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Abstract

To understand multifactorial conditions such as Alzheimer’s disease (AD) we need brain 

signatures that predict the impact of multiple pathologies and their interactions. To help uncover 

the relationships between pathology affected brain circuits and cognitive markers we have used 

mouse models that represent, at least in part, the complex interactions altered in AD, while being 

raised in uniform environments and with known genotype alterations. In particular, we aimed to 

understand the relationship between vulnerable brain circuits and memory deficits measured in the 

Morris water maze, and we tested several predictive modeling approaches. We used in vivo 
manganese enhanced MRI traditional voxel based analyses to reveal regional differences in 

volume (morphometry), signal intensity (activity), and magnetic susceptibility (iron deposition, 

demyelination). These regions included hippocampus, olfactory areas, entorhinal cortex and 

cerebellum, as well as the frontal association area. The properties of these regions, extracted from 

each of the imaging markers, were used to predict spatial memory. We next used eigenanatomy, 

which reduces dimensionality to produce sets of regions that explain the variance in the data. For 

each imaging marker, eigenanatomy revealed networks underpinning a range of cognitive 
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functions including memory, motor function, and associative learning, allowing the detection of 

associations between context, location, and responses. Finally, the integration of multivariate 

markers in a supervised sparse canonical correlation approach outperformed single predictor 

models and had significant correlates to spatial memory. Among a priori selected regions, 

expected to play a role in memory dysfunction, the fornix also provided good predictors, raising 

the possibility of investigating how disease propagation within brain networks leads to cognitive 

deterioration. Our cross-sectional results support that modeling approaches integrating multivariate 

imaging markers provide sensitive predictors of AD-like behaviors. Such strategies for mapping 

brain circuits responsible for behaviors may help in the future predict disease progression, or 

response to interventions.

Keywords

Alzheimer’s Disease; Behavior; Magnetic Resonance Imaging; Memory; Mouse Models; 
Multivariate Analysis; Predictive Modeling; Biomarkers

1. Introduction

A key question in Alzheimer’s disease (AD) research is how pathology differentially and 

sequentially affects vulnerable brain circuits, thereby giving rise to behavioral changes. 

Although critically important, detailed descriptions of interactions between genes and 

structural and functional phenotypes are poorly described. However, these interactions 

dictate the vulnerability for cognitive dysfunction in the context of aging and AD related 

pathologies. Investigating the circuits and mechanisms underlying cognitive dysfunction is 

important for understanding what triggers the switch from normal aging to AD, what 

predicts rates of disease progression, and how patient-specific therapeutic strategies may be 

developed [1]. Therapies for neurodegeneration have been directed to individual targets, 

such as altered synaptic transmission, amyloid deposition, or abnormal tau phosphorylation - 

all well-demonstrated pathologies in AD [2] [3]. Additional factors, such as cardio vascular 

status [4] [5], insulin resistance [6], and diabetes [7] may also influence cognition [4]. 

Importantly, neuro-immunological mechanisms, interacting with systemic inflammatory 

mediators and obesity, are thought to also modulate AD pathology [5, 8, 9]. Since attacking 

AD pathologies separately has not yet provided effective strategies for prevention or 

reduction of cognitive damage, we need models that provide an integrated view of how 

multiple variables and risk factors contribute to system wide dysfunction. We currently lack 

the quantitative integrative models required to understand multifactorial conditions.

To help understand the causative links between the biological and cognitive substrates 

typical of AD, it is helpful to conceptualize the brain as a set of interacting regions forming 

a spatially distributed network [10]. Structural networks integrate effects from changes 

occurring at different scales (synapse, cells, circuits), which in turn modulate the properties 

of functional networks. Several large-scale networks have been mapped in the brain and 

characterized by distinct functional profiles, such as sensory perception, movement, 

attention and cognition [11] [12]. However, it is not well understood how brain sub-networks 

map to the cognitive domain. Understanding these relationships in the normal brain, and 
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their alterations in disease may inform on the mechanisms underlying mild cognitive 

impairment (MCI) or dementias such as AD [13].

One strategy to help understand how circuits influence behavior is to link imaging to the 

clinical AD cognitive phenotypes. The progressive loss of cognitive memory is commonly 

diagnosed using tests such as the Mini–Mental State Examination (MMSE) [14], the 

Montreal Cognitive Assessment [15], and others [16]. Clinical populations of individuals 

diagnosed with AD have shown overlaps in the patterns of gray matter atrophy [17], Aß 

distribution [18], and axonal density changes [19], but there are also marked differences in 

brain atrophy [20] or tau pathology distribution [21]. Such differences may relate to 

population heterogeneity in terms of genetics, disease stage, or comorbidities. An alternative 

hypothesis to explore AD etiology is based on selective vulnerability of cells and axonal 

pathways favoring disease propagation. Imaging can provide in vivo biomarkers [22] [23] 

that are related to pathology as observed ex vivo, or to functional changes. To successfully 

link imaging to clinical phenotypes, we need to develop integrative models that explain the 

initiation, potentiation, and propagation of selective vulnerability in cells and networks that 

underlie AD processes, in relation to risk factors.

Neuroimaging approaches to map brain levels of behavioral descriptors have traditionally 

used voxel based statistical analyses (VBA) of deformation fields, structural and functional 

connectivity maps, vascular perfusion, or amyloid deposition and tau maps. But statistical 

approaches that pursue a dichotomous strategy, and aim to separate data according to image 

features do not necessarily explain the behavioral changes, nor do they disclose the 

biological processes underlying them. More recently predictive modeling approaches have 

been proposed to provide statistically relevant imaging correlates of memory changes 

spanning a continuum range, as observed in AD [24] [25] [26].

In this study, we have used a mouse model of AD to develop such predictive approaches. 

Mice provide tools for dissecting the contributions of genes on circuits and behavior. In 

particular, they provide homogenous populations, and can be tightly controlled for genetic 

and environmental factors, thus simplifying the problem of mapping brain circuits 

responsible for behavior. To establish and test a novel integrative predictive modeling 

approach one could choose among multiple mouse models. Most traditional models replicate 

one of the AD hallmarks (amyloid plaques, or tau tangles), but do not fully reflect the 

complex biology of AD. These transgenic mice express mutated APP [27] or PSEN1 [28], 

and the combination of mutations may accelerate and enhance the phenotype [29]. However, 

humans do not overexpress APP or PSEN1 to the same levels as in mice, and the role of beta 

amyloid deposition has not been fully clarified. More recently, models which also express 

hyperphosphorylated tau have been generated [30]. Still, most transgenic models fail to 

replicate other phenotypes seen in human AD, including neurodegeneration [31] [32]. 

Models of late onset, or sporadic AD are based on the genetic risk conferred by the presence 

of APOE4 alleles [33] [34] [35]. These models, while very promising in their ability to help 

us understand the etiology and progression of AD, require long times to express phenotypes, 

including behavioral deficits. None of these models addresses the differences between the 

mouse and the human innate immune systems, and the potentially important role of 

microglia in the development of AD [36]. For example the nitric oxide levels produced by 
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immune activation of the NOS2 gene mouse are much higher than in humans [37]. In the 

APPSwDI+/+/mNos2−/− (CVN-AD) strain [38, 39], mNos2 deletion makes the immune 

responses more similar. In conjunction with the Swedish, Dutch and Iowa mutations, this 

promotes an AD-like background required for studying the underlying mechanisms of 

pathological regional vulnerability. CVN-AD mice replicate multiple AD pathologies, 

including amyloid and tau deposition, neuronal loss, altered microglial activity with typical 

AD-like inflammatory patterns and deficits in memory and learning [38, 40] [41] [37] [42] 

[43]. The appearance of cognitive deficits with aging in this strain mimics processes in 

humans with AD and can be assessed using the Morris water maze test. This behavioral test 

is commonly used to quantify the loss of spatial learning and memory in animal models of 

aging and AD [44, 45].

