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Abstract

High concentrations of air pollutants on roadways, relative to ambient concentrations, contribute

significantly to total personal exposure. Estimation of these exposures requires measurements or

prediction of roadway concentrations. Our study develops, compares and evaluates linear

regression and non-linear generalized additive models (GAMs) to estimate on-road concentrations

of four key air pollutants, particle-bound polycyclic aromatic hydrocarbons (PB-PAH), particle

number count (PNC), nitrogen oxides (NOx), and particulate matter with diameter <2.5 μm

(PM2.5) using traffic, meteorology, and elevation variables. Critical predictors included wind

speed and direction for all the pollutants, traffic-related variables for PB-PAH, PNC, and NOx,

and air temperatures and relative humidity for PM2.5. GAMs explained 50%, 55%, 46%, and 71%

of the variance for log or square-root transformed concentrations of PB-PAH, PNC, NOx, and

PM2.5 respectively, an improvement of 5 to over 15% over the linear models. Accounting for

temporal autocorrelation in the GAMs further improved the prediction, explaining 57-89% of the

variance. We concluded that traffic and meteorological data are good predictors in estimating on-

road traffic-related air pollutant concentrations and GAMs perform better for non-linear variables,

such as meteorological parameters.
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Introduction

Numerous studies have linked traffic-related air pollutant exposures to adverse health effects

including respiratory illnesses, cardiovascular diseases,1 pregnancy outcomes, and

mortality.2, 3 Exposures to traffic-related pollutants are strongly influenced by time spent

near traffic emission sources, such as in-vehicle travel, because in the commuting

environment, concentrations of traffic related pollutants like ultrafine particles (UFP) and

volatile organic compounds can be as much as an order of magnitude higher than in ambient

outdoor environments.4-6 It has been estimated that around 33-45% of UFP7 and 30-55% of

diesel particulate matter (PM)8 exposure for nonsmoking urbanites in Los Angeles comes

from population average time in vehicles. Our previous work indicated that in-vehicle travel

time explained approximately 48% of the variance in daily exposure to particle-bound

polycyclic aromatic hydrocarbons (PB-PAH) using personal measurements.9

Only a limited number of epidemiological studies10-13 have specifically examined exposure

to traffic-related air pollutants from commuting, including two in Southern California.11, 12

Ritz and Yu12 found an increased risk of low birth weight for women who traveled more

than 60 minutes to work [unadjusted odds ratio (OR): 5.57; 95% confidence interval (CI):

1.16-26.8] using a census-based measure of commuting level. McConnell et al.11 reported

an association of severe wheeze with commuting time in asthmatic children and the

association was stronger in analysis restricted to children with commuting times 5 minutes

or longer (adjusted OR: 1.97; 95% CI: 1.02-3.77).

Accurate exposure assessment during commute requires measurements or predictions of on-

road concentrations. In our previous work, we developed the models for linking roadway

concentrations to in-vehicle concentrations.14, 15 These models can predict in-vehicle

particle number concentrations based on driving and vehicle characteristics and ventilation

setting, if roadway concentrations are known. However, few on-road concentration models

have been developed. Of the most relevant studies, Fruin et al.7 developed multiple linear

regression models that explained up to 60-70% of the variance in the concentrations of

particle number (PNC), black carbon (BC), nitric oxide (NO), and PB-PAH on the arterial

roads and freeways in Los Angeles. Recently, Aggarwal et al.16 used two-way stratified

multi-linear regression to predict UFP number concentrations on Minnesota freeways with a

varying performance (R2: 0.41-0.89) across different size distributions. The previous studies

were generally based on linear models and limited by the sampling time of day and sampling

routes (mainly on freeways).

Although non-linear relationships may exist between pollutant concentrations and predictor

variables (e.g. meteorology),17 multiple linear regression has been mostly used in

ambient18, 19 and on-road7, 16 air pollution exposure assessment except for a few studies.

