
Numerical Differentiation of Stationary Measures of Chaos

by

Angxiu Ni

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor John Strain, Chair
Professor Fraydoun Rezakhanlou

Professor Fai Ma

Spring 2021

Numerical Differentiation of Stationary Measures of Chaos

Copyright 2021
by

Angxiu Ni

1

Abstract

Numerical Differentiation of Stationary Measures of Chaos

by

Angxiu Ni

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor John Strain, Chair

In this thesis we develop two algorithms, the non-intrusive shadowing and the fast linear
response algorithms, for computing derivatives of SRB measures with respect to some
parameters of the dynamical system, where SRB measures are fractal limiting stationary
measures of chaotic systems. The accurate formula of such derivative is the linear response
formula. The non-intrusive shadowing algorithm previously devised by the author is one of
the fastest approximate algorithm for differentiating chaos. It restricts computations to the
unstable subspace, whose dimension can be much lower than the system.

In this thesis, we first set the theoretical foundation of the shadowing method by showing that
it accurately computes the shadowing contribution of the linear response formula, and it well
approximates the entire linear response for some important cases, such as high-dimensional
systems with low-dimensional unstable subspaces. Then we develop the finite difference
version of the non-intrusive shadowing, which we demonstrate on a computational fluid
problem with about a million of dimensions: this is one of the first time sensitivity analysis
being performed on such complicated systems. Then we consider adjoint shadowing algorithms.
We give the explicit formula of the adjoint operator, and the non-intrusive characterization
by only adjoint solutions. This leads to the non-intrusive adjoint shadowing algorithm, which
generalizes the traditional back-propagation method to chaos. We demonstrate non-intrusive
adjoint shadowing in a high-dimensional computational fluids problem.

Finally, we devise the fast linear response algorithm, for accurately computing the other
part of the linear response, which is called the unstable contribution. We derive the first
computable expansion formula of the unstable divergence, a central object in the linear
response theory for fractal attractors. Then we give a ‘fast’ characterization of the expansion
by renormalized second-order tangent equations, whose second derivative is taken in a
modified shadowing direction, computed by the non-intrusive shadowing algorithm. The
new characterization makes the algorithm efficient and robust: its main cost is solving u,
the unstable dimension, many first-order and second-order tangent equations, and it does

2

not compute oblique projections. Moreover, the algorithm works for chaos on Riemannian
manifolds with any u; its convergence to the true derivative is proved for uniform hyperbolic
systems. The algorithm is illustrated on an example which is difficult for previous methods.
The procedure list is easy to understand and implement.

i

To my parents, Xiuming Liu and Guoqiang Ni.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1

2 Preliminaries 4
2.1 Hyperbolicity and notations . 4
2.2 Review of linear response formula . 6
2.3 Shadowing direction and non-intrusive shadowing algorithm 8
2.4 Continuous-time systems . 10

3 Approximate linear response by shadowing 13
3.1 Notations . 14
3.2 Approximating linear response by shadowing 15
3.3 Convergence of non-intrusive shadowing . 22
3.4 Conclusions . 26

4 Finite-difference non-intrusive shadowing 27
4.1 Deriving finite-difference shadowing . 27
4.2 Finite-difference shadowing algorithm . 29
4.3 Application on a turbulent three-dimensional flow over a cylinder 38
4.4 Conclusions . 43

5 Non-intrusive adjoint shadowing 45
5.1 Review on adjoint flow and adjoint shadowing 46
5.2 Deriving non-intrusive adjoint shadowing algorithm 50
5.3 The non-intrusive adjoint shadowing algorithm 53
5.4 Applications . 60
5.5 Conclusions . 70
5.6 Appendix . 71

iii

6 Fast linear response algorithm 75
6.1 Expanding unstable divergence . 77
6.2 Fast characterization of unstable divergence 86
6.3 Fast linear response algorithm . 92
6.4 A numerical example . 100
6.5 Appendix . 103

Bibliography 110

iv

List of Figures

4.1 Subscripts used in this chapter, where t0 = 0, tA = T . Wi(t), v′i(t) are defined on
the i-th segment, which spans t ∈ [ti, ti+1]; Qi, Ri are defined at ti. Integrating
tangent equations happens within one segment. Rescaling tangent solutions
happens at the interface between two segments. 30

4.2 Geometry used in the simulation of a flow over a 3-D cylinder. The span-wise
extent of the computational domain is Z = 2D. The positive direction of the
cylinder rotational speed ω is counter-clockwise. 39

4.3 Left: 2-D slice of the mesh over the entire computational domain. Right: zoom
around the cylinder. This is a block-structured mesh with 3.7× 105 hexahedra.
The span-wise direction has 48 cells. 39

4.4 A typical snapshot of the flow field. Top: cross-section along the x-z plane, plotted
by magnitude of velocity. Bottom: cross-section along the x-y plane, plotted by
the z-component of velocity. The bottom picture shows the flow is 3-D. 40

4.5 Confidence intervals of the largest 40 Lyapunov exponents (LE), normalized by
t−1
0 . The largest LE is 0.22t−1

0 , meaning in one flow-through time t0, the norm of
the first CLV becomes e0.22 = 1.25 times larger. 42

4.6 History plots of sensitivities computed by finite-difference shadowing. All axes are
normalized. The 〈·〉 in the annotation of y-axis means to take average over SRB
measure ρ. The dashed lines indicate the smallest encompassing interval whose
size shrinks as T−0.5. 43

4.7 95% confidence intervals of sensitivities computed by finite-difference shadowing,
indicated by the green wedge. Blue vertical bars indicate 95% confidence intervals
of averaged objectives. The 〈·〉 in the annotation of y-axis means to average over
ρ. Here all objectives and parameters are normalized. 44

5.1 Notations for multiple segments. W i(t), v∗i (t) are defined on the i-th segment,
which spans t ∈ [ti, ti+1]; Qi, Ri are defined at ti. ‘Integration’ refers to integrating
adjoint equations for W i(t), v∗i (t): after this procedure we move from end to the
start within one segment. ‘Rescaling’ refers to renormalize adjoint solutions at the
interface between segments: after this procedure we move to another time segment. 53

5.2 ρ(Φ) and ∂ρ(Φ)/∂ρ′ versus ρ′ for the Lorenz 63 system. Here σ = 10 is fixed. . . 62
5.3 Convergence of the averaged objective ρ(Φ) with respect to the trajectory length

T . Here ρ′ = 28 and σ = 10 are fixed. 62

v

5.4 Convergence of sensitivities computed by non-intrusive adjoint shadowing with
respect to the trajectory length T . Here ρ′ = 28 and σ = 10 are fixed. 63

5.5 Gradients computed by non-intrusive adjoint shadowing. The contour is of ρ(Φ)
with respect to ρ′ and σ, and arrows are gradient vectors. Here ρ(Φ)’s are averaged
over 20 randomly initialized trajectories of length 100, while gradients computed
by non-intrusive adjoint shadowing are averaged over 10 randomly initialized
trajectories of length 40. The arrow length is 0.2 times the gradient norm. non-
intrusive adjoint shadowing computes one gradient, composed of two sensitivities
to two parameters, in one run. 64

5.6 Norm of the adjoint shadowing direction computed by non-intrusive adjoint
shadowing for the Lorenz system, with ρ′ = 28 and σ = 10. Left: plot on the
entire trajectory time span. Right: zoom onto time span from 19 to 21. The
vertical dashed lines marks different time segments. 65

5.7 Geometry used in the simulation of a 3D flow past a cylinder. The span-wise
extent of the computational domain is 2d. 65

5.8 Front view of the mesh for the flow over cylinder problem. This is an unstructured
hexahedral mesh with approximately 7× 105 cells, with 50 cells in the span-wise
direction. 66

5.9 Instantaneous visualization of the flow field. Top: vertical cross-section, plotted
by the magnitude of velocity. Bottom: horizontal cross-section, plotted by the
span-wise velocity. The bottom picture shows the flow is 3D. All velocities are
normalized by the reference velocity ur. 68

5.10 Normalized drag as a function of inlet Mach number. Blue bars denote the
confidence interval of the averaged normalized drag. The black line denotes
the sensitivity estimated using linear regression. The red shaded region denotes
the confidence interval of the sensitivity estimated using non-intrusive adjoint
shadowing. 68

5.11 Spectrum of the first 20 adjoint Lyapunov Exponents (LE). The time unit for LEs
is t−1

r . The largest LE is 0.21t−1
r , meaning in one time unit tr, the norm of the

first adjoint CLV becomes e0.21 = 1.23 times larger. 69

6.1 Definitions of projections. 82
6.2 Subscript convention on multiple segments. 93
6.3 The empirical measure of a trajectory with default setting. 101
6.4 Effects of A. Left: derivatives from 8 independent computations for each A. Right:

the sample standard deviation of the computed derivatives, where the dashed line
is A−0.5. 102

6.5 Effects of W . Left: derivatives computed by different W ’s. Right: standard
deviation of derivatives, where the dashed line is 0.005W 0.5. 102

6.6 Averaged objectives and derivatives for different parameter γ. The grey lines are
the derivatives computed by fast linear response. 103

6.7 P u, P s, and P ‖, P⊥ applied on ei. 108

vi

List of Tables

4.1 Comparison of our simulation with previous results in literatures by the Strouhal
number St and the averaged drag coefficient CD. 40

5.1 Comparison of non-intrusive (NI) adjoint shadowing with the original version,
Finite Difference (FD) version, and discrete adjoint (DA) version of non-intrusive
(NI) shadowing. Here ‘prm’, ‘tan’, ‘adj’, ‘ihm’ and ‘hm’ are short for primal,
tangent, adjoint, inhomogeneous and homogeneous, respectively. u′ is a number
strictly larger than the number of unstable CLVs. For item 4 and 5, we assume
that all objectives and parameters are determined before the computation, rather
than adding more objectives and parameters after the computation is done. . . . 60

vii

Acknowledgments

I am extremely grateful to my adviser, John Strain, for supporting me carrying out this
research and supervising my thesis. Without his help, my research would have never been
accomplished. I also deeply thank committee members, Fraydoun Rezakhanlou and Fai Ma,
for very kind supervision and very helpful discussions.

I am in much debt to the math department of UC Berkeley, which took me in and let
me independently pursue my original interest in numerical differentiation of chaos. I have
benefited a lot from talking to the best mathematicians in the world, from whom I learned
not only math but also how to live and work as a professional mathematician. Among them,
I thank in particular Alexandre Chorin, Per-Olof Persson, Lin Lin, Jon Wilkening, and Craig
Evans. The free spirit of Berkeley has always encouraged me to work as an independent
mathematician.

My research requires much knowledge in pure math, for which I have benefited from a lot
of people. I am in much debt to Yi Lai for her constant support and encouragements, and
many discussions on differential geometry. I bothered a lot of mathematicians on smooth
ergodic theory, who have kindly and patiently helped me. I am extremely grateful to David
Ruelle, Dmitry Dolgopyat, and Miaohua Jiang for discussions on their groundbreaking results
on linear response. I am also extremely grateful to Charles Pugh and Peidong Liu for help
on more general topics. I also learned a lot at the online student dynamics seminar at Penn
State during the covid year, especially from Alansari Nawaf, Alp Uzman, and Ignacio Correa
Duran.

I have made many friends over the past four years, who gave me much personal and
professional support. Andrew Shi introduced me to the Berkeley environment; with Chan
Bae and Charles Wang we formed the ‘party four’. I would also like to thank other extremely
valuable friends, Yixuan Li, Xiaohan Yan, Haoren Xiong, Yu Tong, Wenlong Mou, Huibin
Chen, Roy Zhao, Yuan Yao, Jian Wang, Xinyu Zhao, and my beloved office-mates, Theo
McKenzie and Lauren Heller.

I am also extremely grateful to many people during my two master degrees at Tsinghua
and MIT. I am very grateful to Yufei Zhang, Haixin Chen, and Song Fu, for introducing me
to numerical optimization, computational fluid, and turbulence. I am also very grateful to to
Qiqi Wang for introducing me to chaos. I also greatly thank my friends, including Wensheng
Zhang, Caolei Li, Lijun Xu, Zhao Li, Kezhe Xu, Tong Zhao, Yuandong Zhao, and Xiaoming
Fang at Tsinghua, and Pablo Fernandez, Nisha Chandramoorthy, Zheng Wang, Ben Zhang,
Arthur Huang, and Ophelia Liang at MIT. I am also extremely grateful to Youjin Zhang,
Richard Melrose, and Michael Artin, who taught me math, and inspired me to become a
mathematician.

Finally, I thank my parents, Xiuming Liu and Guoqiang Ni, for supporting me through
this journey. They are the best parents in the world.

1

Chapter 1

Introduction

Chaos is ubiquitous across many disciplines, such as fluid mechanics, geophysics, and machine
learning. In chaotic systems, while instantaneous snapshots seem random and unpredictable,
the averaged behavior is deterministic, and can be predicted using the parameters of the
system. This means that the averaged behavior of chaos, measured by the average of some
objective functions, varies smoothly to the parameters of the system, and the derivative is well-
defined. The derivative, or linear response, of the long-time average of observable/objective
functions, is fundamental to many widely used numerical tools, such as gradient-based
optimization, error analysis, and uncertainty quantification. However, due to the butterfly
effect, computing the linear response is challenging, especially for general fractal attractors,
where many quantities are non-differentiable.

Roughly speaking, for a chaotic dynamical system, if we make a perturbation on the
governing equation, for each trajectory, we typically get a new trajectory that diverges
exponentially fast from the old one. However, if we further average the perturbations on
individual trajectory to the SRB measure, which models the long-time averaged statistics of
chaotic systems, we can formally obtain the linear response formula. It is proved to give the
true derivative of averaged objective with respect to the perturbation on governing equations,
under various hyperbolic assumptions [68, 70, 69, 42, 27], where hyperbolicity is typically
used as a model for general chaotic systems.

Numerically, the original linear response formula can be directly implemented, as done by
the ensemble and operator-based algorithms [47, 28, 49, 38, 3]. Theoretically, these algorithms
could give accurate linear response; however, both are very expensive, and in reality, it is
typically unaffordable for convergence to actually happen [19]. This is because trajectory-wise
perturbations grow exponentially fast, and that averaging a large integrand to get a small
integration result requires a lot of data. It is also possible to approximate the dynamical
systems by Markov chains, and use linear response for Markov chains as an approximation
[72].

The shadowing method was another attempt to compute the derivative of averaged
objectives for chaotic systems [2, 12, 63, 82, 74, 39, 7, 73, 46, 9]. The computational efficiency
of shadowing algorithms is boosted by a ‘non-intrusive’ formulation devised by the author,

CHAPTER 1. INTRODUCTION 2

which means to involve only solutions of the most basis equations, in this case the tangent
equations [59, 61]. Here tangent equations are linearized versions of the governing equations
of the dynamical system. The benefit of non-intrusiveness is to constrain the computation to
only the unstable subspace, and makes approximate numerical differentiation affordable for
the first time for several high dimensional chaos, such as computational fluid systems with
4× 106 degrees of freedom [57, 41].

However, shadowing method was developed under the strong assumption that shadowing
trajectories are representative. This is not true in general, and shadowing methods can
fail for simple systems. The goal of chapter 3 is to rebuild the theoretical foundation of
shadowing methods. We will show that shadowing gives part of the correct derivative,
which we call the shadowing contribution of the linear response; the other part is called the
unstable contribution. Moreover, we show that shadowing is a good approximation for many
interesting cases. In particular, under two statistical assumptions, one on the randomness of
selecting objective functions and perturbations of dynamical system, the other on the decay of
correlation, we show the error of shadowing is O(

√
u/M), where u is the unstable dimension,

M is the system dimension. We will also prove the convergence of the non-intrusive shadowing
algorithm to the shadowing contribution.

The original (tangent) non-intrusive shadowing algorithm requires solvers of tangent
equations, or linearized governing equations. Chapter 4 presents the finite-difference version
of non-intrusive shadowing. It does not require tangent solvers, and can be implemented with
little modification to existing numerical simulation software. This enriches applications of
finite-difference shadowing to engineering problems, since most numerical simulation software
do not have accompanying tangent solvers. We also give a formula for solving the least-squares
problem in finite-difference shadowing, which can be applied in non-intrusive shadowing as
well. Finally, we apply finite-difference shadowing for sensitivity analysis of a chaotic flow
over a 3-D cylinder at Reynolds number 525.

The marginal cost for a new parameter in non-intrusive shadowing is computing one
extra inhomogeneous tangent solution. For cases with many parameters, an adjoint version
is desired, because its computational cost is independent of the number of parameters.
Chapter 5 presents the adjoint version of the non-intrusive shadowing algorithm, which
performs adjoint sensitivity analysis of chaotic systems via computing the adjoint shadowing
direction. Non-intrusive adjoint shadowing constrains its computation to the adjoint unstable
subspace, and can be implemented with little modification to existing adjoint solvers. We
also demonstrate the adjoint shadowing algorithm on a three-dimensional weakly turbulent
flow.

In the linear response formula, the shadowing contribution has a bounded integrand given
by the shadowing direction; the exponential growth of integrand is only in the unstable
contribution. Non-intrusive shadowing well computes the shadowing direction and the shad-
owing contribution, and the left over problem, which is a long-lasting one, is to compute the
unstable contribution. The exponential growth in the integrand of the unstable contribution
is improved after integrating-by-parts on the unstable manifold, which yields a divergence

CHAPTER 1. INTRODUCTION 3

on the unstable manifold. However, this unstable divergence is very difficult to compute,
because it is a priori only a distribution.

Chapter 6 presents the first numerical treatment of the unstable divergence. We derive
the first computable expansion formula of the unstable divergence, where all terms are
functions rather than distributions. Then we give a ‘fast’ characterization of the expansion
by renormalized second-order tangent equations, whose second derivative is taken in a
modified shadowing direction, computed by the non-intrusive shadowing algorithm. The
main idea here is a ‘combine then propagate’ idea commonly seen in fast algorithms. This
new characterization leads to the fast linear response algorithm, which is efficient and robust:
its main cost is solving u, the unstable dimension, many first-order and second-order tangent
equations, and it does not compute oblique projections. The algorithm is illustrated on an
example which is difficult for previous methods. The procedure list is easy to understand
and implement.

4

Chapter 2

Preliminaries

2.1 Hyperbolicity and notations
Let f ∈ C3 be a diffeomorphism on a C∞ Riemannian manifoldM, whose dimension is M .
Assume that K is a hyperbolic compact invariant set, that is, TKM (the tangent bundle
restricted to K) has a continuous f∗-invariant splitting TKM = V s⊕V u, such that there are
constants C > 0, λ < 1, and

max
x∈K
‖f−n∗ |V u(x)‖, ‖fn∗ |V s(x)‖ ≤ Cλn for n ≥ 0,

Here f∗ is the pushforward operator, which applies on vectors or measures. In RM , f∗ can be
represented by multiplying with the Jacobian matrix. (see definition 5 in appendix 6.5).
We call V u and V s the stable and unstable subbundles, or subspaces; also let u, s denote the
dimension of the unstable and stable manifolds, hence, u+ s = M . For convenience, we also
use superscript +,− to denote unstable and stable subspaces, that is,

V + = V u, V − = V s.

Local stable manifolds, Vs(x), are manifolds as smooth as f , tangent to V s(x) at x, and there
are C > 0 and λ < 1 such that if y, z ∈ Vs(x),

d(fny, fnz) ≤ Cλnd(y, z) for n ≥ 0,

where d is the distance function. Local unstable manifolds are defined similarly.
K is said to be an Axiom A attractor if it is the closure of periodic orbit, and there is

an open neighborhood U , called the basin of the attractor, such that ∩n≥0f
nU = K. The

SRB measure on an attractor can be easily found by numerical simulations, since it is the
weak limit of the empirical measure of almost all trajectories starting from the basin. For all
x ∈ K, the local unstable manifolds Vu(x) lie in K, whereas the local stable manifolds Vs(x)
fill a neighborhood of K. For more details on hyperbolicity see [71, 75]. Due to the spectral

CHAPTER 2. PRELIMINARIES 5

decomposition theorem, by taking out a basic set and raise f to some power, we may further
assume that f is mixing on K [11, 77].

On a mixing Axiom A attractor, the SRB measure ρ of f on K is the unique f -invariant
measure making h(ρ) − ρ(log Ju) maximum. Here h(ρ) is the entropy of ρ and Ju is the
unstable Jacobian defined in equation (6.3). Under our assumption, the SRB measure can be
equivalently characterized by [87]:

• ρ has absolutely continuous conditional measures on unstable manifolds;

• there is a set V ⊂ M having full Lebesgue measure such that for every continuous
observable ϕ :M→ R, we have, for every x ∈ V

1
n

n−1∑
i=0

ϕ(f ix)→ ρ(ϕ).

Roughly speaking, the last characterization means the SRB measure is the limit of evolving
Lebesgue measure, and it is the invariant measure most compatible with volume when volume
is not preserved.

We explain some notation conventions used in this chapter. Let x ∈M be the point of
interest, and xk := fkx. Subscripts n, k,m are only for labeling steps, and subscripts for step
zero are omitted. For a tensor field X onM, let Xk be the pullback of X by fk,

Xk(x) := X(xk).

The subscript k always specify that the value of the tensor field is taken at xk. However, when
Xk is differentiated, we should further specify its domain, or when the pullback happens:
we leave that to be determined by the differentiating vector. For example, let ∇ be the
Riemannian connection, Y a vector field, then

(∇YkXk)(x) := (∇YX)(xk). (2.1)

Since Yk(x) ∈ TxkM, it must differentiate a tensor field at xk, so Xk must be a function
around xk. Hence, Xk is X when being differentiated, and then the entire result is pulled-back
to x. The other way does not work: if Xk is X ◦ fk when being differentiated, this is a
function of x, and can not be differentiated by Yk. For another example, take a differentiable
observable function ϕ onM,

fk∗ Y (ϕk)(x) := fk∗ Y (ϕ)(xk) = Y (ϕ ◦ fk)(x) =: Y (ϕk)(x), (2.2)

where Y (·) means to differentiate in the direction of Y . Since fk∗ Y (x) ∈ TxkM, the first ϕk
is ϕ when the differentiation happens at xk, and then the result is pulled-back to x; since
Y (x) ∈ TxM, the second ϕk is ϕ ◦ fk when the differentiation happens right at x. Finally,
we omit the step subscript of the pushforward tensor f∗, since its location is well-specified by
the vector it applies to.

CHAPTER 2. PRELIMINARIES 6

Given a trajectory {xn}n∈Z, we can define a sequence, say {wn(x0, w0) ∈ TxnM}n∈Z. We
say such a sequence is covariant if its evaluation commutes with evolutions; that is, it does
not depend on w0 and further

wn(x0) = w0(xn).

Sequences obtained by taking values of a (rough) tensor field, such as Xn, X
u
n ,Φn, pn, are

covariant. We can define non-covariant sequences by the inductive relation of some covariant
sequences. The main theorem in our chapter is that, due to the stability in the induction,
the non-covariant sequence, r, computed by the induction, well approximates the covariant
counterpart, p, which is originally defined by complicated formulas. For other cases where
the non-covariant approximations have been previously well understood, we use the same
notation for both the covariant and non-covariant versions, such as the shadowing direction v
and the unstable hyper-cube e.

2.2 Review of linear response formula
The linear response formula is an expression of δρ, the derivative of the SRB measure, using
δf . Ruelle gave a formal derivation of this formula by averaging perturbations on each
trajectories over the SRB measure, and proved that the formula indeed gives the derivative
[68]. The assumption made in Ruelle’s work is also the setting of our current chapter. The
linear response formula can be proved for more general cases, for example, Dolgopyat proved
it for the partially hyperbolic systems with some mixing conditions [27]. It is plausible that
our work can also be generalized, perhaps even more so, because the fast characterization
does not involve oblique projections. It should also be noted that the linear response formula
fails for some cases [4, 85].

Theorem 1 (Ruelle [68]). Let K be a mixing Axiom A attractor for the C3 diffeomorphism
f of M. Denote by ρ the SRB measure of f on K, A the space of C3 diffeomorphisms
sufficiently close to the f in a fixed neighborhood V of K, A has C3 topology. Then the map
f 7→ ρ is C1 from A to C2(M)∗. Further assume that f is parameterized by some scalar γ,
and γ 7→ f is C1 from R to A, and define

δ(·) := ∂(·)
∂γ

. (2.3)

δ can also be thought as finite perturbations caused by perturbing the governing equation of
the dynamical system. Then, the derivative of the SRB measure is given by:

δρ(Φ) =
∞∑
n=0

ρ (X(Φn)) = lim
W→∞

ρ

(
W∑
n=0

X(Φn)
)
,

where X := δf ◦ f−1 is a C3 vector field, X(·) is to differentiate in the direction of X, and
Φ ∈ C2 is a fixed observable function. Here Φn = Φ ◦ fn.

CHAPTER 2. PRELIMINARIES 7

We refer to the particular formula in theorem 1 as the original linear response formula.
Due to the existence of unstable components, the size of the integrand grows exponentially
to W :

W∑
n=0

X(Φn) ∼ O(λWmax),

where λmax > 1 is the largest Lyapunov exponent. This phenomenon is also known as the
‘exploding gradients’. Computationally, the number of samples requested to evaluate the
integration to ρ also grows exponentially toW , incurring large computational cost [19]. Hence,
algorithms based on the original linear response formula suffer from very high computational
cost. Theoretically, it is also hard to justify the convergence of the summation in the original
formula in theorem 1.

To prove the linear response formula actually gives the correct linear response, Ruelle
decomposed the linear response into two parts. The first part accounts for the change of the
location of the attractor via the conjugacy map, which is called the shadowing contribution.
The second part, the unstable contribution, accounts for the fact that the pushforward of the
old SRB onto the new attractor is no longer SRB. Integrate-by-parts the unstable contribution
on the unstable manifold gives (see section 6.1 for details)

δρ(Φ) = S.C.− U.C. = ρ(v(Φ))− ρ
∑

n∈Z
Φn

 divuσXu

 ,
where S.C. :=

∑
n≥0

ρ(Xs(Φn))−
∑
n≤−1

ρ(Xu(Φn)) = ρ(v(Φ)),

U.C. :=
∑
n∈Z

ρ (Xu(Φn)) = lim
W→∞

ρ

 W∑
n=−W

Φn divuσXu

 .
(2.4)

Here S.C., U.C. are shadowing and unstable contributions, v is the shadowing direction (see
section 2.3), Xu and Xs are the unstable and stable oblique projections of X (appendix 6.5
figure 6.7). The unstable divergence, divuσ, is the divergence on the unstable manifold under
the conditional SRB measure. Now the unstable contribution subjects to decay of correlations,
justifying its convergence.

We refer to equation (2.4) as the integrated-by-parts linear response formula. For the
stable contribution, the integrand v is bounded. For the unstable contribution, notice that
subtracting Φ by constant ρ(Φ) does not change the linear response, so

ψ ∼ O(
√
W), where ψ :=

W∑
m=−W

(Φm − ρ(Φ)).

Here ∼ means with large probability. Hence, the integrand of the integrated-by-parts formula
is much smaller than the original formula, and algorithms based on the integrated-by-parts
formula should have much faster convergence. However, accurately computing the unstable

CHAPTER 2. PRELIMINARIES 8

divergence on fractal attractors has been an lasting open problem, not to mention algorithms
that are both accurate and efficient: this is achieved in chapter 6.

A perhaps more familiar decomposition of linear response is to cancel the second summation
in the shadowing contribution with half of terms in the unstable contribution, which gives
a decomposition into stable and unstable contributions. However, computing the stable
contribution requires computing oblique projection operators, which is twice the cost of
computing the shadowing direction by the non-intrusive shadowing algorithm. Moreover,
computing projections is not robust, because it requires making the artificial decision whether
a Lyapunov vector is stable or unstable. Finally, for both decompositions, our algorithm for
the unstable contribution is the same, which also requires computing a modified shadowing
direction. Hence, there is no point in using a stable/unstable decomposition, since shadowing
directions are computed anyway.

Another remark is that our results may hold beyond the strong assumptions on hyper-
bolicity. The two things that theorem 6 and the algorithm actually depend on are the
integrability of shadowing directions and renormalized second-order tangent solutions, which
should be more abundant in applications than the strong hyperbolicity assumptions. Our
work is essentially two new forms of the linear response formula, an expansion and a fast
characterization, and their equivalence to other forms can be proved more easily than the
equivalence between the formula and the true derivative. Hence, there is a good chance that
our results are correct whenever the linear response formula gives the correct sensitivity. It is
mainly for the simplicity of discussions that we use strong assumptions on hyperbolicity.

2.3 Shadowing direction and non-intrusive shadowing
algorithm

We define inhomogeneous and homogeneous tangent solutions on a trajectory {xn}n≥0 as non-
covariant sequences {v′n ∈ TxnM}n≥0 and {wn ∈ TxnM}n≥0 which satisfy the inhomogeneous
and homogeneous tangent equations,

v′n+1 = f∗v
′
n +Xn+1, wn+1 = f∗wn. (2.5)

Roughly speaking, v and w describe the perturbation of the trajectory due to perturbation
on the governing equation and on the initial conditions, respectively.

Roughly speaking, a ‘non-intrusive’ algorithm, in our definition, is one which requires
only the solutions of the most basic inductive relations. The non-intrusive shadowing
algorithm requires only the tangent solutions as data. There are several ramifications of
non-intrusiveness, making the algorithm efficient and robust.

1. Non-intrusive algorithms do not compute oblique projections (appendix 6.5 figure 6.7),
since the efficient algorithm for oblique projections is ‘little intrusive’, which means
that it requires adjoint solvers in addition to tangent ones.

CHAPTER 2. PRELIMINARIES 9

2. No additional information on the tangent equation, such as the Jacobian matrices, is
needed. Only the solutions are needed.

3. The instability of the tangent equation is removed by some operations using only tangent
solutions, for example, by subtracting homogeneous solutions from inhomogeneous
solutions.

4. Once the instability is suitably removed, precise initial condition is not necessary.

The basic solutions of non-intrusive algorithms may vary in different context. The non-
intrusive formulation for the unstable contribution, to be discussed later in this chapter,
allows both first and second order tangent solutions. In the adjoint shadowing lemma and
algorithm, non-intrusiveness is defined by adjoint solutions [54, 58]. The ‘little-intrusive’
algorithm is a side result of adjoint shadowing lemma, and it can help other algorithms, such
as the blended response, to improve efficiency.

We review the non-intrusive shadowing algorithm [59]. By invariance of the SRB measure,
we can show that the shadowing contribution,

S.C. = ρ(v(Φ)), where v :=
∑
k≥0

fk∗X
s
−k −

∑
k≥1

f−k∗ Xu
k .

Here v is the shadowing direction, Xk(x) ∈ TxkM , and f−k∗ Xu
k (x) ∈ TxM , hence v(x) ∈ TxM,

and v(·) denotes taking derivative in the direction of v. This definition of shadowing direction
explicitly involves the stable and unstable projections. Using the exponential growth of
homogeneous tangent solutions, we can give a characterization which does not involve oblique
projections.

Lemma 1. v is the only bounded inhomogeneous tangent solution.

This characterization involves only the tangent solution, urging us to look for a non-
intrusive algorithm. On a given trajectory {xn}, the non-intrusive shadowing algorithm
computes the shadowing direction, as if a non-covariant sequence, vn := v(xn), by the
constrained minimization,

min
a∈Ru

1
2N

N−1∑
n=0
‖vn‖2, s.t. vn = v′n + wna , (2.6)

where v′ is an arbitrarily chosen inhomogeneous tangent solution, such as one solved from
the zero initial condition. w is a matrix with u columns, which are homogeneous tangent
solutions. For almost all random initial conditions of W , its unstable projection span the
unstable subspace V u; hence, after evolving for some time, the unstable components outgrow
the stable ones, and the span of W would well approximate V u.

In other words, the boundedness property is approximated by a minimization, while the
feasible space of all inhomogeneous tangent solutions, which has M dimensions, is reduced to

CHAPTER 2. PRELIMINARIES 10

an affine subspace of only u dimensions, almost parallel to V u. The reduced feasible space
significantly reduces the computational cost, yet is still capable of finding the shadowing
direction [55]. The non-intrusive shadowing algorithm is an ingredient of fast linear response
algorithm, and its procedure list is included in section 6.3.

If the unstable contribution is small, we may choose to neglect it or approximate it crudely.
For example, for systems with exponential decay of correlations, and some independence
between X and Φ, the unstable contribution is typically in the order of

√
u/M . Hence, when

u�M , we may approximate linear response by the non-intrusive shadowing algorithms. It
is possible to further compute some unstable contributions using the little-intrusive algorithm
for projection operators [55]. Since the non-intrusive shadowing algorithm is part of the fast
linear response, it does not hurt to first try non-intrusive shadowing algorithms, which are
faster and maybe accurate enough; if non-intrusive shadowing is not enough, we may further
compute the unstable contribution.

2.4 Continuous-time systems
In this thesis, continuous-time systems are limited to RM , although generalization to general
manifolds is straightforward. We consider a chaotic dynamical system given by the vector
field f , that is, a trajectory x(t) satisfies the so-called primal equation:

dx

dt
= f(x). (2.7)

Again assume that f is parameterized by γ. The SRB measure is still defined, in this thesis,
as the infinite pushforward of Lebesgue measure by the flow. Define X := δf := ∂f/∂γ.

Homogeneous solutions, w, and inhomogeneous tangent solutions, v, are

dw

dt
= ∂xfw,

dv

dt
= ∂xfv +X (2.8)

where ∂x(·) = ∂(·)/∂x.
For continuous-time system, uniform hyperbolicity requires that the tangent space on

the attractor can be split into stable subspace, unstable subspace, and a central subspace
of dimension one, which is parallel to f . This central direction is inevitable, because f is
a homogeneous tangent solution whose norm keeps roughly at the same level. The central
direction does not pose too much difficulty for theoretical analysis, since we can consider
finite-time maps of the flow [13]; however, for computations, we need a neater treatment.

A Characteristic Lyapunov Vector (CLV), ζ(t), is a homogeneous tangent solution whose
norm behaves like an exponential function of time. That is, there are C1, C2 > 0 and λ ∈ R,
such that for any t ∈ R,

C1e
λt‖ζ(0)‖ ≤ ‖ζ(t)‖ ≤ C2e

λt‖ζ(0)‖, (2.9)

CHAPTER 2. PRELIMINARIES 11

where the norm is the Euclidean norm in Rm, and λ is defined as the Lyapunov Exponent
(LE) corresponding to this CLV. CLVs with positive LEs are called unstable, CLVs with
negative LEs are called stable, and with zero LEs are neutral. In this thesis, the j-th largest
LE and its corresponding CLV will be referred as the j-th LE and j-th CLV, respectively.

The shadowing direction v∞ is an inhomogeneous tangent solution, and its orthogonal
projection perpendicular to the trajectory, v∞⊥, is uniformly bounded on a infinitely long
trajectory. The orthogonal projection p⊥(t) of some any vector valued function of time, p(t),
is:

p⊥(t) = p(t)− fT (t)p(t)
fT (t)f(t)f(t) , (2.10)

where ·T is the matrix transpose.
For continuous dynamical systems, the base and the shadowing trajectories may move

at different speed. Since we are considering averages taken with respect to time, we should
take account of the fact that if the shadowing trajectory spend longer or shorter time in a
particular neighborhood, then the weight of the objectives in this neighborhood should be
respectively larger or smaller. We define a ‘time dilation’ terms η to denote this effect, and if
the shadowing trajectory takes less time to travel the same length in the phase space, then
η < 0. On the other hand, if the shadowing trajectory moves slower, then η > 0. We can
show that for a given inhomogeneous tangent solution v, which describes a perturbation on
the trajectory due to parameter change, η should satisfy the following equation [59]:

dv⊥

dt
= ∂xfv

⊥ + δf + ηf . (2.11)

We denote the particular time dilation corresponding to the shadowing direction v∞ by η∞.
The change in the location of the attractor is described by v∞; the time difference the

shadowing trajectory spend around a neighborhood is described by a corresponding η∞.
Taking both changes into account, the shadowing contribution of the linear response is

S.C. = 1
T

∫ T

0

[
∂xJ v

⊥ + δJ + η(J − Javg)
]
dt , (2.12)

where we assume that v and η are legit approximations of v∞ and η∞. Another formula for
the sensitivity is easier for computer programming:

S.C. = 1
T

∫ T

0
(∂xJ v + δJ) dt+ ξ

∣∣∣∣∣
T

0
Javg − (ξJ)

∣∣∣∣∣
T

0

 , (2.13)

where the time difference term, ξ, is a time-dependent scalar function such that:

ξf = v − v⊥ . (2.14)

Intuitively, the right-hand-side of the above equation is how farther down the trajectory
direction has the shadowing trajectory traveled. Divided by f , we can see ξ describes how

CHAPTER 2. PRELIMINARIES 12

much more time should the base trajectory take to catch up with the shadowing trajectory.
ξ is easier to compute than η, since its definition does not involve time derivatives. Notice
that in equation (2.13), we use v instead of its projection v⊥. The detailed derivation of
equation (2.12) and (2.13) can be found in the appendix of [59].