To map behavioral changes to specific brain regions and networks we have used in vivo 
manganese enhanced MRI (MEMRI). Manganese ions (Mn2+) are paramagnetic and induce 

T1 shortening [46], enhancing tissue contrast [47]. Mn2+ has also been used to characterize 

trans-synaptic connectivity and axonal transport properties in rodents [48, 49] [50]. 

Importantly, Mn2+ enters neural cells via voltage gated calcium channels and vesicular 

reuptake, presenting an alternative for task based fMRI in rodents [51] [52], while 

alleviating limitations due to the types of tasks that animals can perform in the magnet, or to 

anesthesia [53]. These strategies to characterize brain structure and function in CVN-AD 

mice in relation to age matched controls can identify vulnerable brain circuits responsible 

for behaviors typical of AD.

To identify vulnerable regions and networks that predict deficits in memory and learning, we 

used an integrative approach that was not linked to a single identified neuropathological 

mechanism, but was reflective of multiple concomitant factors. We evaluated how traditional 

mass-univariate analyses can predict behavior dysfunction, and followed with a multivariate 

approach involving dimensionality reduction. Eigenanatomy, a sparse dimensionality 

reduction method, was incorporated to extract brain regions responsible for changes in 

morphometry, signal intensity due to Mn2+ uptake (reflective of brain activity), and 

magnetic susceptibility (reflective of altered iron homeostasis and conducive to oxidative 

stress and inflammation) [54] [55]. However, these methods analyzed individual biomarkers 

separately. We have employed both a data-driven as well as a hypothesis-driven approach to 

associate imaging phenotypes with behavioral markers for cognitive status and to identify 

circuits vulnerable to AD like pathology. Eigenanatomy produced candidate regions and 

circuits, and we selected regions that appeared important based on one or more biomarkers, 

and confirmed by previous studies as relevant to AD. To predict cognitive dysfunction based 

on in vivo multivariate imaging markers we used sparse canonical correlation analysis 

(SCCA) [56, 57]. SCCA selects regions so to maximize correlation among imaging and 

cognitive measures, in a supervised approach. The result is a network of regions that 

underlie changes in cognition, incorporated in a multivariate analysis. Our results provide 

insight into the relationships between structural networks and cognitive function in animal 

models of AD, supporting the value of multivariate approaches for humans with AD.
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2. Materials and Methods

To test the hypothesis that we can identify vulnerable brain circuits involved in behaviors 

where aged mouse models for Alzheimer’s disease (AD) differ relative to their age matched 

controls, we used in vivo multivariate magnetic resonance imaging (MRI) and the Morris 

water maze test for spatial memory. Our strategy examined each biomarker at a time, as well 

as an integrative predictive modeling framework.

2.1 Animals

The study was conducted under protocols approved by the Duke IACUC. CVN-AD 

(APPSwDI/mNos2−/−) (11 mice) and mNos2−/− controls (13 mice), aged 75. 9 ± 4.4 weeks 

were handled and acclimated to water for 5 days. To contrast AD like phenotypes in CVN-

AD mice we compared them to mNos2−/− mice, which we found to perform similarly to WT 

mice [42], and WT mice were not included in the present experiment. Mice were then 

implanted with Alzet 1007D minipumps (Durect Corp, Cupertino, CA), containing 100 μl of 

64 μm/μl MnCl2*4(H2O) (Sigma Aldrich, St Louis, MO), in 100 mmol bicine (Sigma-

Aldrich, St Louis, MO). Animals were acclimated for 3 days following pump implantation, 

before behavioral testing. A summary of the experimental design is shown in Fig. 1.

2.2 Behavioral Testing

To test spatial memory which declines in AD, we used the hidden platform Morris water 

maze. For 5 days, mice received 4 trials a day (of maximum 60 s each), in trial pairs (60 s 

between trials) separated by 60 min intervals. Probe trials were run 60 minutes after the last 

trial on days 3 and 5. Swim time and distance were measured using Ethovision (Noldus 

Information Technology, Blacksburg, VA). Statistical analysis used SPSS (IBM, Armonk, 

NY), and included a repeated measure ANOVA, followed by Bonferroni corrected posthoc 

tests. A p-value < 0.05 was considered significant.

2.3 Imaging

In vivo imaging was done using a 7 T, 20-cm bore Bruker BioSpec 70/20 USR magnet 

(Bruker Biospin, Billerica, MA), interfaced to an Avance III console. The scanner has 

actively shielded gradients with integrated shims. The 198/114 mm outer/inner diameter 

insert gradient coil can supply 440 mT/m, at a slew rate of 3440 T/m/s, and rise time of 110 

μs. We used a quadrature radio frequency transmit-receive cryogenic coil.

Two protocols were used to image the mouse brain at 100 μm resolution. To quantify 

morphometric changes and manganese uptake we used a T1-weighted (T1w) Rapid Imaging 

with Refocused Echoes (RARE) sequence with field of view (FOV) 2×2×1 cm, matrix 

200×200×100, number of excitations (NEX) =2, BW =100 kHz, min echo time (TE) =10.3 

ms, effective echo time TEeff=20.6 ms, repetition time TR =150 ms, echo spacing 10.3 ms, 

RARE partitions 4, acquired in 23 min. To estimate quantitative susceptibility maps we used 

a multi echo gradient recalled echo (mGRE) with field of view (FOV) 1.92×1.92×0.9; matrix 

192×192×90, 8 echoes with spacing of 5.5 ms, number of excitation (NEX) =1, 1st echo 

time (TE1) =3.9 ms; repetition time (TR) =100 ms, flip =30°, bandwidth (BW)=62.5 kHz, 

respiratory gated, acquired in ~30–40 mins.
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To ensure reproducible positioning, mice were restrained in a cradle equipped with ear bars, 

and a nose cone for isoflurane delivery (1.5±1%). Animals were monitored throughout the 

experiment, temperature and respiratory rate being maintained at physiological levels (37°C, 

70–110/min) by circulating warm water under the cradle, and adjusting the anesthesia level.

2.4 Image Preprocessing

Images were bias field corrected [58], skull stripped [59], and the resulting brain masks were 

manually edited. All brain images were rigidly aligned into the Waxholm space [60], and 

averaged to create a minimum deformation template [61] [62]. The template was labeled 

with a set of 332 regions, symmetric for the left and right hemispheres [63], defined on a 

single mouse brain [64]. To estimate morphometric differences, we used the log-transformed 

Jacobian determinants of the deformation fields (logJAC), mapping individual brains to the 

average. This enables comparisons with a symmetric distribution, with the same prior 

probability for shrinkage or expansion [65]. We used the T1-weighted images, where the 

voxel intensity reflects Mn2+ uptake, which happens at least partly through calcium 

channels, to provide estimates of neuronal activity independently of hemodynamic activity 

[66]. Average T1-weighted manganese enhanced MRI (T1wMEMRI) voxel values for each 

mouse brain were normalized to a reference brain value. We calculated quantitative 

susceptibility maps (QSM) sensitive to iron, amyloid accumulation, and myelin using STI 

Suite [67]. Susceptibility values were directly used for comparison without referencing to 

any selected region of interest, which essentially sets the susceptibility reference to the mean 

susceptibility of the whole structure within the FOV. STI Suite uses a Laplacian-based 

method to unwrap the phase, after which the background is eliminated using vSHARP [68]. 

The corrected phase images were combined, weighting the two channels. We used a two-

step streaking artifact reduction regularized reconstruction (STAR-QSM) [69], which 

optimally weighs data consistency and smoothness for both high and low susceptibility 

variations.

2.5 Voxel Based Analysis

All three contrast images (log Jacobian, normalized T1-weighted RARE, and QSM) were 

mapped into the space of the minimum deformation template, and smoothed with a 200 μm 

kernel. This kernel was selected to highlight the scale of features at which we expect to 

detect pathology-related differences across these MRI-based measurements. The Statistical 

Parametric Mapping SPM toolbox, version 12 [70] was used with voxel-wise false discovery 

rate correction.