Singh et al.20 modeled ambient nitrogen dioxide (NO2) and sulfur dioxide (SO2)

concentrations using polynomial regression and artificial neural network. Several studies

obtained improved results using generalized additive models (GAMs) to predict ambient

concentration of UFP and PM2.5
21, 22 as well as NOx and NO2

23, 24. Compared with the

other non-linear models, GAMs provide a more flexible modeling framework because of
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their capabilities of utilizing both quantitative and qualitative variables, and using a semi-

parametric rather than parametric approach to capture the non-linear relationship. This

provides the potential for better fits to measurements.25

The aim of this study was to examine the associations between on-road pollutant

concentrations and predictive variables (traffic, meteorology and elevation), and to develop

robust models to estimate on-road concentrations of four important air pollutants, namely,

PB-PAH, PNC, NOx, and PM2.5. The on-road models developed in this study can be

combined with air exchange rates and inside-to-outside ratios to estimate in-cabin

concentrations and personal exposures in commuting.14

Materials and Methods

Study Region

The study region (Figure S1 of Supporting Information) in the metropolitan Los Angeles

area covers 3,120 km2 and includes Los Angeles and Orange counties in Southern

California. This region has a high population density of 2,702 inhabitants per km2 and is one

of the most densely-populated urbanized areas in the United States.26 It encompasses a high

density of complex roadway networks and has high levels of traffic congestion,27 which

contributes notably to the air pollution problem in the region.

Measurement of Air Pollutant Concentrations

A hybrid vehicle (2010 Honda Insight) was used as a mobile measurement platform that was

operated in “green mode” which shuts off the engine when stationary. This generally

removes any chances of sampling platform exhaust (Section 2.1 of Supporting Information

for details). The instruments were powered using marine batteries and drew air samples

from a fan-driven sampling duct installed across the rear windows to effectively decrease

instrument response time. For consistency, the mobile monitoring platform was driven in the

central freeway lane, when possible. The sampling routes (Figure S1 of Supporting

Information) included six major commuter and truck transport freeways, and some arterial

and local roads, totally covering over 210 miles of roads (approximately 75% on freeways

and 25% on surface streets) during 20 days ranging from March 25 to June 16, 2011 (5:00

AM to 23:00 PM). Most of the measurements were conducted periodically (4-10 hours a day

with a run on a sampling route lasting about 4-5 hours) during 18 weekdays and 2 weekends.

On-road concentrations were measured for four key air pollutants: PB-PAH was measured

using EcoChem PAH Analyzer (Model PAS 2000; detection limit: 3 ng/m3); PNC was

measured using a condensation particle counter (CPC, TSI Inc. model 3007; detection size

range 10-1000 nm and detection limit <0.01 particles/cm2); NOx was measured using 2-B

Technology NOx analyzer (model 401-410; resolution: higher of 1.5 ppb or 2% of reading);

PM2.5 was measured using TSI Dust-Trak DRX (Model 8533; detection range: 0.001-100

mg/m3). Regular flow and zero reading checks were conducted to assure data quality

(Section 2.2 of Supporting Information). Instruments were periodically calibrated and time

was synchronized to be within 1 second with the Global Positioning System (GPS) device

(Garmin GPSMAP 76CSC, position: <10m, typical; velocity: 0.05m/s steady state). The
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GPS device also recorded speed of the vehicle and elevation. Data were recorded by

instruments at 1-10 second intervals, which were visually aligned to adjust for instrument

response time and then time-averaged into one-minute concentrations for model

development.

Predictor Variables

On-road pollutant concentrations are affected by on-road emission sources, regional

background concentrations, meteorology, and elevation.

Traffic variables tested included the following:

1. Roadway type serves as an indicator for traffic volume and roadway

configuration.7, 16 Road data were extracted from the ESRI street database based on

the 2003 TeleAtlas roadway network (http://www.esri.com). Roadway types were

recorded based on GPS field observations and calibrated against the classification

of ESRI street database. (Section 3.1 of Supporting Information). In model

development, we classified four types of roadways as dummy variables: freeway/

highway connectors (the roads connecting to different freeways/highways),

freeways/highways, major arterial or local roads.