The non-intrusive shadowing problem on a given trajectory is a least squares problem
with arguments a ∈ Ru,

min
a∈Ru

1
2

∫ T

0
(v′⊥ +W⊥a)T (v′⊥ +W⊥a) dt, (2.15)

Here v′ is an inhomogeneous tangent solution, W (t) is a matrix whose columns are or-
thogonal projections of randomly initialized homogeneous tangent solutions, W⊥(t) =
[w⊥1 (t), · · · , w⊥M(t)]. The shadowing solution is given by v = v∗ + Wa, which is an in-
homogeneous tangent solution, but we replace prescribing its initial condition by minimizing
its L2 norm. We denote the covariant matrix, the coefficient matrix for the second order
terms, by C; we denote the coefficient vector for the first order terms by d. More specifically,
we define

C =
∫ T

0
(W⊥)TW⊥ dt , d =

∫ T

0
(v∗⊥)TW⊥ dt . (2.16)

Now the non-intrusive shadowing problem is equivalently written as

min
a∈RM

1
2a

TCa+ dTa . (2.17)

13

Chapter 3

Approximating linear response by
non-intrusive shadowing algorithms

Shadowing methods approximately compute derivatives of averaged objectives of chaos with
respect to parameters of the dynamical system. However, previous convergence proofs
of shadowing methods wrongly assume that shadowing trajectories are representative. In
contrast, the linear response formula is proved rigorously, but is more difficult to compute.

In this chapter, we first prove that the shadowing method computes a part of the linear
response formula, which we call the shadowing contribution. Then, under two statistical
assumptions, one on the randomness of selecting objective functions and perturbations of
dynamical system, the other on the decay of correlation, we show the error of shadowing
is O(

√
u/M), where u is the unstable dimension, M is the system dimension. For partly

reducing this error, we give a correction which can be easily implemented. Finally, we prove
the convergence of the non-intrusive shadowing, the fastest shadowing algorithm, to the
shadowing contribution.

The shortcoming of the shadowing method is that it makes the strong assumption that
shadowing trajectories are representative. This is not true in general, and shadowing methods
can fail for simple systems such as the 1-dimensional expanding circle [8]. Hence, it is of
interest to rebuild the theoretical foundation of shadowing methods. As we shall see in this
chapter, shadowing method does not give the accurate exact derivative, yet, we can show that
it gives part of the correct derivative, which we call the shadowing contribution of the linear
response. Moreover, we show that shadowing is a good approximation for many interesting
cases. This partially explains the success of shadowing in fluid mechanics.

It is hence of interest to ask how much error is caused by this reduction. This is answered
in the later part of this chapter, where we show that this reduction causes no more error
comparing to original shadowing methods. Together with the first part of the chapter, we
give an error analysis of approximating linear response by non-intrusive shadowing.

Moreover, this chapter is the first step towards the linear response algorithm. This chapter
shows that the linear response can be decomposed into the shadowing contribution and the
unstable contribution. Computing the unstable contribution is solved by the linear response

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 14

algorithm, via a new characterization by second-order tangent equations, whose second
derivative is taken in a modified shadowing direction [56]. The linear response algorithm is
accurate, and faster than most previous algorithms except the non-intrusive shadowing. Linear
response algorithm uses non-intrusive shadowing twice, one for computing the shadowing
contribution, one for the modified shadowing direction in the unstable contribution. Hence,
it is still of interest to analyze the error of non-intrusive shadowing. It is also of interest
to partly reduce the systematic error of shadowing methods without involving second-order
tangent solvers, which rarely exist for engineering applications. Such a correction is also
given in this chapter.

This chapter is organized as follows. First, we show that the shadowing method computes
the shadowing contribution of the linear response. Moreover, we bound the remaining part,
the unstable contribution, of the linear response. We also explain how to compute part of
the unstable contribution by an easy implementation. Finally, we prove the convergence of
the non-intrusive formulation to the shadowing contribution.

3.1 Notations
We define some notations that are used only in this chapter. In this chapter, we consider
only the caseM = RM , because we want to impose the Gaussian assumption later. Some
sequences are covariant, such as the shadowing direction v, and later vA; however, some are
not covariant, such as vP , and eP , eN , ePN . Also notice that in this section we assume Φ does
not depend on γ; if it does, the linear response has an additional term ρ(δΦ), which is easier
to deal with than the other parts we consider here.

For now, we assume that shadowing trajectories are representative of the long-time
behavior; hence, we can take their difference, the shadowing direction v, to compute the
change in the averaged objective.

vk :=
∑
n≥0

fn∗X
−
k−n −

∑
n≤−1

fn∗X
+
k−n , (3.1)

Due to boundedness of the shadowing directions, the limit of summation and the limit in the
derivative can now interchange place, so

δρ(Φ) = δ lim
K→∞

1
K

K−1∑
k=0

Φ(xk) ≈ δsdρ(Φ) := lim
K→∞

1
K

K−1∑
k=0

Φxkvk , (3.2)

where Φxk := ∂Φ/∂x(xk) is a row vector, and the approximation sign reflects the error
introduced by our extra assumption, and upper script ‘sd’ is for ‘shadowing’.

Equation (2.4) circumvents the issue of exploding gradients, since the first term involves
propagating only the stable components into the future, while the second term is subject to
the exponential decay of correlation, that is, there is C ′2 > 0 and κ ∈ (0, 1), such that

Corn :=
∣∣∣ρ((Φ ◦ fn) div+

σ X
+)− ρ(Φ)ρ(div+

σ X
+)
∣∣∣ ≤ C ′2κ

n.

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 15

Since ρ(div+
σ X

+) = 0, we have Corn =
∣∣∣ρ((Φ ◦ fn) div+

σ X
+)
∣∣∣. It is very convoluted to express

C ′2 and κ by properties of the dynamical systems. Even if we could theoretically derive such
formulas, they would be too difficult to compute for engineering applications.

In this chapter, we make a statistical assumption about decay of correlation, that is, the
decay of the sequence Corn starts from the first term. More specifically, we assume that for
some C2 whose magnitude is about 1,

Corn =
∣∣∣ρ((Φ ◦ fn) div+

σ X
+)
∣∣∣ ≤ C2κ

nρ(|ΦxX
+|).

Here ρ(|ΦxX
+|) is a loose bound for Cor0, since

Cor0 =
∣∣∣ρ(Φ div+

σ X
+)
∣∣∣ =

∣∣∣ρ(ΦxX
+)
∣∣∣ ≤ ρ(|ΦxX

+|).

To reveal the connection between shadowing and the linear response in section 3.2, we
further explain how the linear response formula was proved. When changing γ to γ̃, f is
changed to f̃ := f(·, γ̃), and the SRB measure is changed to ρ̃, whose support also moves.
Ruelle showed that there is a Holder diffeomorphism, j, so that f̃ ◦j = j◦f . Let µ(·) := ρ̃(j(·)),
then µ has the same support as ρ, and ρ(Φ) = ρ̃(Φ) = µ(Φ ◦ j). Differentiating ρ(Φ) by the
product rule yields

δρ(Φ) = ρ(δ(Φ ◦ j)) + δµ(Φ).

Here the term ρ(δ(Φ ◦ j)) accounts for the change of location of the attractor. Via the
conjugation map, ρ̃ is pulled back to µ, which is supported on the previous attractor, and
the term δµ(Φ) accounts for its difference from the previous SRB measure, ρ. Ruelle derived
expressions for both terms, those are,

δ(1)ρ(Φ) := ρ(δ(Φ ◦ j)) =
∑
n≥0

ρ
〈
grad(Φ ◦ fn), X−

〉
−

∑
n≤−1

ρ
〈
grad(Φ ◦ fn), X+

〉
,

δµ(Φ) = δ(2)ρ(Φ) + δ(3)ρ(Φ), where
δ(2)ρ(Φ) :=

∑
n<N

ρ
〈
grad(Φ ◦ fn), X+

〉
, δ(3)ρ(Φ) := −

∑
n≥N

ρ
(
(Φ ◦ fn) div+

σ X
+
)
.

(3.3)

Here we further dissect δµ(Φ) into two parts, and N is a positive integer, whose selection
will be addressed later. We call δ(1)ρ(Φ) the shadowing contribution, and δµ(Φ) the unstable
contribution of the linear response.

3.2 Approximating linear response by shadowing
In this section, we examine the difference between the linear response formula and the
shadowing method. Notice that the non-intrusive formulation does not appear in this section,
and our discussion applies to all shadowing methods, including the original least square
shadowing. Comparing to previous proofs of shadowing methods [20, 82], which make
the extra assumption that shadowing trajectories are representative, here we replace that
assumption by an error estimation of its difference with the linear response formula.

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 16

Shadowing computes ρ(δ(Φ ◦ j))
In the linear response formula, the term ρ(δ(Φ ◦ j)) is the derivative while assuming µ is
fixed, that is, assuming that the SRB measure is preserved by the conjugation map j. Since
the SRB measure depicts the long-time behavior, this assumption is very similar to the
assumption we made for shadowing methods, hinting the following equivalence.

Lemma 2. The shadowing contribution of the linear response is accurately exactly the one
computed by the shadowing methods. That is,

δ(1)ρ(Φ) = δsdρ(Φ).

Here δ(1)ρ(Φ) is defined in equation (3.3), and δsdρ(Φ) is defined in equation (3.2).

Proof. Apply the invariance of SRB measure, we have

δ(1)ρ(Φ) =
∑
n≥0

ρ
[〈

grad(Φ ◦ fn), X−
〉
◦ f−n

]
−

∑
n≤−1

ρ
[〈

grad(Φ ◦ fn), X+
〉
◦ f−n

]
.

By the exponential decay, the above formula converges absolutely, hence we can use Fubini’s
theorem to interchange summation and integration, and

δ(1)ρ(Φ) = ρ

∑
n≥0

〈
grad(Φ ◦ fn), X−

〉
◦ f−n −

∑
n≤−1

〈
grad(Φ ◦ fn), X+

〉
◦ f−n


Since SRB measure can almost surely be evaluated by long-time averages,

δ(1)ρ(Φ) = lim
K→∞

1
K

K−1∑
k=0

∑
n≥0

〈
grad(Φ ◦ fn), X−

〉
(xk−n)−

∑
n≤−1

〈
grad(Φ ◦ fn), X+

〉
(xk−n)


By definition of pushfoward operators,〈

grad(Φ ◦ fn), X±
〉

(xk−n) = Φxkf
n
∗X

±
k−n.

δ(1)ρ(Φ) = lim
K→∞

1
K

K−1∑
k=0

∑
n≥0

Φxkf
n
∗X

−
k−n −

∑
n≤−1

Φxkf
n
∗X

+
k−n

 = lim
K→∞

1
K

K−1∑
k=0

Φxkvk,

where the shadowing direction, vk, is defined in equation (3.1).

The result of the shadowing method is off from the correct linear response by the error
term, δµ(Φ). A sufficient condition for this term to be zero is that j can be extended to a C1

map over the entire phase space. For a nice j, absolute continuity to the Lebesgue measure
is preserved, and µ is the limit of a measure absolutely continuous to Lebesgue. Since SRB
measure is the unique limit of evolving the Lebesgue measure, µ must always be the SRB
measure on the original attractor, which yields δµ ≡ 0. However, this rarely happens, so
instead of hoping the error to disappear, we shall give an estimation of the error term and
examine when it can be small.

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 17

Error estimation for shadowing
In this subsection, we bound the error term of shadowing methods, δµ(Φ). By equation (3.3),
the error is related to the magnitude of the unstable components of X. Intuitively, if X has no
particular reason to be aligned with the unstable directions, projection to a low dimensional
unstable subspace reduces the vector norm. Hence, the error should be related to the ratio
m/M .

For fixed X and Φ, it is difficult to give an apriori error bound for shadowing methods,
because even computing X+ is already more expensive than non-intrusive shadowing, at
which point apriori estimation would stop bringing any benefits. To give an estimation of the
shadowing error beforehand, we view Φ, X as random functions. Then we can bound the
expectation of the shadowing error under the particular statistical model we choose for Φ
and X. From here on in this chapter, we use U to denote the random variable whose value is
x, we let U be distributed according to the SRB measure, whose total measure is normalized
to 1.

We first define two norms. For a measurable function g(Φ, X), define

‖g‖ := (E(g2))0.5, ‖ρ(g)‖ := (E(ρ(g)2))0.5 = (E(E(g|Φ, X)2))0.5,

where the expectation E is with respect to the joint distribution of Φ, X and x, with
x marginally distributed according to the SRB measure ρ; the conditional expectation
E(·|Φ, X) = ρ(·). By Jensen’s inequality, (ρ(g))2 ≤ ρ(g2). Hence

‖ρ(g)‖ ≤ ‖g‖. (3.4)

In the remaining part of this subsection, we bound ‖δµ(Φ)‖ under two statistical as-
sumptions. First, we assume that X and Φx are not particularly aligned with the unstable
subspace. Then we bound ‖ΦxX

+‖/‖ΦxX‖, where ‖ΦxX‖ is an estimation of the magnitude
of the true sensitivity. Then we make an assumption on the rate for exponential decorrelation.
Finally, we bound ‖δµ(Φ)‖.

Assumption 1. For any x, X(x) and Φx(x) follow multivariate normal distributions
N (0, IM). Moreover, for any sequence {xn}n≥0, the sequence {X(xn)}n≥0 is independent of
{Φx(xn)}n≥0. Written using conditional probability,

(X(U) |U = x) ∼ N (0, IM), (Φx(U) |U = x) ∼ N (0, IM), ∀u.
{X(Un)}n≥0 ⊥⊥ {Φx(Un)}n≥0 | {Un = xn}n≥0, ∀{xn}n≥0

Remark. For our purpose, it suffices to assume only for the case where {xn}n≥0 is a trajectory.
An example satisfying this assumption is that both X and Φx are constant vector fields on
RM , whose values are drawn from two independent Gaussian.

Lemma 3. Under assumption 1,

‖ΦxX
+‖

‖ΦxX‖
≤ 1

sinα

√
m

M
,

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 18

where α is the smallest angle between stable and unstable subspace on the attractor.

Remark. This lemma can be generalized in several ways: α can be replaced by some kind
of averages instead of the lower bound; assumption 1 can also be replaced by more general
model, so long as it somehow describes that X and Φx are not intentionally selected to be
aligned with the unstable direction. Also, say, if X and Φx are models of a large number of
random particles, then the assumption 1 may follow from the law of large numbers. We do
not attempt to say to much why assumption 1 holds, and certainly more experiments are
needed for verifying both assumptions, although current available examples do suggest the
assumptions hold in some way, and shadowing works quite well for systems with low unstable
ratio.

Proof. By assumption, X(U) and Φx have the same distribution for all U , hence

E(ΦxX)2 = E(
M∑
j=1

Φj
xX

j)2 = EE[(
M∑
j=1

Φj
xX

j)2|U] = E[(
M∑
j=1

Φj
xX

j)2|U].

By independence, E[Φi
xX

jΦk
xX

l|U] = 0 unless i = k and j = l, where Xj is the j-th coordinate
of X. Hence,

E(ΦxX)2 =
M∑
j=1

E[(Φj
xX

j)2|U] = M ⇒ ‖ΦxX‖ =
√
M. (3.5)

Denote the entries in the oblique projection matrix P+ by P+
ij , then

E(ΦxX
+)2 = E(ΦxP

+X)2 = E(
∑
i,j

Φi
xP

+
ijX

j)2 = EE[(
∑
i,j

Φi
xP

+
ijX

j)2|U]

= E
∑
i,j

E[(Φi
xP

+
ijX

j)2|U] = ρ

∑
i,j

(P+
ij)2

 .
The orthogonal invariance of Frobenius norm says that, for any M ×M orthogonal matrix
A, ∑

i,j

(P+
ij)2 = tr(P+TP+) = tr((P+A)T (P+A)) =

∑
i,j

(P+A)2
ij.

Let the first m and the rest M −m columns of A be orthonormal basis of (V −)⊥ and V −,
then only the first m columns of P+A are non-zero, and their norms are bounded above by
1/ sinα. Hence,

E(ΦxX
+)2 = ρ

∑
i,j

(P+A)2
ij

 ≤ ρ

(
m

(sinα)2

)
= m

(sinα)2 .

The lemma is proved by dividing by equation (3.5).

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 19

Assumption 2. For the entire distribution of Φ and X, there are uniform constants C2 >
0, 0 < κ < 1, such that

Corn :=
∣∣∣ρ((Φ ◦ fn) div+

σ X
+)
∣∣∣ ≤ C2κ

nρ(|ΦxX
+|).

Remark. A typical trick to break this uniformity assumption is to pass Φ to Φ ◦ fn; however,
this trick does not affect δµ(Φ), which is what we are really interested in. Moreover, this
assumption is backed by observations in such as [15]. It is also worth noticing that the
decorrelation rate is faster than κ in the short time [21], making the bound safer.

Theorem 2 (error of shadowing). Under assumption 1 and 2,

‖δµ(Φ)‖
‖ΦxX‖

≤
(

C1

(1− λ) sinα + C2κ

(1− κ) sinα

)√
m

M
.

Remark. (1) Our estimation here also bounds the error of S3 [16] and blended response
algorithm [1]. Both S3 and blended response introduce approximations on the unstable
contribution, hence their errors should be somewhat smaller than shadowing, although it is
difficult to quantify those errors more accurately without extra assumptions. (2) To generalize
this lemma, we may replace the lower bounds on decay rate, κ and λ, by some form of
averages. Slow decorrelation or decay not only affect shadowing methods; they make most
theories and computations related to SRB measures difficult. (3) For a given application,
posteriori error of shadowing can be obtained by comparing with finite differences.

Proof. Set N = 1 in equation (3.3). First notice that the exponential decay of terms in
δ(2)ρ(Φ) is given by propagating unstable vectors forward in time. Note that Φx(fn(u)) and
X(u) are independent by assumption 1, we have

∥∥∥〈grad(Φ ◦ fn), X+
〉∥∥∥2

=
∥∥∥Φxf

n
∗ P

+X
∥∥∥2

= ρ

∑
i,j

(fn∗ P+)2
ij

 .
Use the same A as in the proof of lemma 3, then use the fact that the non-zero columns in
P+A are in the unstable subspace, and fn∗ reduces their norms for n ≤ 0,

ρ

∑
i,j

(fn∗ P+)2
ij

 = ρ

∑
i,j

(fn∗ P+A)2
ij

 ≤ C2
1λ
−2n m

(sinα)2 .

Hence, by equation (3.4),∥∥∥ρ 〈grad(Φ ◦ fn), X+
〉∥∥∥ ≤ ∥∥∥〈grad(Φ ◦ fn), X+

〉∥∥∥ ≤ C1λ
−n√m/ sinα.

On the other hand, the exponential decay of terms in δ(3)ρ(Φ) is due to the decorrelation,
with the rate given by assumption 2.∥∥∥ρ ((Φ ◦ fn) div+

σ X
+
)∥∥∥ ≤ C2κ

n‖ρ(|ΦxX
+|)‖ ≤ C2κ

n‖ΦxX
+‖.

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 20

Further use the estimation of ‖ΦxX
+‖ in lemma 3, we have∥∥∥ρ ((Φ ◦ fn) div+

σ X
+
)∥∥∥ ≤ C2κ

n
√
m/ sinα.

Finally, the error of shadowing methods is bounded by sums of two geometric series.
∥∥∥δ(2)ρ(Φ)

∥∥∥ ≤∑
n≤0

∥∥∥ρ 〈grad(Φ ◦ fn), X+
〉∥∥∥ ≤ C1

√
m

(1− λ) sinα ;

∥∥∥δ(3)ρ(Φ)
∥∥∥ ≤∑

n≥1

∥∥∥ρ ((Φ ◦ fn) div+
σ X

+
)∥∥∥ ≤ C2κ

√
m

(1− κ) sinα.

The proof is completed by the definition δµ(Φ) := δ(2)ρ(Φ) + δ(2)ρ(Φ).

By our estimation, an interesting scenario where shadowing methods have small error is
when the unstable ratio m/M � 1. This is typically the case for systems with dissipation,
such as fluid mechanics, where non-intrusive shadowing is successful [57, 58, 59, 7, 18]. In
fact, SRB measure was invented for dissipative systems, many of which have low dimensional
unstable subspaces. However, there are counter examples with large unstable ratio, and
shadowing methods fail. A remedy to reduce the systematic error is given in the next section.

Corrections to shadowing methods
When the error of shadowing method is large, it can be reduced by further adding δ(2)ρ(Φ)
defined in equation (3.3). This correction reduces, though not eliminate, the systematic error
of shadowing. By proof of theorem 2, the relative error is reduced to∥∥∥δ(3)ρ(Φ)

∥∥∥
‖ΦxX‖

≤ C2κ
N

(1− κ) sinα

√
m

M
. (3.6)

Increasing N exhausts the unstable contribution, however, the computational cost would grow
exponentially for large N . In fact, earlier work on shadowing methods suggested that relaxing
the constraint in the optimization could improved the accuracy [9]; by our current analysis,
we now know that is because relaxing constraint may allow some unstable contributions.

We illustrate the correction term on the 1-dimensional sawtooth map, or the expanding
circle, which was previously used as a counter example of shadowing methods [8]. It is also
the underlying source of chaos for several other counter examples such as the solenoid map.
Now we know that shadowing methods fail because the only dimension is unstable. However,
the proposed correction fixes the error with a small N .

Example (expanding circle). Consider the dynamical system on [0, 2π) given by

xk+1 = f(xk, s) := 2xk + s sin xk (mod 2π), Φ(x) := cos x.

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 21

The base parameter is s = 0, at which we compute the derivative. Although this map is
2-to-1 rather than a diffeomorphism, the linear response formula is still correct [4]. 1

The SRB measures, ρ, of a 2-to-1 map is still defined as the long-time limit of evolving the
Lebesgue measure. However, fn(·) is no longer a function for n < 0, for example, f−1x can be
either x/2 or x/2 +π. For a random variable U distributed according to ρ, {Un := fn(U)}n≤0
is a Markov chain, with Un−1 equally distributed given Un. More specifically, for n ≤ 0, the
conditioned probability

P
(
Un−1 = 1

2Un | Un
)

= P
(
Un−1 = 1

2Un + π | Un
)

= 1
2 .

Since there is no stable subspace,

X+(U) = X(U) = sin(U−1).

By the chain rule,

grad(Φ ◦ fn)(U) = −2n sin(Un).

Hence, 〈
grad(Φ ◦ fn), X+

〉
= −2n sin(Un) sin(U−1).

To show that shadowing with correction gives the true derivative for any N ≥ 0, we only
need to check that each term in δ(3)ρ(Φ) is zero. For n ≥ 0, Un = 2nU is a well-defined
function, and the n-th term in δ(3)ρ(Φ) is

− ρ
〈
(Φ ◦ fn) div+

σ X
+
〉

= ρ
〈
grad(Φ ◦ fn), X+

〉
=− E(2n sin(2nU) sinU−1) = −E(2n sin(2nU)E(sinU−1 | U)) = 0.

We also directly compute δ(2)ρ(Φ). For n ≤ −2,

ρ
〈
grad(Φ ◦ fn), X+

〉
= −E(2n sinUn sinU−1) = −E(2n sinU−1E(sinUn | U−1)) = 0

The only non-zero term is n = −1,

ρ
〈
grad(Φ ◦ f−1), X+

〉
= 1

2ρ
(
−1

2 sin2 x

2

)
+ 1

2ρ
(
−1

2 sin2 x+ 2π
2

)
= −1

4 .

By the same computations given above, we can see that the shadowing contribution is
δsdρ(Φ) = 1/4. This is the same as the computational result in figure 2-17(a) of Blonigan’s
thesis [8], where the interval was shrunk to [0, 1].

1We thank Adam A. Sliwiak for pointing out that the simple symmetry argument for zero derivative, in
the previous draft, is wrong. We do need to cite Baladi even only for the case s = 0.

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 22

When M > 1, X+ can be efficiently computed by a ‘little-intrusive’ formulation, which
requires both tangent and adjoint solvers. Denote the adjoint unstable subspace by V +, then
dim V

+ = dim V +, and V
+ ⊥ V − [54]. Moreover, both the unstable tangent and adjoint

subspaces can be obtained by evolving homogeneous tangent and adjoint equations [54]. To
find X+, just solve the vector such that

X+ ∈ V +,
〈
X −X+, V

+〉 = 0.

With {wi}mi=1 as the basis of V +, we can write X+ as X+ = ∑m
i=1 c

iwi, then there are
exactly m linear equations for m undetermined coefficients, {ci}mi=1. The blended response
algorithm also requires computing X+, which was done with cost O(M) [1]; in contrast, the
little-intrusive formulation requires only O(m), hence it can help improving efficiency of the
blended response algorithm.

3.3 Convergence of non-intrusive shadowing
In this section we prove the convergence of the non-intrusive shadowing algorithm given in
equation (2.6), to the shadowing contribution δ(1) given in equation (3.3). Together with the
error analysis of the shadowing contribution in section 3.2, we have the error of computing
linear response using non-intrusive shadowing algorithms.

In this section, we assume that in the non-intrusive shadowing algorithm in equation (2.6),

span(w1, · · · , wx) = V +.

This assumption can be achieved by evolving wi’s for some time before the zeroth step,
since the unstable components in wi’s grow faster than stable components. In reality, such
pre-process is typically not needed for non-intrusive shadowing to converge, but making this
assumption simplifies our theoretical analysis. Should we want to extend our analysis to
cases without this pre-process, we need a sharp estimation of the unstable components in the
random initial conditions of wi’s.

We start with some definitions. Denote the total number of steps by K. In this section, v
is the shadowing direction given in equation (3.1). In the non-intrusive shadowing algorithm,
let v′ be

v′k :=
∑

0≤n≤k−1
fn∗Xk−n .

We will show v′ is the inhomogeneous tangent solution solved from zero initial condition.
Moreover, let vP be the pivot solution defined by

vPk :=
∑

0≤n≤k−1
fn∗X

−
k−n −

∑
n≤−1

fn∗X
+
k−n .

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 23

We will show it is in the feasible set of the non-intrusive shadowing problem, and also close
to v. Denote the solution of the non-intrusive shadowing algorithm by vN . Define vA, which
bounds both v and vP , by

vAk :=
∑
0≤n
|fn∗X−k−n|+

∑
n≤−1

|fn∗X+
k−n| , (3.7)

where | · | is the vector norm. vA and v are covariant, that is,

vAk = vA0 ◦ fk.

However, notice that vP is not covariant: that is why we will mostly bound it by vA. Moreover,
we define the errors

eN := vN − v , eP := vP − v , ePN := vP − vN .

Finally, the error of computing the shadowing contribution using non-intrusive shadowing is

ẽN := 1
K

K−1∑
k=0

〈
eNk ,Φxk

〉
.

In the remaining part of this section, we show that eN = ePN + eP converges to zero, by
showing the convergence of ePN and eP . We will bound ePNK−1 and eP0 by vA. Then, due to
the exponential decay of ePN ∈ V + and eP ∈ V −, the averaged error, ẽN , goes to zero as
K →∞; moreover, we give a quantitative bound on ẽN under assumption 1. We start by
verifying some basic properties of the terms we just defined.

Lemma 4. v, v′, and vP are inhomogeneous tangent solutions satisfying equation (2.5);
v′0 = 0; vP is in the feasible set of non-intrusive shadowing, that is, vP − v′ ∈ V +. eN , eP ,
and eNP are homogeneous tangent solutions.

Proof. To see vP is inhomogeneous tangent, apply definitions,

vPk+1 − f∗vPk =
∑

0≤n≤k
fn∗X

−
k+1−n −

∑
n≤−1

fn∗X
+
k+1−n −

∑
0≤n≤k−1

fn+1
∗ X−k−n +

∑
n≤−1

fn+1
∗ X+

k−n

=
∑

0≤n≤k
fn∗X

−
k+1−n −

∑
n≤−1

fn∗X
+
k+1−n −

∑
1≤l≤k

f l∗X
−
k+1−l +

∑
l≤0

f l∗X
+
k+1−l

= X−k+1 +X+
k+1 = Xk+1.

Similarly we can verify that v, defined by equation (3.1), and v′, are inhomogeneous tangent.
Also, by definitions, v′0 = 0, and

vPk − v′k = −
∑
n≤−1

fn∗X
+
k−n ∈ V +

k .

Finally, eN , eP , and eNP are homogeneous tangent solutions, since they are differences between
inhomogeneous tangent solutions.

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 24

Lemma 5. The peak values of ePN ∈ V + and eP ∈ V − are bounded by

|ePNK−1| ≤
K−1∑
k=0

λK−1−kvAk , |eP0 | < vA0 .

Remark. The main tool for bounding ePN ∈ V + is that, the unstable homogeneous tangent
has a spike at K − 1, hence ePN can not to be too large without increasing ‖vN‖l2 . Hence
minimizing ‖vN‖l2 controls ePN . The large spike is encoded by the fact that ‖ePN‖l2 ≈ |ePNK−1|.

Proof. Since ‖vN‖ is minimized in the non-intrusive shadowing problem, ‖vN+αw‖ is minimal
at α = 0, for any w ∈ V +. By computing derivative with respect to α, we have the so-called
first-order optimality condition,

〈
vN , w

〉
K

:=
K−1∑
k=0

〈
vNk , wk

〉
= 0, for all w ∈ V +. (3.8)

Notice that vP − v′ ∈ V + and vN − v′ ∈ V + by definitions, hence

ePN := vP − vN ∈ V +.

Substitute w = ePN and vN = vP − ePN into equation (3.8), we have specifically〈
vP − ePN , ePN

〉
K

= 0 ⇒
〈
ePN , ePN

〉
K

=
〈
ePN , vP

〉
K
.

The peak value of ePN is at step K − 1, which is smaller than its l2 norm, hence

|ePNK−1|2 ≤
〈
ePN , ePN

〉
K

=
〈
ePN , vP

〉
K
.

Apply the Cautchy-Schwarz and exponential decay of ePN , we have

|ePNK−1|2 ≤
〈
ePN , vP

〉
K
≤

K−1∑
k=0
|ePNk ||vPk | ≤

K−1∑
k=0

λK−1−k|ePNK−1||vPk |.

Cancel |ePNK−1| from both sides, we get

|ePNK−1| ≤
K−1∑
k=0

λK−1−k|vPk | ≤
K−1∑
k=0

λK−1−kvAk .

To prove the second inequality in the lemma, notice that by definition,

ePk =
∑
n≥k

fn∗X
−
k−n ∈ V −k ,

and the inequality is obtained by the definition of vA.

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 25

Theorem 3 (convergence of non-intrusive shadowing). Under assumption 1,

‖ẽN‖
‖ΦxX‖

≤ 1
K‖X‖

K−1∑
k=0
‖eNk ‖ ≤

4
K(1− λ)3 sinα.

Here K is the length of the trajectory.

Remark. (1) Previous shadowing methods, such as the least squares shadowing, has the same
O(K−1) convergence speed [82]. Hence, the non-intrusive shadowing reduces the computation
with no additional error. Also note that the convergence to linear response in previous
shadowing literature was wrong, it should be convergence to the shadowing contribution. (2)
The bound on eN is useful when the non-intrusive shadowing is used for computing only the
shadowing direction but not the shadowing contribution, for example, when computing the
modified shadowing direction in the linear response algorithm [56].

Proof. By definition,

‖ẽN‖ ≤ 1
K

K−1∑
k=0
‖
〈
eNk ,Φxk

〉
‖ = 1

K

K−1∑
k=0

[
EE

(〈
eNk ,Φxk

〉2
|x0, X

)]0.5
.

Here eN is determined given x0 and X. We choose a coordinate whose first axis is parallel
to eNk , then Φxk is still multi-variate Gaussian in this new coordinate. In particular, its
first coordinate, Φ1

xk ∼ N (0, 1), whereas other coordinate components are orthogonal to eNk .
Hence,

E
(〈
eNk ,Φxk

〉2
|x0, X

)
= E

(〈
eNk ,Φ1

xk

〉2
|x0, X

)
= |eNk |2E(Φ1

xk)2 = |eNk |2.

By substitution,

‖ẽN‖ ≤ 1
K

K−1∑
k=0
‖eNk ‖.

Since eN = ePN + eP , where ePN ∈ V +, eP ∈ V −,

1
K

K−1∑
k=0
‖eNk ‖ ≤

1
K

K−1∑
k=0
‖ePNk ‖+ ‖ePk ‖ ≤

1
K

K−1∑
k=0

λK−1−k‖ePNK−1‖+ λk‖eP0 ‖ ≤
‖ePNK−1‖+ ‖eP0 ‖
K(1− λ) .

By lemma 5, also notice that ρ(vAk) = ρ(va0) since vA is covariant, we have

‖ePNK−1‖ ≤
K−1∑
k=0

λK−1−k‖vAk ‖ ≤
‖vA0 ‖
1− λ , ‖eP0 ‖ < ‖vA0 ‖.

To estimate vA0 , use its definition in equation (3.7),

‖vA0 ‖ ≤
∑
0≤n
‖fn∗X−−n‖+

∑
n≤−1

‖fn∗X+
−n‖ ≤

∑
0≤n

λn‖X−−n‖+
∑
n≤−1

λ−n‖X+
−n‖ ,

CHAPTER 3. APPROXIMATE LINEAR RESPONSE BY SHADOWING 26

Since X−−n(·) := X− ◦ f−n(·), Xn is covariant, hence ‖X−−n‖ = ‖X−‖, and

‖vA0 ‖ ≤
‖X−‖+ ‖X+‖

1− λ ≤ 2‖X‖
(1− λ) sinα

Under assumption 1, ‖X‖ =
√
M , hence

‖ẽN‖ ≤ 1
K

K−1∑
k=0
‖eNk ‖ ≤

2‖vA0 ‖
K(1− λ)2 ≤

4‖X‖
K(1− λ)3 sinα = 4

√
M

K(1− λ)3 sinα

By equation (3.5) in lemma 3, ‖ΦxX‖ = ‖X‖ =
√
M , hence this lemma theorem is proved.

Theorem 4. The error of approximating linear response by non-intrusive shadowing, under
assumption 1 and 2, is bounded by the sum of the bounds in theorem 2 and 3.

3.4 Conclusions
This chapter estimates bound the error in approximating linear response by the non-intrusive
shadowing algorithm. First, we estimate bound the error of approximating linear response by
the shadowing contribution, then we prove the convergence of the non-intrusive algorithm to
the shadowing contribution. For engineering applications, especially dissipative systems with
large degrees of freedom such as computational fluids, we suggest to first try non-intrusive
shadowing, then add on the little-intrusive correction if error is large. For many previous
applications, non-intrusive shadowing can be quite accurate even without correction. A full-
blown realization of Ruelle’s formula requires further computing the unstable contribution,
which is achieved by the fast linear response algorithm in chapter 6, which has no systematic
error, and is not much more complicated than shadowing.

