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Abstract

Toward the High Precision Predictive Coding in Video Compression

by

Wei-Ting Lin

The main focus of this dissertation is on the optimal design of motion compen-

sation scheme for predictive coding in video compression. The “sub-optimality” of

conventional block-based motion compensation scheme, wherein the impact of a

motion vector is confined within in a rigid rectangular block, motivates our design

of a multi-hypothesis motion compensation scheme. We explicitly treat motion

vectors as pointers to observation sources. Given the high-correlation between

adjacent pixels in nature images, the motion vectors of neighboring blocks can

point to relevant estimates of the current target. This dissertation work builds

on this paradigm and demonstrates advanced techniques devised by incorporating

the information of the entire motion vector field.

We first directly formulate the problem of motion compensation with multi-

ple estimates as a linear estimation problem, and design a training method to

derive the optimal linear coefficients to avoid overfitting as well as to minimize

the ultimate reconstruction errors rather than prediction errors. As a single set

of coefficients cannot capture the varying statistics of video sequences, we design

K sets of coefficients which are trained off-line through “K-mode” iterative clus-
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tering techniques. By switching between the predefined sets of coefficients, the

encoder can adapt to local statistics. This approach is then extended to the set-

ting of variable block size partitioning to enjoy the substantial gain provided by

the flexibility of dividing blocks to approximate object shapes. As the additional

side information to indicate the set of prediction coefficients used to generate the

final prediction is generally not negligible, a parametric framework is proposed

to model the statistics of estimates and target pixels. The model leverages the

first-order Markov property for image signals and relationships between motion

vectors in the motion field. As a result, the coefficients derived from the model

can automatically adapt to local variations without additional side information.

Moreover, using the parametric approach, we can combine estimates from any

number of motion vectors at any pixel location, which allows us to completely

break free from the block structure by allowing a motion vectors influence to be

of arbitrary shape.

The reminder of this dissertation is focused on optimization on the AV1 en-

coder, the open source video encoder founded by the Alliance of Open Media

(AOM). We first introduce a new coding tool to extend the number of reference

frames, and then we use the existing coding tools to design a coding structure,

wherein the reference frames are allocated to cover a wider temporal range to offer

more diversities. This new design allows the encoder to better capture temporal

variations. Finally, we introduce a complementary compound prediction mode,

ix



which is designed and optimized for the blocks where the existing compound

modes fall short. Simulations provide experimental evidences for the efficiency of

proposed mode with consistent coding gain across all bit-rate range.
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Chapter 1

Introduction

Over the years, video streaming and content delivery services have become an es-

sential part of our lives. Video has dominated the global internet traffic, and it will

continue to represent 80 to 90 percent of total traffic at the end of 2022, according

to the Cisco Visual Networking Index [1]. Moreover, the growing demand for fast

and ultra high-quality videos put unaffordable loads upon networks as well as stor-

age systems. These pressures motivate the development of a more efficient video

compression algorithm, so as to provide higher quality of reconstructed videos

with lower transmission bit-rate. The research in video compression emphasizes

mainly on the three consecutive modules, predictive coding, transform coding

and entropy coding. These three components complementarily exploit different

types of redundancies of natural video signals to achieve better compression per-

formance. In this dissertation, we focus on the predictive component and provide

1



Introduction Chapter 1

estimation-theoretic approaches to exploit correlations between different predic-

tors of individual pixels. The proposed paradigm offer more accurate predictions

and thereby improvement in compression performance.

1.1 Motivation and Contributions

The current video coders, such as WebM [2] [3] and HEVC [4] [5], rely heavily

on block-based motion compensation (BMC) to remove the temporal redundancy

within video sequences. These coders divide a frame into non-overlapped blocks,

and predict each block through pixel domain block matching using one or more

previously reconstructed frames. The displacement between the target and ref-

erence blocks is referred to as a motion vector. This approach is an attractive

solution to current codecs as it balances between the prediction accuracy and the

overhead of both searching and signaling motion vector at each pixel. However,

this simplification imposes a pure translation assumption on the pixels within a

block (all pixels in a block move uniformly). It is thus obvious this approach

cannot account for complicated motions such as zoom or rotation, and the sce-

nario wherein a block contains multiple objects with different motions. Therefore,

the major motivation of this dissertation is to develop a prediction scheme to

effectively address this issue.

The main line of the research focuses on the optimality of inter-prediction.

Specifically, we propose to explicitly treat each motion vector as a pointer to a

2
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source of observation. This point of view opens a door to incorporate motion

vectors from nearby blocks to estimate pixels as they can point to relevant obser-

vations due to the high correlations between adjacent pixels in nature images. The

final prediction is constructed by weighting the observation properly according the

influences of all available motion vectors to the pixel.

Inspired by the estimation-theoretic prediction framework, we propose the

adaptive interpolation motion compensation (AIMC) method, wherein we formu-

late the problem of combining multiple estimates to form the final prediction as a

linear estimation problem, and derive the optimal coefficients through a training

algorithm that minimizes the reconstruction errors as well as avoid over-fitting.

Prediction coefficients are further adapted to local statistics by switching between

predefined sets of coefficients, which are trained through a “K−modes” clustering

to minimize the rate-distortion cost. We then extend the work to accommodate

an important setting of variable block size partitioning which all recent codecs

adopt. To effectively train and store the coefficients on the unevenly sample grids

resulted in variable block size partitioning, we propose a non-trivial generalization

by “virtually” break a block to match its non-causal neighbors and creating an

interpolation tree structure, whose nodes extended from the original partitioning.