2. Real-time traffic and diesel truck counts were compiled from the comprehensive

database on freeways and highways at a 5-minute resolution based on measured

total traffic counts and estimated truck counts from the California Department of

Transportation (Caltrans) Performance Measurement System (PeMS) (http://

pems.dot.ca.gov/) (1720 counters in total). Since the real-time PeMS measurements

only covered 64-69% (in length) of the freeway/highway roads of the sampling

routes, these variables may be unsuitable for locations without these traffic data,

but are of interest to assess their predictive power. Therefore, as an alternative to

limited PeMS data, we also obtained the segment-level 2002 annual average daily

traffic (AADT) counts (the latest year available) that were produced by Caltrans

staff based on a combination of measurements and modeled values. The AADT

data covered continuous road segments for freeways/highways and major surface

streets. Length-weighted AADT was calculated as [sum (AADT X road length on

each segment) / sum (road length for all segments)]. We selected the 500 m buffer

a priori because we wanted to incorporate local traffic impacts while avoiding

influences from background and regional sources. We also tested the influence of

different buffer distances and 500 meters seemed a reasonable choice (Section 3.2

and Figure S2 of Supporting Information).

3. The number of roadway lanes was derived from the Caltrans roadway data as an

indicator of design volume/capacity of the roadways.

4. Traffic speed (miles/hour) was derived from the vehicle speed based on the GPS

device on the mobile platform. In the field measurement, the driver always

attempted to follow traffic (compared to speeding or too slow) thus vehicle speed

generally reflected surrounding traffic speed. Traffic speed varied by roadway type
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(local roads/arterial vs. freeways/highways)15 and traffic condition (e.g.

congestion).

Because pollutant concentrations are also strongly influenced by meteorological

parameters such as air temperature, wind, and humidity,28 we also examined the

following meteorological parameters in the models:

5. Hourly ambient meteorological parameters (air temperature, °C; relative humidity,

%; wind speed, meters/second abbreviated as m/s; and wind direction) were

obtained from the nearest 14 weather monitoring station operated by National

Weather Service and South Coast Air Management District (Figure S1 of

Supporting Information). Wind variables were incorporated into the model as the

product terms by multiplying wind speed with sine and cosine functions of wind

direction, with positive sine value representing wind from the east and positive

cosine value representing wind from the north.29 Some studies29, 30 have shown

that using the product terms of wind speed by direction is a good way to

incorporate both wind variables in the GAM. Additionally, we tested the predictive

power of the product terms of wind speed multiplying sine and cosine functions of

the angle between wind direction and roadway orientation.

6. On-road air temperature (°C) and relative humidity (%) differed from ambient

temperature and humidity and were collected simultaneously with pollutant

measures at the 10-sec temporal resolution, and averaged over one minute. On-road

meteorological parameters were recorded using the TSI Qtrak monitor.

7. Although elevation has been used to model ambient air pollution31-33, no studies

have incorporated it in modeling on-road pollutant concentrations. We examined

the elevation (meter) for each sampling location based on the 10-m resolution

remote sensing images from the U.S. National Elevation Dataset (NED) (http://

nationalmap.gov/), as a potential predictor.

Data Analysis and Selection of Predictors

Exploratory data analysis was conducted, i.e. summary statistics, box plots for identifying

outliers, Q-Q plots for normal transformations, correlation analysis (including correlation

coefficients and scatter plots) for examining the linear or non-linear relationships between

predictive variables and concentrations (or their transformations), as well as comparison by

groups of roadway type, ambient wind speed and air temperature to investigate their

respective influence on variation of on-road concentrations. We used R 2.11.1 (Bell

Laboratories, New Jersey, USA) for all the analysis. Section 4.1 of Supporting Information

presents technical details for the data analysis.

Correlation analysis was used for variable screening. To avoid multicollinearity issues,

variance inflation factors (VIFs) were then used to identify the weakly correlated variables

(VIF<10) and highly correlated (VIF≥10) groups of variables (traffic group and meteorology

group). Backward-selection was iteratively conducted until the optimal set of variables were

selected with the maximum R2 or minimum Akaike's information criterion (AIC) 24 (more

details in Section 4.2 of Supporting Information).
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Predictive Models

We examined and compared three models: linear regression, non-linear generalized additive

models (GAMs), and autoregressive non-linear models.