27

Chapter 4

Finite-difference non-intrusive
shadowing

We present the finite-difference version of the non-intrusive shadowing algorithm for computing
sensitivities of long-time averaged quantities in chaotic dynamical systems. It is also known as
the finite-difference shadowing, or the Finite-difference non-intrusive least-squares shadowing
(FD-NILSS) algorithm. Finite-difference shadowing does not require tangent solvers, and
can be implemented with little modification to existing numerical simulation software. This
enriches applications of finite-difference shadowing to engineering problems, since most
numerical simulation software do not have accompanying tangent solvers. We also give a
formula for solving the least-squares problem in finite-difference shadowing, which can be
applied in non-intrusive shadowing as well. Finally, we apply finite-difference shadowing for
sensitivity analysis of a chaotic flow over a 3-D cylinder at Reynolds number 525, where
finite-difference shadowing computes pretty accurate sensitivities and the computational cost
is in the same order as the numerical simulation.

4.1 Deriving finite-difference shadowing
The finite-difference shadowing seeks to implement non-intrusive shadowing with only primal
numerical solvers, which solves the primal equation in equation (2.7). The main difficulty
is primal solvers typically do not provide partial derivatives. To resolve this difficulty,
finite-difference shadowing approximately computes these unprovided quantities through
finite-differences.

Tangent solvers compute tangent solutions via solving the tangent equations, whereas
in finite-difference shadowing we compute tangent solutions via the their finite-difference
approximations. More specifically, on a trajectory x(t), t ∈ [0, T], with initial condition x0,
to approximate a homogeneous solution wj with initial condition w0

j , we compute primal
solution xwj by keeping the same γ but using initial conditions x0 + ∆ϕjw0

j , where ∆ϕj is a

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 28

small number. The approximation for wj is thus

wj ≈
xwj − x
∆ϕj

. (4.1)

Let W be the matrix whose columns are {wj}uj=1, now with each column approximated via
finite-difference, we also obtain an approximation of W .

Similarly, to approximate an inhomogeneous tangent solution v′ with initial condition v′0,
we compute primal solution x′ with parameter γ + ∆γ and initial condition x0 + ∆γv′0. The
approximation for v′ is thus

v′ ≈ x′ − x
∆γ . (4.2)

These approximations allows us to compute tangent solutions from primal solvers. With
those tangent solutions, we can compute a via solving the minimization in equation (2.17),
and compute the shadowing direction by v = v′ +Wa.

We explain how to compute ξ evaluated at t = 0, T , which appear in equation (2.13). At
any t, the map ψ : Rm → R which maps v(t) to ξ(t) is a linear map defined as:

ψ(p) = pTf

fTf
, (4.3)

where p ∈ Rm, and f is evaluated at t. Since we are expressing v as v = v′ + Wa, we can
compute ξ from the same linear combination:

ξ = ψ(v) = ψ(v′ +Wa) = ψ(v′) + [ψ(w1), . . . , ψ(wu)]a , (4.4)

where v′ and {wj}uj=1 are computed via finite-difference. This way of computing ξ saves
computer memory, since we no longer need to store vectors v and {wj}uj=1 at t = 0 and t = T ;
instead, we only need to store scalars ψ(v′), ψ(w1), . . . , ψ(wu) evaluated at t = 0 and t = T .

Finally we explain how to approximate, via finite-differences, terms in equation (2.13)
involving ∂xΦ and δΦ, which are typically not provided in numerical primal solvers. More
specifically,∫ T

0
(∂xΦ v + δΦ) dt

=
∫ T

0
[∂xΦ (v′ +Wa) + δΦ] dt

=
∫ T

0
(∂xΦ v′ + δΦ) dt+

u∑
j=1

aj

∫ T

0
(∂xΦwj) dt

≈
∫ T

0

1
∆γ (Φ(γ + ∆γ)− Φ(γ)) dt+

u∑
j=1

aj

∫ T

0

1
∆ϕj

(Φ(ϕj + ∆ϕj)− Φ(ϕj)) dt

=Φ̃′ +
u∑
j=1

ajΦ̃w
j .

(4.5)

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 29

Here Φ̃′ and Φ̃w
j are defined as:

Φ̃′ = 1
∆γ

∫ T

0
(Φ(γ + ∆γ)− Φ(γ)) dt

Φ̃w
j = 1

∆ϕ

∫ T

0
(Φ(ϕj + ∆ϕj)− Φ(ϕj)) dt ,

(4.6)

where Φ(γ + ∆γ) is short for Φ(x(γ + ∆γ, ϕ1, . . . , ϕu, t), γ + ∆γ), that is, the instantaneous
objective evaluated from using parameter γ + ∆γ, while all ϕj’s are fixed as base values.
Similarly, Φ(ϕj + ∆ϕj) is short for Φ(x(γ, ϕ1, . . . , ϕj + ∆ϕj, . . . , ϕu, t), γ).

4.2 Finite-difference shadowing algorithm

Dividing trajectory into segments
There are two numerical issues when applying finite-difference shadowing on a whole trajectory
with a large time length T . The first issue, similar to non-intrusive shadowing, is that tangent
solutions become dominated by the fasted growing CLV, as a result, the minimization
problem in equation (2.17) becomes ill-conditioned. The second issue, unique to finite-
difference shadowing, is that the perturbation on the trajectory falls out of the linear region,
thus finite-differences no longer approximate tangent solutions. For finite-difference shadowing
we use a similar technique as non-intrusive shadowing to solve these issues, that is, dividing
the whole trajectory into multiple segments, and renormalize at interfaces.

Our solution is analogous to the multiple shooting method for boundary value problem
[53], and the multiple shooting shadowing algorithm [9]. However, the main difference here
is that we are trying to find a continuous tangent solution, v, within a u-dimensional affine
subspace. This requires more work than just matching v at end points of segments: we
must first of all have a connected affine subspace. This is achieved by the renormalization
procedure we introduce at the end of each segment.

We first describe how we select the subscript representing segment number for different
quantities, as shown in figure 4.1. T is the time length of the entire trajectory, which is
further divided into A segments, each of length ∆T . The i-th segment spans [ti, ti+1], where
t0 = 0, tA = T . For quantities defined on a entire segment such as Wi, v

′
i, Ci, di and ai, their

subscripts are the same as the segment they are defined on. For quantities defined only at
the interfaces between segments such as Qi, Ri, bi and λi, their subscripts are the same as
the time point they are defined at.

We use Wi−1(t) = [wi−1,1(t), · · ·wi−1,u(t)], a M × u matrix-valued function of time, to
denote homogeneous tangent solutions on the (i − 1)-th segment. Assume that we have
computed Wi−1, we explain how to generate initial conditions for Wi. At time ti, we
first project all homogeneous tangent solutions to the subspace perpendicular to f(ti), to
get W⊥

i−1(ti), upon which we then perform QR factorization, and use Q, the matrix with

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 30

Figure 4.1: Subscripts used in this chapter, where t0 = 0, tA = T . Wi(t), v′i(t) are defined
on the i-th segment, which spans t ∈ [ti, ti+1]; Qi, Ri are defined at ti. Integrating tangent
equations happens within one segment. Rescaling tangent solutions happens at the interface
between two segments.

orthonormal columns, as the initial condition for Wi on segment i. More specifically,

W⊥
i−1(ti) = QiRi , and Wi(ti) = Qi . (4.7)

We use v′i−1(t), a M -dimensional vector-valued function of time, to denote the particular
inhomogeneous tangent solution on the (i− 1)-th segment. Assume that we have computed
v′i−1, we explain how to generate initial conditions for v′i. At time ti, we first project to get
v′⊥i−1(ti), from which we then subtract its orthogonal projection onto homogeneous tangent
solutions. More specifically,

bi = QT
i v
′⊥
i−1(ti) , and v′i(ti) = v′⊥i−1(ti)−Qibi . (4.8)

This rescaling maintains the continuity of the affine space v′⊥i + span{w⊥ij}uj=1 across different
segments.

The continuity of affine space allows us to impose continuity condition for v⊥i , which is the
approximate shadowing direction on the i-th segment. On each segment, define vi = v′i+Wiai,
where ai ∈ Ru. The continuity condition can now be expressed via a relation between ai and
ai−1:

v′⊥i (ti) +W⊥
i (ti)ai = v′⊥i−1(ti) +W⊥

i−1(ti)ai−1 . (4.9)
Apply equation (4.7) and (4.8), and notice that v′i(ti) = v′⊥i (ti), we get:

−Qibi +Qiai = QiRiai−1 (4.10)

Since Qi has orthonormal columns, QT
i Qi = I ∈ Ru×u. Multiplying QT

i to the left of both
sides, we have the continuity condition for v at ti:

ai = Riai−1 + bi . (4.11)

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 31

Due to the continuity condition, we can see that v⊥i is continuous across segment. However,
vi is not continuous. So there remains the question of how to construct a continuous v and ξ
from vi and ξi, where ξi is defined as such that ξi(t)f(t) = vi(t)− v⊥i (t), so that we can apply
equation (2.13) to compute derivatives. We give the following formula on the i-th segment:

ξ(t) = ξi(t) +
i−1∑
i′=0

ξi′(ti′+1) ,

v(t) = v⊥i (t) + ξ(t)f(t) .
(4.12)

Readers may directly verify that above formula give continuous v and ξ; moreover, v⊥ = v⊥i
on all segments, v is an inhomogeneous tangent solution, and ξ and v satisfy the pairing
condition ξ(t)f(t) = v(t)− v⊥(t).

A further remark is that, we choose here to keep the continuity of the projected affine
space v′⊥i + span{w⊥ij}uj=1. We think it is also possible to choose to keep the continuity of the
unprojected space v′i+span{wij}uj=1, which should lead to easier derivation and programming.
However, we can not get rid of the projection process completely, since it still exists in the
minimization step. Moreover, this alternative approach would require to compute one more
homogeneous tangent solution, since the neutral CLV is no longer projected out. We suggest
interested readers to try this possible approach.

Procedure list of the finite-difference shadowing algorithm
We should first prescribe the following parameters for finite-difference shadowing:

• Number of homogeneous tangents u. Here we refer readers to [29] for how numerical
discretization affects u.

• Perturbations ∆γ,∆ϕ1, . . . ,∆ϕu. Typically we set ∆ϕ1 = · · · = ∆ϕu = ∆ϕ. For
convenience, we further set ∆γ and ∆ϕ to be the same small positive number ε.

• length of each time segment ∆T .

• number of time segments A.

Consequently, the time length of the entire trajectory, T = A∆T is also determined. The
finite-difference shadowing algorithm is given by the following procedure list.

1. Integrate equation (2.7) for sufficiently long time so that the trajectory lands onto the
attractor. Then, set t = 0.

2. Generate initial conditions of homogeneous and inhomogeneous tangent solutions.

a) Generate a M × u random matrix W 0 = [w0
1, · · ·w0

u].
b) Compute W 0⊥ = [w0⊥

1 , · · ·w0⊥
u], whose column vectors are orthogonal to f(t = 0).

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 32

c) Perform reduced QR factorization: W 0⊥ = Q0R0, where Q0 = [q01, · · · q0u]. Since
the span of columns in Q0 is the same as that of W⊥

0 , columns in Q0 are also
orthogonal to f(t = 0). Q0 will be the initial conditions for homogeneous tangent
solutions.

d) Set the initial condition for the inhomogeneous tangent solution: v′0(t0) = 0.

3. For i = 0 to A− 1, on segment i, where t ∈ [ti, ti+1] do:

a) Compute primal solutions and their related quantities.
i. Compute the base trajectory x(t) for t ∈ [ti, ti+1] by integrating the primal

system in equation (2.7).
ii. Compute the instantaneous objective function Φ(t) for the base trajectory.
iii. Compute and store averaged objective on this segment, denoted by Φi, and

objective at the end of the segment Φ(ti+1).
b) Compute homogeneous tangent solutions and their related quantities.

i. For each 1 ≤ j ≤ u, solve a solution xwij(t), t ∈ [ti, ti+1], of the primal system
in equation (2.7), with initial condition xwij(ti) = x(ti) + εqij . Here x(ti) is the
base trajectory at the beginning of segment i; qij is given by step 2c for the
0-th segment and by step 3(b)v for later segments.

ii. The homogeneous tangent wij(t) for t ∈ [ti, ti+1] with initial condition wij(ti) =
qij is approximated by:

wij(t) ≈
xwij(t)− x(t)

ε
. (4.13)

Define an M × u matrix: Wi(t) = [wi1(t), · · ·wiu(t)], t ∈ [ti, ti+1].
iii. Compute orthogonal projection W⊥

i (t) = [w⊥i1(t), · · ·w⊥iu(t)] via:

w⊥ij(t) = wij(t)−
fT (t)wij(t)
fT (t)f(t) f(t) , (4.14)

iv. Compute and store the covariant matrix Ci on segment i, defined as:

Ci =
∫ ti+1

ti
(W⊥

i)TW⊥
i dt. (4.15)

This Ci is the covariant matrix on the i-th segment, similar to that defined in
equation (2.16).

v. Perform reduced QR factorization: W⊥
i (ti+1) = Qi+1Ri+1, where Qi+1 can be

written in column vectors: [qi+1,1, · · · qi+1,u].

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 33

vi. For each 1 ≤ j ≤ u, compute and store ξwij :

ξwij = (wij(ti+1))Tf(x(ti+1))
f(x(ti+1))Tf(x(ti+1)) . (4.16)

Above term is ψ(wij) in equation (4.3) evaluated at ti+1.
vii. For each 0 ≤ j ≤ u, evaluate the instantaneous objective function on the

trajectory with perturbed initial condition, uwij(t). We denote this perturbed
objective function by Φw

ij(t), t ∈ [ti, ti+1]. Compute and store the perturbation
in the time integration of the objective function:

Φ̃w
ij = 1

ε

∫ ti+1

ti
Φw
ij(t)− Φ(t) dt . (4.17)

c) Compute inhomogeneous tangent solutions and their related quantities.
i. Solve a solution u′i(t), t ∈ [ti, ti+1] of the primal system with parameter γ + ε,

and initial condition x′i(ti) = x(ti) + εv′i(ti). Here x(t) is the base trajectory;
v′i(ti) is given by step 2d for 0-th segment and by step 3(c)v for later segments.

ii. The inhomogeneous tangent v′i(t) for t ∈ [ti, ti+1] with initial condition v′i(ti)
is approximated by:

v′i ≈
x′i − x
ε

. (4.18)

iii. Compute the orthogonal projection v′⊥i (t), t ∈ [ti, ti+1] via:

v′⊥i = v′i −
fTv′i
fTf

f , (4.19)

iv. Compute and store
di =

∫ ti+1

ti
W⊥
i

T
v′⊥i dt. (4.20)

This di is similar to that defined in equation (2.16).
v. Orthogonalize v′⊥i (ti+1) with respect to W⊥

i+1(ti+1) = Qi+1 to obtain the initial
condition of the next time segment:

v′i+1(ti+1) = v′⊥i (ti+1)−Qi+1bi+1, (4.21)

where bi+1 is defined as:

bi+1 = QT
i+1v

′⊥
i (ti+1) , (4.22)

and bi+1 should be stored.
vi. Compute and store ξ′i:

ξ′i = (v′i(ti+1))Tf(x(ti+1))
f(x(ti+1))Tf(x(ti+1)) . (4.23)

Above term is ψ(v′i) in equation (4.3) evaluated at ti+1.

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 34

vii. Evaluate the instantaneous objective function on the perturbed trajectory
u′i(t). We denote this perturbed objective function by Φ′i(t), t ∈ [ti, ti+1].
Compute and store the perturbation in the time integration of the objective
function:

Φ̃′i = 1
ε

∫ ti+1

ti
Φ′i(t)− Φ(t) dt . (4.24)

4. Solve the non-intrusive shadowing problem:

min
{ai}

A−1∑
i=0

1
2a

T
i Ciai + dTi ai

s.t. ai = Riai−1 + bi i = 1, . . . , A− 1.
(4.25)

This is a least-squares problem in {ai}i=A−1
i=0 , where ai ∈ Ru for each i. We give a

suggestion on how to solve this least-squares problem in the next subsection.

5. Compute

ρ(Φ) = 1
A

A−1∑
i=0

Φi .

The derivative can be computed by:

δρ(Φ) ≈ 1
T

A−1∑
i=0

Φ̃′i +
u∑
j=1

aijΦ̃w
ij +

ξ′i +
u∑
j=1

aijξ
w
ij

 (ρ(Φ)− Φ(ti+1))
 . (4.26)

Here Φ̃′i is defined in equation (4.24), Φ̃w
ij is defined in equation (4.17), ξ′i is defined in

equation (4.23), and ξwij is defined in equation (4.16).

We first remark that there is no need to store ui, v′i or Wi on the entire trajectory if we
are only interested in the sensitivity. The quantities that finite-difference shadowing needs are
Ci, di, Ri, bi used in the minimization problem equation (4.25), and Φ̃′i, Φ̃w

ij, ξ′i, ξwij , Φ(ti+1)
and ρ(Φ) used in the sensitivity formula in equation (4.26): all of these quantities are either
scalars, u-dimensional vectors or u× u matrices. We should also store ui, v′i or Wi at the end
time of the last segment for resuming the algorithm or lengthening the trajectory.

The integrations in equation (4.15), (4.17), (4.20), and (4.24), can certainly be computed
by summation over all time steps in the current time segment. Alternatively, these integrations
can be approximated by summation over several snapshots. For example, the integration in
equation (4.20) can be approximated by:

di ≈
1
2
(
W⊥T
i v′⊥i (ti) +W⊥T

i v′⊥i (ti+1)
)

∆T . (4.27)

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 35

Correspondingly, the finite-difference approximations in equation (4.13) and (4.18) and the
orthogonal projection in equation (4.14) and (4.19), now need be done only at the beginning
and the end of a time segment. Although taking snapshots does not reduce the computational
complexity, it reduces data storage. The idea of taking snapshots was also used in the
multiple-shooting shadowing method developed by Blonigan [9].

The large part of the finite-difference shadowing algorithm is to compute {ai}A−1
i=0 , using

which we can construct the shadowing direction as shown in [59]: this does not use any
knowledge of the instantaneous objective function Φ(u, s). Hence the marginal cost for one
more objective is almost negligible, provided that we have determined all objectives before we
run finite-difference shadowing. If we stored all information generated during the computation,
including all those primal solutions, then we may also add more objectives for very little cost,
after the computation is done.

For one more parameter γ, δf := ∂f/∂γ is changed, hence v′ is changed; thus we need
to recompute {ai}A−1

i=0 , and the shadowing direction is also changed. However, homogeneous
tangents W does not depend on δf , hence the marginal cost for one more parameter in
finite-difference shadowing is to compute another v′, and to solve again the non-intrusive
shadowing problem in equation (4.25), whose cost is typically much lower than computing
tangent solutions. As a result, the marginal cost for one more parameter is about 1/u of
the total cost, provided that all parameters are determined before we run finite-difference
shadowing.

Solving the non-intrusive shadowing problem
Here we give a suggestion on how to solve the minimization problem in equation (4.25). The
Lagrange function is:

A−1∑
i=0

(1
2a

T
i Ciai + dTi ai

)
+

A−1∑
i=1

λTi (ai −Riai−1 − bi) . (4.28)

The Lagrange multiplier method tells us the minimizer for the non-intrusive shadowing
problem is achieved at the solution of the following linear equation systems:[

C BT

B 0

] [
a
λ

]
=
[
−d
b

]
, (4.29)

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 36

where the block matrices C ∈ RuA×uA, B ∈ R(uA−u)×uA, vectors a, d ∈ RuA, and λ, b ∈ RuA−u.
More specifically,

C =


C0

C1
. . .

CA−1

 , B =


−R1 I

−R2 I
.
−RA−1 I

 ,

a =


a0
...

aA−1

 , λ =


λ1
...

λA−1

 , d =


d0
...

dA−1

 , b =


b1
...

bA−1

 ,
(4.30)

where matrices Ci, Ri ∈ Ru×u, and vectors ai, λi, di, bi ∈ Ru.
We can solve the Schur complement of equation (4.29) for λ:

−BC−1BTλ = BC−1d+ b , (4.31)

where C−1 can be computed via inverting each diagonal block in C. Then we compute a by:

a = −C−1(BTλ+ d) . (4.32)

The above formula for solving the least-squares problem in finite-difference shadowing can
as well be used in non-intrusive shadowing [59], which solves the same least-squares problem.
Moreover, if we use snapshots at the beginning of each time segment to replace the inner
products between tangent solutions, then due to the orthonormalization procedures we have
Ci = I, di = 0, which further eases implementation.

Remarks on implementations
We first notice readers that homogeneous tangent solutions computed in finite-difference
shadowing can also be used to compute LEs. More specifically, Benettin showed in [5] that
almost surely, in the long-time limit, the volume growth rate of the parallelepiped spanned
by, say u, randomly initialized homogeneous tangent solutions, will be almost the same as
the growth rate of the parallelepiped spanned by the first u CLVs. Now the u + 1-th LE
can be computed by subtracting the volume growth rate of the parallelepiped spanned by u
homogeneous tangent solutions from the growth rate of the parallelepiped spanned by all
previous u plus one new homogeneous tangent solutions.

A caveat in Benettin’s result is that when applied to a finitely long trajectory, LEs may
not show up in the exact descending order. For example, if the random initial condition of
the first homogeneous tangent solution happens to have only very small component in the
direction of the first CLV, then after finite time, we may still only observe the first tangent
solution being dominated by the second CLV. The same concern applies to non-intrusive
shadowing and finite-difference shadowing, that is, we should typically compute some more

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 37

homogeneous tangent solutions than exactly u, in case the random initial conditions does not
contain enough unstable components to cancel the exponential growth in v′. A sufficient u
for a particular set of initial conditions can be identified as that Benettin’s algorithm has
confidently given all positive LEs.

In fact, we only require that the number of homogeneous tangent to be u′, for any
u′ ≥ u; however, we do not need to know u a priori. First, we can add tangent solutions to
finite-difference shadowing inductively. Assume that we currently have u tangent solutions,
then for equation (4.25), when adding one more tangent solution, then coefficients arrays di
and bi should each be augmented by one more entry, while the old coefficient arrays are not
changed inside the new arrays; Ci, Ri should be augmented by one row and one column; for
equation (4.26), we should further compute Φ̃w

i,u+1 and ξwi,u+1 for all i. Second, due to the last
comment, we can run Benettin’s algorithm each time a new homogeneous tangent solution
is added, and stop when all positive LEs has appeared, at which time we would have a big
enough u.

We discuss how to select perturbation coefficient ε and segment length ∆T . These
two algorithm parameters are mainly constrained by the requirement that finite-differences
adequately approximate tangent solutions. Large ε would immediately yield a perturbed
trajectory out of the linear approximation region; on the other hand, too small an ε would
lead to large computation error when subtracting the perturbed trajectory from the base
trajectory. Large ∆T would also allow the perturbed trajectory eventually falling out of the
linear approximation region; small ∆T would lead to high computational cost. The solution is
to run a linearity test. uore specifically, on the segment [t0, t1], first select an ε, then compute
w01 by equation (4.13) from a random initial condition of unit length, and compute v′0 by
equation (4.18) from a zero initial condition. Then compute again using 2ε. We select ε when
the w01(t1) and v′0(t1) computed using ε and 2ε relatively differ less than some small number,
say δ = 0.01. Now the finite-difference error leads to a δ relative error in v and so hence in
the sensitivity. Notice we may need to adjust the unit of parameter s, or adjust ∆γ and ∆ϕ
separately, if we can not find a common ε such that both w01 and v′0 pass the linearity test.

The total time length T is determined by the convergence history of sensitivity or by the
computational cost requirement. Typically, T is determined empirically as the time when the
sensitivity computed by finite-difference shadowing converges to within the uncertainty bound
we desire. Another possibility is to stop computation when the limited time or computation
resource has passed. We choose the latter criteria later in this chapter, since we want to
compare the cost of finite-difference shadowing to that of solving the primal system. We have
found that typically shadowing methods require a shorter trajectory to compute sensitivity
than that required by the primal solver to reflect average behavior.

For problems with a large number of unstable Lyapunov exponents, we suggest switching
from finite-difference shadowing to non-intrusive shadowing or adjoint shadowing, where we
can take advantage of the vectorization of linear solvers and further accelerate computing
homogeneous tangent or adjoint solutions, as discussed in [58]. Still, the cost of non-intrusive
shadowing methods can get larger when u is larger and the system becomes more chaotic.
However, such cost increase is typical for many numerical methods, for example, even

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 38

computing long-time averages should take longer time to converge for more chaotic systems.
For very chaotic systems, if we still have u�M , then non-intrusive shadowing and adjoint
shadowing may still be competitive in computational efficiency; at least, the idea of the
‘non-intrusive’ formulation, that is, reducing the computation to unstable subspace, will still
be important. Current investigation on some computer-simulated fluid systems all have
u ≤ 0.1%M [59, 29, 6, 57], but we do not yet have a good estimation for very chaotic systems.
On the other hand, there are systems with u ≈M , such as Hamiltonian systems, which has
equally many stable and unstable CLVs; for these systems, non-intrusive shadowing or adjoint
shadowing may not be faster than other methods.

4.3 Application on a turbulent three-dimensional flow
over a cylinder

Physical problem and numerical simulation
Before using finite-difference shadowing to compute sensitivities, we first describe the physical
problem of the 3-D flow past a cylinder. The front view of the geometry of the entire flow
field is shown in figure 4.2. The diameter of the cylinder is D = 0.25× 10−3. The span-wise
width is Z = 2D. The free-stream conditions are: density ρ′ = 1.18 (do not confuse with SRB
measure, which is denoted by ρ), pressure P = 1.01× 105, temperature T = 298, dynamic
viscosity µ = 1.86 × 10−5. The free stream flow is in the x-direction, with the velocity U
being one of the system parameters, and for the base case U0 = 33.0. The flow-through
time t0, defined as the time for U0 flowing past the cylinder, is t0 = D/U0 = 7.576× 10−6.
The Reynolds number of the base case is Re = 525 and Mach number is 0.1. The cylinder
can rotate around its center with rotational speed ω, which is the second system parameter
for our problem. ω is measured in revolutions per unit time, and its positive direction is
counter-clockwise, as shown in figure 4.2. For the cylinder to rotate one cycle per flow-through
time, ω0 = 1/t0 = 1.32× 105.

Then we look at settings for numerical simulations. We use a block-structured mesh with
3.7× 105 hexahedra. 2-D slices of the mesh are shown in figure 4.3. The span-wise direction
has 48 cells. The CFD solver we use is CharLES developed at Cascade Technologies [14],
using which we perform the implicit large eddy simulation, where the numerical error of the
discretization scheme serves as the sub-grid scale Reynolds stress model. The accuracy of
the solver is formally 2nd order in space and 3rd order in time. The span-wise boundary
uses periodic boundary conditions; the left boundary uses a convective boundary condition
[22]; the right boundary uses the Navier-Stokes characteristic boundary conditions (NSCBC)
boundary condition [64]. The time step size is ∆t = 9.8× 10−9 = 1.30× 10−3t0. In order to
trigger the 3-D flow faster in our numerical simulation, we add a small white noise to the
initial condition, whose magnitude is about 0.1% of the inflow.

2-D snapshots of the flow field at U = U0 are shown in figure 4.4. The flow is chaotic and
3-D. The same physical problem has been investigated through experiments by Williamson

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 39

Figure 4.2: Geometry used in the simulation of a flow over a 3-D cylinder. The span-wise
extent of the computational domain is Z = 2D. The positive direction of the cylinder
rotational speed ω is counter-clockwise.

Figure 4.3: Left: 2-D slice of the mesh over the entire computational domain. Right: zoom
around the cylinder. This is a block-structured mesh with 3.7×105 hexahedra. The span-wise
direction has 48 cells.

and Roshko [84], and through numerical simulations by Mittal and Balachandar [51]. The
comparison of the Strouhal number and the averaged drag coefficient is shown in table 4.1.
Here the Strouhal number is defined by St = fD/U , where f is the main frequency of the
vortex shedding, selected as the location of the peak in the Fourier transformation of the lift
history; the drag coefficient CD = Dr/(0.5ρ′U2DZ), where Dr is the drag. As we can see,
our simulation matches previous experimental and numerical results.

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 40

Figure 4.4: A typical snapshot of the flow field. Top: cross-section along the x-z plane,
plotted by magnitude of velocity. Bottom: cross-section along the x-y plane, plotted by the
z-component of velocity. The bottom picture shows the flow is 3-D.

St CD
Current work 0.21 1.22

Previous 2-D simulation [51] 0.22 1.44
Previous 3-D simulation [51] 0.22 1.24

Previous experiment [84] 0.21 1.15

Table 4.1: Comparison of our simulation with previous results in literatures by the Strouhal
number St and the averaged drag coefficient CD.

Results
We apply finite-difference shadowing to this 3-D chaotic flow past a cylinder. 1 We consider
two system parameters: free-stream velocity U and the rotational speed of the cylinder ω.

1The python package ‘fds’ implementing finite-difference shadowing is available at
https://github.com/qiqi/fds. The particular files related to the application in this section are in
fds/apps/charles_cylinder3D.

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 41

We will normalize U by U0, time by t0, and ω by ω0. We investigate the effect of U on two
objectives: averaged drag force ρ(Dr), and averaged base suction pressure ρ(Sb), which is
defined as the pressure drop at the base of the cylinder in comparison to the free stream. We
will normalize ρ(Dr) by F0 = 0.5ρ′U2

0DZ = 8.031× 10−5, and ρ(Sb) by P0 = 0.5ρ′U2
0 = 642.5.

For ω, we look at its effect on averaged lift ρ(L) and averaged lift square ρ(L2). We will
normalize ρ(L) by F0, and ρ(L2) by F 2

0 = 6.450× 10−9.
Each objective ρ(Φ) is approximated by ΦT ′ , which is averaged over T ′ = 8.7× 10−3 =

1148t0. In figure 4.7, we compute each objective with 7 different parameters in order to
reflect the trend between the parameter and the objective: this trend will help us validate
the sensitivities computed by finite-difference shadowing. For the 7 primal simulations, a
total number of 6.1× 106 steps of primal solutions are computed. As we will see later, T ′ is
chosen so that costs of finite-difference shadowing and primal simulations are similar, and
we will show that the sensitivity computed by finite-difference shadowing matches the trend
suggested by the primal simulation.

To get the uncertainty of averaging objectives over finite time, we divide the history of
Φ(t) into 5 equally long parts. Denote the objectives averaged over each of the five parts by
Φ1, ...Φ5. The corrected sample standard deviation between them are:

σ′ =

√√√√1
4

5∑
k=1

(Φk − ΦT ′)2. (4.33)

We assume that the standard deviation of ΦT ′ is proportional to T ′−0.5. Thus, we use
σ = σ′/

√
5 as the standard deviation of ΦT ′ . We further assume ±2σ yields the 95%

confidence interval for ΦT ′ . Objectives for different parameters are shown in figure 4.7, where
the bars indicate the 95% confidence intervals.

Each segment in non-intrusive shadowing has 200 time steps, thus the segment length
∆T = 1.96× 10−6 = 0.259t0. We set ε = 10−4 and the number of segments A = 400. Here ε
and ∆T have been checked by the linearity test we discussed in section 4.2, and A is chosen
such that the cost of finite-difference shadowing is similar to the primal solver.

Our current implementation can not yet inductively add tangent solutions as we discussed
in section 4.2. Currently, we can only do trial and error to find a large enough u, and we
selected 40 as our initial guess. To verify that we have used a large enough u, we use the
algorithm given by Benettin [5] to find the number of unstable CLVs. Confidence intervals of
LEs are estimated by the smallest interval which bounds the history of an LE and whose size
shrinks as T−0.5: this method is the same as in [59]. Figure 4.5 shows that there are about
17 unstable CLVs, indicating u is large enough. The LEs, CLVs and shadowing directions of
the same physical problem, on both the current mesh and a finer mesh with twice as many
cells, are studied with more details in [57], which shows that for both meshes, (1) there are
only a few unstable CLVs, (2) CLVs are active at different area in the flow field, indicating
angles are large between CLVs whose indices are far-apart, and (3) shadowing directions
exists and can give pretty accurate sensitivities. Moreover, [57] also plots snapshots of CLVs
and shadowing directions.

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 42

Figure 4.5: Confidence intervals of the largest 40 Lyapunov exponents (LE), normalized by
t−1
0 . The largest LE is 0.22t−1

0 , meaning in one flow-through time t0, the norm of the first
CLV becomes e0.22 = 1.25 times larger.

Using above settings, the cost of finite-difference shadowing is from integrating the primal
solution over 400×200×42 = 3.36×106 time steps. Here A = 400 is the number of segments,
200 is the number of time steps in each segment. u+ 2 = 42 is the number of primal solutions
computed: in the finite-difference shadowing we need one inhomogeneous tangent and u = 40
homogeneous tangents. Each tangent solution is approximated by the difference between a
perturbed trajectory and the same base trajectory: those are 42 primal solutions in total.
The total cost of finite-difference shadowing is smaller than computing averaged objectives
for the 7 parameters in figure 4.7. We also remind readers that the marginal cost for a
new objective in finite-difference shadowing is negligible, and the marginal cost for a new
parameter is about 1/40 of the total cost.

The confidence intervals of sensitivities computed by finite-difference shadowing are
estimated by the smallest interval which bounds the history of the sensitivity and whose size
shrinks as T−0.5: this method is given in more detail in [59]. Figure 4.6 shows history plots
of sensitivities for different pairs of parameter and objective. In figure 4.7 the green wedges
are confidence intervals of sensitivities. Notice that ρ(L2) attains minimum at ω = 0, thus
the sensitivity should be almost zero: this is why the last plot in figure 4.6 appears not to
converge, since the sensitivity is already very small.

Figure 4.7 validates the sensitivities computed with finite-difference shadowing, since the
sensitivities matches the trend between objectives and parameters. Moreover, the cost of
computing sensitivities by finite-difference shadowing is similar to revealing the trend by
evaluating objectives at 7 different parameters.

Another way to compute sensitivities is to perform some function regression among

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 43

Figure 4.6: History plots of sensitivities computed by finite-difference shadowing. All axes
are normalized. The 〈·〉 in the annotation of y-axis means to take average over SRB measure
ρ. The dashed lines indicate the smallest encompassing interval whose size shrinks as T−0.5.

objectives evaluated with different parameters. However, this regression method requires
prescribing a function prototype, the choice of which is typically not obvious. Even worse,
giving confidence intervals to sensitivities computed via regression requires prescribing on the
space of function prototypes a probability measure, the choice of which is even less obvious.

4.4 Conclusions
This chapter presents the finite-difference shadowing algorithm for computing sensitivities
of chaotic dynamical systems. Unlike non-intrusive shadowing, finite-difference shadowing
does not require tangent solvers, and it can be implemented with little modification to
existing numerical simulation software. Numerical results show finite-difference shadowing
can compute pretty accurate sensitivity for the 3-D chaotic flow over a cylinder under Reynolds
number 525. This result also indicates that for real-life engineering problems, finite-difference
shadowing can be an affordable method to compute the sensitivity.

CHAPTER 4. FINITE-DIFFERENCE NON-INTRUSIVE SHADOWING 44

Figure 4.7: 95% confidence intervals of sensitivities computed by finite-difference shadowing,
indicated by the green wedge. Blue vertical bars indicate 95% confidence intervals of averaged
objectives. The 〈·〉 in the annotation of y-axis means to average over ρ. Here all objectives
and parameters are normalized.

There are several possible future research for the finite-difference shadowing algorithm.
First, we may investigate the magnitude of the error induced by the finite-difference ap-
proximation. We may also investigate if the convergence of the finite-difference shadowing
depends on mesh sizes, time step size, and the finite-difference coefficient ε. We can as well
experiment different ways of using snapshots to approximate integrations. For readers who
are convinced that finite-difference shadowing is useful, we suggest to further implement
non-intrusive shadowing and adjoint shadowing with vectorized linear solvers, which are
faster than finite-difference shadowing, and could be applied to more chaotic problems with
acceptable cost.