Within this structure, only square interpolation blocks of a few possible sizes are

formed at the leaf nodes. Therefore, we can effectively train K-sets of coefficients

for each possible size, and apply interpolation on each node. Simulation results

3



Introduction Chapter 1

demonstrate the effectiveness of the proposed AIMC approach with significant

gain over convention variable block motion compensation (VBMC).

Having validated the benefits of the prediction paradigm of using multiple

estimations in the basic setting of AIMC, which accounts for influences of lim-

ited numbers of motion vectors within an interpolation area, with significant per-

formance improvements. We propose to completely break free from the block

structure with a new design which can allow a motion vector’s influence to be

of arbitrary shape, and allow any number of motion vectors to have influence on

each pixel. To achieve this, we propose to employ a parametric approach to ob-

tain the interpolation coefficients to generate the final prediction from multiple

observations. Under the assumption of a separable first order Markov model for

the image signals, we propose a model to incorporate this and the correlations

between motion vectors in the motion field generated at the encoder. The predic-

tion coefficients derived from the model can automatically adapt to local statistics

without requiring additional side information. Experimental results show further

improvement over the original non-parametric approach.

Another contribution of this dissertation focuses on optimization on AV1

codec, the open-source video coder founded by a group of top tech leaders in-

cluding Google. We first introduce a new coding tool, which extends the total

number of reference frames to cover a wider temporal range. This allows the

encoder to adapt better to temporal variation. Using existing coding tools in

4



Introduction Chapter 1

AV1, we then introduce a multi-layer coding structure to diversify the positions

of the reference frames, which allow us to better leverage the increased number

of references frames. However, with the variety choices of reference frames, the

original compound prediction modes, which weights the two predictions from dif-

ferent directions in predefined ways, cannot adapt properly to the local variations

of pixel values along the motion trajectory. We propose to pose the weight design

problem as a linear estimation problem and devise a new compound mode which

allows the encoder to weight the predictions more flexibly. The predictions are

combined with the optimal weights derived to balance between side-information

and prediction gain to minimize the ultimate rate-distortion coding cost. Simula-

tion results demonstrate efficiency of the proposed method with consistent coding

gain over all bit-rate range.

1.2 Dissertation Organization

The rest of this dissertation are organized as follows. In Chapter 2 we in-

troduce the fundamental idea of non-parametric adaptive interpolated motion

compensation (AIMC), wherein the weight design problem is formulated as a lin-

ear estimation problem. We then present a training method to avoid overfitting

and derive the weights to minimize the actual reconstruction error rather than

prediction error.

In Chapter 3, we introduce a generalization of AIMC to account for variable

5
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block partitioning with the aid of an interpolation tree structure inferred from

the original partition structure. We then present a careful design for deploying

the proposed approach on the codec, which allows the encoder to flexibly en-

able/disable AIMC based on the rate-distortion trade-off to minimize ultimate

coding cost.

In Chapter 4, a parametric approach to derive optimal linear coefficients is

presented to account for arbitrary number of motion vectors’ influences to a pixel.

The proposed model, aiming at integrating both the Markovian assumption for

image signals and the correlations between motion vectors in the motion field is

described.

In Chapter 5, we introduce a new coding tool to AV1 codec, which allows

the encoder to deploy more reference frames to cover a wider temporal range. A

multi-layer coding structure is then devised to leverage the increased number of

reference frames to diversify the reference frame positions. Finally, we present

a new compound prediction mode acts as a complementary role to the existing

compound mode to exploit predictions of different qualities.

Chapter 6 concludes this dissertation and suggests possible directions for future

research.

6



Chapter 2

Adaptive Interpolated Motion

Compensated Prediction (AIMC)

In this chapter we introduce a novel motion compensation scheme, adaptive in-

terpolated motion compensation (AIMC), based on using available neighboring

motion vectors. Standard motion compensation relies on pixel domain matching

within a rigid block, which is known to accurately capture pure translation, but

to (at best) approximate all other types of motion, such as rotation and zoom.

Moreover, as motion vectors are obtained through pixel-domain block matching

to optimize a rate-distortion cost, and do not necessarily represent the actual

motion, the model should not be considered a proper sampling of the underlying

pixel motion field. Therefore, we propose to explicitly treat several neighboring

motion vectors as pointers to multiple observation sources for estimating a pixel
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in the current frame. The corresponding optimal linear estimation coefficients are

derived for predicting each pixel, given the observations obtained based on nearby

motion vectors. Prediction coefficients are further adapted to local statistics by

switching between predefined sets of coefficients, which are trained offline through

a procedure of “K-modes” clustering. Experimental results outside the train-

ing set validate this paradigm with significant bit rate savings over conventional

motion compensated prediction.