2.6 Eigenanatomy

We hypothesized that eigenanatomy [25], a sparse dimensionality reduction technique, will 

confer increased power to detect differences between genotypes. The method approximates 

an eigen decomposition of an image set with spatial basis functions (eigenanatomy vectors) 

that are unsigned, sparse, and anatomically clustered. We employed the eigenanatomy 

vectors as anatomical and functional imaging predictors. We leveraged the technique in two 

stages: first, to reduce the dimensionality in an unsupervised setting; second, to perform a 

supervised regression within the setting of cross-validation.
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The goal of eigenanatomy is to identify sparse functions which approximate the eigenvectors 

(νp = XTνn and νn = Xνp) of the n × p image matrix X, where each row n represents the 

data for one subject, and has p entries (voxel values). The method approximates X with i 

sparse singular vectors vi
sp, treating the positive (vi

sp +) and negative components (vi
sp −) 

separately, and imposes positivity constraints on both:

argmin 
vi
sp +, vi

sp −
XTXvi

sp + − vi
p + 2 + XTXvi

sp − − vi
p − 2;  subj .  to  vi

sp +

1

=

vi
sp −

1

= γ
(Eq.1)

where γ is the sparseness parameter. The weight on the L1 penalty is set to reach the desired 

sparseness and guarantees that only a subset of voxels is considered [56] [71]. The 

minimization uses a nonlinear conjugate gradient, with sparseness imposed through soft 

thresholding S(v, γ), which rejects clusters below a threshold. The resulting pseudo-

eigenvectors are sparse, unsigned, and represent the input data (X) through weighted 

averages.

To estimate the generalization performance for our models we divided the data in training 

and testing groups (75%, and 25%), and we used a 4-fold cross-validation, as described in 

[72]. We assigned data to training (n=18), and validation (n=6) partitions in a balanced way 

using caret (caret.r-forge.r-project.org/), then evaluated the average root mean square error 

(RMSE) over the test partitions. Dimensionality reduction was performed using the function 

sparseDecom in ANTsR (https://github.com/ANTsX/ANTsR) for each of the imaging 

contrasts (logJac, T1wMEMRI, QSM), producing areas that have maximum covariance 

between subjects. For each imaging contrast we used 2 eigenvectors, a sparsity threshold of 

5%, and a min cluster size of 250 voxels, or 6 eigenvectors for all three imaging contrasts 

used in the multivariate approach. These parameters were chosen to balance interpretability 

and anatomical specificity. The choice of two vectors/contrast enable analogous comparisons 

between the VBA analyses (pos+neg clusters) and our sparse decomposition based 

approaches. Clustered signal smaller than 250 voxels (roughly 0.25 mm3) are difficult to 

interpret. Furthermore, extended components (> 5% of the brain) are less specific and tend 

to converge towards the mean signal over the whole brain.

These eigenregions were projected against the training set to generate statistical models that 

predict swim distance at day 4. The summary of the statistical models performance applied 

to the testing sets included the RMSE, Pearson correlation, adjusted R2 and p value 

(considered significant at p<0.05).

2.7 Prior-Based Prediction Using Sparse Canonical Correlation (SCCAN)

We used an anatomically informed, prior-based approach to constrain the solution space, to 

test whether specific brain regions were associated with cognitive performance. These 

regions were determined based on: 1) eigenanatomy results, producing a supervised 

decomposition, and 2) anatomical priors on regions known for their involvement in AD, and 

which are recognizable in mouse models. These regions included the hippocampus, 
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parasubiculum, and fornix [73] [74] [75, 76], as well as the entorhinal and motor cortices. 

Each of these regions is likely to incur changes during training in the water maze. These 

regions were used to initialize SCCAN [71] to infer their influence on behavior.

We hypothesized that we could identify brain networks associated with behaviors based on 

canonical correlation (CCA) [77], the multivariate extension of correlation analysis. To find 

the linear projections of two random vectors, CCA maximizes the correlation between the 

two linear combinations of the variables in each data set. Our datasets consist of imaging (X) 

and behavioral parameters (Y) for n subjects. The imaging parameter is a large n × p 
multidimensional matrix, and the behavioral parameter is n × q; where p is the number of 

voxels in X for each subject, and q is the number of behavioral parameters in Y for each 

subject.

Due to the greater size of the imaging matrix compared to behavior, CCA becomes 

ineffective. Instead sparse CCA has been used as a dimensionality reduction method to 

produce the solution vectors, x (p × 1) and y (q × 1), which act as weights on columns of X 
and Y [71].

x*, y* =  argmax
x, y

(Xx)TYy
Xx Yy ;  subject to∑ j x j

1 ≤ s, x j ≥ 0 (Eq.2)

The x* solution vector is subjected to the “L1” norm, ||.||1, producing non-zero entries below 

the chosen sparsity threshold [26]. The gradient of the objective function in (Eq.2) is 

calculated with respect to x and y. A nonlinear gradient descent optimizer is used to provide 

the solution vectors. Additionally, a cluster threshold and a smoothness constraint are 

enforced to retain anatomically meaningful brain regions. As a result, sparse CCA produces 

solution vectors x* and y*, dimensioned as subsets of variables that maximize the 

correlation between imaging and behavior.

Here we focused on a single vector to represent behavioral performance, i.e. swim distance 

at day 4 (SD4). We used sparse canonical correlation (SCCAN) to perform a sparse 

regression between imaging and behavior.

argmin
x

1
2 Xx − y

2

2
+

λ1
2 x

2

2
+

λ2
2 ∇x

2

2
; subject to x

1
≤ S (Eq.3)

where s is the desired sparseness, λ1 a ridge penalty which alleviates the problem of 

multicollinearity amongst regression predictor variables, and λ2 a smoothness penalty, and ∇ 
denotes the gradient operator. This is solved through a projected gradient descent [26]. We 

note that in recent approaches the L0 penalty, which guarantees that only a subset of voxels 

is considered for the model, has been replaced with the convex approximation given by an 

L1 penalty, which yields virtually identical results, in a robust approach to regression [78] 

[26]. The soft thresholding operator was used to update the sparse projection of the solution 

vectors at each step of the optimization.
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We used SCCAN for a positively constrained optimization that finds projection vectors in 

the minimum deformation template space, which maximizes the relationship between image 

markers (for each of the three separate contrasts, and in combination) and swim distance at 

day 4. The inputs for SCCAN included the training set for both imaging and swim distance 

(SD4) through the function sparseDecom2 [79].

Both the imaging and behavioral data were split into training and testing sets in a ratio of 

75:25, which allowed for 18 variables/subjects for training and 6 for testing. We chose the 

SD4 as the behavior to be predicted based on its robust ability to separate the groups. The 

sparse canonical correlation was initialized from each of the a priori selected image regions 

(1 eigenvector), using a medium prior (0.5). We used sparseDecom2 with 5% sparseness, 

250 voxels cluster threshold, 15 iterations. No sparsity constraints were enforced on 

behavior. The projection vectors obtained from the training set model the relationship with 

behavior. These models were then used to predict swim distance for the testing set. To assess 

the quality of the predictive modelling approach we determined the relationship between the 

predicted and measured SD4.

We examined how the solution vectors from sparse CCA of different imaging contrasts 

performed as predictors on unseen behavioral data. We aimed to identify brain regions with 

a reliable association between each imaging marker and behavior using sparseDecom2, with 

a sparseness value that selects a small, informative subset of voxels (250 voxels, and 5% 

sparsity). Finally, the resulting eigenregions were used to fit a linear model to SD4. Our 

modeling approach is summarized in Fig 2, for one single imaging contrast at a time. The 

combined biomarkers modeling uses image concatenation in an easy extension of this 

approach.