45

Chapter 5

Non-intrusive adjoint shadowing
algorithm

We develop the adjoint version of the non-intrusive shadowing algorithm, also known as the
Non-Intrusive Least Squares Adjoint Shadowing (NILSAS) algorithm, which performs adjoint
sensitivity analysis of chaotic systems via computing the adjoint shadowing direction. Non-
intrusive adjoint shadowing constrains its minimization to the adjoint unstable subspace, and
can be implemented with little modification to existing adjoint solvers. The computational
cost of non-intrusive adjoint shadowing is independent of the number of parameters. We
demonstrate non-intrusive adjoint shadowing on the Lorenz 63 system and a turbulent
three-dimensional flow over a cylinder.

The marginal cost for a new parameter in non-intrusive shadowing is only computing
one extra inhomogeneous tangent solution. Yet for cases where there are many parameters
and only a few design objectives, an adjoint version of non-intrusive shadowing is desired.
A continuous adjoint version appeared in the first publication of non-intrusive shadowing
[60]; however, this version of lacks the constraint on the neutral subspace, which will be
explained in this chapter. Blonigan [7] developed a discrete adjoint version of non-intrusive
shadowing, which was later implemented by Chandramoorthy et al. [18] using automatic
differentiation. In comparison to this discrete adjoint non-intrusive shadowing, non-intrusive
adjoint shadowing does not require tangent solvers, and requires less modification to existing
adjoint solvers, and the simplicity of the formula of non-intrusive adjoint shadowing should
also give it more robustness and perhaps better convergence.

Recently, we defined the adjoint shadowing direction for both hyperbolic flows and
diffeomorphisms, which is a bounded inhomogeneous adjoint solution with several other
properties [54]. We showed that the adjoint shadowing direction exists uniquely on a given
trajectory, and can be used for adjoint sensitivity analysis. Adjoint shadowing direction
is defined using only adjoint flows, giving us a chance to get rid of tangent solvers in our
algorithm, and arrive at a neat formula.

This chapter presents the non-intrusive adjoint shadowing algorithm, where we construct
a least squares problem to approximate the adjoint shadowing direction and then compute

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 46

adjoint sensitivity. The ‘non-intrusive’ formulation allows it be built using existing adjoint
solvers, and more importantly, it allows the minimization be constrained to the unstable
adjoint subspace. The main body of this chapter will be about continuous dynamical systems,
and we briefly discuss non-intrusive adjoint shadowing for discrete systems in 5.6.

We organize the rest of this chapter as follows. First, we prepare our study by defining
our problem and reviewing adjoint flows and adjoint shadowing directions; we also provide
some intuitions to help understanding adjoint shadowing directions. Then we derive the
non-intrusive adjoint shadowing algorithm. Then we present a detailed procedure list for our
algorithm and give several remarks on the algorithm. Finally, we demonstrate non-intrusive
adjoint shadowing on the Lorenz 63 system and a weakly turbulent three-dimensional (3D)
flow over a cylinder.

5.1 Review on adjoint flow and adjoint shadowing
In this chapter we mainly deal with continuous-time systems, and leave the discrete case
to the appendix of this chapter. For now we assume there is only one parameter γ; and in
section 5.3 we will explain how we can compute sensitivities with respect to several parameters
with almost no additional cost. Our goal of this chapter is to develop an algorithm computing
the sensitivity, δρ(Φ), whose marginal cost for a new parameter is negligible.

Adjoint flow
Definition 1. A homogeneous adjoint solution w(t) : R→ Rm is a function which solves the
homogeneous adjoint equation:

dw

dt
+ fTx w = 0, (5.1)

where fx := ∂f/∂x is the Jacobian matrix, and ·T is the matrix transpose. An inhomogeneous
adjoint solution is a function v(t) : R→ Rm which solves:

dv

dt
+ fTx v = g(t), (5.2)

where g(t) : R→ Rm is a vector-valued function of time.

In numerical implementations, we typically solve adjoint equations backward in time. This
is because, as shown in [54], when solving backward in time, the dimension of the unstable
adjoint subspace is the same as the unstable tangent subspace, which is typically much lower
than m. On the other hand, if we solve the adjoint equation forward in time, the unstable
subspace has much higher dimension, causing strong numerical instability.

Definition 2. In this chapter, an adjoint covariant Lyapunov vector (CLV) with adjoint
Lyapunov exponent (LE) λ is a homogeneous adjoint solution ζ(t) such that there is a
constant C, for any t1, t2 ∈ R,

‖ζ(t1)‖ ≤ Ceλ(t2−t1)‖ζ(t2)‖ . (5.3)

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 47

Note that the time direction in the above definition is reversed: if the adjoint CLV
grows exponentially backward in time, its exponent is positive. Adjoint CLVs with positive
exponents are called unstable, those with negative exponents are stable, and those with zero
exponent is are neutral. In this chapter, we sort adjoint CLVs by descending order of their
exponents. The earliest mention of adjoint CLVs was by Kuptsov and Parlitz in [44]. For the
purpose of defining adjoint shadowing directions, and deriving the non-intrusive algorithm,
we recently proved the existence of adjoint CLVs for uniform hyperbolic systems, and found
some relation between CLVs and adjoint CLVs.

Adjoint CLVs are homogeneous adjoint solutions whose norm grows exponentially, and the
adjoint LE is measured backward in time. This is similar but also different from tangent CLVs,
which are tangent solutions measured forward in time. The CLV structure for the adjoint
flow is the same as the tangent flow. That is, the adjoint LE spectrum is the same as the
tangent LE spectrum. Moreover, the subspace of CLVs with an exponent λ is perpendicular
to the subspace of all adjoint CLVs with exponents not λ, and vice versa. If we can write the
full set of CLVs as a matrix valued function of time, W (t), then W−T (t), where ·−T is the
inverse of transpose, is a matrix whose columns are adjoint CLVs: readers can verify that
W−T (t) satisfies the properties listed above. Note that we do not know if CLVs and adjoint
CLVs with the same exponent are perpendicular or parallel.

We assume our system is uniform hyperbolic and it has a bounded global attractor.
Definition of hyperbolicity can be found in most textbook on dynamical system such as [43],
and readers may also refer to [54] for a definition using the same notation as this chapter.
Uniform hyperbolicity requires that the tangent space can be split into stable subspace,
unstable subspace, and a neutral subspace of dimension one. Together with the boundedness
of the attractor, we can show the angles between two subspaces of different sets of tangent
CLVs are always larger than some positive angle. Since the adjoint equations have the same
structure as the tangent ones, there is only one neutral adjoint CLV, and adjoint CLVs are
always bounded away from each other [54].

Adjoint shadowing directions
In [54], the author defined adjoint shadowing directions, proved their unique existence on
a given trajectory, and showed how to use them for adjoint sensitivity analysis. We briefly
restate the main results in this subsection.

Definition 3. On a trajectory u(t) on the attractor, for t ≥ 0, the adjoint shadowing direction
v∞ : R+ → Rm is defined as a function with the following properties:

1. v∞ solves the inhomogeneous adjoint equation:

dv∞

dt
+ fTx v

∞ = −Φx , (5.4)

where subscripts are partial derivatives, that is, fx = ∂f/∂x, Φx = ∂Φ/∂x.

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 48

2. v∞(t = 0) has zero component in the unstable adjoint subspace.

3. ‖v∞(t)‖ is bounded by a constant for all t ∈ R+.

4. The averaged inner-product of v∞ and f is zero:

ρ(〈v∞, f〉) := lim
T→∞

1
T

∫ T

0
〈v∞(t), f(t)〉 = 0 , (5.5)

where 〈·, ·〉 is the inner-product on the Euclidean space.

We remind readers to distinguish the three different kinds of adjoint solutions we mentioned:
homogeneous adjoint solutions, inhomogeneous adjoint solutions and adjoint shadowing
directions. Homogeneous adjoint solutions are different from inhomogeneous ones, since
homogeneous adjoint equations must have zero right-hand-sides. The adjoint shadowing
direction is an inhomogeneous adjoint solution, but not any inhomogeneous adjoint solution:
it must in extra have three more properties listed in the definition. In fact, one way to view
non-intrusive adjoint shadowing is that we search the space of all inhomogeneous adjoint
solutions to find one such that it mimics the other three properties. More specifically, we
minimize the L2 norm, and constrain the inner product with f : this derivation will be
revealed in later sections.

Theorem 5. For a uniform hyperbolic system with a global compact attractor, on a trajectory
on the attractor, there exists a unique adjoint shadowing direction. Further, we have the
adjoint sensitivity formula:

δρ(Φ) ≈ S.C. = lim
T→∞

1
T

∫ T

0
〈v∞, fγ〉+ Φγ dt . (5.6)

We explain the assumption of the adjoint shadowing theorem. First, if a dynamical
system has a compact global attractor, it means there is a bounded set of states, or the
attractor, such that no matter what initial condition the system starts from, the trajectory
will eventually enter the attractor and never leave. Second, uniform hyperbolicity here mainly
means that there is only one neutral CLV. Third, by the compactness, the angles between all
CLVs are larger than a positive angle, regardless of where we are on the attractor.

Why do we make above assumptions in theories for shadowing methods? The main reason
for assuming only one neutral CLV in shadowing methods is to prevent linear growth in
inhomogeneous tangent/adjoint solutions. The main reason for global attractability is to
ensure that shadowing trajectories are representative of the averaged behavior of the system.
The main reason for compactness is because we want a bound for the projection operators
projecting onto a particular subspace. Still, we remind readers that, in practice, shadowing
methods may be effective beyond above assumptions, as to be discussed in section 5.3.

Rather than giving an explicit expression of adjoint shadowing directions, which can be
found as well in [54], the definition is stated as a criterion, where we check several properties
to determine if a function is indeed the adjoint shadowing direction. In fact, we forged this
definition for designing the non-intrusive adjoint shadowing algorithm, which will be revealed
in the next section.

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 49

Interpreting adjoint shadowing directions
We give several different perspectives to help readers build intuitions of adjoint shadowing
directions. To start with, we revisit some formal descriptions of shadowing operators. The
shadowing operator, denoted as S, can be viewed roughly as mapping a vector-valued
function fγ(t) to another vector-valued function v∞(t), Here fγ(t) is the perturbation on f
due to parameter perturbations; v∞ is the tangent shadowing direction, which is first order
approximation of the difference between the shadowing and the base trajectory. Note that S
is a linear operator, and both fγ(t) and v∞(t) are linear approximations. If we neglect the
neutral CLV, we have roughly

δρ(Φ) ≈ S.C. = ρ 〈v∞,Φx〉 = ρ 〈S(fγ),Φx〉 . (5.7)

First we provide a utility point of view for adjoint shadowing directions, which is also
an algebraic point of view. Riesz’s representation theorem tells us that there is an adjoint
operator S such that

ρ 〈S(fγ),Φx〉 = ρ
〈
fγ,S(Φx)

〉
. (5.8)

The adjoint shadowing direction, v∞, is S(Φx). Suppose now we have a computer program
which approximately functions as S. If we have two parameters s1, s2, then they can perturb
the governing equation by fs1 and fs2 , whereas Φx keeps the same. This means that we only
need to run our adjoint program once, and use the result to inner-product with both fs1 and
fs2 . For cases where there are many parameters s and a few objectives Φ, we only need to
run our program a few times.

Then an implementation point of view. The adjoint operator of a matrix is simply its
transpose. For many other cases, we can see that matrix transposition often appears as a
crucial step in the formulation of adjoint operators. So once we derive an new adjoint formula
of something, we may ask if it can be presented as neatly as transposing a matrix. Adjoint
shadowing directions satisfy inhomogeneous adjoint equations, which is a linear ODE whose
matrix is the transpose of the Jacobian matrix. Hence there is chance that algorithms, such
as non-intrusive adjoint shadowing, do not differ too much from existing adjoint solvers. In
fact, giving a neat recipe for adjoint shadowing direction is the main contribution of both
the adjoint shadowing theorem and the non-intrusive adjoint shadowing algorithm, since the
existence is already given by Riesz’s representation theorem.

Finally, we provide a physical point of view. Denote the trajectory by xt, assume the initial
condition of our trajectory is fixed, and we perturb the state at t by δxt, then the trajectory
at a later time, τ ≥ t, is changed by Dτ

t δxt. Notice here we use δ to denote infinitesimal
perturbations, which may also be thought as caused by perturbing some parameter γ, which
controls the state of the trajectory at t. Now the change in Φavg := 1

T

∫ T
0 Φdt satisfies:

T (Φavg + δΦavg) =
∫ T

0
Φ(x(τ) + δx(τ), s)dτ =

∫ T

0
Φ(x, γ)dτ +

∫ T

t
ΦT
xD

τ
t δxtdτ .

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 50

Here Φx is transposed to comply with our notation that Φx is a column vector. Canceling
the first term on both sides and diving both side by δxt, we get

T
δΦavg

δxt
=
∫ T

t
ΦT
xD

τ
t dτ . (5.9)

This is exactly v∗(t), the conventional adjoint solution at t.
Instead of assuming initial condition being fixed, we let it change according to that

prescribed by the shadowing direction. Now TδΦavg/δxt is the adjoint shadowing solution
v∞(t). This means that the adjoint shadowing direction can be viewed as how a perturbation
at t in the trajectory affects the objective, with the caveat that now both the past and future
trajectory are perturbed to match the perturbation at t.

5.2 Deriving non-intrusive adjoint shadowing
algorithm

The non-intrusive formulation
On a finite trajectory of time span [0, T], the non-intrusive adjoint shadowing algorithm
computes a v which approximates v∞. Since the definition of the adjoint shadowing direction
is similar to the tangent shadowing direction, it is not surprising that we can reuse the
‘non-intrusive’ formulation in non-intrusive shadowing, that is, we can find adjoint shadowing
direction by a minimization in the unstable adjoint subspace.

In non-intrusive adjoint shadowing, we strictly enforce the first property of adjoint
shadowing directions by constraining our solutions to inhomogeneous adjoint solutions. The
second property is changed to a symmetric statement that stable component in v(T) should
be O(1), which can be easily satisfied. The third property is approximated by minimizing
the L2 norm of the inhomogeneous adjoint solution. The fourth property is strictly enforced
by adding a constraint to our minimization problem. In this subsection, we explain why the
v given by this reverse-engineering is a good approximation of v∞.

Our algorithm strictly enforces the first property of v∞. To do this, we represent the
solution set of equation (5.4) as a particular solution plus the space of homogeneous solutions.
We select the particular solution as the conventional inhomogeneous adjoint solution v∗,
which is defined as the solution of:

dv∗

dt
+ fTx v

∗ = −Φx , v
∗(T) = 0 . (5.10)

Then we select the collection of all adjoint CLVs, Z = [ζ1, · · · , ζm], all of which have terminal
condition ‖ζj(T)‖ = 1, as the basis of the space of homogeneous solutions. Hence we can
enforce the first property by considering candidates only in the following form for some
{aj}mj=1:

v = v∗ +
m∑
j=1

ajζj = v∗ + Za , (5.11)

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 51

where the coefficients a = [a1, ..., am]T is a column vector. Another interpretation of our way
of enforcing the first property is that, we want to start v from v∗, and modify by adding
adjoint CLVs to approximate v∞; in other words, the coefficients a should be such that
Za ≈ v∞− v∗. We then use other properties to determine the coefficients for stable, unstable
and neutral CLVs.

When defining adjoint shadowing directions in [54], the author was considering functions
defined starting from time zero, whereas in our case here, adjoint solutions are solved from
T backward in time. Hence, in order to keep the sensitivity formula, we change the second
property to a symmetric statement, that is, we want the stable component in v(T) be in the
order O(1), meaning be bounded by a constant independent of T . Equivalently, we require
coefficients for stable CLVs be O(1). Another way to interpret is that, if this O(1) condition
is true, then since v∞(T) is O(1), the stable component in v(T)− v∞(T) is O(1); now since
stable CLVs decay exponentially fast, their contribution in v − v∞ can be neglected. This
O(1) condition is a loose requirement and, as we will see, it can be easily satisfied.

To mimic the boundedness in the third property of adjoint shadowing directions, we
minimize ‖v‖L2 , which determines the coefficients for the unstable CLVs. Indeed, this
minimization removes significant unstable CLVs from v − v∞, since otherwise this difference
would grow exponentially, and since v∞ is bounded, v would have large L2 norm.

We strictly enforce the fourth property of v. This determines the coefficient for the neutral
adjoint CLV, since as shown in [54], f is always orthogonal to non-neutral adjoint CLVs. Note
also that the norm of the neutral adjoint CLV is bounded, unlike neutral tangent CLV, which
can have linear growth. Hence we can allow its coefficient be O(1) without jeopardizing the
boundedness property we used earlier. In fact, the adjoint non-intrusive shadowing in [60]
lacks exactly this constraint on the neutral adjoint CLV.

To summarize, we determine coefficients for unstable adjoint CLVs via a minimization,
the coefficient for the neutral adjoint CLV via equation (5.5), and we do not care coefficients
for stable adjoint CLVs too much. Hence there is no need to provide stable CLVs to our
algorithm; it is even unnecessary to provide accurate non-stable CLVs, they can contain some
stable components at T . Further, we care not individual CLVs but only their span. Hence we
can replace Z by W = [w1, · · · , wu′], with u′ ≥ u+ 1, u being the number of unstable CLVs,
and {wj}u

′
j=1 are homogeneous adjoint solutions whose non-stable components at T span the

entire non-stable subspace. Such a set of solutions can be obtained by solving homogeneous
adjoint equations from almost all terminal conditions of u′ randomized unit vectors.

With above discussions, we see that our algorithm should solve the non-intrusive adjoint
shadowing problem on one segment:

min
a∈Ru′

1
2

∫ T

0

〈
v∗ +Wa, v∗ +Wa

〉
,

s.t.
∫ T

0

〈
v∗ +Wa, f

〉
= 0 .

(5.12)

This is simply a least squares problem with arguments a ∈ Ru′ . Note that all adjoint
solutions can be computed after making little modifications to existing adjoint solvers, and

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 52

our minimization is constrained to essentially only the unstable adjoint subspace: these are
the benefits of the non-intrusive formulation. Letting v = v+Wa, we can compute sensitivity
via equation (5.6) on a finite trajectory:

δρ(Φ) ≈ S.C. = lim
T→∞

1
T

∫ T

0
〈v, fγ〉+ Φγ dt . (5.13)

Dividing trajectory into segments
An issue in numerical stability is that, as the trajectory gets longer, all adjoint solutions
become dominated by the fastest growing adjoint CLV; as a result, the minimization problem in
equation (5.12) becomes ill-conditioned. This issue also happened in non-intrusive shadowing
[59, 60] and in the algorithm for computing CLVs [35], and here we use a similar technique
to resolve it, that is, dividing the whole trajectory into multiple segments, and rescaling at
interfaces.

Roughly speaking, at the end of each segment, we orthogonalize and rescale adjoint
solutions W and v∗ so that they are no longer dominated by the first CLV. Note here since
adjoint solutions are integrated backward in time, the initial condition is at the end of a
segment. Despite that nowW and v∗ are discontinuous across segments, we can still construct
v as their linear combinations, and keep v continuous across all segments. This continuous v
computed from multiple segments should be identical to that solved on one large segment
containing the entire trajectory.

We first define some notations, as shown in figure 5.1. Let T be the time length of the
entire trajectory, and A the total number of segments. We denote the time span of the i-th
segment by [ti, ti+1], where t0 = 0, tA = T . For quantities defined on a entire segment such as
W i, v

∗
i , Ci, di and ai, their subscripts are the same as the segment they are defined on. For

quantities defined only at the interfaces between segments such as Qi, Ri, bi, pi and λi, their
subscripts are the same as the time point they are defined at. Some of the notations are used
immediately below, the others will be used in section 5.3 and 5.6.

At time ti, we perform QR factorization to W i(t) = [wi1(t), · · ·wiu′(t)], which is a M × u′
matrix whose column vectors are homogeneous adjoints on segment i. We use the Q-matrix,
the matrix with orthonormal columns, as the terminal condition for W i−1 on segment i− 1.
More specifically,

W i(ti) = QiRi, and W i−1(ti) = Qi . (5.14)
At time ti, we also rescale v∗i (t), which is the particular inhomogeneous adjoint solution

on segment i. To do this, we subtract from v∗i its orthogonal projection onto homogeneous
adjoint solutions. More specifically,

pi := v∗i (ti)−Qibi , where bi = QT
i v
∗
i (ti) , and v∗i−1(ti) = pi . (5.15)

This rescaling maintains the continuity of the affine space v∗i + span{wij}u
′
j=1 across different

segments.

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 53

t0 ti ti+1 tK.

W i(ti) W i(ti+1) W i+1(ti+1)

time

Integration Rescaling

v∗i (ti) v∗i (ti+1) v∗i+1(ti+1)

i-th segment

W i−1(ti) = Qi

W i(ti) = QiRiRescaling:

W i−1(ti)
v∗i−1(ti)

Figure 5.1: Notations for multiple segments. W i(t), v∗i (t) are defined on the i-th segment,
which spans t ∈ [ti, ti+1]; Qi, Ri are defined at ti. ‘Integration’ refers to integrating adjoint
equations for W i(t), v∗i (t): after this procedure we move from end to the start within one
segment. ‘Rescaling’ refers to renormalize adjoint solutions at the interface between segments:
after this procedure we move to another time segment.

The continuity of affine space allows us to impose continuity condition for vi, which is
the adjoint shadowing direction on segment i. On each segment, vi = v∗i + W iai for some
ai ∈ Ru′ . The continuity condition can now be expressed via a relation between ai and ai−1:

v∗i (ti) +W i(ti)ai = v∗i−1(ti) +W i−1(ti)ai−1 . (5.16)

Apply equation (5.14) and (5.15), cancel v∗i (ti) on each side, we get:

QiRiai = −Qibi +Qiai−1 (5.17)

Since Qi has orthonormal columns, QT
i Qi = I ∈ Ru′×u′ . Multiplying QT

i to the left of both
sides, we have the continuity condition for v:

ai−1 = Riai + bi . (5.18)

5.3 The non-intrusive adjoint shadowing algorithm

Procedure list of the algorithm
Now we give a procedure list of the non-intrusive adjoint shadowing algorithm. To start with,
we need to have an inhomogeneous adjoint solver and a homogeneous adjoint solver, both
can take arbitrary terminal conditions. The inhomogeneous adjoint equation we solve in
non-intrusive adjoint shadowing has right-hand-side −Φx, which is the same as many existing
adjoint solvers. Hence for inhomogeneous adjoint solvers in non-intrusive adjoint shadowing,
we only need to change existing solvers to be able to take arbitrary terminal conditions. For
homogeneous adjoint solvers, we only need to further change the right-hand-side of existing
solvers to zero.

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 54

We provide the following data to non-intrusive adjoint shadowing: 1) the number of
homogeneous adjoint solutions, u′ ≥ u+ 1, where u is the unstable dimension; 2) the total
number of segments, A; 3) for convenience, we assume that the length of all time segments
are the same, denoted by ∆T . The total time length is determined by T = A∆T . Moreover,
in the procedure list below, inner products are written in matrix notations, and by default
vectors are in column forms.

1. Integrate the primal system for sufficiently long time before t = 0 so that u(t = 0) is on
the attractor.

2. Compute the trajectory u(t), t ∈ [0, T], by integrating the primal system.

3. Generate terminal conditions for W i and v∗i on the last segment i = A− 1:

a) Randomly generate a M × u′ full rank matrix, Q′. Perform QR factorization:
QARA = Q′.

b) Set pA = 0.

4. Compute W i and v∗i on all segments. For i = A− 1 to i = 0 do:

a) To get W i(t), whose columns are homogeneous adjoint solutions on segment i,
solve:

dW i

dt
+ fTxW i = 0, W i(ti+1) = Qi+1 . (5.19)

To get v∗i (t), solve the inhomogeneous adjoint equation:

dv∗i
dt

+ fTx v
∗
i = −Φx , v∗i (ti+1) = pi+1 . (5.20)

b) Compute the following integrations.

Ci =
∫ ti+1

ti
W

T

i W idt , dwv
∗

i =
∫ ti+1

ti
W

T

i v
∗dt ,

dwfi =
∫ ti+1

ti
W

T
i fdt , dv

∗f
i =

∫ ti+1

ti
v∗Tfdt ,

d
wfγ
i =

∫ ti+1

ti
W

T

i fγdt , d
v∗fγ
i =

∫ ti+1

ti
v∗Tfγdt ,

d
Φγ
i =

∫ ti+1

ti
Φγdt ,

(5.21)

where dwv∗i , dwfi , dwfγi ∈ Ru′ ; dv
∗f
i , dv

∗fγ
i , dΦγ

i ∈ R; Ci ∈ Ru′×u′ is the covariant
matrix.

c) Orthonormalize homogeneous adjoint solutions via QR factorization:

QiRi = W i(ti) (5.22)

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 55

d) Rescale the inhomogeneous adjoint solution using Qi:

pi = v∗i (ti)−Qibi , where bi = QT
i v
∗
i (ti) . (5.23)

5. Compute the adjoint shadowing direction {vi}A−1
i=0 .

a) Solve the non-intrusive adjoint shadowing problem on multiple segments:

min
a0,··· ,aA−1∈Ru′

A−1∑
i=0

1
2(ai)TCiai + (dwv∗i)Tai, s.t.

a) ai−1 = Riai + bi , i = 1, · · · , A− 1 ,

b)
A−1∑
i=0

(dwfi)Tai +
A−1∑
i=0

dv
∗f
i = 0 .

(5.24)

This is a least squares problem in {ai}A−1
i=0 ⊂ Ru′ . In 5.6 we suggest one way to

solve this problem.
b) On each time segment i, vi is given by

vi(t) = v∗i (t) +W i(t)ai. (5.25)

6. Compute the derivative by:

δρ(Φ) ≈ 1
T

A−1∑
i=0

∫ ti+1

ti

(
vTi fγ + Φγ

)
dt = 1

T

A−1∑
i=0

(
d
v∗fγ
i + aTi d

wfγ
i + d

Φγ
i

)
(5.26)

Remarks about non-intrusive adjoint shadowing
Miscellaneous

We remark that if we are not interested in obtaining v(t) for all t, there is no need to
store adjoint solutions W and v∗ in computers, which is typically lots of data. To compute
sensitivity, we only need to store dwv∗i , dwfi , dwfγi , dv

∗f
i , dv

∗fγ
i , dΦγ

i , Ci given in equation (5.21),
Ri given in equation (5.22), and bi given in equation (5.23).

Moreover, when computing quantities in equation (5.21), we can estimate the integration
using particular values of the integrands evaluated at several snapshots, to further reduce the
storage management cost. For example, similar to [7], we can estimate Ci by the terminal
value of Wi, which is Qi, and thus Ci = I ∈ Ru′×u′ . We suggest further research be done to
determine which estimation is best practice.

Non-intrusive adjoint shadowing has the benefit of typical adjoint algorithms, that is, for
a new parameter γ, v does not change, so we only need to give new fγ, Φγ, and recompute
equation (5.21) and (5.26). Hence the extra cost for a new parameter is only performing

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 56

an L2 inner product, which is negligible in comparison with the total cost of the algorithm.
More specifically, assume there are n parameters, γ = [γ1, · · · , γn], we can define

dρ(Φ)
dγ

= [∂ρ(Φ)
∂γ1

, · · · , ∂ρ(Φ)
∂γn

] ∈ R1×n ;

Φγ = [∂Φ
∂γ1

, · · · , ∂Φ
∂γn

] ∈ R1×n ;

fγ = [∂f
∂γ1

, · · · , ∂f
∂γn

] ∈ RM×n .

(5.27)

With these definitions, the non-intrusive adjoint shadowing algorithm, in particular equa-
tion (5.21) and (5.26), extend to several parameters with almost no extra cost. An extreme
example is where fγ is unknown a priori and we can now use v to design an optimal control,
fγ.

The assumptions in theorem 5 are made for theoretically proving the unique existence of
adjoint shadowing directions and convergence of non-intrusive adjoint shadowing. In practice,
it is possible that non-intrusive tangent/adjoint shadowing are still valid on a chaotic system
which fails these assumptions. For example, the 3D cylinder flow we investigate later in
this chapter has at least two neutral CLVs, corresponding to translations in time and in the
span-wise directions, due to the periodic boundary condition. In fact, in [57] we also showed
that the smallest angle between tangent CLVs depends on meshes and may fall below a
threshold value: this further violates our assumptions. However, we did found the trend that
angles between tangent CLVs gets larger when their indices are further apart: this property
is related to hyperbolicity, but has not been well investigated yet. As we shall see, both
non-intrusive shadowing and adjoint shadowing compute correct sensitivities on this 3D flow.
The generality of shadowing methods is as suggested by the chaotic hypothesis [33, 32], that
is, theoretical tools may still valid for non-uniform hyperbolic chaotic systems, even though
those tools can only be rigorously proved with a stricter assumption. We do not expect
non-intrusive shadowing and adjoint shadowing be valid for all chaotic systems; however,
they are valid somewhere beyond our current assumptions. We call for more research to
identify the limit of shadowing methods, especially in real-life problems.

In 5.6, we discuss in detail non-intrusive adjoint shadowing for discrete systems, more
specifically, hyperbolic diffeomorphisms. Adjoint shadowing directions for diffeomorphisms
were also defined in [54]. Because of the absence of the neutral subspace, the non-intrusive
adjoint shadowing algorithm for hyperbolic diffeomorphisms is easier than flows. To obtain
non-intrusive adjoint shadowing for diffeomorphisms, we no longer compute dwfi , dv

∗f
i , and

no longer impose the second constraint in the non-intrusive adjoint shadowing problem. Of
course, we should change integrations to summations, and adjoint equations to their discrete
counterparts.

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 57

Number of homogeneous adjoint solutions

Since the number of homogeneous adjoint solutions should be strictly larger than then number
of unstable adjoint CLVs, which equals the number of unstable tangent CLVs, we first discuss
the number of unstable CLVs, about which there are two questions: (1) whether the absolute
number can be large; (2) whether the number is significantly lower than the dimension of the
system. We are interested in (1) because we want to estimate the cost of non-intrusive adjoint
shadowing. We are interested in (2) because we want to determine whether computational
efficiency can benefit from the ‘non-intrusive’ formulation, which restricts minimization to
unstable subspaces. Roughly, the efficiency improvement due to the non-intrusive formulation
is proportional to the ratio of the system dimension to unstable subspace dimension.

First, the absolute number of unstable CLVs can be large and the cost of non-intrusive
adjoint shadowing increases. We think maybe this is the price to pay for chaos, that is,
for more chaotic systems, numerical methods should be more expensive, not only for non-
intrusive shadowing and adjoint shadowing, but also for other common methods such as
computing long-time averages, which should take longer time to converge for more chaotic
systems. Second, in a recent paper [57], based on observations on flow past a 3D cylinder,
we conjectured that for open flows, CLVs active in the freestream or less turbulent regions
are stable. At least for these open flows, where there are large areas of freestream, a large
fraction of CLVs should be stable. For these cases, we can benefit from the non-intrusive
formulation by restricting minimization to unstable subspaces.

We provide some examples on the number of unstable CLVs and the dimension of the
system. The number of unstable CLVs for general 3D turbulent flows is bounded by the
‘necessary’ degree of freedom for qualitatively describe the flow, which is estimated by Re3/4

[45]; [23] gives a pessimistic bound of Re3, under weaker assumptions. The point is, although
the dimension of the phase space for fluid flows is infinite, there is only a finite number
of unstable dimension. For numerically simulated fluids, due to numerical dissipation
and turbulence models, there should be less unstable CLVs than analytic solutions. For
example, for a 2D incompressible channel flow over a backward facing step at Reynolds
number Re = 2.5× 104, there are 13 unstable CLVs in a system of dimension 4× 104 [59]. For
a 2D NACA 0012 airfoil at Mach number Ma = 0.2, angle of attack 20 deg, Re = 2400, there
are less than 5 unstable CLVs for different implementations with system dimension ranging
from 7× 103 to 8× 105 [29]. For a 3D turbulent channel flow with Ma = 0.3 and Reτ = 180
on a domain of size 4π × 2× 2π, there are about 1.5× 103 unstable CLVs out of a system of
dimension 2.2× 106 [6]. For a 3D weakly turbulent flow over a cylinder at Re = 5.2× 102,
there are 20 unstable out of 1.9× 106 [57]. For a weather model, PUMA, there are about 65
unstable out of more than 105 [26]. All of the above numerical fluid problems have unstable
CLVs less than 0.1% of the system dimension. On the other hand, there are cases where
significant part of all CLVs are unstable, such as Hamiltonian systems. To conclude, we
believe that although the cost of non-intrusive tangent/adjoint shadowing can be high, for
many cases, the idea of non-intrusive formulation is still important for achieving the highest
possible computational efficiency.

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 58

In our procedure list we listed u′ in the setting of non-intrusive adjoint shadowing and
required it strictly larger than u, the number of unstable CLVs. How should we know u
before running non-intrusive adjoint shadowing? And what if we chose initial u′ smaller than
required? First, the number of unstable modes is roughly positively related to how chaotic
the flow is. This is not a rigorous criterion but readers can look at some test cases to have a
rough sense. But there is not any precise method that allows us to know the exact number
at the first glance. Second, even if we started with an insufficient u′, we can add adjoint
solutions inductively, rather than recomputing everything all over again. More specifically, in
the non-intrusive adjoint shadowing problem in equation (5.24) and the sensitivity formula
in equation (5.26), say we want to add k more adjoint solutions, then coefficients arrays dwv∗i ,
dwfi , dwfγi and bi, should be augmented by k more entries, while the old coefficient arrays
are not changed inside the new arrays; similarly, the coefficient matrices Ci, Ri should be
augmented by k rows and k columns.

The headache of choosing an initial u′ is further relieved by the fact that adjoint solutions
can be more efficiently computed in batches. Within each segment, we can accelerate non-
intrusive adjoint shadowing by taking advantage of the fact that all adjoint solutions, both
homogeneous and inhomogeneous, use the same Jacobian fx. If the numerical integration is
vectorized, we can integrate all adjoint solutions simultaneously without repeatedly loading
fx into the computer CPU, which is the most time-consuming procedure in the numerical
integration. At each time step, instead of several matrix-vector products, we can perform one
matrix-matrix products, where the second matrix is composed of several adjoint solutions;
then we add the right-hand-side to the inhomogeneous adjoint solution. For example, for a
4th order IEDG solver, the marginal cost for one more adjoint solution can be only, say 0.037,
of the first adjoint solution. In this scenario we should start non-intrusive adjoint shadowing
and then add adjoint solutions by batches on the order of 1/0.037 ≈ 27 adjoint solutions per
batch. This should be further faster than adding adjoint solutions one by one. 1 However,
our later implementation in this chapter does not yet have this vectorized feature.

Other settings of non-intrusive adjoint shadowing

It is required by the algorithm that we run primal system long enough before the main
part of non-intrusive adjoint shadowing, so that our initial condition is on the attractor. In
general, we can not know very well what is ‘long enough’ before we do any computations, and
this run-up time is determined empirically as the time when the flow field starts to repeat
itself. In a typical scenario, we would run a primal simulation before taking interest in any
sensitivities. When running that primal simulation, there is the same question of when we
reach the stage that enough long-time behavior has been captured: typically this is indicated
by that several objective functions began to oscillate around some averaged values.

1The ideas of taking advantage of vectorized integration and the estimation on IEDG were both given
during private discussion by Pablo Fernandez, who co-authored with us on finite-difference non-intrusive
shadowing.