Linear regression mode is a widely-used regression model in estimating ambient air

pollution. Its version with factor variables as dummy variables was detailed in Munro.34 We

also compared the relative effects of predictable variables on different scales on the on-road

pollutant concentrations (the outcome variable) in linear regression by standardizing the

predictive and outcome variables as the standard score (z-score), i.e. the number of standard

deviations an observation or datum is off its mean over the valid measurement periods (thus

removing the difference in units).35

Multi-variable GAMs incorporate both continuous (quantitative) and categorical

(qualitative) variables, as well as linear and non-linear relationships. The models specify a

distribution (e.g. normal or binomial) of the dependent variable and a link function, g

relating the expected value of the distribution to the m predictor variables, and attempts to fit

functions fi(xi) to satisfy:

[1]

where μ̂u is the estimate of the expected on-road concentration at the location, u; β0 is the

model's intercept; wsu ([wind speed]·sine([wind direction]) and wcu ([wind speed]

cosine([wind direction]) represent the product terms of wind speed by direction, at u; and ,

 or  are other independent variables among which  are q continuous non-linear

variables,  are p continuous linear variables and  are m dummy variables as factors.

fw(wsu, wcu) and fi(…) are the non-parameter smooth functions used to construct the non-

linear relationships between (wsu, wcu) or  and g(μ̂u), βj is the linear coefficient for  and

g(…) is the link function of the expected value and the independent variables. Here we

assumed that the log or square-root transformation of the average concentration was

normally distributed based on the normality test (Q-Q plot) under which assumption, μ̂u =

g(μ̂u). In GAMs, each categorical variable ( , e.g. roadway type) was transformed by the

factor functions to dummy variables with their differential intercept coefficients solved.36 ε

was the normal random error term (ε~N(0, σ2)). Since the smooth functions may be fit using

parametric or non-parametric means, the GAM provides the potential for more adaptive fits

to data than other methods. We used Wood's integrated approach25 (mgcv package for R)

for model selection and automatic smoothing parameter selection with generalized cross-

validation (GCV) criterion to determine the smoothing parameters (Section 5 of Supporting

Information). This approach selects the optimal degrees of freedom for the derivative-based

penalized thin plate splines and thus the smoothed splines can properly represent the

observed correlation trend while minimizing over-fitting.

Autoregressive non-linear models incorporate significant temporal autocorrelation that the

continuous measurement data may have due to the short averaging time (one minute). With

significant temporal autocorrelation, the uncertainty of the predictive coefficients may be
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underestimated. We used the autocorrelation function (ACF) and partial autocorrelation

function (PACF) to measure temporal autocorrelation and developed auto-regressive models

based on Equation [1]. Here, ε includes serially correlated errors and is not negligible. The

errors from regression models were assumed to be not independent in the time series data

and that the process generating the regression errors was stationary. That is, all of the errors

had the same expectation and the same variance (σ2), and the covariance of two errors

depended only upon their separation s in time. After the empirical test of the residuals from

the independent model [1], we found auto-correlated regression errors were sufficiently

described with a term for the first-order auto-regressive process, AR(1):

[2]

where the ‘random shocks’ νt are assumed to be Gaussian white noise, νt ∈ N(0, σ). Similar

to Zwack et al.,21 we used GAMM to conduct autoregressive non-linear modeling in R.

Model Validation

We used the 10 times × 10 folds cross validation (CV) procedure proposed by Arlot et al.37

that is suitable for time-series analysis. In the CV, the sampling data on each day were

evenly divided into 10 segments by time (more details in Section 6 of Supporting

Information). One segment was selected as test data (this was repeated 10 times so that each

segment was used once as test data). For each segment of test data, training data came from

the remaining 9 segments with the constraint that an interval of at least 10 minutes between

the measurement time of the training samples and that of the test samples was maintained to

avoid temporal autocorrelation between the test and training data. The above procedures

were repeated 10 times to derive the mean R2 of CV results. Section 6 of Supporting

Information presents the specific procedures for the CV. Our data showed little temporal

autocorrelation (<0.2) for measurements at 10 minutes or longer time intervals. We

examined the CV R square (R2) of between measured values and predicted values. We also

evaluated the generalizability of the model by conducting independent tests for each day

using the data of all the other days to train the model and for each freeway or highway using

the data of all the other routes to train the model.