We tested several models to predict behavior based on imaging biomarkers using a 4-fold 

cross validation scheme. First, we examined how the clusters surviving false discovery 

correction (FDR) in the VBA in the three different imaging contrasts performed as 

predictors for behavioral data. We compared the performance of these models with those 

generated from the sparse decomposition (SD) for each of the imaging contrasts. Finally, we 

fused the information from all imaging contrasts in a behavior supervised sparse 

decomposition (SSD) that maximized the canonical correlation between imaging and swim 

distance. This approach was used in a hypothesis generating mode throughout the whole 

brain to identify brain circuits responsible for AD like cognitive decline, as well as to test 

our hypotheses for regions expected to be involved in memory or motor function.

All prediction methods were executed using R (www.r-project.org) and the ANTsR package 

(http://stnava.github.io/ANTsR/). The compute times required for each fold in our 

optimization experiments ranged from 2 minutes (for 2 vectors, 5% sparsity) up to 2 hours 

and 22 minutes (for 50 eigenvectors, 5% sparsity), using a MacPro equipped with 12 cores, 

2.7 GHz Xeon E3 processors, running 10.13.6 Mac OS Sierra.

FSLEyes (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes) was used for visualization of 

statistical parametric maps overlaid on the average T1-weighted manganese enhanced MRI 

(T1wMEMRI) template generated from mNos2−/− controls.
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We used a sodium borohydride method to stain for iron deposits. We used a modified 

Gallyas silver staining method for white matter [80]. We used the Abeta 700254 antibody 

from Invitrogen, the NeuN MAB377 antibody from Chemicon for neurons, GFAP 13–0300 

antibody from Zymed for reactive astrocytes, and the CD11c MCA1369 antibody from 

AbDSerotec for activated microglia.

3. Results

To help uncover the relationship between cognition and the biological substrates underlying 

AD, experiments were carried out using a well-characterized mouse model of AD, to reduce 

genetic and environmental diversity. Behavior and imaging data were subjected to univariate 

and multivariate analyses.

Spatial memory was examined through acquisition and probe trial performance in the Morris 

water maze (Fig. 3). Swim distance and swim time to the hidden platform declined across 

testing for both genotypes (Fig. 3A–B). Significant genotype effects emerged on block trials 

3–5, where swim distances decreased in the mNos2−/− control mice relative to the CVN-AD 

strain (p≤0.050) (Fig. 3A). Within genotype, swim distances decreased from trial 1 to trials 

3–5 in mNos2−/− control mice (p≤0.002), whereas in CVN-AD animals this parameter only 

declined from trial 1 to 5 (p=0.005). A similar relationship was observed for swim time (Fig. 

3B). Here, swim times were reduced significantly on trials 3 and 4 for the mNos2−/− 

compared to CVN-AD animals (p≤0.025). Within genotype, swim times in mNos2−/− 

animals declined from trial 1 to trials 3–5 (p<0.001). By comparison, in CVN-AD mice 

swim time was decreased only from trial 1 to 5 (p=0.001).

Analysis of learning performance on the probe trials for swim distance and swim time 

further demonstrated that the CVN-AD mice were deficient in this task (Fig. 3C–D). On day 

3 mNos2−/− control mice swam over longer distances in the target northeast (NE) quadrant, 

whereas CVNAD mice had not made this distinction (Fig. 3C). Thus, on day 3 CVN-AD 

animals swam over shorter distances in the NE target (p=0.026) and longer in the northwest 

(NW) and southwest quadrants than mNos2−/− controls (p≤0.018) (Fig. 3C, left). On probe 

day 5, mNos2−/− animals maintained increased swim distances in the target quadrant, 

whereas in CVN-AD mice swim distances were longer in the NE and northwest than the 

other quadrants (Fig. 3C, right). On this probe trial, the only genotype difference was in the 

northwest quadrant where CVN-AD mice swam over a longer distance than mNos2−/− 

controls (p=0.003). Similar relationships were observed with swim time (Fig. 3D). With the 

probe trial on day 3, mNos2−/− mice swam for longer times in the NE target quadrant 

(p=0.002) and shorter times in the northwest (p=0.004) with a trend for the southwest 

(p=0.064) quadrant compared to the CVN-AD animals (Fig. 3D, left). By day 5 probe trial, 

swim time remained augmented in the northwest quadrant for the CVN-AD mice (p=0.045) 

(Fig. 3D, right). These results indicate that the CVN-AD mice had learned that the north 

quadrants contained the target, but they were unable to discriminate the NE from the NW 

quadrant. Collectively, these results demonstrate that acquisition duration in the Morris 

water maze is prolonged in CVN-AD mice, which fail to identify the NE quadrant as the 

target zone in the probe trials.
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We have also examined the three-way interaction between genotype, probe day and zone, 

and compared the zone activity within genotype and for each of the two probe days (Fig. 3). 

Bonferroni corrected a posteriori tests showed that mNOS2−/− mice traveled more in the 

target NE quadrant compared to the SE (p<0.002) quadrant, and showed a trend relative to 

the NW (p=0.069) and SW (p=0.077) quadrant. This difference was also observed in the 

controls on day 5, with a significant difference between the NE and NW quadrant (p<0.039) 

and marginal differences between the NE and the SE (p=0.079), but non-significant relative 

to the SW (p=0.262) quadrant. Hence, the distance moved in the four quadrants and marked 

preference for the NE quadrant was stable on day 5 compared to day 3 in the mNOS2−/− 

mice. By comparison, the CVN-AD animals failed to show significant preferences for the 

NE target quadrant on the day 3 probe test compared to the other quadrants and did travel 

more in the NW or SW quadrants, although these differences were not statistically 

significant. On day 5 probe testing the CVN-AD mice increased the distance in the NE 

quadrant compared to that measured on day 3 (p<0.058), however, this still did not produce 

a significant difference between the NE and the remaining quadrants. Hence, compared to 

the mNOS2−/− mice, the CVN-AD animals showed reduced preference for the NE quadrant 

on day 3 (p<0.026), and increased preferences for the NW (p<0.003) and SW (p<0.018) 

quadrants compared to the mNOS2−/− animals. By probe day 5, the increase observed in the 

NE quadrant by the CVN-AD mice made that activity equivalent to that observed in the 

mNOS2−/− animals for that quadrant on the same day. Although the CVN-AD mice 

continued to travel more in the adjacent NW quadrant (p<0.003) compared to the mNOS2−/− 

mice on day 5, no differences were detected between these two groups for the SE and SW 

quadrants. For the probe swim time, Bonferroni corrected post-hoc tests found significant 

overall genotype differences within the NE target quadrant (p<0.008), and the adjacent NW 

quadrant (p<0.002); however, no differences were found between the two southern 

quadrants. Overall, while the mNOS2−/− mice spent more time swimming in the NE zone 

compared to the NW (p<0.001), SE (p<0.001) and SW (p<0.004) quadrants, the CNV-AD 

mice failed to exhibit significant differences between the NE and remaining zones. Although 

the within subjects contrast three-way interaction approached significance, it’s important to 

note that the Bonferroni post-hoc comparisons did show that the genotypes had significant 

differences on the first probe test within the NE quadrant (p<0,002) with the CVN-AD mice 

spending less time in the target zone. However, by the final probe test, no differences in the 

swim time existed between the two genotypes (p=0.305). These results show that on test day 

3 the CVN-AD mice are delayed in discriminating the target NE quadrant in the water maze, 

but by day 5, there is a marginal preference for the target quadrant, although this is not 

absolute as found in the mNOS2−/− animals.

Since in the acquisition test genotype differences were most robust on trial 4 for swim 

distance, and provided a clear separation of the two genotypes, these data were used as the 

dependent variables for predictive modeling.