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 59

We should also determine the time length T on which we run non-intrusive adjoint
shadowing. In practice T is determined empirically as the time when the sensitivity computed
by non-intrusive adjoint shadowing converges to within the uncertainty bound we desire.
However, there is one caveat that the adjoint solutions are computed backwards in time. Now
if we find T insufficient, we can not add time after T without recomputing all adjoint solutions,
since integration adjoint solutions forward in time is very unstable. Rather, we should add
time before our current trajectory. In practice, we should run our primal simulation till
enough long-time behavior has been captured, then start computing adjoint solutions from the
end of that primal trajectory. We have found that typically non-intrusive adjoint shadowing
requires a shorter trajectory to compute sensitivity than that required to reflect average
behavior.

Then we discuss the choice of segment length ∆T . Similar to non-intrusive shadowing,
∆T is determined by that within one segment, the leading adjoint CLV does not dominate
the u′-th adjoint CLV. This is because otherwise we would have covariant matrices, {Ci}A−1

i=0 ,
with small condition number, which would lead to eventually the poor condition of the
non-intrusive adjoint shadowing problem in equation (5.24). We recommend ∆T (λ1− λu′) to
be O(1), in which case within one segment, the leading CLV would grow to be about e1 = 2.7
time larger than the u′-th CLV.

A related question is that if the leading LE is large and we select a small ∆T , will the
cost of frequent rescaling offset the cost reduction due to non-intrusive formulation? First, as
we discussed in section 5.3, there are a lot of fluid systems whose CLVs are mostly stable,
in which case the non-intrusive formulation is beneficial. Second, our understanding is that
the numerical methods should have smaller time steps for more chaotic systems, to capture
accurate motions on all scales. Hence one segment, although is shorter in physical time, may
still contain many small time steps. As a result, the rescaling may not be more frequent
for more chaotic systems. Again, we call for more research on numerical schemes and LE
spectrum, especially for systems other than fluid or extremely chaotic systems.

Comparison with other shadowing algorithms

There are currently several variants of non-intrusive shadowing [59], such as the finite-
difference version [61] and the discrete adjoint version [7], Non-intrusive adjoint shadowing,
as well as these variants, bears part of the merit of ‘non-intrusive’ formulation, that is, the
minimization problems in these algorithms are constrained to the unstable subspaces. Hence,
for many real-life problems, where the unstable subspaces have significantly lower dimension
than the dynamical systems, these algorithms should be significantly faster than previous
shadowing algorithms.

We compare non-intrusive adjoint shadowing with variants of non-intrusive shadowing
in table 5.1. In particular, we want to compare in more detail the two adjoint algorithms:
discrete adjoint versus non-intrusive adjoint shadowing. Non-intrusive adjoint shadowing
should be easier to implement than the discrete adjoint version since it does not require
tangent solvers, and requires less modification to existing adjoint solvers. Furthermore, unlike

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 60

discrete adjoint version, Non-intrusive adjoint shadowing does not explicitly depend on the
fact that inner-products between adjoint and tangent homogeneous solutions are constants:
since this property holds true only for analytic solutions but is typically false for numerical
solutions, we think non-intrusive adjoint shadowing should be more robust to implementations
of tangent and adjoint solvers, and should typically have better convergence. We suggest
more numerical comparison be done to compare the two methods.

NI shadowing FD version DA version NI adjoint
needs prm solvers yes yes yes yes
needs tan solvers yes no yes no
needs adj solvers no no yes yes
cost increases with
parameter numbers yes yes no no

cost increases with
objective numbers no no yes yes

cost for 1 parameter
and 1 objective

1 prm
+ 1 ihm tan

+ (u′-1) hm tan
(u′+1) prm

1 prm
+1 ihm adj

+ (u′-1) hm tan

1 prm
+1 ihm adj
+ u′ hm adj

Table 5.1: Comparison of non-intrusive (NI) adjoint shadowing with the original version, Finite
Difference (FD) version, and discrete adjoint (DA) version of non-intrusive (NI) shadowing.
Here ‘prm’, ‘tan’, ‘adj’, ‘ihm’ and ‘hm’ are short for primal, tangent, adjoint, inhomogeneous
and homogeneous, respectively. u′ is a number strictly larger than the number of unstable
CLVs. For item 4 and 5, we assume that all objectives and parameters are determined before
the computation, rather than adding more objectives and parameters after the computation
is done.

5.4 Applications

Application on Lorenz 63 system
In this subsection we apply non-intrusive adjoint shadowing to the Lorenz 63 system as
an illustration. 2 Lorenz 63 is an ordinary differential equations system with three states
u = [x, y, z]:

dx

dt
= σ(y − x), dy

dt
= x(ρ′ − z)− y, dz

dt
= xy − βz. (5.28)

Notice that here ρ′ is one of the parameters, not to be confused with the SRB measure, ρ.
We fix β = 8/3. This system models the heat transfer in a fluid layer heated from below

2The python code used for this section is at: https://github.com/niangxiu/nilsas.

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 61

and cooled from above. In particular, x is the convection rate, y the horizontal temperature
variation, and z the vertical temperature variation. The parameters σ and ρ′ are proportional
to the Prandtl number and Rayleigh number. We select the instantaneous objective function
as Φ(x) = z, and hence our objective ρ(Φ) is the averaged vertical temperature variation.

The primal system and adjoint equations are integrated via the explicit time-stepping
scheme:

xk+1 = xk + f(xk)∆t
wk = wk+1 + fx(xk)Twk+1∆t
v∗k = v∗k+1 + fx(xk)Tv∗k+1∆t+ Φx(xk)∆t

(5.29)

where the subscript k denotes the time step number in numerical integration. The time step
size is ∆t = 0.001. For non-intrusive adjoint shadowing, time segment length is ∆T = 0.2,
thus there are 200 time steps per segment.

We want to determine the number of unstable CLVs for the Lorenz system. The Lyapunov
exponents, λ1, λ2, λ3, satisfy the following constraints [10]:

λ1 + λ2 + λ3 = −(1 + σ + β) < 0 . (5.30)

Moreover, one of these exponents corresponds to the neutral CLV so it is zero. Hence there
is at most one positive exponent, so in non-intrusive adjoint shadowing we set the number of
homogeneous solutions u′ = 2.

We verify that non-intrusive adjoint shadowing gives correct sensitivities by computing
ρ(Φ) and ∂ρ(Φ)/∂ρ′ for different ρ′, while fixing σ = 10. The Lorenz system has one quasi-
hyperbolic strange attractor when 25 ≤ ρ′ < 31, and one non-hyperbolic attractor when
31 ≤ ρ′ ≤ 50: none of these cases strictly satisfies our uniform hyperbolic assumption.
As shown in figure 5.2, as ρ′ becomes larger, the system becomes non-hyperbolic, and the
sensitivity results given by non-intrusive adjoint shadowing begin to oscillate. Nevertheless,
non-intrusive adjoint shadowing gives that ∂ρ(Φ)/∂ρ′ is approximately 1 for all ρ′, which
matches the trend between ρ(Φ) and ρ′: this again shows that non-intrusive adjoint shadowing
can be effective for systems not satisfying assumptions of theorem 5, as we discussed in
section 5.3.

Then we show that both ρ(Φ) and the sensitivities computed by non-intrusive adjoint
shadowing converge as the trajectory length T gets larger, while fixing σ = 10 and ρ′ = 28.
Figure 5.3 shows that the standard deviation of ρ(Φ) reduces at the rate of T−0.5. Figure 5.4
shows that the sensitivities computed by non-intrusive adjoint shadowing, with respect to
both ρ′ and σ, converge faster than the rate of T−0.5.

Non-intrusive adjoint shadowing computes sensitivities with respect to multiple parameters
with almost no additional cost, since the adjoint shadowing solution v does not depend on
the choice of parameters. Figure 5.5 illustrates the contour of ρ(Φ) with respect to ρ′ and σ,
and the gradient, [∂ρ(Φ)/∂ρ′, ∂ρ(Φ)/∂σ], is computed by non-intrusive adjoint shadowing.
Since we use the same length unit for both parameters, gradients should be perpendicular

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 62

(a) For each value of ρ′, ρ(Φ) is com-
puted 20 times on randomly initialized
trajectories of length 100.

(b) For each ρ′, ∂ρ(Φ)/∂ρ′ is computed
10 times by non-intrusive adjoint shad-
owing on randomly initialized trajecto-
ries of length 40.

Figure 5.2: ρ(Φ) and ∂ρ(Φ)/∂ρ′ versus ρ′ for the Lorenz 63 system. Here σ = 10 is fixed.

(a) For each value of trajectory length T ,
ρ(Φ) is computed 10 times on randomly
initialized trajectories.

(b) The sample standard deviation of
the 10 ρ(Φ)’s computed at each T . The
dashed line is T−0.5.

Figure 5.3: Convergence of the averaged objective ρ(Φ) with respect to the trajectory length
T . Here ρ′ = 28 and σ = 10 are fixed.

to the level sets of the objective: this is indeed the case, and it shows non-intrusive adjoint
shadowing gives correct gradient information.

Finally, we draw the norm of an adjoint shadowing direction in figure 5.6. As we can see
from the left plot, the norm of the adjoint shadowing direction does not grow exponentially,
satisfying the third property of adjoint shadowing directions. Moreover, as shown in the
right plot, the adjoint shadowing direction computed by non-intrusive adjoint shadowing is

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 63

(a) For each value of T , ∂ρ(Φ)/∂ρ′ is
computed by non-intrusive adjoint shad-
owing 10 times on randomly initialized
trajectories.

(b) The sample standard deviation of
the 10 ∂ρ(Φ)/∂ρ′’s computed at each T .
The dashed line is T−0.5.

(c) For each value of T , ∂ρ(Φ)/∂σ is
computed by non-intrusive adjoint shad-
owing 10 times on randomly initialized
trajectories.

(d) The sample standard deviation of
the 10 ∂ρ(Φ)/∂σ’s computed at each T .
The dashed line is T−0.5.

Figure 5.4: Convergence of sensitivities computed by non-intrusive adjoint shadowing with
respect to the trajectory length T . Here ρ′ = 28 and σ = 10 are fixed.

continuous. This shows that our dividing trajectory technique indeed allows us to recover a
continuous adjoint shadowing direction.

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 64

Figure 5.5: Gradients computed by non-intrusive adjoint shadowing. The contour is of ρ(Φ)
with respect to ρ′ and σ, and arrows are gradient vectors. Here ρ(Φ)’s are averaged over 20
randomly initialized trajectories of length 100, while gradients computed by non-intrusive
adjoint shadowing are averaged over 10 randomly initialized trajectories of length 40. The
arrow length is 0.2 times the gradient norm. non-intrusive adjoint shadowing computes one
gradient, composed of two sensitivities to two parameters, in one run.

Application on a turbulent flow past a three-dimensional cylinder
In this subsection, we apply non-intrusive adjoint shadowing to a 3D subsonic flow over a
cylinder at Reynolds number Re = 1100 and Mach number Ma = 0.093. 3 The flow-wise
length of the domain is 60d, where d = 0.25mm is the diameter of the cylinder. The Reynolds
number is defined using the diameter of the cylinder and the density, velocity and viscosity
of inflow. The span-wise extent, at z = 2d, is sufficient to capture most of the important flow
features, like a turbulent wake and flow separation. The front view of our fluid problem is
shown in figure 5.7.

We use compressible Navier-Stokes equations with the ideal gas law approximating the
thermodynamic state equation [34]. The gas is assumed to be air. More specifically, the

3The flow solver, adFVM, used for this section is at: https://github.com/chaitan3/adFVM, the particular
file that implements the non-intrusive adjoint shadowing algorithm used in this case is apps/nilsas.py.

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 65

Figure 5.6: Norm of the adjoint shadowing direction computed by non-intrusive adjoint
shadowing for the Lorenz system, with ρ′ = 28 and σ = 10. Left: plot on the entire trajectory
time span. Right: zoom onto time span from 19 to 21. The vertical dashed lines marks
different time segments.

30d

inlet boundary

outlet boundary

cylinder

x

y

U

d

63d

60d

Figure 5.7: Geometry used in the simulation of a 3D flow past a cylinder. The span-wise
extent of the computational domain is 2d.

governing equations are:
∂ρ′

∂t
+∇ · (ρ′u) = 0 ,

∂(ρ′u)
∂t

+∇ · (ρ′uu) +∇p = ∇ · σ ,

∂(ρ′E)
∂t

+∇ · (ρ′Eu + pu) = ∇ · (u · σ + αρ′γ∇e) ,

σ = µ(∇u +∇uT)− 2µ
3 (∇ · u)I , c =

√
γp

ρ′
,

p = (γ − 1)ρ′e , e = E − u · u
2 .

(5.31)

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 66

Here ρ′ is the density, u is the velocity vector, ρ′E is the total energy, p is pressure, e is
internal energy of the fluid, c is the speed of sound, γ = 1.4 is the isentropic expansion factor
and µ is the viscosity field modeled using Sutherland’s law for air

µ = CsT
3/2

T + Ts
(5.32)

where Ts = 110.4A and Cs = 1.458× 10−6kg/ms
√
A. α is the thermal diffusivity modeled

using
α = µ

ρ′Pr
(5.33)

where Pr = 0.71 is the Prandtl number.
We use an unstructured hexahedral mesh with approximately 7× 105 cells, with 50 cells

in the span-wise direction. The front view of our mesh is shown in figure 5.8.

Figure 5.8: Front view of the mesh for the flow over cylinder problem. This is an unstructured
hexahedral mesh with approximately 7× 105 cells, with 50 cells in the span-wise direction.

We use a second order finite volume method (FVM) [48] for unstructured hexahedral
meshes. The central differencing scheme is used to interpolate cell averages of the flow
solution onto faces of the mesh [81]. The numerical fluxes for the conservative flow variables
are computed using the Roe approximate Riemann solver [66]. An explicit time integration
scheme, the strong stability preserving third order Runge-Kutta method [50], is used for

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 67

time marching the numerical flow solution. The size of the time step is determined using the
acoustic Courant-Friedrichs-Lewy (CFL) condition [25], and we choose our CFL number to be
1.2. The flow solver is implemented in Python using the adFVM [78] library, which provides
a high-level abstract application programming interface for writing efficient CFD applications.
The flow solver is parallelized using the Message Passing Interface (MPI) library.

We use implicit Large Eddy Simulations (LES) in our numerical simulation. In an LES,
the large scale eddies of the flow are resolved by the grid, while the contribution from
the small scale eddies to the filtered Navier-Stokes equations are modeled using a sub-grid
scale Reynolds stress model [34]. In this chapter, the numerical error of the discretization
scheme serves as the LES model. It has been shown that when using a relatively dissipative
discretization method, the numerical viscosity from the grid can be of the same order of
magnitude as the sub-grid scale viscosity [52, 30], and thus can be regarded as an implicit
LES model.

On the inlet boundary, we specify stagnation pressure and temperature, corresponding to
a fixed Reynolds number Re = 1100 and a Mach number which we choose to be the system
parameter. For the base case, we choose Mach number Ma = 0.093. Periodic boundary
condition is used in the span-wise direction. The surface of the cylinder is maintained at a
constant temperature of 300K. Static pressure of 1 atmosphere unit is prescribed on the
outlet boundary.

A snapshot of the flow field simulated with above settings is shown in figure 5.9. As we
can see, this flow exhibits weak turbulence in the wake. In particular, the top view shows
that this flow is 3D.

We choose our system parameter as the Mach number of the incoming flow. The objective
function is the time-averaged normalized drag over the cylinder. More specifically,

ρ(Φ) = 2
ρ′ru

2
rzd

lim
T→∞

∫ T

0

∫
(pnx − µn · ∇ux) dS dt, . (5.34)

Here the second integral is over the surface of the cylinder; ur = 31.4m/s and ρ′r = 1.3kg/m3

are the reference velocity and density of the base case, where Ma = 0.093. For the base case,
the normalized drag and the drag coefficient are the same, whereas for other Mach numbers
they are different.

We run the flow simulation for 106 time steps, which corresponds to approximately 720tr.
Here the time unit tr is the amount of time that the flow takes to traverse the length of the
cylinder, that is, tr = d/ur. This time interval is sufficient to obtain a statistically converged
estimate of the design objective. The standard deviation of the time-averaged objective is
computed using the autoregressive time series analysis techniques described in [79] and [62],
and we use one standard deviation as the confidence interval. The normalized drag for the
base case is 1.2± 0.03. Our results reasonably matches the results from experiments [83, 67,
80], which is approximately 1.0± 0.15. Figure 5.10 shows different objectives for different
incoming Mach number.

We first estimate the sensitivity by the linear least-squares regression method using 5
data points with different parameter values. To use this linear regression method, we need

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 68

Figure 5.9: Instantaneous visualization of the flow field. Top: vertical cross-section, plotted
by the magnitude of velocity. Bottom: horizontal cross-section, plotted by the span-wise
velocity. The bottom picture shows the flow is 3D. All velocities are normalized by the
reference velocity ur.

0.088 0.090 0.092 0.094 0.096 0.098 0.100
Mach number

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

No
rm

al
ize

d
dr

ag

Figure 5.10: Normalized drag as a function of inlet Mach number. Blue bars denote the
confidence interval of the averaged normalized drag. The black line denotes the sensitivity
estimated using linear regression. The red shaded region denotes the confidence interval of
the sensitivity estimated using non-intrusive adjoint shadowing.

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 69

to make the assumption that the relation between parameters and objectives is linear. We
select one standard deviation of the relevant estimator as our confidence interval. Note
that one shortcoming of the linear regression method is that the linear assumption may not
be true when parameters are spaced far apart such that a linear approximation no longer
holds on the dataset; on the other hand, when parameters are too close, the uncertainty in
the objectives will lead to large error in the sensitivity. In the base case, the sensitivity of
drag with respect to the inflow Mach number, given by linear regression, is 25.0± 2.1. This
sensitivity is visualized in figure 5.10.

Adjoint LEs are shown in figure 5.11, where the confidence interval is also selected as one
standard deviation given by autoregressive time series analysis. The subsonic flow over a 3D
cylinder has u = 9 unstable adjoint CLVs. In non-intrusive adjoint shadowing, the number of
homogeneous adjoint solutions computed is set to u′ = 20. We suggest more research be done
to investigate how the number of unstable CLVs grow as the flow becomes more turbulent,
not only for this particular open flow problem, but for wall-bounded flows as well.

The number of segments in non-intrusive adjoint shadowing is A = 100 and the number of
time steps per segment is 500. Each segment roughly corresponds to 0.4tr. Consequently, the
time length of trajectory used in non-intrusive adjoint shadowing is 40tr, which is much lower
than that required to obtain a reasonably accurate sensitivity using the linear regression
method. In this particular implementation, corresponding to the discussion in section 5.3, on
segment [ti, ti+1], we approximate integrations in equation (5.21) using snapshots at ti+1. As
a result, we have Ci = I, dwv∗i = 0: this approximation eases the implementation responsible
for storing adjoint solutions.

0 2 4 6 8 10 12 14 16 18
Index

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Ly
ap

un
ov

 E
xp

on
en

t

Figure 5.11: Spectrum of the first 20 adjoint Lyapunov Exponents (LE). The time unit for
LEs is t−1

r . The largest LE is 0.21t−1
r , meaning in one time unit tr, the norm of the first

adjoint CLV becomes e0.21 = 1.23 times larger.

The sensitivity computed by non-intrusive adjoint shadowing is 20.8± 3.5, which costs

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 70

about a week on a computer with 64 cores, is visualized in figure 5.10. Here the confidence
interval is also selected as one standard deviation given by autoregressive time series analysis.
Comparing to the sensitivity estimated via linear regression methods, the relative difference
is less than 20%. As we can see, the sensitivity computed by non-intrusive adjoint shadowing
correctly reflects the trend between parameters and objectives.

We remark that non-intrusive adjoint shadowing may work for systems do not strictly
satisfy the assumptions in theorem 5, and our fluid problem is such an example. First, our
system has at least two neutral CLVs: the first one corresponds to the common time translation
of continuous dynamical systems, and the second corresponds to span-wise translations due
to the periodic boundary conditions. Second, due to the similarity of this fluid problem with
the one investigated in [57], whose tangent CLVs appear to have occasional tangencies, it
is reasonable to assume that adjoint CLVs in our current system may also have occasional
tangencies. Still, like the finite-difference shadowing in [57], non-intrusive adjoint shadowing
computes a correct sensitivity: this encourages us to test non-intrusive tangent/adjoint
shadowing on more general chaotic systems.

We compare computational cost for sensitivity analysis via the linear regression method
and non-intrusive adjoint shadowing. The linear regression method runs the primal solver
for a total of 5 × 106 steps. Non-intrusive adjoint shadowing runs the primal solver and
21 adjoint solvers, each for 5× 104 steps, which leads to 1.1× 106 steps in total. To build
more favor towards non-intrusive adjoint shadowing, note that, first, adjoint solvers can be
further accelerated due to the vectorization we discussed in section 5.3; second, non-intrusive
adjoint shadowing has no additional cost for sensitivities to multiple parameters. For chaotic
problems with a higher number of positive LEs, the cost of non-intrusive adjoint shadowing
increases; however, if the percentage of positive LEs is still low, the non-intrusive formulation
can still be a key technique for designing fast sensitivity algorithms.

5.5 Conclusions
To compute the gradient of long-time averaged objectives in chaotic systems, we develop
the non-intrusive adjoint shadowing algorithm, which approximates the adjoint shadowing
direction by a ‘non-intrusive’ formulation, which is a least squares problem in the unstable
adjoint subspace. Non-intrusive adjoint shadowing is demonstrated on the Lorenz 63 system
and a turbulent 3D flow over a cylinder, where it gives pretty accurate sensitivities for both
cases.

Similar to non-intrusive shadowing [59], non-intrusive adjoint shadowing can be imple-
mented with little modification to existing adjoint solvers, and its minimization is carried
out only in the unstable adjoint subspace. Unlike the original tangent version, non-intrusive
adjoint shadowing has the benefit of adjoint approaches that its cost does not increase with
the number of parameters; thus making non-intrusive adjoint shadowing ideal for applications
where there are many parameters, or where fγ is unknown a priori. non-intrusive adjoint
shadowing does not require tangent solvers, and is easy to implement.

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 71

5.6 Appendix

Solving the non-intrusive adjoint shadowing problem
We discuss one way to solve the non-intrusive adjoint shadowing problem in equation (5.24).
The corresponding Lagrange function is:

A−1∑
i=0

1
2(ai)TCiai + (dwv∗i)Tai

+
A−1∑
i=1

λTi (ai−1 −Riai − bi) + λ′
(
A−1∑
i=0

(dwfi)Tai +
A−1∑
i=0

dv
∗f
i

)
,

(5.35)

where λi is the Lagrange multiplier for the continuity condition at ti. By the Lagrange
multiplier method, the minimizer for the non-intrusive adjoint shadowing problem is at the
solution of the following linear equation systems:[

C BT

B 0

] [
a
λ

]
=
[
−d
b

]
, (5.36)

where the block matrices C ∈ RuA×uA, B ∈ R(uA−u+1)×uA, vectors a, d ∈ RuA and λ, b ∈
RuA−u+1. More specifically,

C =


C0

C1
. . .

CA−1

 , B =



I −R1
I −R2

.
I −RA−1

(dwf0)T · · · (dwfA−1)T

 ,

a =


a0
...

aA−1

 , λ =


λ1
...

λA−1
λ′

 , d =


dwv

∗
0
...

dwv
∗

A−1

 , b =


b1
...

bA−1

−∑A−1
i=0 dv

∗f
i

 ,
(5.37)

where {Ci}A−1
i=0 , {Ri}A−1

i=1 ⊂ Ru×u; {ai}A−1
i=0 , {dwfi }A−1

i=0 , {dwv∗i }A−1
i=0 , {λi}A−1

i=1 , {bi}A−1
i=1 ⊂ Ru; λ′,

{dv
∗f
i }A−1

i=0 ⊂ R.
We can solve the Schur complement of equation (5.36) for λ:

−BC−1BTλ = BC−1d+ b , (5.38)

where C−1 can be computed via inverting each diagonal block in C. Then we can compute a
by:

a = −C−1(BTλ+ d) . (5.39)

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 72

Non-intrusive adjoint shadowing on discrete systems
Backgrounds and notations

We provide a brief introduction on discrete dynamical systems, in particular, hyperbolic
diffeomorphisms. More details are provided in [54]. First, the governing equation for a
discrete dynamical system is:

xl+1 = f(xl, s), l ≥ 0 . (5.40)
The objective is:

ρ(Φ) := lim
N→∞

1
N

N−1∑
l=0

Φ(xl, γ). (5.41)

Similar to flows, we assume xl ∈ Rm, and f(x, γ) and Φ(x, γ) are smooth. We also assume f
is a diffeomorphism in x, that is, for each fixed γ, f has a smooth inverse. Also, for simplicity
of notations, we assume there is only one parameter γ ∈ R.

We first look at the tangent equations. The homogeneous tangent diffeomorphism is:
wl+1 = fxlwl . (5.42)

where the second subscript of fxl indicate where the partial derivative is evaluated, that is,
fxl := ∂f/∂x(xl, γ). A tangent CLV with exponent λ is a homogeneous tangent solution
{ζl}∞i=0 such that there is constant C, for any integer l1, l2, ‖ζl2‖ ≤ Ceλ(l2−l1)‖ζl1‖. The
uniform hyperbolicity for diffeomorphisms is defined as that all LEs are not 1.

On the adjoint side, the homogeneous adjoint diffeomorphism is defined as:
wl = fTxlwl+1 , (5.43)

where ·T is the matrix transpose. The particular inhomogeneous adjoint diffeomorphism we
will be using is:

vl = fTxlvl+1 + Φxl. (5.44)
On a trajectory {xl}∞l=0 on the attractor, the adjoint shadowing direction {vl}∞l=0 is a sequence
with the following properties:

1. {vl}∞l=0 solves an inhomogeneous adjoint equation:
vl = fTxlvl+1 + Φxl , (5.45)

2. v0 has zero component in the unstable adjoint subspace.

3. ‖vl‖ is bounded by a constant for all l ≥ 0.

It was proved in [54] that for a uniform hyperbolic diffeomorphism with a global com-
pact attractor, on a trajectory on the attractor, there exists a unique adjoint shadowing
direction. Further, we have the adjoint formula for the shadowing contribution, which is an
approximation of the entire linear response:

δρ(Φ) ≈ S.C. := lim
N→∞

1
N

N−1∑
l=0

(〈vl+1, fγl〉+ Φγl) . (5.46)

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 73

Procedure list of non-intrusive adjoint shadowing

We provide a procedure list for the non-intrusive adjoint shadowing algorithm on discrete
chaotic systems, more specifically, hyperbolic diffeomorphisms. To start with, we need an
inhomogeneous adjoint solver and a homogeneous adjoint solver, both can take arbitrary
terminal conditions. The inhomogeneous adjoint equation still has right-hand-side −Φx, same
as many existing adjoint solvers for discrete systems. We provide the following data: 1) the
number of unstable adjoint CLVs, u, note that because the lack of neutral CLV, we can use
one less homogeneous adjoint solution; 2) the total number of segments, A; 3) number of
steps in one segment, L.

We can have three subscripts, the first, typically being x or γ, indicates this term is a
partial derivative; the second, typically being i, 0, or A, indicates the segment number; the
third, typically being l, 0, or L, indicates the step number inside a segment. Disappearance
of the first subscript means that term is not a partial derivative. Disappearance of the third
subscript means either we are considering all steps in a segment, or that term is defined only
once per segment interface.

1. Integrate the primal system for sufficiently many steps so that the initial condition, x00,
is on the attractor.

2. Compute the trajectory xil for 0 ≤ i ≤ A− 1 and 0 ≤ l ≤ L. Here we assume the step
at end of each segment overlaps with the start of next segment, that is, xiL = xi+1,0.

3. Generate terminal conditions for W i and v∗i on the last segment i = A− 1:

a) Randomly generate a M × u full rank matrix, Q′. Perform QR factorization:
QARA = Q′.

b) Set pA = 0.

4. Compute W i and v∗i on all segments. For i = A− 1 to i = 0 do:

a) To get W il, whose columns are homogeneous adjoint solutions on segment i, solve:

wil = fTxilwi,l+1 , W iL = Qi+1 . (5.47)

To get v∗i (t), solve the inhomogeneous adjoint equation:

vil = fTxilvi,l+1 + Φxil , v∗iL = pi+1 . (5.48)

b) Compute the following integrations.

Ci =
L∑
l=1

W
T
ilW ildt , dwv

∗

i =
L∑
l=1

W
T
ilv
∗
ildt , d

Φγ
i =

L∑
l=1

Φγildt ,

d
wfγ
i =

L∑
l=1

W
T
ilfγi,l−1dt , d

v∗fγ
i =

L∑
l=1

v∗Til fγi,l−1dt ,

(5.49)

CHAPTER 5. NON-INTRUSIVE ADJOINT SHADOWING 74

where dwv∗i , dwfγi ∈ Ru; dv
∗fγ
i , dΦγ

i ∈ R; Ci ∈ Ru×u is the covariant matrix. Note
that when multiplying adjoint solutions with fγ , their time steps are not the same:
this asymmetry is the same as that in equation (5.46). We are not sure yet if this
technical detail can be neglected in practice.

c) Orthonormalize homogeneous adjoint solutions via QR factorization:

QiRi = W i0 (5.50)

d) Rescale the inhomogeneous adjoint solution using Qi:

pi = v∗i0 −Qibi , where bi = QT
i v
∗
i0 . (5.51)

5. Compute the adjoint shadowing direction {vil} for 0 ≤ i ≤ A− 1 and 0 ≤ l ≤ L.

a) Solve the non-intrusive adjoint shadowing problem on multiple segments:

min
a0,··· ,aA−1∈Ru

A−1∑
i=0

1
2(ai)TCiai + (dwv∗i)Tai, s.t.

ai−1 = Riai + bi , i = 1, · · · , A− 1 .
(5.52)

This is a least squares problem in {ai}A−1
i=0 ⊂ Ru. Note we do not have the other

constraint as non-intrusive adjoint shadowing in the continuous case.
b) On each time segment i, vil is given by

vil = v∗il +W ilai. (5.53)

6. Compute the shadowing contribution of the linear response by:

δρ(Φ) ≈ S.C. ≈ 1
AL

A−1∑
i=0

(
d
v∗fγ
i + aTi d

wfγ
i + d

Φγ
i

)
(5.54)

75

Chapter 6

Fast linear response algorithm

A precise and computable formula for the unstable divergence was missing in previous work.
As a result, an accurate exact and affordable algorithm for the linear response for SRB
measures, especially when the attractor is fractal, has been an open problem. Our definition
of ‘computability’ is to achieve a formula with a small integrand, and whose terms are all
functions rather than distributions (our definition of ‘computability’ is different from some
other contexts). For chaotic systems, it is almost impossible to use integration-by-parts to
compute the unstable divergence, because that is where we came from, the original linear
response formula, which has a very large integrand growing exponentially fast to some step
number W . This is quite often unaffordable, since averaging a large integrand to get a small
integration result is very expensive. Moreover, in general, on fractal attractors, the unstable
divergence can not be computed from summing individual directional derivatives, which are
only distributions, and their values can be infinite. This chapter answers the open problem
by the following results.

The first result of this chapter is the first computable formula of the unstable divergence
on fractal attractors, We follow Ruelle’s roadmap originally intended for proving the regularity
of the unstable divergence, which includes three steps [70]. Roughly speaking, they are:

• First, transform the unstable divergence under the conditional SRB measure to the
divergence under the Lebesgue measure. The difference between the two divergence
can be expanded by differentiating the conditional SRB measure, which is the infinite
pushforward of the Lebesgue measure.

• Then, transform the Lebesgue unstable divergence to the derivative of the ratio between
two volumes, one given by the projection along stable manifolds, the other by projection
along X.

• The projection along stable manifolds is still rough, so we replace it using the fact
that it collapses after infinite pushforward. Hence, we can expand the volume ratio.
Together with the previous step, we have expanded the Lebesgue unstable divergence.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 76

We make Ruelle’s (sketchy) roadmap coordinate-free, and derive detailed formulas. This
process uses somewhat heavy differential geometry, and the expansion formula is given in
theorem 7. Directly computing this formula already gives an exact algorithm, which is
typically much faster than algorithms based on the original linear response formula. However,
computing the expansion formula still requires solving at least u2 many second-order tangent
equations, and also computing oblique projections. Here u is the dimension of the unstable
subspace. It turns out that we can get rid of oblique projection while computing only u many
second-order tangent solutions.

The second result is a new characterization of the expansion formula using second-order
tangent equations. This theorem is proved in section 6.2.

Theorem 6 (‘fast’ characterization). Make same assumptions as theorem 1. Let {xn :=
fnx0}n≥0 be a trajectory on the attractor, for any r0 ∈ De(x0), define the sequence {rn}n≥0,

rn ∈ De(xn), rn+1 := P⊥β̃rn.

Then for almost all x0 according to the SRB measure, the unstable contribution,

U.C.W = lim
N→∞

1
N

N−1∑
n=0

〈
β̃rn, ẽn+1

〉
.

Here theorem 1 is the original linear response result by Ruelle, 〈·, ·〉 is the Riemannian metric.
Roughly speaking, e is a u-dimensional cube spanned by unstable vectors, De is the space of
derivatives of cubes (see Appendix 6.5); β̃ is the renormalized second-order tangent equation,
which describes the propagation of derivatives of cubes (definition 4 in section 6.2); P⊥
is the orthogonal projection operator on De, projecting to the orthogonal complement of
unstable subspace Appendix 6.5). Here all oblique projections are summarized into a modified
shadowing direction, which is the second direction of differentiation in β̃. We have thus
gotten rid of oblique projections, since shadowing directions can be expressed without them.
This characterization is of theoretical interest, since it is a new form of the linear response
formula, combining the advantages of both the original formula and the integrated-by-parts
formula: it does not explicitly involve the oblique projection operators, and it has a small
integrand. It could perhaps help generalizing linear response to less hyperbolic situations,
where the oblique projection is problematic.

More importantly, this ‘fast’ characterization is of applied interest, since it allows the
unstable contribution, hence the entire linear response, be computed even more efficiently
than directly using the expansion formula. The adjective ‘fast’ has a specific meaning: famous
fast algorithms, such as the fast Fourier transformation [24] and the fast multipole method
[36, 37], found a non-obvious ‘fast’ structure, which allows us to combine many small terms
into a few big terms, and because the rules of propagation on these small terms are similar,
we can then apply some averaged rule of propagation on big terms only once a few times,
instead of many times on each small term. In our case, we have found a ‘embarrassingly fast’
structure, where all the small terms are combined into only one summation using linearity

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 77

of derivatives of vectors, and we only need one uniform rule of propagation, given by the
second-order tangent equations. We have thus achieved even better performance than directly
using the expansion formula: computing the new characterization requires solving only u
many second-order tangent equations.

The third result is an accurate exact, efficient, robust, and easy-to-implement algorithm
for the linear response of SRB measures, which is called the fast linear response algorithm.
We first show that the renormalization in β̃ only needs to be done after a number of steps.
We further write everything in matrix notation, which is more suitable for programming, and
should be understandable without differential geometry knowledge. Readers mainly interested
in applications can jump to the detailed procedure list in section 6.3. The algorithm is exact;
it is robust, since it does not involve oblique projections; it requires little additional coding
to first-order and second-order tangent solvers; more importantly, it is very efficient.

The last result of this chapter is several basic geometry and algebra tools for second-order
tangent equations, which governs the propagation of derivatives of unstable u-vectors. These
tools are useful when considering u-dimensional invariant submanifolds in M -dimensional
manifolds, for any 1 ≤ u ≤ M . In particular, appendix 6.5 defines the derivative of the
pushforward operator, ∇f∗. Appendix 6.5 defines the linear space, De, spanned by derivatives
of unstable u-vectors. Appendix 6.5 extends the projection operators on single-vectors to
derivatives of u-vectors.

This chapter is organized as follows. Section 6.1 derives the expansion formula of the
unstable divergence. Section 6.2 derives the fast characterization. Section 6.3 gives more
details of the fast linear response algorithm, with a procedure list. Section 6.4 shows a
numerical application on a modified solenoid map, which is a three-dimensional system with a
two-dimensional unstable subspace, whose direction is unknown beforehand. Such an example
is difficult for previous algorithms, but our algorithm is even faster than finite difference,
which is typically regarded as an approximate algorithm.

