually and then be presented with a new choice table. Fol-
lowing Dohmen et al. (2010), we also informed participants
that one row from one of the five choice tables would be ran-
domly selected, and they would be rewarded with the amount
proportional to the choice they made in that selected row, to
encourage participants to choose according to their true pref-
erences for each row.

The same procedure was used for loss-based problems, ex-
cept that the problems were framed as a choice to buy insur-
ance costing a small fixed amount or retain a small probability

of suffering a larger loss.
Out of 385 instances(77 participants * 5 choice tables),

there were 16 incidents, where participants switched from
risk option to safe option multiple times. The sixteen in-
stances can be classified into two scenarios. Scenario-1, they
selected safe options consecutively. One example, a partic-
ipant switched from risky option to safe option at 10th row
and selected safe option again in next rows(11,12) and then
moved to the next choice table. In this case, we considered
the first switch (in this example, 10th row) as their risk prefer-
ence. And in scenario -2, they switched from risky option to
safe option and again selected the risky option then switched
to the safe option. One example, a participant switched from
risky option to safe option at 4th row and then selected risky
option in the 5th row and continued risky option till row 10
and switched to safe option at 11th row. Here we considered
the latest switch( here row 11) as their risk preference. And
in another example, a participant switched from risky option
to safe option at 4th row and then selected risky option in the
5th row and continued risky option till end of the table. Here
we considered last row(20th row) as their risk preference.

The coefficient of relative risk aversion was calculated
from an individual’s utility function (Burks et al., 2009) . We
follow Burks et al. (2009) in assuming that the participant’s
utility for the lottery would be at the midpoint of sa f ei and
sa f e j. (where ’i’ and ’j’ refers to the steps when participant
prefers to take the risk at sa f ei , but switches to the safe op-
tion at sa f e j.). The individual’s utility function is then given
by,

u(c) =
c1−σ

1−σ
, (3)

where σ is the CRRA coefficient we are interested in measur-
ing.

Following Burks et al. (2009) and assuming expected util-
ity maximization, the equation below holds when a partici-
pant switches their lottery preference between cells i and j
of the table, and is solved analytically for lottery utility and
then numerically for σ to obtain the coefficient of relative risk
aversion,

p u(lottery) = 0.5u(sa f ei)+0.5u(sa f e j), (4)

where p corresponds to the stated probability of winning the
lottery. The same procedure was used to estimate CRRA in
loss conditions as well.

Results
The mean CRRA estimates for all five choice tables seen by
participants in each quadrant are shown in Figure 3. For each
choice table, we found the best fit line relating CRRA to IQ.
To obtain a summary measure of the trend across choice ta-
bles for each quadrant, we shifted the CRRA points from
each choice table to a common intercept (the average inter-
cept across the best fit lines). We then replotted the points us-
ing individual slope values from the table-wise best fit lines.
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Finally, we fitted a linear regression to the combined CRRA
estimates (see rightmost column in Figure 3).

Table 1: Average slope in all quadrants.

Quadrant Sign Prediction Coefficient p f 2

HPG + 0.31 0.03 0.17
LPG - -0.03 0.03 0.17
LPL + -0.21 0.09 0.1
HPL - -2.41 0.000008 1.06

Table 1 documents the coefficient of the IQ variable in
the combined regression for all four quadrants, alongside the
predicted sign of the coefficient, as seen in Figure 1. We
note that the measured coefficients are directionally consis-
tent with our predictions in three of four quadrants. Results
for three quadrants (high probability gains, low probability
gains and high probability losses) statistically significant at
the traditional 0.05 alpha-error level and displaying medium
effect sizes ( f 2 > 0.15) (Cohen, 1988). For the low probable
loss quadrant, we see small effect sizes ( f 2 > 0.02), with the
relationship failing to meet statistical significance.

To verify that the observed relationships between cognitive
ability and risk preference are not an artifact of our data pool-
ing procedure across choice tables, we fit a hierarchical linear
regression model for every quadrant separately. We model the
relationship between CRRA and IQ in each quadrant as fol-
lows

CRRAi = slopei ∗ IQ+ intercepti + ε

slopei ∼ N (µslope, σ
2

slope)

intercepti ∼ N (µintercept , σ
2

intercept)

ε ∼ Hal fCauchy(5)

where slopei, intercepti are the slope and intercept param-
eters for the choice-table ’i’ in a quadrant and ε is noise. We
used Gaussian and half-Gaussian priors, respectively, for our
two mean and two standard deviation hyperparameters.