We have implemented two manganese enhanced MRI (MEMRI) protocols to characterize 

anatomy and memory function based on: 1) the log-jacobian of the deformation fields; 2) the 

T1-weighted signal intensity (normalized to the average value determined for a reference 

brain); and 3) quantitative susceptibility maps (QSM). Representative images for one animal 

are shown in Fig. 4A. We constructed minimum deformation templates (MDT) as study 
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specific population atlases for each of these contrasts (Fig. 4B), and derived Jacobian and 

QSM maps (Fig. 4C).

We sought brain networks for which changes in imaging markers explain changes in 

behavior. Using regional and voxel based analyses (VBA) we identified significant changes 

in volume (Jacobian of deformation fields), manganese accumulation (normalized T1-

weighted signal intensity), and quantitative susceptibility maps (QSM). All image contrasts 

identified differences in the olfactory areas, hippocampus, entorhinal cortex, and cerebellum, 

and the volume and T1wMEMRI analyses revealed a role for the retrosplenial cortex (Fig. 

5).

The reductions in volume in olfactory areas, thalamus, and hippocampus were accompanied 

by increased magnetic susceptibility, and lower manganese uptake (Fig. 5 A–D). Areas of 

the entorhinal cortex, hippocampus and subiculum showed decreased susceptibility. 

Increases in susceptibility were noted in the caudate putamen and red nucleus. T1wMEMRI 

signal intensity was overall lower on CVN-AD mice, and local differences between 

genotypes were significant at FDR 0.2 in the olfactory areas, motor cortex, primary 

somatosensory (S1) cortex, hypothalamus, and hippocampus, in particular the dentate gyrus 

and subiculum, and cerebellum. A more extensive presentation of the regional results can be 

found in the Supplementary Tables.

Separate analyses for volume, T1wMEMRI signal and QSM were conducted using the 

clusters with significant VBA differences between the two groups to model the relationship 

with behavior (Fig. 5E). Among the individual contrasts volume was ranked as the best 

predictor, followed by T1wMEMRI signal, then QSM. The root mean square error (RMSE) 

ranged from 259±57 cm for clusters with significant atrophy, to 274±54 cm for clusters with 

decreased T1w signal, while the largest RMSE was obtained for the combined QSM clusters 

(290 ±51cm). Table 1 reports the performance of all tested methods to produce the final 

models based on the 4-fold cross validation (testing) RMSE, the correlation and variance 

explained by each method, and their rank in terms of predictive performance.

We then used eigenanatomy to identify areas of the brain with maximum covariance 

between subjects, producing a sparse decomposition (SD) for each of the imaging contrasts. 

The eigen regions based on volume revealed a network comprised of the frontal pole, 

septum, medial thalamus, retrosplenial and cingulate cortex, amygdala, the CA1 area of 

hippocampus, and fimbria. In addition, we noted the involvement of sensory and motor 

cortices, and of the caudate putamen (Fig. 6A, top row).

The T1wMEMRI signal intensity-based decomposition revealed a network including 

olfactory areas, the cingulate cortex, bed nucleus of stria terminalis, substantia innominata, 

amygdala and hippocampus (Fig. 6B, top row).

The QSM based decomposition revealed involvement of the olfactory areas, septum, and 

cingulate cortex, the hippocampus, bed nucleus of stria terminalis, substantia innominata. 

Iron rich regions were also involved such as the substantia nigra, caudate putamen and 

globus pallidus (Fig. 6C, top row).
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By adding elements of supervision through the sparse canonical correlation of imaging and 

behavior we observed additional areas relative to the networks identified before. These 

included the fornix, dorsal thalamic nuclei, as well as the ventricles for the volume based 

decomposition (Fig. 6A, bottom row); the medial thalamic nuclei for the T1wMEMRI 

based decomposition (Fig. 6B, bottom row); white matter such as the anterior commissure 

and corpus callosum (including areas below the motor cortex and S1) for the QSM based 

decomposition, and more extensive areas on the ventral hippocampus and primary 

somatosensory cortex (Fig. 6C, bottom row).

Specific brain areas (eigen regions) found to be common in the results for all three contrasts 

(Fig. 6D). included the olfactory, cingulate cortex and retrosplenial cortex, hippocampus, as 

well as the motor cortices, and septum. The substantia innominata and bed nucleus of stria 

terminalis were common to T1wMEMRI, and QSM.

Using a supervised approach and the combined regions from volume, T1wMEMRI and 

QSM provided the lowest RMSE of 233.08 ±101.78 cm, a significant correlation of 0.94, 

explaining 88% of the variance in the swim distance. The tightest confidence intervals and 

largest adjusted R2 were obtained using the multivariate supervised approach (Fig. 6E, and 

Table 1).

A nonparametric Kruskal Wallis test did not reveal a significant difference for the 

generalization performance estimated based on the 4 fold cross-validation (testing RMSE) 

for all models (p=0.09, chi square=22.9, df=15). To evaluate the 16 models’ performance, 

we compared their predictions with the measured values for the swim distances for the full 

data set. The Kruskall–Wallis analyses were followed by posthoc Tukey Kramer tests to 

control for the family wise error rate. Our results (Table 2, Fig. 7) indicated that the 

supervised multivariate approach outperformed 12 of the other models (p=6.9*10−5, 

chi=45.3, df=15). These analyses also indicated that amongst the individual imaging 

contrasts studied, volume was the best predictor for behavioral performance in the water 

maze, followed by QSM, and then T1wMEMRI.

To test whether structures about which we have previous hypotheses are predictive of 

behavioral performance in the Morris water maze, we selected regions that appeared 

significant in one or more of the single biomarker analyses. These regions play a role in 

spatial memory and included the hippocampal formation, entorhinal cortex, parasubiculum, 

fornix, the primary and secondary motor cortex. Fig. 8 shows the predictive correlation for 

these models. The RMSE and significance of the models predicting relationships between 

imaging and behavior generally improved or were similar to the best predictor when the 

model included all three factors (Table 3). However, the single region analysis 

underperformed relative to the whole brain supervised sparse decomposition (SSD) analysis, 

with a maximum correlation of 0.76 for the parasubiculum in the combined analysis 

(explaining 56% of the variance), and 0.73 for its volume (explaining 51% of the variance). 

This suggests that our animals model a complex, network- rather than a region-based 

disease.
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4. Discussion

Neurodegenerative conditions such as AD arise from multifactorial pathological processes. 

Integrative modeling is an important step towards better understanding this complex disease 

etiology, as well as predicting its trajectory. Recent efforts to produce models for disease 

progression and response to treatment have shown promise in AD patients, and cognitively 

normal people at risk for AD [81]. However, the genetic variability and differences in 

environmental conditions to which patients have been exposed make these studies difficult. 

Animal models provide attractive tools for conceptually advancing our understanding of 

complex pathological processes, and factor to factor interactions. Moreover, animal models 

are required for testing therapeutic interventions. Hence we used a mouse model [40], 

previously characterized using pathology [41], and ex vivo diffusion tensor MRI [76], and 

whose development of cognitive dysfunction mimics the development of AD [41].

Our results support previous findings on learning and memory deficits in mouse models of 

AD [82], [83, 84]. Such deficits have been associated with the presence of amyloid [84, 85], 

tau [86], altered synaptic plasticity [87], or to inflammation and neurodegeneration [82] [41] 

[42]. The impairment in the acquisition of the Morris water maze was evident for CVN-AD 

mice relative to mNos2−/− controls when both swim distance and swim time were analyzed. 

These deficiencies were verified in the probe trials where CVN-AD mice failed to 

discriminate the target quadrant from the other quadrants early in testing and from the 

northwest quadrant at the end of testing. Our results thus confirmed that CVN-AD mice 

were impaired in spatial memory, in agreement to previous publications [41] [43]. Moreover, 

we identified swim distance during the 4th day of trial test as a robust measure that allows 

clear differentiation of CVN-AD models from age matched mNos2−/− controls.