6.1 Expanding unstable divergence
We first write out a computable expansion formula for the unstable divergence, following the
(sketchy) roadmap given by Ruelle for proving its regularity. Here computable means that all
terms are functions rather than distributions. Since the stable and unstable foliations are not
differentiable, the unstable divergence, defined via directional derivatives, is a priori only a
distribution but not a function. This difficulty is resolved via three steps of transformations.
First, we expand the difference between the unstable divergence under the SRB measure
and the Lebesgue measure. Then, we transform the Lebesgue unstable divergence to a ratio
between volumes given by two projections, one of which is still non-differentiable. Finally,
we express the non-differentiable projection as an infinite pushforward, which expands
the Lebesgue unstable divergence. In general, unstable divergence can not be computed
by summing individual directional derivatives, since they are only distributions but not

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 78

functions. For this general situation, our expansion is the first computable formula for
unstable divergence.

Comparing to the original roadmap given by Ruelle, we make the definitions coordinate-
free, and derive the detailed formulas, which are necessary for numerics, but were previously
missing. Deriving such a formula was also attempted by some earlier works. The S3 algorithm
did not give a computable formula of the Lebesgue unstable divergence, which is still a
distribution. Hence, S3 works only on essentially one dimensional systems, where the unstable
divergence can be directly computed from directional derivatives; however, this is not the
case for typical fractal attractors [16, 76].

Integration by parts and measure change

In order to obtain a smaller integrand for the unstable contribution, we integrate-by-parts
on the unstable manifold under the conditional SRB measure. This yields unstable divergence
under SRB measure, which relates to the Lebesgue unstable divergence by a measure change.
This subsection presents this classical treatment with some previously missing formulas.

Throughout this chapter, we make the assumptions in theorem 1 in our proofs. Recall
that the conditional SRB measure on an unstable manifold Vu has a density, or the Radon-
Nikodym derivative with respect to the u-dimensional Lebesgue measure, which is denoted
by σ. Let ω be the volume form on Vu, ρ be the SRB measure. Integrations to ρ can be done
by first integrating to σω on the unstable manifold, then in the transversal direction.

We first explain the integration by parts. For any ϕ ∈ C1,

Xu(ϕ)σ + ϕXu(σ) = Xu(ϕσ) = divu(ϕσXu)− ϕσ divuXu.

Here Xu(·) means to differentiate a function in the direction of Xu, divu is the divergence
on the unstable manifold under Riemannian metric. For now, we only know that Xu is
Holder continuous, and its derivatives are distributions; later, we will prove the regularity
of the unstable divergence. Integrate on a piece of unstable manifold Vu, we have the
integration-by-parts formula∫

Vu
Xu(ϕ)σω =

∫
Vu

divu(ϕσXu)ω −
∫
Vu

(
ϕ

σ
Xu(σ)

)
σω −

∫
Vu

(ϕ divuXu)σω. (6.1)

We will deal with the first two terms on the right hand side in this subsection, and leave the
last term, which involves the unstable divergence, to the next two subsections.

When further integrating over the entire attractor with SRB measure ρ, the first term on
the right of equation (6.1) becomes zero. To see this, first notice that the divergence theorem
reduces it to boundary integrals. Intuitively, since unstable manifolds always lie within the
attractor, and they do not have boundaries, the boundary integral would never appear when
integrating over ρ, and hence this term becomes zero. More rigorously, first choose a Markov

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 79

partition with a small diameter, then notice that the boundary integrals cancel between two
adjacent rectangles. To conclude, we have now

ρ(Xu(ϕ)) = −ρ (ϕ divuσXu) , where divuσXu := 1
σ
Xu(σ) + divuXu.

In the rest of this chapter, let

e := e1 ∧ · · · ∧ eu ∈ (V u)∧u (6.2)

be a rough u-vector field, which is differentiable on each unstable manifold, but not necessarily
continuous in all directions. Also assume that e and ∇(·)e are bounded on the attractor K
under Riemannian metric, where ∇(·)e is the Riemannian connection operating on vectors in
V u. In fact, we may regard e as C1 u-vector fields on individual unstable manifolds. We can
make it continuous across the foliation, for example,

ẽ := e

‖e‖

is unique and continuous modulo an orientation, and it satisfies our boundedness assumption,
because the unstable manifold theorem states that, in our case, unstable manifolds are
continuous in C3 topology [40]. Here the tensor norm ‖ · ‖ is induced by the Riemannian
metric, which is the u-dimensional volume of the hyper-cube spanned by {ei}ui=1. We use e
instead of ẽ if the statement holds more generally.

SRB measure is the weak limit of pushing-forward the Lebesgue measure. Roughly
speaking, pushing-forward is like a matrix multiplication. Hence, by the Leibniz rule, the
measure change term, Xu(σ)/σ, can be expanded into an infinite summation, with detailed
formula given below.

Lemma 6 (expression for measure change). The following formula converges uniformly on
K

1
σ
Xu(σ) =

∞∑
k=1
−

〈
∇f−k+1
∗ Xuf∗e−k, f∗e−k

〉
〈f∗e−k, f∗e−k〉

+

〈
∇f−k∗ Xue−k, e−k

〉
〈e−k, e−k〉

.

Here e−k can be any differentiable u-vector field on f−k(Vu). For example, we can take it as
the one such that e and ∇(·)e are bounded.

Remark. (1) If we evaluate both side of the equation at x, then e−k = e(f−kx), and when
being differentiated, e−k is a restriction of e to a neighborhood of x−k = f−kx. (2) Due to
uniform convergence, Xu(σ)/σ is uniform continuous over K. (3) Moreover, an algorithm
computing this expansion would converge to the true solution. (4) A more careful analysis
would show that this term is in fact Holder, as claimed in [70]; we will not pursue Holder
continuity here, for it does not directly affect the algorithm.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 80

Proof. The conditional SRB measure σ on Vu is the result of evolving the Lebesgue measure
starting from the infinite past. More specifically,

σ =
∞∏
k=1

Ck
(
Ju−k

)−1
,

where Ck is constant over Vuk to keep the total conditional measure at 1, and Ju is the
unstable Jacobian computed with respect to the Riemannian metric on Vu, more specifically,
for any e,

Ju := ‖f∗e‖
‖e‖

=
(
〈f∗e, f∗e〉
〈e, e〉

)0.5

. (6.3)

Notice Ju does not depend on the particular choice of e. By the Leibniz rule of differentiation,
and the notation convention explained in equation (2.2),

1
σ
Xu(σ) = −

∞∑
k=1

Xu(Ju−k)
Ju−k

= −
∞∑
k=1

(f−k∗ Xu)Ju−k
Ju−k

. (6.4)

To get the equation in the lemma, substitute (6.3) into (6.4). For any vector Y ∈ V u,

Y (Ju) = Y

(
〈f∗e, f∗e〉
〈e, e〉

)0.5

= 1
2(Ju)−1Y

(
〈f∗e, f∗e〉
〈e, e〉

)

=1
2(Ju)−1 〈f∗e, f∗e〉

〈e, e〉

[
f∗Y 〈f∗e, f∗e〉
〈f∗e, f∗e〉

− Y 〈e, e〉
〈e, e〉

]
= Ju

[
〈∇f∗Y f∗e, f∗e〉
〈f∗e, f∗e〉

− 〈∇Y e, e〉
〈e, e〉

]
.

In the last equality we used the rule of differentiating Riemannian metric.
To see uniform convergence, take e be the one such that both e and∇(·)e are bounded onK,

then the series is controlled by the exponentially shrinking term, ‖f−k∗ Xu‖ ≤ Cλ−k‖Xu‖.

We have expanded the difference between two unstable divergence under two measures,
however, the Lebesgue unstable divergence, divuXu, is still not computable, since it is
defined via directional derivatives, which are distributions. The S3 algorithm has something
somewhat similar to lemma 6; however, the Lebesgue unstable divergence was still computed
by summing up directional derivatives approximated by finite difference [16, 76]. Hence,
S3 did not give a computable formula by our definition, and may suffer from numerical
instabilities, because Xu is in fact not differentiable; moreover, finite difference is not efficient,
since the computation at one step can not be reused for other steps. We proceed to obtain a
computable expansion formula of the unstable divergence, which was missing from previous
works.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 81

Transforming to derivative of volume ratio

The main difficulty, in both proving the regularity and computing the unstable divergence,
is that V s, hence Xu, are typically not differentiable along any directions in the unstable
manifold; hence, directional derivatives are distributions but not functions. However, divuXu

can be more regular. In fact, Ruelle proved that divuXu is Holder continuous over K [70].
The key step is to show that the unstable divergence equals the derivative of a ratio between
two volumes given by two projections, η∗ and ξ∗. Here η∗ is the projection along X; ξ∗ is
the projection along stable manifolds. This subsection presents this classical treatment in a
coordinate-free manner, and derives the detailed formulas which were previously missing.

Without loss of generality, we assume that the angle between the vector field X and Vu
is uniformly away from zero. If not, then we can find a vector field in the stable subspace,
mollify it, then multiply by a large constant: denote the resulting vector field by X ′, which is
always non-parallel to Vu. We can compute the sensitivity caused by X as the sum of those
caused by X + CX ′ and −CX ′.

Fix an unstable manifold Vu, let q ∈ R be a small parameter. for any y ∈ Vu, define
ηq(y) : Vu → M as the unique curve such that ∂ηq/∂q = X and η0(y) = y. For fixed q,
Vuq := {ηq(y) : y ∈ Vu} is a u-dimensional C3 manifold; for a small interval of q, V̂u := ∪qVuq
is a u + 1 dimensional manifold. For any y ∈ Vu, denote the stable manifold that goes
through it by Vs(y), which does not vary differentiably with y in C3. Define ξq(y) as the
unique intersection point of Vs(y) and Vuq.

Define πη, πξ : V̂u → Vu such that πη(x) = (ηq)−1x, πξ(x) = (ξq)−1x, for any x ∈ Vuq and
small q ∈ R. Denote ηq∗, ξq∗ as the pushforward operator of ηq, ξq. For any small q ∈ R, define

η∗e(x) := ηq∗e(πη(x)), ξ∗e := ξq∗e(πξ(x)), for x ∈ Vuq.

Then η∗e and ξ∗e are two parallel u-vector fields on V̂u. (We may equivalently define
η∗e := ∪qηq∗e, ξ∗e := ∪qξq∗e.) Define a function on V̂u, $, as the volume ratio,

η∗e

‖e ◦ πη‖
= $

ξ∗e

‖e ◦ πξ‖
, (6.5)

By transversal absolute continuity, $ is a well-defined measurable function. The definitions are
illustrated in figure 6.1. Comparing to Ruelle’s original definitions, ours are coordinate-free.

Lemma 7 (expression of ∇Xsη∗e). Denote ∇eX := ∑
i e1 ∧ · · · ∧ ∇eiX ∧ · · · ∧ eu. On Vu,

∇Xs(η∗ei) = ∇eiX −∇Xuei , ∇Xs(η∗e) = ∇eX −∇Xue.

Remark. ∇eX is a function, not a distribution, because X is differentiable onM. ∇Xue also is
a function, since it only requires e be differentiable along the direction of Xu. Differentiability
of Xu is not and should not be required, since Xu is not differentiable.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 82

Figure 6.1: Definitions of projections.

Proof. With our notation, the proof below works for both e and ei. First decompose,

∇Xs(η∗e) = ∇X(η∗e)−∇Xu(η∗e)

Since η is the flow of X, the Lie derivative LX(η∗e) = 0, hence, on Vu,

∇X(η∗e) = ∇η∗eX = ∇eX,

where η∗e = e on Vu. Since Xu is a vector field on Vu, ∇Xu(η∗e) = ∇Xue.

Lemma 8. Further assume that the stable foliation is C1 with C3 leaves, then on Vu,

∇Xs(ξ∗ei) = ∇eiX
s, ∇Xs(ξ∗e) = ∇eX

s.

Remark. The extra regularity assumption is for ξ∗e to be a differentiable u-vector field on
Vuq. Without this assumption, we can still make sense of this equation as distributional
derivatives. The roughness of ξ∗e hints us to further replace it in section 6.1.

Proof. On V̂u, ∂ξq/∂q is a C1 vector field. We claim that ∂ξq/∂q = Xs on Vu. To see this,
define yq : Vu → Vu as

yq(x) = πη(ξq(x)), or equivalently, ξq(x) = ηq(yq(x)).

Fix x, differentiate the second equation to q, evaluate at q = 0, where ∂ηq/∂y = Id,

∂ξq

∂q
= ∂ηq

∂y

∂yq

∂q
+ ∂ηq

∂q
= ∂yq

∂q
+X.

Since ∂yq/∂q ∈ V u, ∂ξq/∂q ∈ V s, and that X is uniquely decomposed in V u⊕V s into
X = Xu ⊕Xs, we see that

∂ξq

∂q
= Xs,

∂yq

∂q
= −Xu at q = 0. (6.6)

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 83

Hence, on Vu,

∇Xs(ξ∗e) = ∇∂ξq/∂q(ξ∗e) = ∇ξ∗e∂ξ
q/∂q = ∇eX

s.

Here second equality is because the Lie derivative L∂ξq/∂q(ξ∗e) = 0 by definitions.

Lemma 9. Assume that the stable foliation is C1, then Xs($) = divuXu on Vu.

Remark. In [70], Ruelle went on to show that this equivalence persists into general cases,
where the stable foliation is not C1. The main technique is to approximate the stable foliation
by evolving a smooth foliation backward in time; we will not reproduce that proof here, for it
does not directly help the computation.

Proof. By definitions,

yq(x) = πη(ξq(x)), x = πξ(ξq(x)).

Differentiate to q, and use equation (6.6), we get

−Xu = ∂yq

∂q
= πη∗

∂ξq

∂q
= πη∗X

s, 0 = πξ∗
∂ξq

∂q
= πξ∗X

s on Vu.

Hence,

Xs‖e ◦ πη‖2 = (πη∗Xs)‖e‖2 = ∇−Xu‖e‖2 = 2 〈∇−Xue, e〉 , Xs‖e ◦ πξ‖2 = 0.

Take inner product of each side of equation (6.5) with itself,
‖η∗e‖2 ‖e ◦ πξ‖2 = $2‖ξ∗e‖2‖e ◦ πη‖2.

Differentiate in the direction of Xs, notice that $ = 1, η∗ = ξ∗ = Id on Vu, hence

〈∇Xs(η∗e), e〉 = Xs($) 〈e, e〉+ 〈∇Xs(ξ∗e), e〉+ 〈∇−Xue, e〉 .

By lemma 7 and 8, we have

Xs($) = 1
〈e, e〉

〈∇eX −∇Xue−∇eX
s +∇Xue, e〉 = 1

〈e, e〉
〈∇eX

u, e〉 .

Since the Riemannian connection within a submanifold Vu is the orthogonal projection of
that on the background manifold M ,

Xs($) = 1
〈e, e〉

〈∇u
eX

u, e〉u = 1
〈e, e〉

u∑
i=1

〈
e1 ∧ · · · ∧

∑
j

eju(∇u
ei
Xu)ej ∧ · · · ∧ eu, e

〉
u

.

Here ∇u, 〈·, ·〉u, and eju are the Riemannian connection, metric, and dual basis of ej within
Vu. Terms with j 6= i vanish due to that the same direction appears twice in the exterior
product, hence

Xs($) =
u∑
i=1

eiu(∇u
ei
Xu).

This is a contraction of ∇uXu within Vu, which is the definition of divuXu.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 84

Expanding volume ratio

We show that Xs($) is continuous by expanding the volume ratio into a converging
summation. The main problem now is that ξ∗e is not yet differentiable. Hence, we further
write ξ∗e as an infinite pushfoward, whose derivative is an infinite summation. This finally
expands the derivative of the volume ratio, and hence Lebesgue unstable divergence.

Lemma 10 (expansion of Lebesgue unstable divergence). The following formula converges
uniformly on K

divuXu = 〈∇eX, e〉
‖e‖2 +

∞∑
k=0

〈
∇fk+1
∗ Xsfk+1

∗ η∗e, f
k+1
∗ e

〉
‖fk+1
∗ e‖2 −

〈
∇fk∗Xsfk∗ η∗e, f

k
∗ e
〉

‖fk∗ e‖2 .

Remark. Due to uniform convergence, divuXu is uniform continuous over K. A more careful
analysis would show that it is Holder continuous over K, as claimed in [70].

Proof. By definition of the stable manifold, for x ∈ V̂u, limk→∞ f
k(πξx) = limk→∞ f

k(x).
Hence,

lim
k→∞
‖fk∗ ξ∗e‖2/‖fk∗ (e ◦ πξ)‖2 = 1.

Because ξ∗e is parallel to η∗e,

‖η∗e‖
‖ξ∗e‖

= lim
k→∞

‖fk∗ η∗e‖
‖fk∗ ξ∗e‖

= lim
k→∞

‖fk∗ η∗e‖
‖fk∗ (e ◦ πξ)‖

We can use this to replace ξ∗e in the definition of $ in equation (6.5), which yields an infinite
pushforward:

$2 = ‖e ◦ πξ‖
2

‖e ◦ πη‖2 lim
k→∞

‖fk∗ η∗e‖2

‖fk∗ (e ◦ πξ)‖2 = ‖η∗e‖2

‖e ◦ πη‖2

∞∏
k=0

‖fk+1
∗ η∗e‖2

‖fk+1
∗ e ◦ πξ‖2

‖fk∗ e ◦ πξ‖2

‖fk∗ η∗e‖2 .

Further differentiating in direction Xs would yield an infinite summation. More specifically,
notice that at Vu, η∗e = e ◦ πξ = e, $ = 1, and apply equation (2.2),

Xs($) = 〈∇Xsη∗e, e〉
‖e‖2 − 〈∇−X

ue, e〉
‖e‖2 +

∞∑
k=0

〈
∇fk+1
∗ Xsfk+1

∗ η∗e, f
k+1
∗ e

〉
‖fk+1
∗ e‖2 −

〈
∇fk∗Xsfk∗ η∗e, f

k
∗ e
〉

‖fk∗ e‖2 .

The equality in the lemma is obtained by lemma 7 and 9.
For the uniform convergence, using the Leibniz rule in appendix 6.5 lemma 20, and

the projection operators defined in appendix 6.5, we can decompose the k-th term in the
summation of the lemma, Sk, into Sk = Sk1 + Sk2 + Sk3, where

Sk1 := 1
‖fk+1
∗ e‖2

〈
(∇fk∗Xsf∗)fk∗ e, fk+1

∗ e
〉
≤ Cλk‖Xs‖.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 85

since Xs decays exponentially via pushforwards. Here ∇f∗ is the Riemannian connection of
f∗ (appendix 6.5 definition 6). Also,

Sk2 := 1
‖fk+1
∗ e‖2

〈
f∗P

u∇fk+1
∗ Xsf

k
∗ η∗e, f

k+1
∗ e

〉
− 1
‖fk∗ e‖2

〈
P u∇fk∗Xsfk∗ η∗e, f

k
∗ e
〉

= 0,

This is because (V u)∧u is 1-dimensional, so P u∇ ∂
∂q
fk∗ η∗e(y) and fk∗ e increase by same amounts

via the pushforward. Finally,

Sk3 := 1
‖fk+1
∗ e‖2

〈
f∗P

s∇fk+1
∗ Xsf

k
∗ η∗e, f

k+1
∗ e

〉
− 1
‖fk∗ e‖2

〈
P s∇fk∗Xsfk∗ η∗e, f

k
∗ e
〉
.

This term also converges uniformly on K, since

P s∇fk∗Xsfk∗ η∗e = fk∗P
s(∇eX −∇Xue) +

k−1∑
n=0

fk−n−1
∗ P s(∇fn∗ Xsf∗)fn∗ e

≤ Cλk‖X‖+ C
k−1∑
n=0

λk−n−1‖fn∗Xs‖‖fn∗ e‖ ≤
C‖X‖
1− λ .

(6.7)

Hence, Sk3 ≤ Cλk‖X‖/(1− λ), and ∑k≥0 Sk uniformly converges.

Theorem 7 (expansion of unstable divergence). Define

ψ :=
W∑

m=−W
(Φm − ρ(Φ)), Ψ := ψX.

By lemma 6 and lemma 10, the unstable contribution is U.C. = limW→∞ U.C.
W , where

U.C.W := ρ(ψ divuσXu) = ρ

(
ψ divuXu + ψ

σ
Xu(σ)

)

=ρ
〈ψ∇eX, e〉
‖e‖2 +

∞∑
k=0


〈
∇fk+1
∗ Ψsf

k+1
∗ η∗e, f

k+1
∗ e

〉
‖fk+1
∗ e‖2 −

〈
∇fk∗Ψsf

k
∗ η∗e, f

k
∗ e
〉

‖fk∗ e‖2


−
∞∑
k=1


〈
∇f−k+1
∗ Ψuf∗e−k, f∗e−k

〉
‖f∗e−k‖2 −

〈
∇f−k∗ Ψue−k, e−k

〉
‖e−k‖2

,
Here σ is the density of the conditional SRB measure, e−k is a u-vector field on f−kVu as
defined in equation (6.2), and (·)u, (·)s are the unstable and stable projections of a vector.

Remark. (1) The uniform convergence in lemma 6 and 10 shows that this formula also
converges uniformly. In fact, we did not use the full strength of uniform hyperbolicity to
prove uniform convergences; moreover, weaker forms of convergence could also suffice our
computational purpose. (2) Note that adding a constant to Φ does not change the linear
response, but it helps to reduce numerical errors.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 86

Since the integrand is much smaller than the original linear response formula, directly
computing the expansion formula in theorem 7 would have much faster convergence than
algorithms based on the original linear response formula. However, that would require at
least solving at least u2 second-order tangent equations, which shall be defined later. It also
requires the oblique projections, which can be computed via ‘little-intrusive’ algorithm, whose
cost is twice of non-intrusive shadowing [54, 55]; moreover, it might not be very robust, since
it requires artificially deciding whether a vector is stable or unstable. In the next section we
further give the expansion formula a ‘fast’ characterization which is even faster, and do not
involve oblique projections.

6.2 Fast characterization of unstable divergence
There are several well-known fast algorithms, such as the fast Fourier transformation [24] and
the fast multipole method [36, 37]. Roughly speaking, a common idea in these fast algorithms
is to combine many small terms into a few big terms, and then apply some expensive operation
on the big terms only a few times, instead of many times on individual small terms. In this
section, we find an ‘embarrassingly fast’ structure for the expansion formula of the unstable
divergence. In our case, the most expensive operation is the renormalized second-order tangent
equation, which governs the propagation of derivatives of vectors. We use the linearity of
∇e to define only one big term, which is a summation, p; hence, the second-order tangent
equation only need to be applied to p once, instead many times on each ∇e.

In this section, we show that both the unstable contribution and the inductive relation
of p can be expressed via this ‘first combine then propagate’ strategy. Finally, we show
that p is uniquely determined by the inductive relation it satisfies, hence, we obtain a ‘fast’
characterization of the unstable divergence. It also turns out that, in the fast characterization,
the oblique projection is replaced by an orthogonal projection, hence, the fast characterization
is also non-intrusive, which means that it requires only first and second order tangent solutions.

Definitions of p, β, and U

The expression in theorem 7 computes too many times ∇f∗, which is the Riemannian
connection of the pushforward tensor defined in appendix 6.5. To save computational efforts,
we seek to combine terms with ∇f∗ at the same step. To achieve this, first let e−k be ẽ−k in

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 87

the second summation, where ẽ = e/‖e‖, then, by the invariance of the SRB measure,

U.C.W = ρ

 ∞∑
k=0


〈
∇fk+1
∗ Ψs−k

fk+1
∗ η∗e−k, f

k+1
∗ e−k

〉
‖fk+1
∗ e−k‖2 −

〈
∇fk∗Ψs−k

fk∗ η∗e−k, f
k
∗ e−k

〉
‖fk∗ e−k‖2


+〈ψ1∇e1X1, e1〉

‖e1‖2 −
∞∑
k=1


〈
∇f1−k
∗ Ψu

k
f∗ẽ, f∗ẽ

〉
‖f∗ẽ‖2 −

〈
∇f−k∗ Ψu

k
ẽ, ẽ

〉
 ,

(6.8)

where the subscript (·)1 labels steps, Ψk := ψkXk, e is the u-dimensional hyper-cube defined
in equation (6.2), ẽ is the normalized hyper-cube, η is the projection map along X = δf ◦ f−1

(see section 6.1), and the definition of ∇(·)k(·)k is in equation (2.1).
Because ∧uV u is one-dimensional, and that the sign generated by manifold orienta-

tion is canceled within the inner products, we may assume without loss of generality that
fk∗ e−k/‖fk∗ e−k‖ = ẽ for all k. Hence, we may pull out ẽ from the second term of each summand
in equation (6.8), and define

p :=
∞∑
k=0

1
‖fk∗ e−k‖

P⊥∇fk∗Ψs−k
fk∗ η∗e−k −

∞∑
k=1
∇f−k∗ Ψu

k
ẽ =

∑
k≥0

p⊥(k) −
∑
k≥1

p′(k) ,

where p(k) :=
∇fk∗Ψs−k

fk∗ η∗e−k

‖fk∗ e−k‖
, p⊥(k) := P⊥p(k) , p′(k) := ∇f−k∗ Ψu

k
ẽ .

(6.9)

Here P⊥ is the orthogonal projection operator (appendix 6.5 definition 8), and notice that
p(k) 6= pk. We will see later that P⊥ takes out keeps only a convergent component in the first
summation, while the normalized ẽ makes the second summation in D⊥e := P⊥De, which is
the orthogonal projection of the space of derivative-like u-vectors (appendix 6.5).

Lemma 11. p is a convergent summation in D⊥e .

Proof. Since ẽ has constant volume, we have 〈∇ẽ, ẽ〉 = 0. By the linearity of the projection
operator, p ∈ D⊥e should it converge. To see the convergence of the first summation, use the
estimation in equation (6.7) and that P⊥ = P⊥P s from lemma 23. The convergence of the
second summation is because f−k∗ Ψu

k decays exponentially.

To simplify our writing, we define two maps and show some of their properties. The map
β’s are renormalized second-order tangent equations, which governs the propagation of the
derivatives of u-vectors, and U ’s are the integrand in the unstable contribution.

Definition 4. For any r ∈ De, Y ∈ TxM , define

βY (r) := (f∗r + (∇Y f∗)ẽ) /‖f∗ẽ‖.
β̃(r) := βṽr + ψ1∇ẽ1X1,

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 88

UY (r) := 〈βY (r), ẽ1〉 − 〈r, ẽ〉 ,
Ũ(r) :=

〈
β̃(r), ẽ1

〉
− 〈r, ẽ〉 = Uṽ(r) + 〈ψ1∇ẽ1X1, ẽ1〉 .

Here ∇f∗ is the Riemannian connection of f∗ (appendix 6.5 definition 6), ṽ is the shadowing
direction of Ψ,

ṽ :=
∞∑
k=0

fk∗Ψs
−k −

∞∑
k=1

f−k∗ Ψu
k .

Remark. (1) Similar to our convention on pushforward operators, βY (r(x)), β̃(r(x)) ∈ TfxM .
(2) The oblique projections are summarized into the modified shadowing direction ṽ. By
section 2.3, ṽ can be efficiently computed by non-intrusive shadowing algorithms, which
does not require computing oblique projections. (3) We refer to βY as the renormalized
homogeneous second-order tangent equation, and β̃ as the renormalized inhomogeneous
equation. (4) The second-order tangent equation is in fact also an inhomogeneous first-order
tangent equation, with a second-order inhomogeneous term, ∇f∗.

Lemma 12 (properties of β and U). For any r, r′ ∈ De, and X, Y ∈ TxM,

1. βXr′ ± βY r = βX±Y (r′ ± r), UXr′ ± UY r = UX±Y (r′ ± r);

2. for both βY and β̃, we have βr ∈ De, P⊥βr = P⊥βr⊥, where r⊥ := P⊥r;

3. for both UY and Ũ , U(r) = U(r⊥).

Proof. (1) By definition. (2) By definition, then lemma 24 in appendix 6.5. (3) Since ∧uV u

is one-dimensional, all of its u-vectors are increased by same amounts by the pushforward.
Hence,

〈
f∗r
‖, ẽ1

〉
/‖f∗ẽ‖ =

〈
r‖, ẽ

〉
, and

U(r)− U(r⊥) =
〈
β(r)− β(r⊥), ẽ1

〉
−
〈
r − r⊥, ẽ

〉
=
〈
β0(r‖)ẽ1

〉
−
〈
r‖, ẽ

〉
=
〈
f∗r
‖

‖f∗ẽ‖
, ẽ1

〉
−
〈
r‖, ẽ

〉
= 0.

Here β0 means Y = 0 in definition 4.

Unstable contribution expressed by p

The most expensive operation in the expression of the unstable contribution is to propagate
the derivatives of u-vectors by second-order tangent equations, β. With the definition of
the summation, p, now we only need to apply β̃ once on p, instead of many times on each
summand in the definition of p. Hence the computation of U from p is much more efficient.
Moreover, we no longer need to compute oblique projections, since ṽ can be computed by
non-intrusive shadowing. In the next subsection, we show that similar reductions happen for
the inductive relation of p.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 89

Lemma 13. U.C.W = ρ(Ũ(p)).

Proof. By the Leibniz rule in appendix 6.5 lemma 20, η∗ = Id at q = 0, and the definition of
p(k) and p′(k) in equation (6.9), we have

∇fk+1
∗ Ψs−k

fk+1
∗ η∗e−k

‖fk+1
∗ e−k‖

= 1
‖f∗ẽ‖

(
f∗p(k) + (∇fk∗Ψs−k

f∗)ẽ
)

= βfk∗Ψs−k
(p(k)),

∇f1−k
∗ Ψu

k
f∗ẽ

‖f∗ẽ‖
= 1
‖f∗ẽ‖

(
f∗p
′
(k) + (∇f−k∗ Ψu

k
f∗)ẽ

)
= βf−k∗ Ψu

k
(p′(k)).

(6.10)

The summand in the first summation of equation (6.8) becomes〈
∇fk+1
∗ Ψs−k

fk+1
∗ η∗e−k, f

k+1
∗ e−k

〉
‖fk+1
∗ e−k‖2 −

〈
∇fk∗Ψs−k

fk∗ η∗e−k, f
k
∗ e−k

〉
‖fk∗ e−k‖2

=
〈
βfk∗Ψs−k

p(k), ẽ1
〉
−
〈
p(k), ẽ

〉
= Ufk∗Ψs−k

(p(k)) = Ufk∗Ψs−k
(p⊥(k)).

The summand in the second summation becomes〈
∇f1−k
∗ Ψu

k
f∗ẽ, f∗ẽ

〉
‖f∗ẽ‖2 −

〈
∇f−k∗ Ψu

k
ẽ, ẽ

〉
=
〈
βf−k∗ Ψu

k
p′(k), ẽ1

〉
−
〈
p′(k), ẽ

〉
= Uf−k∗ Ψu

k
(p′(k)).

The lemma is proved by summing over k and lemma 12 (1).

Characterizing p by induction

We give a new characterization, called the fast characterization, of the expansion formula,
which allows even faster computation than directly using the expansion. Roughly speaking,
we will show that p satisfies an inductive relation given by a renormalized second-order tangent
equation, whose stability indicates that any non-covariant sequences satisfying this equation
will eventually converge to p. This is in fact the non-intrusive formulation for the unstable
contribution. In comparison to the original definition of non-intrusive shadowing, here we
allow also second-order tangent solutions, and its stability is given by renormalizations, rather
than subtracting homogeneous solutions.

Lemma 14 (inductive relation of p). p1:= p ◦ f = P⊥β̃p.

Remark. (1) Should we know the correct p(x0), we can solve all pn inductively by pn+1 =
P⊥β̃(pn); this is more efficient than computing from the definition of p, because the most
expensive operation, β̃, now only needs to operate once on p, instead of many times on each
summand in the definition of p. (2) The oblique projection is replaced by the orthogonal
projection, whose computation is easier and faster, in particular, it can be done with only u

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 90

many first order tangent solutions. (3) Hence, the inductive relation requires only u many
first and second-order tangent solutions. (4) The subscript convention is explained in
equation (2.1).

Proof. Write down the definition of p1, relabel subscripts, we get

p1 =
∞∑
k=0

P⊥∇fk∗Ψs1−k
fk∗ η∗e1−k

‖fk∗ e1−k‖
−
∞∑
k=1
∇f−k∗ Ψu1+k

ẽ1

=
∞∑

k=−1

P⊥∇fk+1
∗ Ψs−k

fk+1
∗ η∗e−k

‖fk+1
∗ e−k‖

−
∞∑
k=2
∇f1−k
∗ Ψu

k
ẽ1

The induction of the first summation is achieved by substituting equation (6.10). For the
second summation, denote Y := f−k∗ Ψu

k , we have

∇f∗Y ẽ1 = ∇f∗Y
f∗ẽ

‖f∗ẽ‖
= βY p

′
(k) + f∗Y

(
1
‖f∗ẽ‖

)
f∗ẽ.

Since ∇ẽ ∈ D⊥e , ∇ẽ = P⊥∇ẽ; since f∗ẽ ∈ ∧uV u
1 , P⊥f∗ẽ = 0. Hence,

∇f∗Y ẽ1 = P⊥∇f∗Y ẽ1 = P⊥βY p
′
(k).

Substitute into the expression for p1, we have

p1 = ψ1

‖e1‖
P⊥∇Xs

1
η∗e1 +

∞∑
k=0

P⊥βfk∗Ψs−k
p⊥(k) + ψ1∇Xu

1
ẽ1 −

∞∑
k=1

P⊥βf−k∗ Ψu
k
p′(k)

= ψ1

‖e1‖
P⊥∇Xs

1
η∗e1 + ψ1∇Xu

1
ẽ1 + P⊥βṽp

To add the first two terms, use lemma 7 on the first term, and that P⊥e = 0,

ψ

‖e‖
P⊥∇Xsη∗e = ψ

‖e‖
P⊥ (∇eX −∇Xue) = ψP⊥

(
∇ẽX −

1
‖e‖
∇Xue− eXu(1

‖e‖
)
)

= ψP⊥(∇ẽX −∇Xu ẽ) = ψP⊥∇ẽX − ψ∇Xu ẽ.

Hence p1 = ψ1P
⊥∇ẽ1X1 + P⊥βṽp, as claimed.

Hence, we have found that the sequence {pn}n≥0 satisfies an inductive relation. This is a
covariant sequence, that is, pn(x0) = p(xn). We may as well define a non-covariant sequence,
r, only from the inductive relation of p. It turns out that r, the non-covariant version of p,
convergences exponentially fast to the true p on any trajectory.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 91

Lemma 15 (stability of renormalized second-order tangent equation). For any x0 ∈ K, any
r0 ∈ De(x0), define a non-covariant sequence, {rn}n≥0, by the inductive relation of p,

rn ∈ De(xn), rn+1 := P⊥β̃rn.

Then {rn}n≥0 approximates its covariant counterpart, that is,

lim
n→∞

rn − pn(x0) = lim
n→∞

P⊥β̃nr0 − P⊥β̃np(x0) = 0.

Remark. (1) An easy choice of elements in De is zero. (2) The notation βn means applying
the inhomogeneous propagation operator n times. This is done similar to the pushforward
operator, with ṽ and ẽ evaluated at suitable steps.

Proof. P⊥β̃nr0 − P⊥β̃np = P⊥fn∗ (r0 − p)/‖fn∗ ẽ‖ = P⊥fn∗ P
s(r0 − p)/‖fn∗ ẽ‖ ≤ Cλ2n.