2.1 Introduction

Motion-compensation is one of the key components in video coding. It is

based on the assumption that each pixel value in the current frame is correlated

to some pixel in the previously coded frames. Therefore, instead of encoding

the raw pixel values, pixels are predicted from reference frames, and only the

prediction errors are encoded. The difference in position between the target and

reference pixel is referred to as a motion vector, which has to also be coded and

sent to the decoder. Since the complexity for searching and signaling overhead

for transmitting the motion vector at each pixel would outweigh the benefits of

exploiting this temporal redundancy, modern video coding standards, such as

HEVC [4] and VP9 [6], use block-based motion compensation (BMC) to exploit

temporal redundancies. These coders divide a frame into non-overlapping blocks,

which are predicted from similar blocks in the reference frame, to minimize the

8
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rate-distortion (RD) cost. BMC implicitly assumes that all pixels in a block move

uniformly, i.e., the motion is pure translation. This assumption does not hold in

a number of scenarios, e.g., a block covering multiple objects that differ in their

motion, or non-translation motion components such as rotation and zoom. Thus,

BMC may result in large prediction errors, as well as annoying blocking artifacts.

Some remedies are proposed to solve these issues. Variable block size motion

compensation (VBMC) is the most popular one among the solutions and is used

in all recent video coding standards [2–5]. The prediction accuracy is enhanced by

allowing iterative break-down of current block to approximate the object shapes

[7]. However, VBMC still impose a pure translation assumption on each block. To

capture motion other than simple translation, control grid interpolation methods

[8] [9] are proposed to use higher order models to account for more complex

motions. The motion vectors obtained from BMC are used as control points to

construct smoothly varying motion vectors between them, which allows pixels in

the same BMC block can have different motion vectors, and potentially capture

the other types of motions such as zoom or rotation. However, this smooth motion

field assumption cannot account for discontinuous motions resulting from objects

moving in different directions and the method is simply not applicable when the

adjacent motion vectors points to different reference frames, which thus rendering

the approach unavailing. Other limitations involve the subpixel precision of many

motion vectors of individual pixel and the need to rely on a finite set of imperfect

9
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interpolation filters [10], which yield errors, see [11].

The aforementioned approaches still try to assign a single motion vectors to

each block and limit a motion vectors influence to be constant and within a rigid

rectangular block structure. Instead of imposing such restrictions on motion vec-

tors, we can explicitly treat a motion vector as a pointer to a source of observation.

This point of view opens a door to incorporate motion vectors from nearby blocks

to estimate pixels as they can point to relevant observations in the current block.

The final prediction is constructed by using optimal linear coefficients to combine

these observations. As a result, we can break free from the BMC’s limitation,

namely, restricting a motion vector’s influence to apply only and uniformly within

a block in a rigid rectangular block structure. Related idea had previously led to

the overlapped block motion compensation (OBMC) approaches [12–14], which

design a single type of extended window centered around a motion vector po-

sition to effective average overlapping observations. In distinction with OBMC,

our approach focuses on the area that lies between motion vector positions, and

implements the optimal linear predictor for each pixel in the off-grid area. More-

over, instead of just using a single window, which can hardly account for complex

motions reflected in the underlying motion filed, we design K-sets of estimation

coefficients that trained to capture variation in local statistics. Specifically, by

switching between the K-sets of coefficients, the proposed adaptive interpolation

motion compensation (AIMC) approach allows the predictor to adapt in terms

10
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of how the estimates due to neighboring motion vectors should be weighted, and

potentially account for arbitrary object shapes.

In this work the focus is on implementing the optimal linear estimator for each

pixel from observations obtained by applying the multiple nearby motion vectors

available. Moreover, the estimator is adaptive to variation to local statistics by

switching between K sets of coefficients that are designed offline based on training

data. We re-emphasize that, unlike prior methods that design the weights for a

window centered around a motion vector position, we design the sets of coefficients

for the area that lies between motion vector positions. This distinction allows us

to accurately capture variations in how predictions due to neighboring motion

vectors need to be weighted, and in effect enables accounting for arbitrary object

shapes. We design the weights via K-modes clustering to capture the variation in

local statistics. Note that additional side information needs to be transmitted to

indicate the selected set of coefficients per block, hence, K is chosen to balance

the trade off between prediction accuracy and rate overhead. Experimental results

demonstrate the efficacy of the proposed paradigm with average 8.46% bit rate

savings over conventional fixed block motion compensation.

11
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Figure 2.1: Grid of motion vectors.

2.2 Proposed Prediction Model

Conventional motion compensated prediction for pixel s in a block at location

(i, j) in frame k, can be written as

x̃k(s) = x̂k−1(s− vi,j), (2.1)

where, vi,j is the motion vector for the (i, j) block, and x̂k−1(·) is a reconstructed

pixel in the previous frame. (We assume without loss of generality that the refer-

ence block is in the previous frame). Since a single motion vector cannot capture

complex motions within a block, we propose to exploit nearby motion vectors to

obtain additional observations, and generate the final prediction by linearly com-

bining the observations weighted by appropriate coefficients. The coefficients are

selected from one of the predefined K-sets that are designed to capture variations

12
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in the local statistics.