To bridge between structural and functional imaging correlates, we used manganese, which 

modifies MRI signals and accumulates during behavioral training and testing. Manganese 

increases image contrast due to differential uptake by various brain areas [88], [89, 90]. We 

have used this property to more accurately estimate morphometric changes in vivo. T1 

shortening occurs as a consequence to intracellular manganese uptake, upon neuronal 

excitation/depolarization. Our use of MEMRI is equivalent to a spatial memory -based 

fMRI, with the limitation that it lacks the temporal resolution, and we showed that MEMRI 

can be used to map complex brain circuits involved in spatial memory.

The observed decrease in MEMRI signal after behavioral testing supports the loss of 

neuronal activity in memory circuits in old CVN-AD mice. A loss of MEMRI signal has 

also been demonstrated in mouse models of tauopathy [52, 91]. In contrast, MEMRI signal 

was shown to increase 24 h after MnCl2 injection in young 5xFAD mice [92]. This model of 

AD demonstrates abundant amyloid deposition generated from a high level of 

overexpression of mutated human amyloid precursor protein [93]. In addition to the 

differences between mouse models, the differences between these studies results may be 

explained by two effects: 1) high neuronal activity was present in younger mouse models of 

AD, and later decreased with age, and/or 2) our study measured a functional effect related to 

maze training, specific to memory function and diminished in older models of AD.
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The T1 weighted MEMRI (T1wMEMRI) images suggested decreased Mn movement into 

the cells in CVN-AD models, in particular in olfactory areas, the hippocampus, 

hypothalamus, motor cortex, and also the cerebellum. The lower manganese uptake in CVN-

AD mice was accompanied by atrophy in the olfactory areas, thalamus, and hippocampus, 

and was also associated with increased magnetic susceptibility. However, a reduced brain 

activity was expected to cause susceptibility reduction. Indeed, several areas of the 

hippocampus, entorhinal cortex and parasubiculum had lower susceptibility values in AD 

models. A decrease in susceptibility can be attributed to reduced manganese uptake, and also 

to diamagnetic properties of amyloid, or myelin. QSM increases did however overlap with 

areas of volume reduction, possibly associated with cellular and dendritic density reduction, 

leading to loss of anisotropy. QSM increases were noted in the hippocampus, olfactory 

areas, and red nucleus. VBA also identified QSM increased in iron rich areas, such as the 

globus pallidus and caudate putamen. Alterations in iron metabolism or the presence of 

microbleeds may lead to the observed predominant susceptibility increases. The increased 

susceptibility in areas such as the caudate putamen [94] and hippocampus was associated 

with decreased T1wMEMRI values, thus could result from the higher level of iron from 

neurofibrillary tangles, and the aggregation of iron containing amyloid plaques. 

Hippocampal QSM increase has been associated with amyloid pathology in humans, 

moreover it was predictive of faster cognitive deterioration [95].

A qualitative evaluation of histopathological features from age matched CVN-AD and age 

matched control animals (Fig. 9) illustrated several factors which could have affected 

imaging biomarkers, and in particular QSM values in CVN-AD mice. The histological 

markers included amyloid beta, iron staining (ferritin), myelin, as well as inflammatory 

changes. Amyloid beta deposition would lead to decrease in QSM in the hippocampus, and 

was also seen in the subiculum, and entorhinal cortex. However, our VBA results also 

identified QSM changes due to iron presence, in the hippocampus and in areas known to be 

rich in iron, such as the globus pallidus. These resulted in increased QSM in CVN-AD 

models. Reduction in myelination would lead to increased QSM, but the resolution of in 

vivo scan may not be sufficient to resolve such changes in small white matter tracts, however 

we observed such effects previously as well [76]. QSM changes do however overlap with 

areas of volume reduction, possibly associated with cellular density reduction (NeuN), 

leading to loss of anisotropy. Activated astrocytes and microglia may also result in 

microstructural changes, and possible damage to myelin.

VBA revealed that morphometric changes survived the highest stringency in thresholded 

statistical maps, relative to QSM and T1wMEMRI signal reflecting manganese uptake. 

Significant changes in all three parameters were present in olfactory areas, septum, 

hippocampus in specific layers and the dentate gyrus, subiculum, and cerebellum.

Since mice perform a complex task during Morris water maze testing, which also involves 

swimming, it is not surprising to find that key regions realizing intentional motor control 

(including the cingulate cortex) are involved [96]. Not only does this region have a role in 

consolidating object/place association memories [97], but is has extensive connections to 

other brain areas. In primates, the cingulate cortex has been shown to have structural 
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connections with limbic regions/temporal cortex, but also to supplementary motor areas, 

premotor as well as parts of the prefrontal cortex, and insula.

In summary, while the exact pathology underlying the observed changes remains unclear, 

these may be attributed to atrophy associated with neurodegeneration (or conversely, 

increases due to astrogliosis), to reduced manganese uptake and myelin loss; or to amyloid 

and abnormal iron deposition.

As shown previously for other amyloid based mouse models, we found enlarged volumes in 

some areas of the brain, particularly the somatosensory cortex, cerebellum, and the corpus 

callosum. Such changes have been observed in multiple mouse models of AD including the 

TgCRND8 [98], APPJ20 [99], PSAPP, and Arc [100], and are generally in contrast to the 

pathology commonly observed in AD patients. AD is associated with cortical thinning and 

cortical volume loss [101]. However, heterogeneity has been demonstrated in human studies. 

Increased volumes have been observed in APOE4 positive AD patients [102], particularly in 

early stages. Whole brain, cortical, and hippocampal volume increases due to APP or PS1 

transgenes have been also reported in humans and have been attributed to amyloid 

deposition [103], gliosis [104], increased extracellular space, cellular swelling in response to 

toxicity, or to a compensatory mechanism [105].

Among phenotypic differences assessed with VBA, volume ranked best for its ability to 

predict memory. We used eigenanatomy [25] to exploit the covariance in a dataset, and 

identify a reduced set of voxels, assembled into coherent regions. We then used regression in 

this reduced dimensionality space to identify associations with spatial memory. The 

regularized sparse decomposition (SD) identified that the volume of the cingulate and motor 

cortex areas had good predictive value for spatial memory. Additionally, the decomposition 

solutions based on T1wMEMRI signal revealed that lower activity in the limbic thalamus, in 

the motor, cingulate and entorhinal cortices, as well as in the globus pallidus, were all 

predictive of the behavioral performance. Some of these areas were also present in the 

decomposition solutions based on susceptibility, which emphasized the role of the olfactory, 

motor, cingulate, and hippocampal areas.

While distinct regions were associated with behavior for different imaging parameters, a 

number of these regions were common between the three contrasts, and were overlapping 

with areas known to be involved in AD. These involved a network including septum, 

hippocampus, cingulate, retrosplenial and motor cortices. Our results also suggest a role for 

limbic thalamic nuclei, substantia innominata and amygdala. While the eigenregions were 

more extensive than the clusters obtained from VBA, these were also likely to be involved in 

multiple behaviors, such in motor planning and execution of the task, besides spatial 

memory.

Motivated by such hypotheses we have integrated multivariate imaging biomarkers into a 

modeling framework to map brain circuits that predict performance in the water maze. We 

selected regions identified as important in our previous analyses for one or more of the 

biomarkers, and with demonstrated involvement in AD. We found that gray matter regions 

such as hippocampal [106], parasubiculum [107], entorhinal [108], retrosplenial [109] and 
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motor cortices provided good predictions for spatial memory performance. While our 

techniques were limited in resolution to 100 μm, we were able to identify the fornix volume, 

and QSM as predictors for spatial memory function. Other white matter tracts such as the 

anterior commissure (connecting the temporal lobe structures), and corpus callosum (largely 

responsible for interhemispheric connectivity) may need to be investigated in future studies. 

Such studies may help understand how disease propagation within brain networks leads to 

cognitive deterioration.