Additional Analysis

Since real-time total traffic and estimated truck counts were only available on 64-69% of the

freeway/highway routes surveyed, we examined the effectiveness of the two variables for

modeling traffic-related pollutants on freeways/highways. Further, we examined the

predictive power of five ambient pollutants, i.e. NO2, NOx, carbon monoxide (CO), PM2.5

and SO2 from government-operated air monitoring stations as extra predictors. We matched

the minute-level on-road samples with hourly ambient pollutant concentrations by time and

the shortest distance to the monitoring station.
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Results and Discussion

On-Road Pollutant Concentrations

The average on-road concentration was 57.7 ng/m3 for PB-PAH, 35010 particles/cm2 for

PNC, 118.9 ppb for NOx and 23.1 μg/m3 for PM2.5. Summary statistics for one-minute

average concentrations is listed in Table S1 of Supporting Information. Data loss was 12.9%

for PB-PAH, 55.4% for PNC, 0.4% for NOx, and 25% for PM2.5, mostly due to low

reliability or complete loss due to instrument malfunction. PB-PAH and PM2.5 were log-

transformed and PNC and NOx were square-root transformed to be normal. The Q-Q plots

(Figure S3 of Supporting Information) showed that the transformations of concentrations

were normally distributed.

The measurements of air pollutant concentrations were consistent with the previous studies

except seasonal and regional differences (Table S2 of Supporting Information). The average

PNC, NOx and PM2.5 concentrations of two earlier studies in Los Angeles6,7 were higher

than ours since their measurements were mainly in winter and spring 2003 and stable

atmosphere conditions occur more often in the cool season than in the warm season.24

Further, the implementation of the air quality regulations, especially for the goods

movement corridors, also led to lowering of pollutant concentrations in more recent years.38

Relationship Between Air Pollutant Concentrations and Predictor Variables

Higher concentrations were generally observed on freeways/highways and their connectors,

and at lower wind speed (Figure 1). All differences were statistically significant by student t

and Wilcoxon statistics (Table S3 of Supporting Information). Moderate to strong linear

Pearson's or Spearman's correlation (>0.35) was observed between traffic-related variables

and transformed concentrations of PB-PAH, PNC and NOx (Table S4 of Supporting

Information). Among the traffic-related variables, real-time total traffic and estimated truck

counts were only weakly positively correlated (0.1-0.3) with pollutant concentrations, likely

due to partial spatial coverage of the traffic data and uncertainty in estimated truck counts.

In addition, large differences in truck counts were accounted for by the road type variable.

Road-length weighted AADT had slightly higher correlation with transformations of

concentrations than AADT. Scatter plots (Figure 2 a-c) also showed linearly increasing

trends between traffic variables and transformed concentrations. Unlike the other three

pollutants, PM2.5 correlations with air temperatures and wind speed were stronger than that

with traffic variables, reflecting the secondary photochemical origins of much of PM2.5 in

Southern California.

Linear correlation may obscure significant contributions of non-linear variables to the

prediction of concentrations.21, 24 In Figure 2, we paired typical linear (blue dashed) and

non-linear (red solid) regression lines in the scatter plots. For ambient meteorological

variables such as wind product terms (Figure S4 of Supporting Information) and air

temperature (Figure 2-d), non-linear correlative patterns could more objectively represent

such a non-monotonic trend even though its Pearson's linear correlation was not high.
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Predictor Variables

We found that traffic-related variables and wind product terms were the most important

contributors to PB-PAH, PNC and NOx while air temperatures, wind product terms and

relative humidity were the most important predictors for PM2.5. Table 1 lists the final

models, including the variance explained by each variable and the coefficients for linear

regressors or the degrees of freedom for non-linear regressors (in the paired parentheses) and

Table S5 of Supporting Information lists differential intercept coefficients for the factor

variable, roadway type. Figure S5-S8 of Supporting Information show the fitted spline plots

of the variables in GAM and the curves show the associated trends between predictor

variables and the concentrations.