We denote byBi,j the block of pixels lying between motion vectors vi,j,vi+1,j,vi,j+1

and vi+1,j+1, as shown in Fig. 2.1. If these motion vectors were produced by con-

ventional BMC, then each corresponds to the center of its block. Hence, our block

definition is off-grid and covers one quadrant each from four blocks of the standard

fixed block grid. Let stli,j be the top-left pixel in Bi,j, and s′ = s − stli,j, be the

relative position within the block. The overall prediction for the pixel s ∈ Bi,j in

frame k is calculated as

x̃k(s) =
1∑

m=0

1∑
n=0

cqm,n(s′)x̂k−1(s− vi+m,j+n) (2.2)

= cq(s′)ᵀx̂k−1(s− v), (2.3)

where cqm,n(s′) is the q-th set coefficient for prediction at position s′ using the

corresponding (m,n) neighboring motion vector. Equation (2.2) is shown in vector

form in (2.3) where ᵀ denotes transposition. The set of coefficients is selected to

minimize the mean squared prediction error, i.e.,

q = arg min
r∈{0,...,K−1}

∑
s∈Bi,j

(
xk(s) − cr(s′)ᵀx̂k−1(s− v)

)2
. (2.4)

Two example sets of coefficients is shown in Fig. 2.2. The coefficients tend to

approach one near the corresponding motion vector position and decrease with

distance. As discussed in Sec. 2.1, applying coefficients this way allows us to

13
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(a) An example sets of weight distributions. (b) An example sets of weight distributions.

Figure 2.2: Example sets of weight distributions corresponding to motion vec-
tors vi,j ,vi+1,j ,vi,j+1 and vi+1,j+1

capture variations in local statistics corresponding to significance of predictions

due to neighboring motion vectors. Ideally, different coefficients that are optimal

for each block can be used, but these coefficients must be known to the decoder as

well. In order to implement the proposed prediction model without introducing

too much signaling overhead, we restrict ourselves to using K sets of coefficients.

These coefficients are stored in both the encoder and decoder; hence, we only need

to signal the index to the decoder.

2.3 Coefficient Design via K -modes Clustering

Algorithm

We propose to design the coefficients offline through a “K-modes” clustering-

based approach. Note that the overall objective of the coder is to optimize the
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tradeoff between rate and quantization error, and the quantized pixel is the sum

of prediction x̃k(s) and quantized prediction error êk(s), i.e.,

x̂k(s) = x̃k(s) + êk(s). (2.5)

Designing coefficients to minimize prediction error leads to better prediction, but

this does not guarantee better reconstruction. Moreover, the statistics of the block

prediction errors using a single motion vector has a long tail as shown in Fig. 2.3.

It is because even for the blocks that do not have good predictions in reference

frame (such as occluded object), encoders will still try their best to find the

most similar matches. This can result in large prediction errors to target blocks

and they can strongly distort the classical least-squares estimator and results

in poor generalization [15]. Hence, we propose to design the coefficients while

accounting for the reconstruction error, which allow us to design weights directly

leads to better reconstruction and also have the predictions with large errors be

compensated by the prediction residuals. As shown in Fig. 2.4, by accounting

prediction residuals, the reconstruction errors are confined in the certain range.

Once blocks are classified into K clusters based on (2.4), the square recon-

struction error for each cluster Cq is

J =
∑

Bi,j∈Cq

∑
s∈Bi,j

(
xk(s)− x̃k(s)− êk(s)

)2
. (2.6)
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Figure 2.3: Statistic of squared prediction error of a block (normalized by the
block size)

(a) Prediction error vs. Quantized prediction
error.

(b) Prediction error vs. Reconstruction error.

Figure 2.4: An example of applying quantization to prediction residuals. (quan-
tization step q = 2 and dead-zone = 2).
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Given the discreet nature of quantization, this cost (2.6) is piecewise continuous

in the prediction coefficients. Sufficiently small changes in coefficient values will

(almost always) only affect the reconstructed value through the prediction term

of (2.5), hence optimal predictive coefficients cq(s′) must satisfy

cq(s′) = E[x̂k−1(s− v)x̂k−1(s− v)ᵀ]−1E[x̃k(s)x̂k−1(s− v)]. (2.7)

Overall an iterative closed-loop approach is used to update these values until

convergence:

1. Given the sets of coefficients at iteration i− 1, a training set of reconstruc-

tions {x̂(i)0 , x̂
(i)
1 , x̂

(i)
2 , · · · , x̂

(i)
N } and quantized prediction errors

{ê(i)0 , ê
(i)
1 , ê

(i)
2 · · · ê

(i)
N } are generated for iteration i using (2.4).

2. Given the new training set, (2.7) is employed to compute the new coefficients.

Fig. 2.5 shows the average PSNR improvements at each iteration during training

for different target bit-rate regions. In the low bit-rate case, most of the pre-

diction residuals are quantized to zero. The improvement in prediction accuracy

can directly map to improvement of reconstruction, and hence the significant im-

provement in the first few iterations is observed. However, in mid and high target

bit-rate regions wherein the coefficients will change more slowly in the presence

of quantized prediction error. The improvement is much smoother.
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Figure 2.5: PSNR improvement (in dB) versus iterations of the proposed
K-mode clustering algorithm for different target bit rate regions.

2.3.1 Motion refinement for interpolated prediction

In the proposed interpolated prediction framework, each motion vector in-

fluences multiple prediction blocks, which implies the motion vectors cannot be

optimally selected independently. Hence, we propose an iterative motion refine-

ment algorithm.

Given the coefficients for all the K modes, we initialize the motion vector

for each block Bi,j via conventional motion compensation, and then update the

motion vectors as follows:

1. Calculate the optimal mode for each block Bi,j given the motion vectors.

2. Fix the modes and Bi,j’s neighboring blocks’ motion vectors; run motion

search to minimize the rate-distortion cost.