Finally, we can prove the main theorem of this chapter, the fast characterization of the
unstable contribution, which is theorem 6 stated in introduction section.
Remark. (of theorem 6) (1) In practice, a ρ-typical point x0 can be found by running almost
all trajectories starting from the attractor basin for some time. (2) In practice, the unstable
subspace, V u, can be obtained by pushing-forward u many randomly initiated vectors, because
unstable vectors grow faster than stable ones; hence we can obtain correct {P⊥(x0)}n≥0. (3)
A more careful analysis should prove this theorem for almost all x0 in the attractor basin,
and almost all initial guess of V u(x0).

Proof. (of theorem 6) By the same tail bound in lemma 6 and 10, we can show that p is
continuous on the attractor K. By the continuity of Ũ , Ũ(p) is continuous on K. Hence, by
the ergodic theorem and lemma 13, we see that almost surely according to the SRB measure,

U.C.W = lim
N→∞

1
N

N−1∑
n=0

Ũ(pn)

By lemma 14, the definition of Ũ , the orthogonal condition, we have

U.C.W = lim
N→∞

1
N

N−1∑
n=0

Ũ((P⊥β̃)np)

= lim
N→∞

1
N

N−1∑
n=0

〈
β̃(P⊥β̃)np, ẽn+1

〉
−
〈
(P⊥β̃)np, ẽn

〉
= lim

N→∞

1
N

N−1∑
n=0

〈
β̃(P⊥β̃)np, ẽn+1

〉
Finally, apply lemma 15 to replace p by its non-covariant approximation, r.

After our submission to arXiv, there appears a second version of the S3 algorithm [17].
Comparing to the old S3, the new S3 uses several techniques of this chapter, such as the
renormalized second-order tangent equations, orthogonal projections, and an inductive formula
for the unstable contribution. It also changes to a shadowing/unstable decomposition of the

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 92

linear response, similar to the one we use: we pointed out that the seemingly complicated
‘v’ in their writing is our P⊥v. Currently, the new S3 works only for u = 1 andM = RM ;
however, if using our tools in section 6.1, section 6.1, and in appendices, it might have a better
chance to extend to general u andM than the old S3. It also lacks our fast characterization,
which can make it faster and easier to implement. It also lacks the multi-segment treatment
which we will show later.

6.3 Fast linear response algorithm
This section concerns the practical aspect of the algorithm. First, to further reduce compu-
tational cost and round-off error, we show that the renormalization only needs to be done
intermittently. We will also write major equations in matrix notations, which are more
suitable for computer programming. Then we give a procedure list of the algorithm. Finally,
we give several remarks on the implementation of the algorithm.

Intermittent renormalization

This subsection explains how renormalization only needs to be done once after a segment
of several steps. Here renormalization refers to

• The orthogonal projection, P⊥, used in the fast characterization, defined in appendix 6.5.

• The rescaling in β, that is, dividing by the ‖f∗ẽ‖ factor in definition 4.

• Othonormalizing the basis vectors of V u.

The third operation does not explicitly appear in the fast characterization, but a basis is
implicitly required by the well-definedness of the hyper-cube e, and a good basis improves
numerical performance. We first show that both orthogonal projection and rescaling can
be done intermittently. Then, we show that all three renormalizing operations can be done
together by a short formula using matrix notation.

The subscript convention for multiple segments, shown in figure 6.2, is similar to that of
the non-intrusive shadowing algorithm [59, 58]. We divide a trajectory into small segments,
each containing N steps. The α-th segment consists of step αN to αN +N , where α runs
from 0 to A− 1; notice that the last step of segment α is also the first step of segment α+ 1.
We use double subscript, such as xα,n, to indicate the n-th step in the α-th segment, which
is the (αN + n)-th step in total. Note that for some quantities defined on each step, for
example, eα,N 6= eα+1,0, since renormalization is performed at the interface across segments.
Continuity across interfaces is true only for some quantities, such as shadowing directions v,
ṽ, and unit hyper-cube ẽ. Later, we will defind some quantities on the α-th segment, such
as Cα, dα in equation (6.11), their subscripts are the same as the segment they are defined

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 93

on. For quantities to be defined at interfaces, such as Qα, Rα, bα in equation (6.12), their
subscripts are the same as the total step number of the interface, divided by N .

0 αN (α + 1)N AN

eα,N eα+1,0

total step

Pushforward Renormalization

v′α,N v′α+1,0

α-th segment

eα−1,N eα,0

v′α−1,N v′α,0

Qα, Rα

Figure 6.2: Subscript convention on multiple segments.

Lemma 16 (intermittent orthogonal projection). For any r̃0,0 ∈ De, let

r̃α,n := β̃r̃α,n−1, r̃α+1,0 := P⊥r̃α,N ,

then almost surely according to Lebesgue measure,

U.C.W = lim
A→∞

1
NA

A−1∑
α=0
〈r̃α,N , ẽα,N〉 .

Proof. Denote (P⊥β̃)αN r̃0,0 by r′, by lemma 12, lemma 13, and the definition of the SRB
measure, the unstable contribution from step αN to αN +N − 1 is,

N−1∑
n=0

Ũ((P⊥β̃)αN+nr0,0) =
N−1∑
n=0

Ũ((P⊥β̃)nr′) =
N−1∑
n=0

Ũ(P⊥β̃nr′) =
N−1∑
n=0

Ũ(β̃nr′)

=
N−1∑
n=0

〈
β̃n+1r′, ẽαN+n+1

〉
−
〈
β̃nr′, ẽαN+n

〉
=
〈
β̃Nr′, ẽαN+N

〉
.

Average over all steps and adopt the subscript convention to prove the lemma.

Lemma 17 (intermittent rescaling). Let e be first-order tangent solutions,

e0,0 = ẽ0,0, eα,n := f∗eα,n−1, eα+1,0 := eα,N/‖eα,N‖ = ẽα+1,0;

For any r0,0 ∈ De, let r be governed by the second-order tangent equation,

rα,n := f∗rα,n−1 + (∇ṽα,n−1f∗)eα,n−1 + ψα,n∇eα,nXα,n, rα+1,0 := P⊥rα,N/‖eα,N‖.

Then almost surely according to Lebesgue measure,

U.C.W = lim
A→∞

1
NA

A−1∑
α=0

〈rα,N , eα,N〉
〈eα,N , eα,N〉

.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 94

Proof. We prove by induction that if we choose r0,0 = r̃0,0, then rα,n = ‖eα,n‖r̃α,n. Within
segment α, assuming we have this relation hold for n− 1, then

rα,n = ‖eα,n−1‖f∗r̃α,n−1 + ‖eα,n−1‖(∇ṽα,n−1f∗)ẽα,n−1 + ‖eα,n‖ψα,n∇ẽα,nXα,n = ‖eα,n‖r̃α,n.

Hence the relation also holds for n; it also holds across interfaces, since

rα+1,0 = P⊥rα,N/‖eα,N‖ = P⊥r̃α,N = r̃α+1,0 = r̃α+1,0‖eα+1,0‖,

where ‖eα+1,0‖ = 1 by construction. Finally, substitute into lemma 16.

Proposition 18 (intermittent renormalization). Neglecting the first two subscripts, α and
n, let e := ∧ui=1ei, r := ∑

i e1 ∧ · · · ∧ ri ∧ · · · ∧ eu. Denote matrices e := [e1, · · · , eu],
r := [r1, · · · , ru]. Then between segments, the renormalization in lemma 17 is realized by:

eα,N = Qα+1Rα+1, eα+1,0 = Qα+1,

r⊥α,N = rα,N −Qα+1Q
T
α+1rα,N , rα+1,0 = r⊥α,NR

−1
α+1.

Here the first equation means to perform QR factorization, and QT r := [〈Qi, rj〉] is a matrix.
Use Tr(·) to denote trace of a matrix, the unstable contribution is,

U.C.W = lim
A→∞

1
NA

A−1∑
α=0

Tr
(
R−1
α+1Q

T
α+1rα,N

)
.

Remark. (1) Rewriting r on the new basis does not change r as a u-vector, but it makes the
numerical properties better. (2) Computing e via pushforwards and renormalization is an
important part of the non-intrusive showing algorithm. (3) The pushforward relation inside
a segment is the same as that in lemma 17.

Proof. The renormalization on e is due to the definition of QR factorization. For r, first
substitute the QR factorization into the expression for projection,

r⊥α,N = rα,N − eα,N(eTα,Neα,N)−1(eTα,Nrα,N) = rα,N −Qα+1Q
T
α+1rα,N .

Use appendix 6.5 lemma 21 to rewrite r⊥α,N on to the new basis, Qα+1, then rescale,

rα+1,0 = det(Rα+1) r⊥α,NR−1
α+1/‖eα,N‖ = r⊥α,NR

−1
α+1,

since det(Rα+1) = ‖eα,N‖ by definition of QR factorization. Finally, by lemma 25 in
appendix 6.5,

U.C.W ≈ 1
NA

A−1∑
α=0

〈rα,N , eα,N〉
〈eα,N , eα,N〉

= 1
NA

A−1∑
α=0

u∑
i=1

eiu,α,Nr
‖
α,N,i

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 95

where eiu is the covector of ei in Vu. Since (eiur
‖
l)ei = r

‖
l , we have

(eiur
‖
l) 〈ei, ej〉 =

〈
r
‖
l , ej

〉
= 〈rl, ej〉 .

This is a linear equation system, with solution

eiur
‖
l = i− th entry of the vector (eT e)−1(eT rl).

Hence we can further write the expression of U.C.W in matrix notation,

U.C.W ≈ 1
NA

A−1∑
α=0

Tr
(
(eTα,Neα,N)−1(eTα,Nrα,N)

)
.

Substituting the QR factorization of e, we have

(eT e)−1(eT r) = (RTQTQR)−1RTQT r = R−1QT r.

Procedure list

This subsection gives a detailed procedure list of the fast linear response algorithm. It
does not require differential geometry knowledge to understand this list whenM = RM , and
corresponding simplifications are explained. All sequences in this subsection are non-covariant,
which means that they are defined by some inductive relation. In particular, here the unstable
vectors e and shadowing directions v, ṽ are non-covariant, which are very good approximations
of their covariant counterparts. We still use r as the non-covariant version of p, since the
approximation has just been established in this chapter. The subscript explanation is in
figure 6.2.

1. Evolve the dynamical system for a sufficient number of steps before n = 0, so that x0
is on the attractor at the beginning of our algorithm. Then, evolve the system from
segment α = 0 to α = A− 1, each containing N steps, to obtain the trajectory,

xα,n+1 = f(xα,n), xα+1,0 = xα,N .

2. Start with initial condition v′ = 0 and ṽ′ = 0, and random initial conditions for each
column in e := [e1, · · · , eu]. Then, repeat the following procedures for all α.

a) From initial conditions, solve first-order tangent equations, α neglected,

en+1 = f∗en, v′n+1 = f∗v
′
n +Xn+1, ṽ′n+1 = f∗ṽ

′
n + Ψn+1.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 96

Here X := δf ◦ f−1 = (∂f/∂γ) ◦ f−1, where γ is the parameter of the dynamical
system; Ψn := ψnXn, ψ := ∑W

m=−W Φ ◦ fm for a large W , f∗ is the pushforward
operator. WhenM = RM , f∗ is the Jacobian matrix,

f∗ = [∂f i/∂zj]ij

where [·]ij is the matrix with (i, j)-th entry given inside the bracket, f i is the i-th
component of f , zj is the j-th coordinate of RM .

b) Compute and store the covariant matrix and the inner product,

Cα :=
N∑
n=0

′eTα,neα,n := 1
2e

T
α,0eα,0 +

N−1∑
n=1

eTα,neα,n+1
2e

T
α,Neα,N ,

dα :=
N∑
n=0

′eTα,nv
′
α,n, d̃α :=

N∑
n=0

′eTα,nṽ
′
α,ndt,

(6.11)

where ∑′ is the summation with 1/2 weight at the two end points. Here eT e :=
[〈ei, ej〉] is a matrix, same for rT e and QT r later.

c) At step N of segment α, orthonormalize e with a QR factorization, and compute

eα,N = Qα+1Rα+1, bα+1 = QT
α+1v

′
α,N , b̃α+1 = QT

α+1ṽ
′
α,N . (6.12)

d) Set initial conditions of the next segment,

eα+1,0 = Qα+1, v′α+1,0 = v′α,N −Qα+1bα+1, ṽ′α+1,0 = ṽ′α,N −Qα+1b̃α+1.

3. Solve the non-intrusive shadowing problem,

min
{aα}

A−1∑
α=0

2dTαaα + aTαCαaα

s.t. aα = Rαaα−1 + bα, α = 1, . . . , A− 1.

A good way to solve this is via the Schur complement, as given in section 3.4 of [61];
similar tricks were used earlier by Blonigan in a different setting [7]. Solve the same
problem again, with b replaced by b̃, for α̃. Then compute vα and ṽα,

vα = v′α + eαaα, ṽα = ṽ′α + eαãα.

4. Compute the shadowing contribution,

S.C. = lim
A→∞

1
AN

A−1∑
α=0

N∑
n=0

′vα,n(Φα,n),

where v(·) means to differentiate a function in the direction of v.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 97

5. Denote r := [r1, · · · , ru]. Set initial condition r0,i = 0 for all 1 ≤ i ≤ u. Then repeat
the following procedures for all α.

a) From initial conditions, solve second-order tangent equations, α neglected,

rn+1,i = f∗rn,i + (∇ṽnf∗)en,i + ψn+1∇en+1,iXn+1 .

Here ∇(·)f∗ is the Riemannian connection of the pushforward operator defined in
appendix 6.5. In RM , ∇f∗ is the derivative of Jacobian, or the Hessian tensor, and

∇Y f∗ = [Y (∂f i/∂zj)]ij.

To compute ∇en+1,iXn+1, denote the coordinate at xn and xn+1 by ζ and z, then

∇en+1,iXn+1 = ∇f∗en,iXn ◦ f = ∇f∗en,iδfn = ∇f∗en,i

(
δf jn

∂

∂zj

)

=f∗en,i
(
δf jn

) ∂

∂zj
+ δf jn∇f∗en,i

∂

∂zj
= eln,i

∂δf jn
∂ζ l

∂

∂zj
+ δf jn∇f∗en,i

∂

∂zj
.

Here ∂
∂zj

is the j-th coordinate vector. In RM , both coordinates ζ and z are the
canonical coordinate, both denoted by z, and ∇ ∂

∂zj
is zero, hence

∇en+1,iXn+1 = eln,i
∂δf jn
∂zl

∂

∂zj
= [en,i(δf jn)]j.

This is a vector at xn+1, where [·]j is a vector in RM whose j-th entry is given in
the bracket. The differentiation en,i(δf jn) happens at xn, when δf jn is a function in
a neighborhood of xn.

b) To set initial conditions of the next segment, first orthogonally project,

r⊥α,N = rα,N −Qα+1Q
T
α+1rα,N .

Then change basis and rescale,

rα+1,0 = r⊥α,NR
−1
α+1.

6. Let Tr(·) be the trace of a matrix, compute the unstable contribution,

U.C.W = lim
A→∞

1
NA

A−1∑
α=0

Tr
(
R−1
α+1Q

T
α+1rα,N

)
.

7. The linear response is

δρ(Φ) = lim
W→∞

S.C.− U.C.W .

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 98

Remarks on implementation

When the number of homogeneous tangent solutions computed, u′, is strictly larger than
u, the unstable contribution part of our algorithm may or may not work, depending on
whether the renormalized second order tangent solutions has a meaningful average. This is
different from the non-intrusive shadowing algorithm, which works for any u′ ≥ u. It remains
to be investigated whether and how much error is incurred for using a large u, especially how
the error relates to the spectrum of the Lyapunov exponents.

Fast linear response could converge even when the system slightly fails the uniform
hyperbolicity assumption we used in the proof, because it does not compute oblique projections.
This extra robustness is an upshot of non-intrusiveness, and was intentionally pursued during
our algorithm design. The convergence of the fast linear response actually depends on the
integrability of shadowing directions and renormalized second-order tangent solutions, which
might be more abundant in applications than uniform hyperbolicity. Failure of fast linear
response can be caused by a large region of homoclinic tangencies, where the stable and
unstable directions are close to each other [65], such as the Henon map [31]. This situation
is difficult for many algorithms and theoretical analysis for linear response, even for SRB
measures.

We discuss how to choose the number of steps in each segment, N . Large N gives fewer
segments for the same total number of steps, thus saving some computational cost. However,
the major computational cost in the algorithm comes from computing first and second order
tangent equations. Hence, the benefit for choosing a very large N is limited. Still, if we really
want a large N , the upper bound is from the numerical stability of first and second order
tangent equations. Notice that second order tangent equations are essentially first order
tangent equations with a second-order inhomogeneous term. Hence, the limiting factors for
large N are, the u many first-order homogeneous tangent solutions can not grow too large,
or too parallel to each other, over one segment.

Depending on the sparsity of the problem, the main computational complexity of the
fast linear response may come from different places. For the worst case, the Hessian tensor
∇f∗ is dense, and contracting it with ṽ takes O(M3) operations. If further assuming that
each entry in ∇f∗ takes O(1) operations, then it also takes O(M3) operations to get ∇f∗; in
f∗, each entry depends on O(M) variables, and it typically also takes O(M3) operations to
get f∗. Hence, for the dense case, the cost for each step of fast linear response is dominated
by obtaining ∇ṽf∗ and f∗, which only need to be done once, and cost is typically O(M3).
On the other hand, for many problems from engineering, for example fluid mechanics and
image processing, ∇f∗ and f∗ typically has only O(M) entries, with each entry taking O(1)
operations to compute. Then the cost mainly comes from computing terms such as f∗e, whose
complexity is O(uM) for each step, and can be computed faster via vectorized programming,
as explained below. The sparse case is perhaps the more common case, especially because the
notation O(M) hints that we can freely change the dimension M , and this typically comes

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 99

from refining meshes of some fields, which typically gives the sparse case.
There are several places in the algorithm where we contract a high-order tensor with several

one-dimensional vectors, which can be done more efficiently via the so-called ‘vectorized’
programming. More specifically, when contracting one tensor with several vectors, we should
load the tensor into computer once, and inner-product with all vectors, instead of loading
the tensor once for each vector: this saves computer time [58, 57]. Such vectorization can be
used in the non-intrusive shadowing algorithm, where several first-order tangent solutions, v′
and {ei}ui=1, are multiplying with the same Jacobian matrix f∗, which is a two-dimensional
tensor. Vectorization can also be used when solving second-order tangent equations, for the
contraction between f∗ and {ri}ui=1, ∇ṽf∗ and {ei}ui=1, and ∇X and {ei}ui=1.

In non-intrusive shadowing, we can compute parts of the shadowing contribution from v′

and each ei, then add them up according to the coefficients ai. The detailed formulas can be
found in the finite-difference version of non-intrusive shadowing [61]. It allows us to gradually
add or remove homogeneous solutions in batches, until all u unstable directions show up. It
also reduces the cost for one more X to computing a new inhomogeneous tangent solution,
which is typically marginal, since we have to load the Jacobian matrix anyway. Similarly,
for the unstable contribution, we can solve the second-order tangent equation with different
inhomogeneous terms, ψ∇eiX, (∇v′f∗)ei, and (∇ejf∗)ei; then sum according to ãj to get the
entire unstable contribution. This requires tracking about u2 many second-order tangent
solutions, whereas the current procedure tracks only u many. However, for cases with many
different Φ and X, or no a priori estimation of u, the decomposition allows recycling much
of the computed data, thus is more efficient overall.

Finally, we give a very crude and formal estimation on the error and total cost of fast linear
response, using the decorrelation step numberW , the total number of steps T := AN , unstable
dimension u, and system dimension M . First, the error for using finite W , U.C.− U.C.W , is
O(θW) for some 0 < θ < 1, which is the rate of decay of correlation. We make the simplifying
assumption that, on any trajectory, for any function ϕ we care about, and for large enough
N ,

N∑
n=1

ϕ(xn) ∼ O(
√
N),

where ∼ means approximately equal with large probability. This assumption is verified later
in our numerical example, and it can be achieved by more basic assumptions, such as all
summands are i.i.d.

Passing Φ to Φ−ρ(Φ) makes ρ(Φ) = 0; further notice that ψX is the inhomogeneous term
for ṽ, and that ṽ and ψ are the inhomogeneous terms for p and Ũ ; hence, Ũ(p) ∼ ψ ∼ O(

√
W).

Hence the error caused by averaging Ũ(p) on a finite trajectory of length T is ∼ O(
√
W/T).

Hence the total error for the unstable contribution, which is also the major error for the fast
linear response, denoted by h, is

h ∼ O(θW) +O(
√
W/T)

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 100

In practice we want the two errors to be roughly equal to each other, hence T ∼ θ−2WW .
By our discussion of the cost at each step, for typical problems with sparsity, the numerical
complexity of fast linear response is

Complexity of FLR ∼ O(uMθ−2WW).

In comparison, for the original linear response formula, the size of the integrand is ∼ λWmax,
where λmax > 1 is the largest Lyapunov exponent. By similar arguments,

h ∼ O(θW) +O(λWmax/
√
N ′), T = N ′W ∼ θ−2Wλ2W

maxW.

Here N ′ is the number of sample trajectories, each with W steps, and T is the total number
of steps in all sample trajectories. Recall that only one first-order tangent equation and one f
is computed at each step, hence, for the sparse case, the cost per step is O(M), and in total,

Complexity of ensemble ∼ O(Mθ−2Wλ2W
maxW),

Hence, for typical problems with sparsity, the numerical complexity of the original linear
response formula can be about O(λ2W

max/u) times higher than fast linear response. Should
we be interested in estimating the dense case, note that for a fair comparison with fast
linear response, we should assume ∇f∗ is dense, in which case computing f∗ is O(M3), as we
discussed. Moreover, as we discussed, several techniques can help further reducing the actual
computing time of fast linear response.

6.4 A numerical example
This section illustrates the linear response algorithm on a numerical example, selected based
on the following considerations. (1) u/M should be large, for the linear response algorithm
to have an significant accuracy advantage over the more efficient non-intrusive shadowing
algorithm. (2) u ≥ 2, s ≥ 1, and the unstable direction is unknown beforehand. This makes
our manipulation of the unstable manifold necessary. It also helps to show that our algorithm
works even when an unstable Lyapunov vector, the second one for example, does not foliate
with smooth leaves [86]. (3) The region of homoclinic tangencies is small, to avoid explosion
of shadowing directions. (4) M should be small, to save computer time.

Our dynamical system is a more unstable and more nonlinear version of the solenoid
map. It is obtained by removing from the solenoid map one stable variable, adding one more
expanding circle, and adding some nonlinear interactions between the stable and unstable
variables:

x1
n+1 = 0.05x1

n + 0.1 cos(8x2
n)− 0.1 sin(5x3

n)
x2
n+1 = 2x2

n + γ(1 + x1
n) sin(8x2

n) mod 2π
x3
n+1 = 3x3

n + γ(1 + x1
n) cos(2x3

n) mod 2π,

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 101

where the superscript labels the coordinates. The perturbation is caused by changing γ, that
is, δ(·) := ∂(·)/∂γ. The instantaneous objective function is Φ(x) := x1.

This problem has u = 2 unstable directions. We set each segment to have N = 20
steps. The default setting, A = 1000 segments, γ = 0.1, and W = 10, is used unless
otherwise noted. We implement the fast linear response algorithm, code available at https:
//github.com/niangxiu/lra.git. Figure 6.3 shows a typical trajectory. Figure 6.4 shows
that the variance of the computed derivative is proportional to A−0.5. Figure 6.5 shows that
the bias in the averaged derivative decreases as W increases, but the variance increases like
W 0.5, indicating that we should increase A together with W . This square-root trend verifies
the assumption we made for the error estimation in section 6.3.

Figure 6.3: The empirical measure of a trajectory with default setting.

Finally, figure 6.6 shows that the derivative computed by the linear response algorithm
correctly reflects the trend of the objective as γ changes, with only one short sample trajectory.

Our example is difficult for previous algorithms. Since u/M is large, the unstable
contribution is significant, algorithms using approximations on the unstable contribution,
such as non-intrusive shadowing, blended response, and S3, have large error. Since the
attractor has zero Lebesgue measure, 1 < u < M , and the unstable and stable directions are
unknown beforehand, there is no easy trick to extend algorithms intended for u = 1 systems,
such as the second version of S3, to our current problem.

Should we want to use algorithms based on the original linear response formula, then
with W = 10, the magnitude of the integrand is

‖fW∗ X(Φ)‖ ∼ λWmax‖X‖‖dΦ‖ ∼ 310 × 5× 1 ∼ 3× 105

https://github.com/niangxiu/lra.git
https://github.com/niangxiu/lra.git

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 102

Figure 6.4: Effects of A. Left: derivatives from 8 independent computations for each A.
Right: the sample standard deviation of the computed derivatives, where the dashed line is
A−0.5.

Figure 6.5: Effects of W . Left: derivatives computed by different W ’s. Right: standard
deviation of derivatives, where the dashed line is 0.005W 0.5.

In order to get the standard deviation within 5× 10−3, the number of sample trajectories
required is about 3 × 1015. Hence, the total number of steps computed is about 3 × 1016,
where each step contains one application of f and one step of first order tangent equation. In
comparison, as shown in figure 6.4, the same setting requires running the fast linear response
for 104 steps, where each step contains one application of f , 4 first order tangent, and 2
second order tangent equations. Say the cost per step is 3 times of that of original linear
response, then, overall, fast linear response is about 1012 times faster than algorithms using
the original linear response formula.

Finally, we compare with finite difference, or some functional regression method, which are

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 103

Figure 6.6: Averaged objectives and derivatives for different parameter γ. The grey lines are
the derivatives computed by fast linear response.

typically regarded as approximate methods. In figure 6.6, because ρ(Φ) computed from finite
trajectories has oscillations, roughly speaking, in order to reveal the correct trend between
ρ(Φ) and γ, it takes about 40 data points with different γ. Although it is hard to quantify
the error in such regression method, which would require imposing a probability distribution
on regression models; we can still roughly say that, overall, the fast linear response is a few
times faster than finite difference. This is very encouraging, because in the most simple
non-chaotic situations, computing the derivative function is typically a few times faster than
finite difference: fast linear response recovers such cost in chaotic systems. This hints that
the fast linear response could perhaps be close to the best possible efficiency, in terms of
exact algorithms for differentiating SRB measures on fractal attractors.

6.5 Appendix

Pushforward operators as tensors
In RM , the pushforward operator f∗ is matrix. In particular, when differentiating a com-
position of several pushforwards, the Leibniz rule applies. In this section, we establish the
Leibniz rule for general pushforward operators on Riemannian manifolds. To achieve this, we
will define the pushforward operator on vectors as (1, 1)-tensor, and define its Riemannian
connection. Our definitions will comply with the Leibniz rule. Finally, we extend this Leibniz
rule to u-vectors.

Definition 5 (f∗). Let f :M1 →M2 be a C∞ diffeomorphism. Let e ∈ X(M1) be a C∞

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 104

vector field overM1; α ∈ X(M2)∗ be a C∞ 1-form overM2. Define

f∗(α, e) := α(f∗e) = e(f ∗α).

Let z1, z2 be coordinates onM1,M2 respectively. Written in coordinates, we have

f∗ = ∂

∂zj2
f ji dz

i
1, f∗(α, e) = (α ∂

∂zj2
)f ji (edzi1),

where f ji is the Jacobian matrix under z1 and z2. Under our definition, f∗ is a tensor field, in
the sense that it is a C∞-multilinear function f∗ : X(M1)× X∗(M2)→ C∞(M2). We then
define the Riemannian connection of this pushforward operator.

Let ∂
∂q
∈ TM1, define

∇f∗(
∂

∂q
, α, e) :=(f∗

∂

∂q
)(αf∗e)− (∇f∗

∂
∂q
α)f∗e− αf∗∇ ∂

∂q
e = α∇f∗

∂
∂q

(f∗e)− αf∗∇ ∂
∂q
e.

Under this definition, ∇f∗ is also a tensor field, in the sense that it is a C∞-multilinear
function : X(M1)×X(M1)×X∗(M2)→ C∞(M2). Notice that, similar to typical Riemannian
connections, ∇f∗ can be defined by the pointwise value of ∂

∂q
. Since α is a common factor,

we may neglect it on both sides of the equation.

Definition 6 (∇f∗). Define the Riemannian connection of pushforward operator, which is a
tensor, ∇f∗(∂

∂q
, e) : X(M1)× X(M1)→ X∗(M2), as

∇f∗(
∂

∂q
, e) := (∇ ∂

∂q
f∗)e := ∇f∗

∂
∂q

(f∗e)− f∗∇ ∂
∂q
e.

To write ∇f∗ in coordinates, by the coordinate form of f∗, we have

∇f∗(
∂

∂q
, e) = (∇f∗

∂
∂q

∂

∂zj2
)f ji (dzi1e) + (∂

∂zj2
)(df ji

∂

∂q
)(dzi1e) + (∂

∂zj2
)f ji (e∇ ∂

∂q
dzi1).

Lemma 19 (Leibniz rule for composition of pushforward operators). Let g :M2 →M3 be a
diffeomorphism. Then

∇g∗f∗
∂
∂q

(g∗f∗e) = (∇f∗
∂
∂q
g∗)f∗e+ g∗(∇ ∂

∂q
f∗)e+ g∗f∗∇ ∂

∂q
e.

Remark. Besides the proof below, readers may find it consolidating to prove by writing
everything in coordinates, which also helps us to check that the coordinate form is correct.
When doing that, use the following relations to cancel or combine terms:

∂

∂zl2
∇ ∂

∂q
dzj2 + dzj2∇ ∂

∂q

∂

∂zl2
= ∂

∂q
δjl = 0, e∇ ∂

∂q
dzi1 + dzi1∇ ∂

∂q
e = ∂

∂q
(edzi1).

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 105

Proof. By definition 6,

∇g∗f∗
∂
∂q

(g∗f∗e) = ∇g∗(f∗ ∂∂q)(g∗(f∗e)) = (∇f∗
∂
∂q
g∗)(f∗e) + g∗∇f∗

∂
∂q

(f∗e)

= (∇f∗
∂
∂q
g∗)(f∗e) + g∗(∇ ∂

∂q
f∗)e+ g∗f∗∇ ∂

∂q
e.

Finally, we extend the Leibniz rule to the case where e = e1 ∧ · · · ∧ eu is a u-vector. Now
f∗e = f∗e1 ∧ · · · ∧ f∗eu, and

∇e =
u∑
i=1

e1 ∧ · · ·∇ei ∧ · · · ∧ eu, ∇(f∗e) =
u∑
i=1

f∗e1 ∧ · · ·∇(f∗ei) ∧ · · · ∧ f∗eu.

Define the Riemannian connection of pushforward operators on u-vectors,

(∇f∗)e := ∇(f∗e)− f∗∇e =
u∑
i=1

f∗e1 ∧ · · · (∇f∗)ei ∧ · · · ∧ f∗eu.

Lemma 20 (Leibniz rule for differentiating u-vectors). Let e be a C∞ u-vector, then

∇g∗f∗
∂
∂q

(g∗f∗e) = (∇f∗
∂
∂q
g∗)f∗e+ g∗(∇ ∂

∂q
f∗)e+ g∗f∗∇ ∂

∂q
e,

∇fk∗
∂
∂q

(fk∗ e) =
k−1∑
n=0

fk−n−1
∗ (∇fn∗

∂
∂q
f∗)fn∗ e+ fk∗∇ ∂

∂q
e.

Remark. (1) There is no need to add a subscript to ∇f∗ to indicate steps, since the two
vectors it applies to, fn∗ e and fn∗ ∂

∂q
, already well-locate this tensor. (2) We use C∞ in this

section only because ‘C∞-multilinear’ is a conventional terminology in differential geometry
text. In fact, we only require the differentiation to be meaningful at the particular point and
the particular direction. For example, the second equation of lemma applies to the rough
u-vector field, e, defined in equation (6.2), differentiated in an unstable direction.

Proof. Inductively apply that ∇(f∗e) = (∇f∗)e+ f∗∇e.

Derivative-like u-vectors
Let there be a u-vector field e := e1 ∧ · · · ∧ eu, smoothly defined along a direction ∂

∂q
. The

derivative is ∇ ∂
∂q
e = ∑

i e1 ∧ · · ·∇ ∂
∂q
ei · · · ∧ eu, that is, one entry in each summand is typically

not in the span of {ei}ui=1. However, it is not trivial that the summation of derivatives still
has this form, especially when the basis of e and directions ∂

∂q
in each summand are different.

Motivated by this, we define a subspace of u-vectors which looks like these derivatives, and
show some related properties.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 106

Definition 7. At point x, the collection of derivative-like u-vectors of e = ∧ui=1ei, written on
basis {ei}ui=1, is defined as

De := {p ∈ ∧uTxM : p =
∑
i

e1 ∧ · · · ∧ pi ∧ · · · ∧ eu, pi ∈ TxM}.

In this chapter, the basis {ei}ui=1 is typically the basis of the unstable subspace. Letting
{ei}Mi=1 be a full basis of TxM whose first u vectors spans V u, then by decomposing p onto
the basis of ∧uTxM, we can see that De is the direct sum

De = span{e} ⊕
u∑
i=1

∑
j>u

span{e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ eu ∧ ej}. (6.13)

Hence, under a given basis, pi is unique modulo span{ei}ui=1.
So long as span{e1, · · · , eu} is the same, De as a subspace is independent of the selec-

tion of basis. To see this, let {e′i}Mi=1 be another full basis such that span{e1, · · · , eu} =
span{e′1, · · · , e′u} = V u, and De′ be the corresponding subspace. Write each term in equa-
tion (6.13) by the other basis. we can see that

span{e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ eu ∧ ej}

⊂ span{e′} ⊕
u∑
i=1

∑
j>u

span{e′1 ∧ · · · ∧ e′i−1 ∧ e′i+1 ∧ · · · ∧ e′u ∧ e′j}.

Hence, De ⊂ De′ . By symmetry, De = De′ .
The next step is to consider how to express derivative-like u-vectors under a new basis

of the same span. Should p indeed be the derivative of a u-vector field, there is a formula
for changing to a new basis which is a constant linear combination of the old basis. We will
show that the same formula is true when p is only derivative-like.

Lemma 21 (change of basis formula). If {e′j}uj=1 is another basis of V u such that e′j = aijei,
and let p′k := aikpi, then∑

k

e′1 ∧ · · · ∧ p′k ∧ · · · ∧ e′u = det(aji)
∑
k

e1 ∧ · · · ∧ pk ∧ · · · ∧ eu.

Notice that typically pk /∈ V u.

Remark. (1) If pk = ∇Y ek for some vector Y , then this lemma is just applying ∇Y on
e′ = det(aji)e. (2) We use this lemma for proving lemma 18, where p is a summation of
derivatives. For this particular case, we may as well first prove the lemma for each summand,
then apply linearity to obtain the lemma for the summation. However, here we give a more
general and algebraic proof, which does not rely on the fact that p is a derivative or a
summation of derivatives.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 107

Proof. We can reorder e′i so that for all i, Si := {e′1, · · · , e′i, ei+1, · · · , eu} is an independent
set of vectors . Changing basis from S0 to Su can be achieved by sequentially changing from
Si to Si+1, where only one vector is changed in each step. Hence, by induction, it suffices to
show that the lemma is true for any one step, for example, the first step. Hence, it suffices to
prove for the case where e′1 = aiei, and e′j = ej for all j ≥ 2. Now p′1 = aipi, p′j = pj for all
j ≥ 2. the left hand side is

LHS =
u∑
k=1

e′1 ∧ · · · ∧ p′k ∧ · · · ∧ e′u = p′1 ∧ e′2 ∧ · · · ∧ e′u +
u∑
k≥2

e′1 ∧ · · · ∧ p′k ∧ · · · ∧ e′u

=
∑
i

aipi ∧ e2 ∧ · · · ∧ eu +
∑
k≥2

∑
i

aiei ∧ e2 ∧ · · · ∧ pk ∧ · · · ∧ eu

=
∑
i

aipi ∧ e2 ∧ · · · ∧ eu + a1 ∑
k≥2

e1 ∧ · · · pk · · · ∧ eu +
∑
k≥2

∑
i≥2

aiei ∧ e2 · · · ∧ pk ∧ · · · ∧ eu

In the last summation, notice that an exterior product vanishes if ei appears twice. Hence,

LHS = a1 ∑
k≥2

e1 · · · pk · · · eu +
∑

i

aipi ∧ e2 · · · eu +
∑
k≥2

akek ∧ e2 · · · pk · · · eu


Comparing the two summations in the parenthesis, notice that interchanging the position of
pk and ek in an exterior product changes the sign, hence all terms cancel, except the term
with i = 1, and

LHS = a1 ∑
k≥2

e1 ∧ · · · pk ∧ · · · ∧ eu +
∑
i=1

aipi ∧ e2 ∧ · · · ∧ eu

=a1∑
k

e1 ∧ · · · ∧ pk · · · ∧ eu = a1p.