Traffic Predictors—Traffic variables (including roadway type, weighted AADT, traffic

speed and number of lanes) together accounted for a significant portion of the variance

explained in both linear regression (35-40%) and GAM models (12-23%) for traffic-related

pollutants. The traffic variables presented a closely linear correlation (increasing trend) with

concentrations. In the standardized linear regression, the influence of each traffic-related

variable was similar across the traffic-related pollutants, PB-PAH, PNC and NOx, i.e.,

coefficients for standardized independent traffic variables only differed slightly among

different pollutants (Table S6 of Supporting Information). The trends of associations

between predictors and concentrations were also similar (increasing) in GAM for PB-PAH,

PNC and NOx (Figure S5-S8 of Supporting Information). This is expected since these

variables indicate traffic emission sources whose strength is likely linearly related with

concentrations.

Among the traffic-related variables, roadway type was a significant predictor, accounting for

about 10.2-11.8% of the total variance in linear regression and 5.0-12.2% of the total

variance in GAM. Differential intercept coefficients for freeways, highways and their

connectors were much higher than those for local roads and arterials, indicating several-fold

higher pollutant concentrations on freeways and highways than arterial and local roads

(approximately 4.5 times for PB-PAH, 3.6 times for PNC, 3.0 times for NOx) (Figure S4 of

Supporting Information-a, b, c). Our result is consistent with the previous studies:

Westerdahl et al.6 reported that roadway type strongly influenced variations of on-road

concentrations of PB-PAH, BC and NOx; Fruin et al.7 also found that PNC concentrations

on arterial roads were roughly one-third of those on freeways. However, roadway type was

not used as a predictor in previous studies that focused mainly on freeways or highways.

Due to insufficient spatial and temporal coverage (64-69%) on the freeways/highways, the

PeMS five-minute average total traffic and estimated truck counts were statistically

insignificant and thus not selected in the final models. In comparison with the study of Fruin

et al.7, we discussed use of traffic and truck counts based on the sensitivity test on the

freeways/highways in Section 7 of Supporting Information (Table S7 and S8).

Traffic speed, as indicator for traffic emission sources, was positively associated with

concentrations and was the only real-time on-road variable selected in the models for traffic-

related pollutants. The removal of traffic speed (the other variables remained unchanged)

only slightly influenced the prediction performance of the models of the traffic-related
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pollutants (Table S9 of Supporting Information). In linear regression, the removal of traffic

speed was compensated by more variance explained by weighted AADT in the absence of

the traffic speed variable (20.7-23.6% vs. 9.3-11.0%).

Meteorological Predictors—Compared with traffic variables, meteorological variables

had non-linear relationships with the pollutant concentrations (Figure S4-S8 of Supporting

Information). For example, ambient air temperature presented a non-monotonic trend with

PM2.5 (Figure 2-d). In particular, the product terms of wind speed by direction presented a

more complex relationship (varying surfaces, Figure S4 of Supporting Information) with the

concentrations.

Among the meteorological variables, wind speed and direction were important predictors for

all the pollutants. Strong winds were associated with lower pollutant concentrations (Figure

1) but pollutant concentrations were not linearly correlated with wind speed and thus the

contribution of wind speed and direction was much higher in GAM than linear regression

(14.8-21.2% vs. 1.2-4.3%). Further, we found that the product terms of wind speed by

direction and those of wind speed by angle to roadway generated similar results in model

performance (Table S10 of Supporting Information).

Meteorological rather than traffic-related variables contributed considerably to PM2.5

concentrations (overall R2: 0.66- 0.71), which agrees with previous literature indicating

PM2.5 is a regional pollutant39 that is more affected by regional or background

concentrations than by local traffic contributions40. Particularly, hourly ambient air

temperature had a stronger influence on PM2.5 than the other three pollutants (accounting for

24.9-34.5% of variance for PM2.5 vs. 0.1-12.0% for the other three pollutants). Real-time

on-road air temperature and relative humidity were also significant predictors for PM2.5

(Table 1), but not for the other pollutants. The removal of on-road air temperature and

relative humidity from the models decreased the variance explained by approximately

10.0-14.0% for PM2.5 (Table S9 of Supporting Information). The significant contribution of

air temperatures on PM2.5 concentration is expected since there was a positive correlation

between air temperature and photochemical conversion and oxidation of gaseous PM

precursors to PM mass, which was higher in the summer.41 Interestingly, ambient and on-

road air temperatures were just moderately correlated (Pearson's correlation: 0.49) and did

not produce multicollinearity (VIFs in linear regression were <10: 3.8 and 2.3 respectively),

allowing both variables to be used in the PM2.5 model. Other than the difference in the

temporal resolution of measurements (by hour vs. minute), on-road temperature

measurements may reflect the combined effects of ambient temperature and waste engine

heat, hot pipe emissions, and the warm-up of roads and asphalt.