The above two steps are repeated until convergence. We note that the motion
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Figure 2.6: Motion vectors of blocks shown with the same color can be updated
in parallel during motion refinement for interpolated prediction.

vector update in Step 2 above can be divided into different groups to be run in

parallel, since a motion vector only affects a limited area (at maximum four blocks

for fixed block sizes). For example, as shown in Fig. 2.6, all motion vectors shown

with the same color can be updated in parallel.

2.4 Experimental Results

We evaluated the proposed approach in the experimental branch of the VP9

framework. It is important to emphasize that the proposed paradigm is applicable

to any modern video coding standard, as they all employ variants of BMC. For

simplicity of simulations, we restrict the coder to use 16 × 16 fixed block size in

an IPPP structure, with only the previous frame allowed as reference for inter

prediction. To minimize complexity overhead, we limit the motion refinement to

one iteration and the search window size to [−1, 1] on both horizontal and vertical
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directions. The coefficients are initialized using 2-D raised cosine function, which

is defined as

H2D(βx, βy, x, y) = C(x, y)H1D(βx, x)H1D(βy, y),

where H1D(βx, x) is the 1-D raised cosine function,

H1D(β, x) =


1, 0 ≤ |x| ≤ (1−β)B

2

1
2

+ 1
2

cos
(
πB
β

[
x− (1−β)B

2

])
, (1−β)B

2
< |x|

0, otherwise

and C(x, y) is the normalization function. We selected βx, βy ∈ {0, 0.5, 1} (i.e.

K = 9) and the initial coefficients are uniformly sampled values of the function

H2D(βx, βy, x, y) for 0 ≤ x, y ≤ 1. We design separate set of coefficients for

different target bit-rate regions and different range of resolutions. The training

set for CIF resolution consists of first 100 frames of Flower, Coastguard, Mobile

and Stefan video sequences, and the training set for HD resolution consists of first

20 frames of BQTerrace, Cactus, In to Tree and Pedestrian video sequences. The

trained coefficients are stored in both the encoder and decoder. The mode index

is entropy coded and the signaling overhead is accounted for in the results.

The performance gains for the test set, in terms of BD rate reduction, is sum-

marized in Table 2.1, and the RD performance comparison for one of the test
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Figure 2.7: Inter-prediction Comparison.

sequences is shown in Fig. 2.8 and 2.9. We can observe from these results that

the trained coefficients provide significant performance improvement for video

sequences with complex motion, as the proposed approach captures this by ac-

counting for all neighboring motion vectors, in contrast to the conventional BMC,

which is restricted to employ some compromise approximation of complex mo-

tions within a block. Moreover, for such sequences, we also obtain larger gains for

doing motion refinement as this improves taking neighboring motion vectors into

account, even with the limited range of motion refinement. It is also worth noting

that the motion compensated residuals are smoother due to reduced blockiness by

interpolating multiple predictions as shown in Fig. 2.7, which also leads to rate

savings in transform coding.
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Figure 2.8: RD performance comparison for the sequence bus.
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Figure 2.9: RD performance comparison for the sequence flower.
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Table 2.1: BD rate reduction for the proposed approaches relative to VP9,
evaluated outside the training sets.

Without With
Sequence motion refinement motion refinement

Foreman 11.174 11.316
Bus 13.783 14.455
Ice 6.213 6.863

HighWay 9.500 9.969
BlowingBubbles 6.898 7.422

BQMall 7.804 7.891
Vidyo4 3.973 4.011

CrowdRun 9.068 9.266
BasketBallDrive 7.746 7.937

Average 8.462 8.792
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Chapter 3

AIMC with Variable Block

Partitioning

To mitigate the shortcoming of BMC, in Chapter 2, we proposed a new paradigm

of adaptive interpolated motion compensation (AIMC), wherein neighboring mo-

tion vectors are considered as pointers to multiple estimation sources, which are

linearly combined to form the final prediction to an off-grid block with weights

chosen from pre-trained K-sets to capture variations in statistics. While promis-

ing initial results were obtained for fixed block sizes, in this chapter, we extend

the approach to the important setting of variable block size partitioning, which

has become standard in state-of-the-art video coding. Specifically, we propose

a non-trivial generalization of AIMC to account for arbitrary block partitioning

by “virtually” breaking a block to match its non-causal neighbors, and creating
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an interpolation tree structure, whose nodes extend from the original partition-

ing. This provides multiple estimates at the leaf nodes of the tree and enables

an effective AIMC implementation. Experimental results validate the proposed

paradigm with significant bit rate savings over conventional motion compensated

prediction.

3.1 Introduction

In modern video coders, block-based motion compensation (BMC) is a pre-

vailing tool for removing temporal redundancies within a video sequence, as it

achieves a good trade-off between the prediction accuracy and the overhead of

searching and signaling motion vector at each pixel. The prediction accuracy of

BMC is further improved by variable block motion compensation (VBMC), where

the size of a block is allowed to vary in order to match the shape of an object.

Even VBMC has become the-state-of-the-art and implemented within all current

coders [2–4,6], it is still inefficient to account for non-translational motions.

To account for more complex motion, reflected in the underlying motion field,

the paradigm of adaptive interpolated motion compensation (AIMC) [16] was

premised in Chapter 2. The main idea of AIMC is to explicitly treat the neigh-

boring motion vectors as pointers to multiple observation sources for estimating

a pixel in the current block. The final prediction is constructed by using optimal

linear estimation coefficients to combine these sources. As a result, AIMC breaks
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free from BMC’s limitation, namely, restricting a motion vector’s influence to ap-

ply only and uniformly within a given block in a rigid rectangular block structure.