Since a1 is the determinant of our current transformation matrix, we have proved the lemma
for one step. The lemma is proved by induction.

Projection operators of derivative-like u-vectors
For derivative-like u-vectors defined in appendix 6.5, only one entry is not in V u in each
summand, hence, we can extend the definition of projection operators for one-vectors to De,
by applying the projection on the one exceptional entry in each summand. In this section,
e ∈ ∧uV u by default.

Definition 8. The projection operator P on p ∈ De is

Pp =
∑
i

e1 ∧ · · · ∧ Ppi ∧ · · · ∧ eu,

where P on the right side is the projection operator on one-vectors.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 108

The projection operators used in this chapter are P u, P s, P ‖, and P⊥. The first two
operators are oblique projections along stable or unstable subspace to the unstable or stable
subspace, respectively. The last two operators are orthogonal projection projections onto the
unstable subspace and its orthogonal complement. These operators, applied on one-vectors,
are illustrated in figure 6.7. Notice that computing P u and P s both require both V u and
V s, whereas computing P ‖ and P⊥ only require V u, thus are faster. For both single and
u-vectors, denote

pu := P up, ps := P sp; p‖ := P ‖p, p⊥ := P⊥p.

V u

(V u)⊥ V s

ei

P ‖eiP uei

P sei
P⊥ei

Figure 6.7: P u, P s, and P ‖, P⊥ applied on ei.

For fixed V u, P ‖ and P⊥ do not depend on the choice of basis. To see this, notice that

D⊥e :=
u∑
i=1

∑
j>u

span{e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ eu ∧ ej}.

is the same so long as eu+1, · · · , eM is a basis of (V u)⊥; also notice that P ‖ and P⊥ are
operators taking components in the decomposition De = span{e} ⊕ D⊥e . Similarly, if both
V u and V s are fixed, P u and P s do not depend on the choice of basis.

Lemma 22 (composing projections with addition). For p, p′ ∈ De,

P (p+ p′) = Pp+ Pp′.

Lemma 23 (composing projection operators).

P ‖P u = P u, P uP ‖ = P ‖; P⊥P s = P⊥, P sP⊥ = P s; P⊥P u = P sP ‖ = 0.

Remark. Notice that typically P uP⊥ 6= 0, P ‖P s 6= 0.

Lemma 24 (composing projections with pushforwards).
f∗P

u = P uf∗ = P uf∗P
u, f∗P

s = P sf∗ = P sf∗P
s;

f∗P
‖ = P ‖f∗P

‖, P⊥f∗ = P⊥f∗P
⊥.

Here the projection P ’s are evaluated at suitable locations.

CHAPTER 6. FAST LINEAR RESPONSE ALGORITHM 109

Proof. The first three equalities are because of the invariance of stable and unstable subspace.
The last equality is because

P⊥f∗ = P⊥P sf∗ = P⊥P sf∗P
s = P⊥P sf∗P

sP⊥ = P⊥P sf∗P
⊥ = P⊥f∗P

⊥.

Lemma 25 (expressing P ‖ by inner products). For any p ∈ De,

P ‖p = 〈p, e〉 e

‖e‖2 ; P⊥p = p− 〈p, e〉 e

‖e‖2 .

Proof. For the first equation, since both sides are in ∧uV u, which is a one-dimensional
subspace, it suffices to prove the equation taken inner product with e, that is,

〈
P ‖p, e

〉
= 〈p, e〉 〈e, e〉

‖e‖2 = 〈p, e〉 .

Further adding
〈
P⊥p, e

〉
= 0 to the left proves this equality. The second equality is because

P⊥ + P ‖ = Id, hence P⊥p = p− P ‖p.

110

Bibliography

[1] Rafail V Abramov and Andrew J Majda. “Blended response algorithms for linear
fluctuation-dissipation for complex nonlinear dynamical systems”. In: Nonlinearity
20.12 (2007), pp. 2793–2821.

[2] D. V. Anosov. “Geodesic flows on closed Riemannian manifolds of negative curvature”.
In: Trudy Mat. Inst. Steklov. 90 (1967), pp. 1–235. url: http://mi.mathnet.ru/
tm2795.

[3] Wael Bahsoun et al. “A rigorous computational approach to linear response”. In:
Nonlinearity 31.3 (2018), pp. 1073–1109. issn: 13616544. doi: 10.1088/1361-6544/
aa9a88. arXiv: 1506.08661.

[4] Viviane Baladi. “Linear response, or else”. In: ICM Seoul 2014 Proceedings 3 (2014),
pp. 525–545. arXiv: 1408.2937. url: http://arxiv.org/abs/1408.2937.

[5] Giancarlo Benettin et al. “Lyapunov Characteristic Exponents for smooth dynamical
systems and for hamiltonian systems; A method for computing all of them. Part 2:
Numerical application”. In: Meccanica 15.1 (1980), pp. 21–30. issn: 1572-9648. doi:
10.1007/BF02128237. url: http://dx.doi.org/10.1007/BF02128237.

[6] Patrick Blonigan et al. “Toward a chaotic adjoint for LES”. In: Center for Turbulence
Research, Proceedings of the Summer Program. Stanford, 2016, pp. 385–394. arXiv:
arXiv:1702.06809v1.

[7] Patrick J Blonigan. “Adjoint sensitivity analysis of chaotic dynamical systems with
non-intrusive least squares shadowing”. In: Journal of Computational Physics 348
(2017), pp. 803–826. issn: 10902716. doi: 10.1016/j.jcp.2017.08.002.

[8] Patrick J. Blonigan. “Least Squares Shadowing for Sensitivity Analysis of Large Chaotic
Systems and Fluid Flows”. Ph.D thesis. MIT, 2016.

[9] Patrick J. Blonigan and Qiqi Wang. “Multiple shooting shadowing for sensitivity
analysis of chaotic dynamical systems”. In: Journal of Computational Physics 354
(2018), pp. 447–475. doi: 10.2514/6.2015-1534. arXiv: 1704.02047. url: http:
//arc.aiaa.org/doi/10.2514/6.2015-1534.

[10] Jo Bovy. Lyapunov exponents and strange attractors in discrete and continuous dynam-
ical systems. Tech. rep. KU Leuven University, Theoretical Physics Project, 2004.

http://mi.mathnet.ru/tm2795
http://mi.mathnet.ru/tm2795
https://doi.org/10.1088/1361-6544/aa9a88
https://doi.org/10.1088/1361-6544/aa9a88
https://arxiv.org/abs/1506.08661
https://arxiv.org/abs/1408.2937
http://arxiv.org/abs/1408.2937
https://doi.org/10.1007/BF02128237
http://dx.doi.org/10.1007/BF02128237
https://arxiv.org/abs/arXiv:1702.06809v1
https://doi.org/10.1016/j.jcp.2017.08.002
https://doi.org/10.2514/6.2015-1534
https://arxiv.org/abs/1704.02047
http://arc.aiaa.org/doi/10.2514/6.2015-1534
http://arc.aiaa.org/doi/10.2514/6.2015-1534

BIBLIOGRAPHY 111

[11] Rufus Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
Second revised edition. Springer, 2008, p. 83. isbn: 9783540776055.

[12] Rufus Bowen. “Markov Partitions for Axiom A Diffeomorphisms”. In: American Journal
of Mathematics 92.3 (1970), pp. 725–747. issn: 00029327. doi: 10.2307/2373370.

[13] Rufus Bowen and David Ruelle. “The ergodic theory of Axiom A flows”. In: Inventiones
Mathematicae 29.3 (1975), pp. 181–202. issn: 00209910. doi: 10.1007/BF01389848.

[14] Guillaume A Brès et al. “Unstructured Large-Eddy Simulations of Supersonic Jets”.
In: AIAA Journal 55.4 (Jan. 2017), pp. 1164–1184. issn: 0001-1452. doi: 10.2514/1.
J055084. url: https://doi.org/10.2514/1.J055084.

[15] Giulio Casati, Giorgio Comparin, and Italo Guarneri. “Decay of correlations in certain
hyperbolic systems”. In: Physical Review A 26.1 (1982), pp. 717–719. issn: 10502947.
doi: 10.1103/PhysRevA.26.717.

[16] Nisha Chandramoorthy and Qiqi Wang. “A computable realization of Ruelle’s formula
for linear response of statistics in chaotic systems”. In: arXiv:2002.04117 (2020). arXiv:
2002.04117. url: http://arxiv.org/abs/2002.04117.

[17] Nisha Chandramoorthy and Qiqi Wang. “Efficient computation of linear response of
chaotic attractors with one-dimensional unstable manifolds”. In: arXiv:2103.08816
(2021), pp. 1–40. arXiv: 2103.08816. url: http://arxiv.org/abs/2103.08816.

[18] Nisha Chandramoorthy et al. “Algorithmic differentiation of shadowing sensitivities in
chaotic systems”. In: SIAM Workshop on Combinatorial Scientific Computing. Bergen,
Norway, 2018, pp. 1–18.

[19] Nisha Chandramoorthy et al. “An Analysis of the Ensemble Adjoint Approach to
Sensitivity Analysis in Chaotic Systems”. In: 23rd AIAA Computational Fluid Dynamics
Conference, AIAA AVIATION Forum (AIAA 2017-3799). AIAA AVIATION Forum.
American Institute of Aeronautics and Astronautics, 2017, pp. 1–11. doi: doi:10.
2514/6.2017-3799. url: https://doi.org/10.2514/6.2017-3799.

[20] Mario Chater. “Least Squares Shadowing for Sensitivity Analysis of Chaotic Dynamical
Systems”. Master thesis. MIT, 2016.

[21] P. Collet and J.-P. Eckmann. “Liapunov Multipliers and Decay of Correlations in
Dynamical Systems”. In: Journal of Statistical Physics 115 (2004), pp. 217–254.

[22] Tim Colonius, Sanjiva K Lele, and Parviz Moin. “Boundary conditions for direct com-
putation of aerodynamic Sound Generation”. In: AIAA Journal 31.9 (1993), pp. 1574–
1582.

[23] P. Constantin et al. “Determining modes and fractal dimension of turbulent flows”. In:
Journal of Fluid Mechanics 150 (1985), pp. 427–440. issn: 14697645. doi: 10.1017/
S0022112085000209.

https://doi.org/10.2307/2373370
https://doi.org/10.1007/BF01389848
https://doi.org/10.2514/1.J055084
https://doi.org/10.2514/1.J055084
https://doi.org/10.2514/1.J055084
https://doi.org/10.1103/PhysRevA.26.717
https://arxiv.org/abs/2002.04117
http://arxiv.org/abs/2002.04117
https://arxiv.org/abs/2103.08816
http://arxiv.org/abs/2103.08816
https://doi.org/doi:10.2514/6.2017-3799
https://doi.org/doi:10.2514/6.2017-3799
https://doi.org/10.2514/6.2017-3799
https://doi.org/10.1017/S0022112085000209
https://doi.org/10.1017/S0022112085000209

BIBLIOGRAPHY 112

[24] James W. Cooley and John W. Tukey. “An Algorithm for the Machine Calculation of
Complex Fourier Series”. In: Mathematics of Computation 19.90 (1965), p. 297. issn:
00255718. doi: 10.2307/2003354.

[25] Richard Courant, Kurt Friedrichs, and H Lewy. “On the partial difference equations
of mathematical physics”. In: IBM Journal of Research and Development 11.2 (1967),
pp. 215–234. url: http://www.archive.org/details/onpartialdiffere00cour.

[26] Lesley De Cruz et al. “Exploring the Lyapunov instability properties of high-dimensional
atmospheric and climate models”. In: Nonlinear Processes in Geophysics 25.2 (2018),
pp. 387–412. issn: 16077946. doi: 10.5194/npg-25-387-2018. arXiv: arXiv:1712.
08242v2.

[27] Dmitry Dolgopyat. “On differentiability of SRB states for partially hyperbolic systems”.
In: Inventiones Mathematicae 155.2 (2004), pp. 389–449. issn: 00209910. doi: 10.1007/
s00222-003-0324-5.

[28] G L Eyink, T W N Haine, and D J Lea. “Ruelle’s linear response formula, ensemble
adjoint schemes and Lévy flights”. In: Nonlinearity 17.5 (2004), pp. 1867–1889.

[29] P. Fernandez and Q. Wang. “Lyapunov spectrum of the separated flow around the
NACA 0012 airfoil and its dependence on numerical discretization”. In: Journal of
Computational Physics 350 (2017), pp. 453–469. issn: 10902716. doi: 10.1016/j.jcp.
2017.08.056. arXiv: 1612.07409.

[30] Pablo Fernandez, Ngoc-Cuong Nguyen, and Jaime Peraire. “Subgrid-scale modeling
and implicit numerical dissipation in DG-based Large-Eddy Simulation”. In: 23rd
AIAA Computational Fluid Dynamics Conference, AIAA AVIATION Forum, (AIAA
2017-3951). Denver, Colorado, 2017, pp. 1–23. isbn: 978-1-62410-506-7. doi: 10.2514/
6.2017-3951. url: https://arc.aiaa.org/doi/10.2514/6.2017-3951.

[31] John Erik Fornœss and Estela A. Gavosto. “Existence of generic homoclinic tangencies
for henon mappings”. In: The Journal of Geometric Analysis 2.5 (1992), pp. 429–444.
issn: 10506926. doi: 10.1007/BF02921300.

[32] G Gallavotti. “Chaotic Hypothesis”. In: Scholarpedia 3(1):5906 3.1 (2008), pp. 8–11.
issn: 1941-6016. doi: 10.4249/scholarpedia.5906.

[33] G. Gallavotti and E. G D Cohen. “Dynamical ensembles in stationary states”. In:
Journal of Statistical Physics 80.5-6 (1995), pp. 931–970. issn: 00224715. doi: 10.1007/
BF02179860. arXiv: 9501015 [chao-dyn].

[34] E. Garnier, N. Adams, and P. Sagaut. Large Eddy Simulation for Compressible Flows.
Scientific Computation. Springer, 2009. isbn: 978-90-481-2818-1. doi: 10.1007/978-
90-481-2819-8. url: http://link.springer.com/10.1007/978-90-481-2819-8.

https://doi.org/10.2307/2003354
http://www.archive.org/details/onpartialdiffere00cour
https://doi.org/10.5194/npg-25-387-2018
https://arxiv.org/abs/arXiv:1712.08242v2
https://arxiv.org/abs/arXiv:1712.08242v2
https://doi.org/10.1007/s00222-003-0324-5
https://doi.org/10.1007/s00222-003-0324-5
https://doi.org/10.1016/j.jcp.2017.08.056
https://doi.org/10.1016/j.jcp.2017.08.056
https://arxiv.org/abs/1612.07409
https://doi.org/10.2514/6.2017-3951
https://doi.org/10.2514/6.2017-3951
https://arc.aiaa.org/doi/10.2514/6.2017-3951
https://doi.org/10.1007/BF02921300
https://doi.org/10.4249/scholarpedia.5906
https://doi.org/10.1007/BF02179860
https://doi.org/10.1007/BF02179860
https://arxiv.org/abs/9501015
https://doi.org/10.1007/978-90-481-2819-8
https://doi.org/10.1007/978-90-481-2819-8
http://link.springer.com/10.1007/978-90-481-2819-8

BIBLIOGRAPHY 113

[35] Francesco Ginelli et al. “Covariant Lyapunov vectors”. In: Journal of Physics A:
Mathematical and Theoretical 46.25 (2013), p. 254005. issn: 1751-8121. doi: 10.1088/
1751-8113/46/25/254005. arXiv: arXiv:1212.3961v1. url: http://iopscience.
iop.org/1751- 8121/46/25/254005%5Cnhttp://iopscience.iop.org/1751-
8121/46/25/254005/pdf/1751-8121_46_25_254005.pdf.

[36] L. Greengard and V. Rokhlin. “A fast algorithm for particle simulations”. In: Journal
of Computational Physics 135.2 (1987), pp. 280–292. issn: 00219991. doi: 10.1006/
jcph.1997.5706.

[37] Leslie Greengard and John Strain. “The Fast Gauss Transform”. In: SIAM Journal
on Scientific and Statistical Computing 12.1 (1991), pp. 79–94. issn: 0196-5204. doi:
10.1137/0912004.

[38] Andrey Gritsun and Valerio Lucarini. “Fluctuations, response, and resonances in a
simple atmospheric model”. In: Physica D: Nonlinear Phenomena 349 (2017), pp. 62–76.
issn: 01672789. doi: 10.1016/j.physd.2017.02.015. arXiv: 1604.04386. url:
http://dx.doi.org/10.1016/j.physd.2017.02.015.

[39] Stefanie Günther, Nicolas R. Gauger, and Qiqi Wang. “A framework for simultaneous
aerodynamic design optimization in the presence of chaos”. In: Journal of Computational
Physics 328 (2017), pp. 387–398. issn: 10902716. doi: 10.1016/j.jcp.2016.10.043.

[40] Morris W. Hirsch, Charles C. Pugh, and Michael Shub. Invariant Manifolds. Lecture
Notes in Mathematics. Berlin: Springer, 1977, p. 150. doi: 10.1142/9789812798749_
0005.

[41] Francisco Huhn and Luca Magri. “Stability, sensitivity and optimisation of chaotic
acoustic oscillations”. In: Journal of Fluid Mechanics 882 (2020). issn: 0022-1120. doi:
10.1017/jfm.2019.828. arXiv: 1909.12979.

[42] Miaohua Jiang. “Differentiating potential functions of SRB measures on hyperbolic
attractors”. In: Ergodic Theory and Dynamical Systems 32.4 (2012), pp. 1350–1369.
issn: 01433857. doi: 10.1017/S0143385711000241.

[43] A B Katok and B A Hasselblatt. Introduction to the Modern Theory of Dynamical Sys-
tems. Vol. 54. Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 1997, pp. 1–824. isbn: 9780521575577. url: http://books.google.ie/books?
id=9nL7ZX8Djp4C.

[44] Pavel V. Kuptsov and Ulrich Parlitz. “Theory and computation of covariant lyapunov
vectors”. In: Journal of Nonlinear Science 22.5 (2012), pp. 727–762. issn: 09388974.
doi: 10.1007/s00332-012-9126-5. arXiv: 1105.5228.

[45] L. D. LANDAU and E. M. LIFSHITZ. Fluid mechanics. Addison-Wesley, 1959. isbn:
0891166718.

[46] Davide Lasagna, Ati Sharma, and Johan Meyers. “Periodic shadowing sensitivity
analysis of chaotic systems”. In: Journal of Computational Physics 391 (2019), pp. 119–
141. issn: 10902716. doi: 10.1016/j.jcp.2019.04.021. arXiv: 1806.02077.

https://doi.org/10.1088/1751-8113/46/25/254005
https://doi.org/10.1088/1751-8113/46/25/254005
https://arxiv.org/abs/arXiv:1212.3961v1
http://iopscience.iop.org/1751-8121/46/25/254005%5Cnhttp://iopscience.iop.org/1751-8121/46/25/254005/pdf/1751-8121_46_25_254005.pdf
http://iopscience.iop.org/1751-8121/46/25/254005%5Cnhttp://iopscience.iop.org/1751-8121/46/25/254005/pdf/1751-8121_46_25_254005.pdf
http://iopscience.iop.org/1751-8121/46/25/254005%5Cnhttp://iopscience.iop.org/1751-8121/46/25/254005/pdf/1751-8121_46_25_254005.pdf
https://doi.org/10.1006/jcph.1997.5706
https://doi.org/10.1006/jcph.1997.5706
https://doi.org/10.1137/0912004
https://doi.org/10.1016/j.physd.2017.02.015
https://arxiv.org/abs/1604.04386
http://dx.doi.org/10.1016/j.physd.2017.02.015
https://doi.org/10.1016/j.jcp.2016.10.043
https://doi.org/10.1142/9789812798749_0005
https://doi.org/10.1142/9789812798749_0005
https://doi.org/10.1017/jfm.2019.828
https://arxiv.org/abs/1909.12979
https://doi.org/10.1017/S0143385711000241
http://books.google.ie/books?id=9nL7ZX8Djp4C
http://books.google.ie/books?id=9nL7ZX8Djp4C
https://doi.org/10.1007/s00332-012-9126-5
https://arxiv.org/abs/1105.5228
https://doi.org/10.1016/j.jcp.2019.04.021
https://arxiv.org/abs/1806.02077

BIBLIOGRAPHY 114

[47] D J Lea, M R Allen, and T W N Haine. “Sensitivity analysis of the climate of a
chaotic system”. In: Tellus Series a-Dynamic Meteorology and Oceanography 52.5
(2000), pp. 523–532. issn: 1477870X. doi: 10.1256/qj.01.180.

[48] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2002. isbn: 9780511791253. doi: 10 . 1017 / CBO9780511791253.
arXiv: 9809069v1 [arXiv:gr-qc]. url: http://ebooks.cambridge.org/ref/id/
CBO9780511791253.

[49] Valerio Lucarini, Francesco Ragone, and Frank Lunkeit. “Predicting Climate Change
Using Response Theory: Global Averages and Spatial Patterns”. In: Journal of Statistical
Physics 166.3-4 (2017), pp. 1036–1064. issn: 00224715. doi: 10.1007/s10955-016-
1506-z. arXiv: 1512.06542.

[50] Colin Barr Macdonald. “Constructing High-Order Runge-Kutta Methods with Embed-
ded Strong-Stability-Preserving Pairs”. PhD thesis. Simon Fraser University, 2003.

[51] Rajat Mittal and S. Balachandar. “Direct Numerical Simulation of Flow Past Elliptic
Cylinders”. In: Journal of Computational Physics 367.124 (1996), pp. 351–367. url:
http://linkinghub.elsevier.com/retrieve/pii/S0021999196900650.

[52] Chin-Hoh Moeng and John C. Wyngaard. “Evaluation of Turbulent Transport and
Dissipation Closures in Second-Order Modeling”. In: Journal of the Atmospheric Sci-
ences 46.14 (1989), pp. 2311–2330. issn: 0022-4928. doi: 10.1175/1520-0469(1989)
046<2311:EOTTAD>2.0.CO;2. url: http://journals.ametsoc.org/doi/abs/10.
1175/1520-0469%281989%29046%3C2311%3AEOTTAD%3E2.0.CO%3B2.

[53] David D. Morrison, James D. Riley, and John F. Zancanaro. “Multiple shooting method
for two-point boundary value problems”. In: Communications of the ACM 5.12 (1962),
pp. 613–614. issn: 15577317. doi: 10.1145/355580.369128.

[54] Angxiu Ni. “Adjoint shadowing directions in hyperbolic systems for sensitivity analysis”.
In: arXiv:1807.05568 (2018), pp. 1–23.

[55] Angxiu Ni. “Approximating linear response by non-intrusive shadowing algorithms”.
In: https://arxiv.org/abs/2003.09801 (2020), pp. 1–12.

[56] Angxiu Ni. “Fast linear response algorithm for differentiating stationary measures of
chaos”. In: arXiv:2009.00595 (2020), pp. 1–28.

[57] Angxiu Ni. “Hyperbolicity, shadowing directions and sensitivity analysis of a turbulent
three-dimensional flow”. In: Journal of Fluid Mechanics 863 (2019), pp. 644–669.

[58] Angxiu Ni and Chaitanya Talnikar. “Adjoint sensitivity analysis on chaotic dynamical
systems by Non-Intrusive Least Squares Adjoint Shadowing (NILSAS)”. In: Journal of
Computational Physics 395 (2019), pp. 690–709. doi: https://doi.org/10.1016/j.
jcp.2019.06.035.

https://doi.org/10.1256/qj.01.180
https://doi.org/10.1017/CBO9780511791253
https://arxiv.org/abs/9809069v1
http://ebooks.cambridge.org/ref/id/CBO9780511791253
http://ebooks.cambridge.org/ref/id/CBO9780511791253
https://doi.org/10.1007/s10955-016-1506-z
https://doi.org/10.1007/s10955-016-1506-z
https://arxiv.org/abs/1512.06542
http://linkinghub.elsevier.com/retrieve/pii/S0021999196900650
https://doi.org/10.1175/1520-0469(1989)046<2311:EOTTAD>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<2311:EOTTAD>2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281989%29046%3C2311%3AEOTTAD%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281989%29046%3C2311%3AEOTTAD%3E2.0.CO%3B2
https://doi.org/10.1145/355580.369128
https://doi.org/https://doi.org/10.1016/j.jcp.2019.06.035
https://doi.org/https://doi.org/10.1016/j.jcp.2019.06.035

BIBLIOGRAPHY 115

[59] Angxiu Ni and Qiqi Wang. “Sensitivity analysis on chaotic dynamical systems by Non-
Intrusive Least Squares Shadowing (NILSS)”. In: Journal of Computational Physics
347 (2017), pp. 56–77. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.
2017.06.033. url: http://www.sciencedirect.com/science/article/pii/
S0021999117304783.

[60] Angxiu Ni et al. “Sensitivity analysis on chaotic dynamical system by Non-Intrusive
Least Square Shadowing (NI-LSS)”. In: 46th AIAA Fluid Dynamics Conference, AIAA
AVIATION Forum (AIAA 2016-4399). American Institute of Aeronautics and As-
tronautics, June 2016, pp. 1–16. doi: doi:10.2514/6.2016- 4399. url: https:
//doi.org/10.2514/6.2016-4399.

[61] Angxiu Ni et al. “Sensitivity analysis on chaotic dynamical systems by Finite Difference
Non-Intrusive Least Squares Shadowing (FD-NILSS)”. In: Journal of Computational
Physics 394 (2019), pp. 615–631. doi: https://doi.org/10.1016/j.jcp.2019.06.
004.

[62] Todd A. Oliver et al. “Estimating uncertainties in statistics computed from direct
numerical simulation”. In: Physics of Fluids 26.3 (2014), p. 035101. issn: 10897666.
doi: 10.1063/1.4866813. arXiv: 1311.0828.

[63] S. Yu Pilyugin. “Shadowing in Structurally Stable Flows”. In: Journal of Differential
Equations 140.2 (1997), pp. 238–265. issn: 00220396. doi: 10.1006/jdeq.1997.3295.

[64] T J Poinsot and S K Lelef. “Boundary conditions for direct simulations of compressible
viscous flows”. In: Journal of Computational Physics 101.1 (1992), pp. 104–129. issn:
0021-9991. doi: http : / / dx . doi . org / 10 . 1016 / 0021 - 9991(92) 90046 - 2. url:
http://www.sciencedirect.com/science/article/pii/0021999192900462.

[65] Enrique R. Pujals and Martín Sambarino. “Homoclinic tangencies and hyperbolicity
for surface diffeomorphisms”. In: Annals of Mathematics 151.3 (2000), pp. 961–1023.
issn: 0003486X. doi: 10.2307/121127. arXiv: 0005303 [math].

[66] P. Roe. “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes”.
In: Journal of Computational Physics 43 (1981), pp. 357–372.

[67] Anatol Roshko. “Experiments on the flow past a circular cylinder at very high Reynolds
number”. In: Journal of Fluid Mechanics 10.3 (1961), pp. 345–356. issn: 14697645.
doi: 10.1017/S0022112061000950. url: http://www.journals.cambridge.org/
abstract_S0022112061000950.

[68] David Ruelle. “Differentiation of SRB States”. In: Commun. Math. Phys 187 (1997),
pp. 227–241.

[69] David Ruelle. “Differentiation of SRB states for hyperbolic flows”. In: Ergodic Theory
and Dynamical Systems 28.02 (2008), pp. 613–631.

[70] David Ruelle. “Differentiation of SRB States: Correction and Complements”. In: Com-
munications in Mathematical Physics (2003), pp. 185–190.

https://doi.org/https://doi.org/10.1016/j.jcp.2017.06.033
https://doi.org/https://doi.org/10.1016/j.jcp.2017.06.033
http://www.sciencedirect.com/science/article/pii/S0021999117304783
http://www.sciencedirect.com/science/article/pii/S0021999117304783
https://doi.org/doi:10.2514/6.2016-4399
https://doi.org/10.2514/6.2016-4399
https://doi.org/10.2514/6.2016-4399
https://doi.org/https://doi.org/10.1016/j.jcp.2019.06.004
https://doi.org/https://doi.org/10.1016/j.jcp.2019.06.004
https://doi.org/10.1063/1.4866813
https://arxiv.org/abs/1311.0828
https://doi.org/10.1006/jdeq.1997.3295
https://doi.org/http://dx.doi.org/10.1016/0021-9991(92)90046-2
http://www.sciencedirect.com/science/article/pii/0021999192900462
https://doi.org/10.2307/121127
https://arxiv.org/abs/0005303
https://doi.org/10.1017/S0022112061000950
http://www.journals.cambridge.org/abstract_S0022112061000950
http://www.journals.cambridge.org/abstract_S0022112061000950

BIBLIOGRAPHY 116

[71] David Ruelle. Elements of Differentiable Dynamics and Bifurcation Theory. San Diego:
Academic Press, 1989. doi: 10.1016/c2013-0-11426-2.

[72] Manuel Santos Gutiérrez and Valerio Lucarini. “Response and Sensitivity Using Markov
Chains”. In: Journal of Statistical Physics 179.5-6 (2020), pp. 1572–1593. issn: 15729613.
doi: 10.1007/s10955-020-02504-4. arXiv: 1907.12881.

[73] Karim Shawki and George Papadakis. “A preconditioned multiple shooting shadowing
algorithm for the sensitivity analysis of chaotic systems”. In: Journal of Computational
Physics 398 (2019), p. 108861. issn: 23318422.

[74] Yukiko S. Shimizu and Krzysztof J. Fidkowski. “Output-based error estimation for
chaotic flows using reduced-order modeling”. In: AIAA Aerospace Sciences Meeting,
2018 210059 (2018). doi: 10.2514/6.2018-0826.

[75] Michael Shub. Global Stability of Dynamical Systems. Berlin: Springer, 1987. isbn:
9781441930798. doi: 10.1007/978-1-4757-1947-5.

[76] Adam A. Sliwiak, Nisha Chandramoorthy, and Qiqi Wang. “Ergodic sensitivity analysis
of one-dimensional chaotic maps”. In: Theoretical and Applied Mechanics Letters 10
(2020), pp. 438–447. issn: 23318422.

[77] S. Smale. “Differentiable Dynamical Systems”. In: Bull. Amer. Math. Soc. 73 (1967),
pp. 747–817. doi: 10.1016/b978-0-12-601710-6.50004-3.

[78] Chaitanya Talnikar and Qiqi Wang. “A two-level computational graph method for
the adjoint of a finite volume based compressible unsteady flow solver”. In: Parallel
Computing 81 (2019), pp. 68–84. issn: 0167-8191. doi: 10.1016/j.parco.2018.12.001.

[79] Chaitanya Talnikar et al. “Optimization with LES – algorithms for dealing with
sampling error of turbulence statistics”. In: 53rd AIAA Aerospace Sciences Meeting,
AIAA SciTech Forum, (AIAA 2015-1954). Kissimmee, Florida, 2015, pp. 1–11.

[80] D. J. Tritton. “Experiments on the flow past a circular cylinder at low Reynolds
numbers”. In: Journal of Fluid Mechanics 6.4 (1959), pp. 547–567. issn: 1469-7645.
doi: 10.1017/S0022112059000829. url: http://journals.cambridge.org/action/
displayAbstract?fromPage=online&aid=367814.

[81] H. K. Versteeg and W. Malaskekera. An Introduction to Computational Fluid Dynamics:
The Finite Volume Method. Pearson, 1995, p. 517. isbn: 0-470-23515-2. doi: 10.2514/
1.22547. arXiv: arXiv:1011.1669v3.

[82] Qiqi Wang. “Convergence of the Least Squares Shadowing Method for Computing
Derivative of Ergodic Averages”. In: SIAM Journal on Numerical Analysis 52.1 (2014),
pp. 156–170. issn: 0036-1429. doi: 10.1137/130917065. arXiv: arXiv:1304.3635v7.
url: http://epubs.siam.org/doi/abs/10.1137/130917065%5Cnpapers3://
publication/doi/10.1137/130917065.

[83] C. Wieselsberger. “New data on the laws of fluid resistance”. In: Physikalische Zeitscrift
22 (1921), pp. 321–328. issn: 1356-9783. doi: 10.1080/1356978042000185885.

https://doi.org/10.1016/c2013-0-11426-2
https://doi.org/10.1007/s10955-020-02504-4
https://arxiv.org/abs/1907.12881
https://doi.org/10.2514/6.2018-0826
https://doi.org/10.1007/978-1-4757-1947-5
https://doi.org/10.1016/b978-0-12-601710-6.50004-3
https://doi.org/10.1016/j.parco.2018.12.001
https://doi.org/10.1017/S0022112059000829
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=367814
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=367814
https://doi.org/10.2514/1.22547
https://doi.org/10.2514/1.22547
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1137/130917065
https://arxiv.org/abs/arXiv:1304.3635v7
http://epubs.siam.org/doi/abs/10.1137/130917065%5Cnpapers3://publication/doi/10.1137/130917065
http://epubs.siam.org/doi/abs/10.1137/130917065%5Cnpapers3://publication/doi/10.1137/130917065
https://doi.org/10.1080/1356978042000185885

BIBLIOGRAPHY 117

[84] C. H. K. Williamson and A. Roshko. “Measurements of base pressure in the wake
of a cylinder at low Reynolds numbers”. In: Zeitschrift fur Flugwissenschaften und
Weltraumforschung 14 (1990), pp. 38–46.

[85] Caroline L. Wormell and Georg A. Gottwald. “Linear response for macroscopic ob-
servables in high-dimensional systems”. In: Chaos 29.11 (2019). issn: 10541500. doi:
10.1063/1.5122740.

[86] Lai-Sang Young. “Ergodic Theory of Differentiable Dynamical Systems”. In: Real and
Complex Dynamical Systems (1995), pp. 293–336. doi: 10.1007/978-94-015-8439-
5_12.

[87] Lai-Sang Young. “What are SRB measures, and which dynamical systems have them?”
In: Journal of Statistical Physics 108.5 (2002), pp. 733–754.

https://doi.org/10.1063/1.5122740
https://doi.org/10.1007/978-94-015-8439-5_12
https://doi.org/10.1007/978-94-015-8439-5_12

	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Hyperbolicity and notations
	Review of linear response formula
	Shadowing direction and non-intrusive shadowing algorithm
	Continuous-time systems

	Approximate linear response by shadowing
	Notations
	Approximating linear response by shadowing
	Convergence of non-intrusive shadowing
	Conclusions

	Finite-difference non-intrusive shadowing
	Deriving finite-difference shadowing
	Finite-difference shadowing algorithm
	Application on a turbulent three-dimensional flow over a cylinder
	Conclusions

	Non-intrusive adjoint shadowing
	Review on adjoint flow and adjoint shadowing
	Deriving non-intrusive adjoint shadowing algorithm
	The non-intrusive adjoint shadowing algorithm
	Applications
	Conclusions
	Appendix

	Fast linear response algorithm
	Expanding unstable divergence
	Fast characterization of unstable divergence
	Fast linear response algorithm
	A numerical example
	Appendix

	Bibliography