Elevation—In our models, elevation had a small contribution. Although having limited

variation in our measurement data, elevation may likely influence on-road pollutant

concentrations because of different local emissions and pollutant dispersion patterns in hilly

areas.28, 31
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Model Performance

Cross validation results are shown in Table 2. Linear regression had moderate predictive

power (CV R2: 0.36-0.51). GAM had moderately better predictive power in general (CV R2:

0.46 for PB-PAH, 0.50 for PNC, 0.43 for NOx, 0.66 for PM2.5), improving the variance

explained by about 7% to 15% over linear regression. Overall, the R2 for the independent

tests of model generalizability by day and by freeway/highway (Table S11 of Supporting

Information), although slightly lower, were similar to the results of the cross validation tests.

For PB-PAH, PNC and NOx, the traffic variables (such as traffic speed and weighted

AADT) accounted for less variance in the GAM than in linear regression but meteorological

variables (ambient air temperature and the wind product terms) accounted for more variance

in the GAM. As a non-parametric approach, GAMs can more efficiently model non-linear

relationships (such as those between meteorological variables and the concentrations). But

for a predictor (such as traffic speed) closely linearly related to the target variable, GAMs

may not achieve significant gains over linear regression, as demonstrated in our test of

univariate models (Table S12 of Supporting Information).42, 43 Further, in a multivariate

GAM, the predictive power may not be simply an additive function of the contributions of

each variable.25 In other words, the effect of a predictor depends on the other predictors that

may be potential confounding indicators44. In GAMs, the addition of non-linear

meteorological predictors that improved the predictive power adversely affected

(confounded) the predictive power of the traffic variables. We also tested the overall

predictive power of the combined set of traffic variables (without meteorological variables

included) in the multivariate models and the result (Table S13 of Supporting Information)

showed that the GAM had slight improvement (by 3-5% in the variance explained) over

linear regression for traffic-related pollutants (PB-PAH, PNC and NOx). The above

comparisons show that choice of the models (linear regression vs. GAMs) is important for

predictive power of the non-linear variables such as meteorological ones.

Temporal autocorrelation (based on ACF) of 1 lag (one minute) was 0.63-0.70, indicating

strong temporal autocorrelation. The model that incorporated lag 1 (one minute) temporal

autocorrelation (AR1=0.63-0.70) had better CV R2 (0.57 for PB-PAH, 0.68 for PNC, 0.72

for NOx, 0.89 for PM2.5), a significant improvement over the GAM in the R2 by 11% to

more than 20% for the four pollutants (Table S14 of Supporting Information). The

application of auto-regressive models may be unpractical in epidemiological studies where

measurement data of time series are usually difficult to acquire.

Influence of Ambient Air Pollutant Concentrations

The significant contribution of ambient meteorological variables in the GAM was attributed

to their non-linear relationship with the on-road pollutant concentrations that was influenced

by urban-scale meteorological and air pollutant phenomena.24 The sensitivity test (Table

S13 of Supporting Information) using ambient air pollutants as predictors shows that the

ambient concentrations performed similarly as the meteorological variables. The

incorporation of ambient air pollutant concentrations along with meteorological variables in

the models slightly-to-moderately improved the model performance. For PM2.5, a regional
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pollutant, addition of ambient pollutant concentrations had the highest improvement (20%

for linear regression and 10% for GAM).