Related ideas had previously led to the overlapped block motion compensation

(OBMC) approaches [12–14]. However, OBMC approaches use a single type of

extended window to effectively average overlapping observations. In distinction

with OBMC, the AIMC approach focuses on implementing the optimal linear pre-

dictor for each pixel from observations obtained through multiple nearby motion

vectors. Furthermore, AIMC designs K-sets of estimation coefficients that are

trained to capture variation in local statistics. The predictor adapts to the con-

tent by switching between K-sets of coefficients. Specifically, AIMC can adapt in

terms of how the estimates due to neighboring motion vectors should be weighted,

and can further account for arbitrary object shapes.

The AIMC approach provided substantial gains under fixed block size set-

tings [16]. In this chapter, we extend it to accommodate variable block size mo-

tion compensation (VBMC), on which all recent coding standards rely heavily for

flexible partitioning [7]. VBMC poses a significant challenge on AIMC implemen-

tation, as the AIMC approach operates on off-grid blocks that lie between motion

vectors. Since VBMC results in an unevenly spaced motion grid, the shapes of

such off-grid blocks are not necessarily rectangular, and the number of possible

off-grid block shapes is large. Hence, it would be impractical to train and store

prediction coefficients for all possible shapes of off-grid blocks.
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We propose to circumvent this difficulty via a generalization of the AIMC

approach to accommodate the variable block size setting. This is achieved by

“virtually” (i.e., only for the purpose of interpolation) breaking a block to match

the minimum block size of its non-causal neighbors and creating an appropriate

interpolation tree structure, wherein each node extends from the original block

partitioning. With the aid of this tree structure, only square interpolation blocks

of a few possible sizes are formed. Therefore, we can train K−sets of prediction co-

efficients for each possible size, and apply AIMC to each node of the interpolation

tree. As the interpolation tree can be inferred from the original partition structure

available to the decoder, no additional side information is needed. The choice of

the coefficient set needs to be transmitted, similar to fixed block AIMC. In gen-

eral, AIMC is more beneficial to locations exhibiting complex motion, whereas

for nearly static regions, the additional side information might outweigh the ben-

efit of improvement in prediction accuracy. Therefore, we incorporate a flag per

superblock/CTU to indicate whether AIMC is enabled, so that the encoder can

optimally decide to spend the side information only when it is beneficial. The

experimental results validate the proposed paradigm with more than 5% bit-rate

savings for video sequences with complex motion, and an average 2.56% bit-rate

savings when compared to the conventional VBMC.
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(a) Grid of motion vectors. (b) An example set of coefficient distributions
for the corresponding motion vectors.

Figure 3.1: Fixed block size adaptive interpolated motion compensated prediction.

3.2 Generalization of Adaptive Interpolation in

Variable Block Size Coding

Recall in Chapter 2, we define an off-grid block between motion vectors, and

generate multiple estimations from the motion vectors. The final prediction to the

off-grid block is formed by linearly combining the estimations with appropriate

coefficients, which trained offline as shown in 3.1. As discussed in Chapter 2, the

different sets of coefficients allow us to adapt to the local statistics and capture

significance of estimates due to neighboring motion vectors. The pre-defined K-

sets of coefficients are stored in both encoder and decoder, and only the index

of the selected set needs to be signaled to the decoder. However, in the variable

block size setting, different block sizes could be employed resulting in unevenly

spaced motion grid. This dramatically increases the number of the possible off-
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(a) Original Partition. (b) An example set of coefficient distributions
for the corresponding motion vectors.

Figure 3.2: An example of original partition and the inferred interpolated block
partition.

grid block patterns. Training and storing K-sets of coefficients for each possible

pattern would be impractical.

To overcome this challenge, we propose an interpolation tree structure that

can account for arbitrary block partitioning while still maintaining the simplicity

of the fixed block size setting. Specifically, we propose to “virtually” break the

blocks to match the non-causal neighbors’ block sizes to provide interpolation to a

smaller neighboring block. An example of such a division is illustrated in Fig. 3.2.

This required partition for interpolated prediction can be inferred from the original

partition. Therefore, no side information is needed for this new partition structure.

An illustrative 1-D example (with binary tree instead of quad-tree for 2-D)

is shown in Fig. 3.3 to demonstrate the construction process for an interpolated

block partition. Starting from the root (level 0), at each level, we split a node
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(a) Original Partition. (b) Level 2 Partition Match-
ing.

(c) Final Partition.

Figure 3.3: A 1-D example for block size matching algorithm.

to match the partition of its non-causal neighbors (the right neighbor in the 1-D

case). Explicitly, let root be the root of the structure. The non-causal block par-

tition matching can be completed via the function Partition matching(root)

described in Algorithm 1, wherein the function non causal neighbor is split re-

turns true if at least one of the non-causal neighbors of the current block is divided

into smaller blocks in the original partition structure. We note that the original

partition structure can be constructed by reading the node.is split field and the

new partition structure is constructed by the node.force split field. In the 2-D

quad-tree structure, we define the non-causal neighbors to be the right, bottom,

or bottom-right of the current block, and we treat rectangular blocks as a combi-

nation of two smaller square blocks (therefore, all the blocks in the interpolated

tree structure are squared).