Finally, we assessed the value of individual and combined imaging biomarkers in predicting 

spatial memory for whole brain based analyses, and for selected regions which appeared as 

eigen solutions for one or more imaging markers and had demonstrated roles in AD. We 

found that the combined supervised approach improved the prediction accuracy relative to 

single biomarkers, in agreement with [25] [26] [110].

A limitation of our approach comes from the small sample size, a problem that is common to 

many preclinical studies. This restricts us to using simpler models. However, this is 

alleviated by the genetic similarity of mouse populations relative to clinical populations. 

While in this study we demonstrated a promising approach for predictive modeling in mouse 

models of AD, future studies would benefit from larger samples. Such studies may test other 

correlatives, and attempt to build genotype specific models.

Possible neurotoxic effects may limit manganese studies, in particular their applicability to 

longitudinal studies in animal models, and they are certainly not amenable to human studies. 

To maximize contrast while reducing toxicity, we chose a small but continuous delivery 

method, via implanted mini-pumps, over a single injection [111]. An additional 

consideration when using QSM in manganese dosed models of AD is the possibility of 

compound effects, e.g. iron accumulation, which is likely to dominate in effect size, and may 

induce oxidative tissue damage [112] [113]. However, our technique produced QSM with 

exquisite contrast by exploiting the MR phase, in addition to providing morphometry and 

T1wMEMRI signal information. This approach holds promise as a more direct measure of 

functional information based on imaging [114] [115].

Since imaging biomarkers may indicate changes before overt cognitive decline [116], such 

approaches can help with early diagnosis and patient stratification. It would be interesting to 

include vascular biomarkers, which may constitute early events in fronto-temporal dementia 

[116] and AD [117]. Future studies may address predictions along a temporal scale, and give 

insight into the dynamics of interactions among pathological factors, in relation to disease 

propagation.

To the best of our knowledge this is the first application of sparse predictive modeling 

integrating multivariate biomarkers for structure and brain activity, to map circuits 

responsible for behavioral dysfunction in models of AD. Mapping cognition to brain circuits 

will increasingly rely on such multivariate statistical algorithms involving clustering, module 

detection, or other dimensionality reduction approaches, which offer increased power to 

identify signatures of neurodegenerative disease. The success of such translational 

approaches will allow testing mechanistic hypotheses using mouse models and help develop 
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better models for complex diseases. In conclusion, we show that MEMRI can both enhance 

contrast and thus contribute to the increased accuracy of volume measurements, as well as 

provide a tool for studying brain dysfunction in rodent models of neurological disorders.

Our approach synergized information from multivariate imaging and behavioral markers, 

allowing for observation of multifactorial biological processes and enabling future modeling 

of such factor-factor interactions, locally or as they spread over physical brain networks, to 

alter functional networks and ultimately cognition. Our results demonstrated that integrative 

predictive modeling approaches may outperform any single one imaging modality, giving us 

the ability to map vulnerable brain circuits responsible for cognitive changes, including 

memory deficits. This is in particular important for a multifactorial disease like AD, where 

the same regions are affected by multiple pathologies. Moreover, such multivariate 

approaches hold promise to help discover mechanistic links between the structural and 

functional components of brain circuits that underlie cognitive dysfunction in AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental timeline.
Each animal was implanted with a MnCl2 filled minipump on day 0 (d0), then acclimated 

for 3 days. Behavior was assessed over 5 days (d3-d7) using the Morris Water Maze 

(MWM). Subsequently mice were imaged using in vivo MRI.
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Figure 2. Schematic of the modeling approach.
We start with an image space representation for each of the subjects. This is converted into a 

reduced dimensionality space, where we model behavior using weights for the sparse 

solution vectors.
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Figure 3. 
Main results for the acquisition performance and probe trial results (mean± SEM). (A) 

Repeated measures ANOVA (RMANOVA) for swim distance during acquisition testing for 

the Morris water maze detected a significant within subjects main effect of time 

[F(4,88)=22.436, p<0.001] and a significant time by genotype interaction [F(4,88)=2.451, 

p=0.012]; the between subjects effect of genotype was significant also [F(1,22)=13.229, 

p<0.001]. (B) RMANOVA for swim time during acquisition testing noted that the within 

subjects main effect of time [F(4,88)=26.706, p<0.001], the time by genotype interaction 

[F(4,88)=2.667, p=0.037], and the between subjects effect of genotype [F(1,22)=5.466, 

p=0.029] were all significant. N=13 mNos2−/− mice and N=11 CVN-AD mice. (C) For the 

probe trial RMANOVA differences in swim distance between groups within test day and 

maze zone identified a trend for the day by zone by genotype interaction [F(3,63)=2.241, 

p=0.092]. The within subjects contrasts however revealed significant linear effects of zone 

[F(1,21)=11.924, p<0.002) and cubic effects for zone by genotype interaction 

[F(1,21)=10.783, p=0.004)]. While the test day, test day by genotype and test day by zone 

interactions were not significant, the three way test day by zone by genotype interaction was 

found to be significant by linear within subjects contracts [F(1,21)=4.292, p<0.051]. 

Moreover, the between subjects effects for genotype alone were also significant 

[F(1,21)=17.441, p<0.001]. (D) Similar effects were found for the probe trial with swim 

time where RMANOVA only found the main effect of zone [F(3,63)=11.74, p<0.001] and 

the zone by genotype interaction [F(3,63)=5.79, p=0.001] to be significant. Within subjects 

contrasts for Zone [F(1,21)=16.117, p<0.001], and zone by genotype interaction 

[F(1,21)=9.071, p<0.001] were significant. The three way test day by genotype by zone 
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were found to approach significance [F(1,21)=3.093, p<0.093). Note that the control mice 

had a strong preference for the target quadrant, while this was less clear for CVNAD mice, 

as illustrated in text. NE=northeast (target quadrant), NW=northwest, SE=southeast, 

SW=southwest. Note, one mNos2−/− control was not tested on the probe trial day 5 due to a 

lesion. N=12 mNos2−/− mice and N=11 CVN-AD mice; *p<0.05, mNos2−/− versus CVN-

AD mice; +p<0.05, within genotype versus day 1 acquisition trials (A, B); +p<0.05, within 

genotype comparisons versus target quadrant (C, D).
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Figure 4. T1-weighted RARE and mGRE images were acquired for 24 mice, and the mGRE was 
used to calculate quantitative susceptibility maps (QSM).
Representative images from one mouse are shown in (A). The control group was used to 

calculate minimum deformation templates (MDT) (B) for T1wMEMRI RARE and mGRE 

images, to produce the deformation maps (C), and MDT for QSM (D).
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Figure 5. (A) Voxel-based analysis (VBA) identified genotype differences in all three biomarkers 
(volume, T1-weigted MEMRI signal, and susceptibility).
Statistical t maps were thresholded using false discovery rate (q). Regional properties 

identified areas of significant differences for (B) volume; (C) T1wMEMRI signal intensity 

normalized to total brain; (D) magnetic susceptibility (QSM). Local atrophy was evident in 

the olfactory areas (Olf), septum (Spt), and dentate gyrus of the hippocampus (HcDG) in the 

CVN-AD model. Manganese uptake was lower in these mice, with the exception for the 

septum/fornix. Susceptibility was increased in the olfactory areas, caudate putamen (CPu), 

and dentate gyrus of hippocampus, but decreased in the CA1, entorhinal cortex (Ent), and 
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subiculum (Sub). (E) VBA identified regions were used for predicting behavior, based on 

regions with either positive or negative effects for volume, T1wMEMRI signal, and QSM.
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Figure 6. Using volume (A), T1wMEMRI signal (B), QSM (C), or combination of the three 
biomarkers (D) as predictors we identified significant associations between eigen regions (red for 
volume, blue for T1wMEMRI and swim distance on day 4.
For all contrasts, the 1st row represents the networks identified by the sparse decomposition. 