Limitations

This study has several limitations. First, the models were based on one-minute average

concentrations. Compared to the models using a longer averaging time, the residuals of our

models were temporally autocorrelated and produced overly small confidence limits in the

linear regression model. Longer averaging times (e.g., 5 minutes), however, reduced the

sample size and increased uncertainties in the variables, particularly roadway and traffic

variables, as a 5-minute travel on freeways can be 10 km in distance. With five-minute

averaging time, model performance was not as good (e.g., R2 ranged 0.23-0.30 for linear

regression and 0.35-0.44 for GAM). Second, due to limited spatiotemporal coverage for

total traffic counts and uncertainty in truck count estimates, traffic and truck counts were not

directly used in our final models although they were significant regressors in the freeway/

highway models. Their related alternatives such as roadway type used in the final models

captured most but not all of the spatial variability in the counts. Third, 2002 AADT was

used with 2010 on-road concentrations and other predictor variables to train the model. This

temporal non-alignment may have produced some bias, although AADT explained only a

small fraction of the observed variance (2.4-11.0%). Finally, over-fitting is always a risk in

non-linear GAM. In our case, the degree of freedom in our GAM was 5-12, generally

considered acceptable to ensure over-fitting not to occur with more than 1500 samples with

a large variance.25 Furthermore, the mgcv package used for modeling controlled the

complexity of the splines by imposing a penalty on the parameters of the splines, lowering

the over-fitting risk.25

Implications

In a metropolitan area with a high density of population and complex roadway networks, we

found that traffic variables (traffic speed and weighted AADT) were linearly correlated with

traffic-related pollutants (PB-PAH, PNC and NOx) and explained most of the total variance

in linear regression for these pollutants. Compared to linear regression, the non-parametric

GAM more adequately captured the non-linear relationship between meteorological

variables (e.g. the product terms of wind speed by direction, air temperatures) and air

pollutant concentrations, thus improving the total variance explained by 19-23% over linear

regression for traffic-related pollutants and 39% for PM2.5. For future studies, traffic

variables (e.g. at least roadway type) should be examined in models for traffic-related air

pollutants, while meteorological variables should be examined for regional pollutants such

as PM2.5. Short-term exposure assessment and health effects studies may require similar

exposure estimates at a high temporal resolution (e.g. daily or even hourly). In this study, we

suggest the use of GAM rather than linear regression since it would be favorable to

incorporate meteorological impacts, and as demonstrated in this paper, the relationship

between air pollutant concentrations and meteorological parameters are likely non-linear.

The measurements of ambient pollutant concentrations, if added into the model as

predictors, had a slight or moderate improvement in the prediction. Therefore, ambient air
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pollutant variables, if available, should also be examined and used in models for future

studies.

Our study is one of the first studies on the prediction of on-road pollutant concentrations.

Among the few published studies, Fruin et al.7 was based on arterial roads (2.5 hours total

over two days) and freeways (12 hours total over four days) in Los Angeles (R2: 0.60-0.70)

while Aggarwal et al.16 was based on Minnesota freeways (40 hours total over 19 days in

summer) (R2: 0.41-0.89). Compared with the previous studies, our measurements covered a

much longer time (approximately 112 hours total over 20 days) and longer and more diverse

routes (approximately 210 miles including local roads, arterial and freeways/highways).

Although the previous models had a good performance, they are limited to specific

conditions with narrower applications, whereas our models have more general applications

to other locations, times, and air pollutants. Further, the two previous studies were based on

linear models, while our study demonstrated the usefulness of the GAM approach in

modeling non-linear variables such as meteorological parameters.

Our study identified linear relationships between traffic variables and on-road

concentrations of traffic-related air pollutants, and non-linear relationships between

meteorological variables and the on-road concentrations. The inherit relationship (linear vs.

non-linear) between predictors and the air pollutant dependent variable determines the utility

of linear regression or GAM for the exposure modeling. In this study, GAM performed

better for non-linear variables (e.g. meteorological variables) and for the prediction of

PM2.5, the on-road concentration of which was more greatly influenced by meteorology and

regional background particle concentrations rather than local traffic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of air pollutant concentrations by roadway (L: local roads, A: arterial
roads, F: freeways and highways, C: freeway/highway connectors; mean: the bar, median: the
short line close to the bar's top), and by ambient wind speed and air temperature (mean for the
interval)
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Figure 2. Scatter plots of four covariates with log or square-root (sqrt) transformed pollutant
concentrations with GAM-fitted lines (red solid curve) and linear regression lines (blue dashed
line)
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