We fit this model using PyMC3’s NUTS sampler using 2
chains of 2000 draw iterations with 1000 tuning steps. The
key parameter of interest for us is the mean of the distribution
of µslope from which slopes for different choice sets are sam-
pled. Figure 4 plots the quadrant-wise posterior distributions
for µslope from the fitted model. The key observation is that
the MAP estimates of µslope reliably track the average slope
estimates we obtained in our pooled analysis, suggesting that
the pattern seen in the previous analysis is not an artifact of
the data pooling procedure.

5.0 2.5 0.0
slope

-4.2  -0.7
95% HDI

mean=-2.42

HPL

1 0 1
slope

-0.25  0.85
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slope

-0.21  0.15
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Figure 4: This figure plots the posterior distribution for the
mean distribution from which slopes of all quadrants are sam-
pled with 95% credible intervals.

Discussion
In this paper, we have presented a sampling-based model of
probability judgment for risky prospects and demonstrated
that it shows the classic inverse-S shaped distortion of prob-
ability judgments. The model predicted a specific pattern
of correlations between cognitive ability and risk aversion,
which we tested using an experiment with human subjects.
The pattern of results is consistent with the model’s predic-
tions in three of the four quadrants, as well as with ear-
lier empirical studies of the relationship between cognitive
ability and risk preference (Frederick, 2005; Burks et al.,
2009; Dohmen et al., 2010). Andersson, Holm, Tyran, and
Wengström (2016) proposed that the relationship between
cognitive ability and risk aversion is spurious, and the direc-
tion of correlation depends on the behavioural noise and the
biased risk elicitation method. In the current study, all the
choice tables in every quadrant are biased in the same direc-
tion, although we still see both positive and negative correla-
tions between cognitive ability and risk aversion. This sug-
gests that the relationship between cognitive ability and risk
aversion does not depend solely on the bias in the risk elici-
tation method and the behavioural noise. However, since re-
sults for low probable loss quadrant, failed to meet statistical
significance, further work is needed to verify it.

While previous work has proposed general models of prob-
ability distortions (Gershman & Wilson, 2010; Zhang & Mal-
oney, 2012) as well as models of probability distortion that
use retrieval-specific assumptions (Fox & Tversky, 1998; Fox
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Figure 3: This figure plots the relation between CRRA vs IQ for every choice table in all the quadrants, and the average plot to
show the overall trend in a quadrant.

& Rottenstreich, 2003), these proposals have so far been mu-
tually exclusive, in the sense that the former category produce
generalized models by making encoding-based assumptions,
and the latter category produce context- and task-specific
models. The probability-by-sampling model, while special-
ized to prospect risk in our current presentation, can be ex-
tended to other tasks easily. For example, for frequency esti-
mation, we simply need assume that observers sample tokens
until they sample the one they are estimating the frequency
of once, and then average across the token count to produce a
frequency estimate.

Probability-by-sampling is thus a task-general retrieval-
based model of probability distortions. It is therefore, able
to accommodate the possibility of veridical encoding of fre-
quency information (Hasher & Zacks, 1984) and the possibil-
ity of near-veridical retrieval of probability information using
non-symbolic elicitation procedures (Trommershäuser et al.,
2003; Goldstein & Rothschild, 2014), which are problem-
atic for encoding-based accounts of probability distortions.
Probability-by-sampling is also consistent with recently doc-
umented evidence for the use of sampling in probabilistic
judgments in other studies (Zhu et al., 2020).

We note with interest a number of theoretical connections
between probability-by-sampling, and a recent improvement
upon the linear-log-odds model (Zhang, Ren, & Maloney,
2020). In addition to assuming a linear log odds represen-
tation of probability, Zhang et al. (2020) show that human

frequency and probability judgments are better explained if
we further assume that the distorted probabilities are mapped
dynamically to a quantized internal Thurstonian scale, with
the noise of the scale subject to variance compensation. The
quantization implicit in the former assumption maps nicely
onto the discrete nature of memory sampling in probability-
by-sampling. Even more interestingly, (Zhang et al., 2020)
show that Gaussian encoding noise on a Thurstone scale in
log-odds, when transformed back into probability is approxi-
mately proportional to the variance of a binomial distribution
parameterized by the probability value. Since probability-by-
sampling involves a sequence of Bernoulli trials parameter-
ized by the probability value, the signature of scale noise in
our model would also be exactly binomial. Exploring syner-
gies and differences between the two models presents a clear
direction for future work.
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