The 2nd row represents the networks identified based on a behavior supervised 

decomposition. The predictive modeling results for swim distance are shown together with 

the associated confidence intervals for each of the biomarkers, as well as for the combined 

approach (E). Our results suggest the integrative approach has increased value when applied 

to a model of a complex, multifactorial disease such as AD. FrA: frontal association cortex; 

M1/M2 primary and secondary cortices; CPu: caudate putamen; S1/S2 primary and 

secondary cortices; Amy: amygdala; Sub: subiculum; Ent: entorhinal cortex; V1: primary 
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visual cortex; Olf: olfactory areas; A24 cingulate cortex, area 24; BNST: bed nucleus of stria 

terminalis; Hyp: hypothalamus; CeA: central amygdaloid nucleus; BLA: basolateral 

amygdala; Hc: hippocampus; Spt: septum; VP: ventral pallium; GP: globus pallidus; 

Hc:DG: hippocampal dentate gyrus; SN: susbtantia nigra.
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Figure 7. 
Model performance comparison based on a whole brain unbiased analysis, showing the root 

mean square error (RMSE) between the predictions and the true values for the swim distance 

produced for the 16 models.
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Figure 8: Relative to single biomarkers, the combined set of three contrasts performed in general 
better or just as well as the best predictor, in terms of the ability to predict swim distance for 
regions selected because they were a priori expected to be involved in memory or motor function, 
and/or AD pathology.
We note the good predictions for the parasubiculum, involved in spatial navigation.
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Figure 9: Histopathological correlates of imaging biomarkers in CVN-AD mice
included extracellular amyloid deposits, iron (ferritin), differential neuronal nuclei (NeuN) 

and myelin staining (Gallyas), as well as reactive astrocytes (GFAP) and activated microglia 

(CD11c). Amyloid beta deposition would lead to decrease in QSM in the hippocampus, and 

was also seen in the subiculum, and entorhinal cortex. However, our VBA results also 

identified QSM changes due to iron presence, in the hippocampus and in areas known to be 

rich in iron, such as the globus pallidus. These resulted in increased QSM in CVN-AD 

models. Reduction in myelination would lead to increased QSM, but the resolution of in 

vivo scan may not be sufficient to resolve such changes in small white matter tracts, however 

we observed such effects previously as well [76]. QSM changes do however overlap with 

areas of volume reduction, possibly associated with cellular density reduction (NeuN), 

leading to loss of anisotropy. The presence of reactive astrocytes and activated microglia 

may also result in microstructural changes, and possible damage to myelin.
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Table 1.

Model performance comparison based on a whole brain unbiased analysis, showing the testing root mean 

square error of the predictions (RMSE); and the whole set based Pearson correlation (corr), associated p value, 

and the explained variance (adjusted R2).

Contrast Model Test RMSE test (cm) P CORR adjR2 rank

VBA Volume

Positive Clusters 266.94±56.84 0.005 0.55 0.27 5

Negative Clusters 259.33±57.20 0.004 0.57 0.3 3

Combined Clusters 261.76±58.31 0.004 0.57 0.3 4

VBA T1wMEMRI

Positive Clusters 281.76±60.80 0.022 0.47 0.18 10

Negative Clusters 273.98±54.30 0.01 0.51 0.23 7

Combined Clusters 272.38±57.80 0.009 0.52 0.24 6

VBA QSM

Positive Clusters 285.55±73.88 0.036 0.43 0.15 11

Negative Clusters 280.1±69.59 0.018 0.48 0.2 9

Combined Clusters 290.6±50.53 0.01 0.52 0.23 12

Sparse Decomposition (SD)

Volume 300.7±48.89 0.021 0.47 0.18 14

T1wMEMRI 344.54±41.26 0.12 0.33 0.07 15

QSM 299.19±79.46 0.04 0.43 0.15 13

Supervised Sparse Decomposition (SSD)

Volume 251.05±68.81 3.43E-09 0.9 0.79 2

T1wMEMRI 349.01±47.33 2.64E-07 0.84 0.69 16

QSM 279±43.42 2.56E-05 0.75 0.54 8

Multivariate SSD Volume+T1wMEMRI+QSM 233.08±101.78 7.14E-12 0.94 0.88 1
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Table 2.

Model performance comparison based on a ROI prior initialized based analysis, showing the testing root mean 

square error of the predictions (RMSE); and the whole set based Pearson correlation (corr), associated p value, 

and the explained variance (adjusted R2). Hc: hippocampus; PaS: parasubiculum; CEnt: caudal entorhinal 

cortex; fx: fornix; M1: primary motor cortex; M2: secondary motor cortex.

Contrast Model Test RMSE test (cm) P CORR adjR2 rank

Hc

volume 288.57±93.68 0.013 0.50 0.22 7

T1wMEMRI 332.1±38.63 0.0968 0.35 0.08 17

QSM 332.51±34.31 0.1588 0.30 0.05 18

combo 285.59±82.02 9.86E-05 0.71 0.48 6

PaS

volume 239.09±37.50 5.16E-05 0.73 0.51 1

T1wMEMRI 334.78±27.95 0.0649 0.38 0.11 19

QSM 283.29±90.10 0.0099 0.52 0.23 5

combo 253.18±65.69 1.79E-05 0.76 0.55 2

CEnt

volume 268.77±60.51 0.0044 0.56 0.28 3

T1wMEMRI 342.14±86.90 0.1402 0.31 0.06 21

QSM 325.09±72.64 0.8108 0.05 0.04 16

combo 322.26±108.69 0.0044 0.56 0.28 12

fx

volume 293.66±78.20 0.0062 0.54 0.26 8

T1wMEMRI 350.61±103.41 0.1589 0.30 0.05 23

QSM 339.23±69.64 0.0314 0.44 0.16 20

combo 323.41±120.91 0.2297 0.25 0.02 13

M1

volume 323.83±131.29 0.0093 0.52 0.24 14

T1wMEMRI 312.18±113.8 0.0501 0.40 0.13 10

QSM 360.89±94.91 0.5723 0.12 0.03 24

combo 317.01±162.54 0.0019 0.60 0.33 11

M2

volume 309.99±113.66 0.0008 0.64 0.38 9

T1wMEMRI 276.51±56.14 0.0085 0.52 0.24 4

QSM 342.94±87.03 0.2891 0.23 0.01 22

combo 324.5±136.00 0.0003 0.68 0.44 15
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Table 3.

To evaluate the 16 models performance, we have compared predictions with the true values for the measured 

behavior parameters (measured in cm) based on the full data set. Our Kruskall–Wallis analyses were followed 

by posthoc Tukey Kramer tests to control for the family wise error rate. Our results indicate that the supervised 

multivariate approach outperforms 12 of the other models. CI: confidence interval. VBA: voxel based analysis; 

SD2: supervised sparse decomposition.

Model1 Model2 CI1 (cm) Difference (cm) CI2 (cm) p

T1wMEMRI_VBA− COMBO_SSD 23.31 133.08 242.86 3.41E-03

COMBO_ SSD VOLUME_SD −237.98 −128.21 −18.43 0.01

T1wMEMRI_VBA+ COMBO_SSD 16.47 126.25 236.03 0.01

COMBO_ SSD VOLUME_VBA+ −235.78 −126.00 −16.22 0.01

T1wMEMRI_VBA_COMBO COMBO_SSD 14.72 124.50 234.28 0.01

QSM_VBA_COMBO COMBO_SSD 14.72 124.50 234.28 0.01

COMBO_SSD VOLUME_VBA− −231.48 −121.71 −11.93 0.01

COMBO_ SSD T1wMEMRI_SD −229.15 −119.38 −9.60 0.02

COMBO_ SSD VOLUME_VBA_COMBO −227.65 −117.88 −8.10 0.02

COMBO_ SSD VOLUME_SSD −224.15 −114.38 −4.60 0.03

COMBO_ SSD QSM_SSD −223.57 −113.79 −4.02 0.03

COMBO_ SSD T1wMEMRI_SSD −222.03 −112.25 −2.47 0.04
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