We perform this block matching algorithm for each superblock/CTU, and shift

each block towards bottom-right corner by half of the block size. Note that AIMC
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Algorithm 1 Non-causal Block Partition Matching

function Partition matching(node)
if node is empty then return
end if
need to split← non causal neighbor is split(node)
node.force split = node.is split || need to split
for each child in node.children do

Partition matching(child)
end for

end function

(a) Interpolated prediction built for the top-
right block.

(b) Interpolated prediction for the entire par-
tition structure.

Figure 3.4: Interpolated prediction built for the example partition in Fig. 3.2

is performed after motion vectors for all the required blocks have been selected.

Therefore, instead of constructing off-grid blocks for an entire frame as in Chap-

ter 2, we only construct off-grid blocks within each superblock/CTU, and ignore

the blocks shifted outside the superblock/CTU boundaries. By confining the con-

struction process within a superblock/CTU, the increase of the delay incurred by

AIMC is more affordable.

We refer this new partition structure as interpolation tree. Each node in an
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interpolation tree is an off-grid block with respect to the original partitioning, and

each quadrant of an off-grid block only cover one standard BMC block. Therefore,

there is no ambiguity in assigning motion vectors to an off-grid block. A standard

block’s motion vector is assigned to the overlapped off-grid block’s corner, and

the AIMC approach is applied to each off-grid block. Fig. 3.4 illustrates how

interpolated predictions are done for the example partition in Fig. 3.2. Breaking

the blocks using the proposed algorithm results in very limited off-grid block

patterns, leading to reduction of complexity and simplification of implementation.

As a result, we can design K−sets of estimation coefficients for each possible off-

grid block pattern using the training algorithm similar to the original work in [16].

There are three types of interpolated blocks (the blocks lie entirely within

a superblock/CTU) in this structure. First, the blocks lying across the original

block partition boundaries are valid blocks (solid blocks in Fig. 3.4), where AIMC

can be performed. Second, the blocks lying entirely within the original blocks

are non-valid interpolation blocks (dotted blocks in Fig. 3.4). No interpolation

is done for this kind of blocks and side information is saved. Finally, the blocks

which generate predictions that overlap to some extent with previously predicted

regions (diagonal-striped blocks in Fig. 3.4). By construction, only a part of large

interpolated block can be over-written by smaller interpolation blocks. Therefore,

we allow new interpolated predictions to overwrite the old ones based on the scan

order to refine the interpolated prediction.
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Figure 3.5: An example of the off-grid blocks in the same size have different
number of distinct motion vector.

In addition to classify each off-grid block based on its size, we can further

classify an off-grid block according to the number of distinct motion vectors in a

block. Fig. 3.5 shows an example of the off-grid blocks in the same size having

different number of distinct motion vectors. The black off-grid block has only up to

three distinct motion vectors since the motion vector of the green standard block

is assigned to the bottom corners of the black block. As how the interpolation

coefficient can vary depends on the number of distinct motion vectors in the

block and their constellation, further classify them according to this information

can allow us to better account for each motion vector’s influence. Note that

there are a lot of possible constellations, but many of them are similar to each

other up to rotation. For example, Fig. 3.6 shows all possible constellations

with two distinct motion vectors. However, as many of them similar to each
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Figure 3.6: All possible motion vector constellations with two distinct motion
vectors and their corresponding reduced motion vector pattern.

other with proper rotation, they can be grouped and trained together. When

applying the coefficients, we just need to rotate the coefficients to match the

actual constellation. Fig. 3.7 shows all possible unique motion vector patterns.

Intuitively, the variations of the pattern with fewer distinct motion vector should

be simpler. Therefore, we train fewer sets of interpolation coefficients for the

simpler pattern to reduce the cost of side information.

Figure 3.7: Possible motion vector patterns for the interpolated blocks (the
sub-blocks in the same colors mean they share the same motion vector.).

Finally, we note that, in principle, we can form off-grid blocks to cover bound-

ary area (horizontal-striped blocks in Fig 3.4b), and apply AIMC to those blocks.

However, in practice, it is inefficient to perform AIMC on those off-grid blocks as
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AIMC can only update the predictions to pixels within the current superblock/CTU

due to the causality constraint. As a result, we skip those off-grid blocks that are

partially outside the current superblock/CTU.

3.3 Deployment of Interpolated Prediction

Clearly, an area with complex texture and motions benefits most from the in-

terpolated prediction framework, even at the cost of transmitting the interpolation

modes. For the area that can be well predicted by the conventional prediction, the

additional side information will result in degradation of RD performance. There-

fore, we add a flag to each superblock/CTU to indicate whether the proposed

interpolated prediction is used for a superblock/CTU. The RD costs of both orig-

inal and interpolated predictions of a superblock/CTU are computed. The flag is

on if the RD cost of the interpolated prediction is less than the RD cost of the

original prediction; otherwise the flag is off and interpolated prediction will not

be used for the entire superblock/CTU. Fig. 3.8 shows a reconstruction frame in

the Flower sequence, and the corresponding area where interpolated prediction is

applied. The proposed on-off mechanism allows the coder to refine the prediction

only when it is necessary.
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(a) The reconstructed frame.

(b) Interpolated prediction area of the corresponding frame shown in
Fig. 3.8a.

Figure 3.8: The reconstructed frame and the corresponding interpolated pre-
diction area (colored with black).
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3.4 Experimental Results

We evaluate the proposed non-parametric approach using the AV1 framework

[2]. It is important to emphasize that the proposed paradigm can be applied

to any modern coders as they all employ variants of VBMC. For simplicity of

simulations, we restrict the minimum partition block size to be 8×8, which limits

the valid interpolated prediction block sizes to be 8× 8, 16× 16 and 32× 32. We

also do not allow compound predictions. The coefficients of all block sizes are

initialized using 2-D raised cosine function, which is given as,

H2D(βx, βy, x, y) = C(x, y)H1D(βx, x)H1D(βy, y),

where H1D(βx, x) is the 1-D raised cosine function with a parameter B equal to

the corresponding block size,

H1D(β, x) =


1, 0 ≤ |x| ≤ (1−β)B

2

1
2

+ 1
2

cos
(
πB
β

[
x− (1−β)B

2

])
, (1−β)B

2
< |x|

0, otherwise

and C(x, y) is the normalization function.

We select K equals to the number of distinct motion vectors for each cluster

shown in Fig. 3.7. We select (βx, βy) ∈ {(0, 1), (1, 0)} for K = 2, (βx, βy) ∈

{(0, 1), (1, 0), (1, 1)} for K = 3, and (βx, βy) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} for

37



AIMC with Variable Block Partitioning Chapter 3

K = 4. The initial coefficients are generated by uniformly sampling the func-

tion H2D(βx, βy, x, y) for 0 ≤ x, y ≤ 1. The coefficients are trained at mid-target

bit rate and then applied to all the different bit rate range. The training set

contains first 100 frames of Flower, BlowingBubbles, Freman, and Coastguard se-

quences. The coefficients are stored in both encoder and decoder side. The mode

index and the interpolated prediction enabled flag are written into bitstream by

using the symbol writer in the AV1 codec.

For testing, we encode the first 100 frames of each video sequences using

target bit rate mode, wherein the coder can adjust QP values to match a given

bit-rate. The bit-rate range is selected to cover a wide range of qualities as shown

in Fig. 3.10. We also compare our results with using K = 1 for all the block sizes.

We refer it as single mode where no side information is needed to indicate the

selected set of coefficients used for interpolation. However, the encoder can still

decide whether to enable this or not at superblock/CTU level based on RD cost.

This can be viewed as generalization of the approach proposed in [14] on VBMC

setting. The performance gain in terms of BD rate reduction is summarized in

Table 3.1.

The intuition of choosing K equals the number of distinct motion vectors in

each motion vector is that we want to allow each motion vector can have a chance

to be the dominant motion vector which can propagate its influence across its

original boundary. Fig. 3.9 shows an example set of weight distribution, wherein
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Figure 3.9: An example set of coefficients for the pattern with four distinct
motion vectors and the corresponding motion vectors.

the bottom-right motion vector is the dominant motion vector.

From the results, we observe that for the sequences that are almost static or

with mostly simple translation, such as Container, the proposed paradigm pro-

vides little gains since VBMC already provides decent predictions, and the pre-

diction quality improvement of the proposed approach cannot compensate for the

rate cost. Therefore, most of the superblocks in these sequences have interpolated

prediction disabled. However, for videos with complex motion, the interpolated

blocks and the trained coefficients properly account for the neighboring motion

vectors, and therefore provide substantial gains. By contrast, the conventional

VBMC is restricted to use a compromised single motion to approximate complex

motions and predict the entire rigid rectangular block. Furthermore, compare

with using single mode, our K−mode approach can achieve around 1% gain even

an additional side information is required. This validates our claim that using

single set of coefficients cannot well adapt to the local statistics especially for the
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Figure 3.10: Coding performance comparison for sequence Mobile.

sequence with complex motion such as Mobile and BQSquare.

Table 3.1: BD rate reduction for the proposed approaches relative to AV1
Bit-Rate Bit-Rate

Sequence Reduction (%) Reduction (%)
(Single Mode) (K-Mode)

Waterfall -1.379 -3.244
Flower -3.163 -5.483
Stefan -1.872 -2.601
Mobile -3.75 -5.343

Coastguard -0.334 -0.544
Container -0.586 -0.804

Ice -0.299 -0.351
Foreman -0.586 -0.758

Bus -2.061 -3.187
BlowingBubbles -1.791 -2.607

BQSquare -3.393 -5.757
BQMall -1.753 -2.405
Keiba -0.155 -0.313

Average -1.625 -2.569
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Chapter 4

AIMC - Parametric Approach

In the Chapter 2, we introduced a novel idea of incorporating neighboring motion

vectors to generate more accurate prediction to a pixel. The method works very

well in the fixed block size setting which produce a regular spacing motion grid.

However, in the variable block size setting, the motion grid is irregular and there

are different ways to define the off-grid blocks required in the method. As shown

Figure 4.1: Motion grid generated by fixed block size and variable block size
settings. In variable block size setting, the off-grid block definition in not
unique. For example, there are two possible off-grid block patterns can contain
the red pixel.
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in the Fig. 4.1, the off-grid block that contains the red pixel is not unique. Fur-

thermore, it is impractical to train and store coefficients for all possible off-grid

block shapes. Therefore, in Chapter 3, we proposed an algorithm to limit the

number of possible off-grid block shapes to effective train and store the coeffi-

cients. However, this approach also restricts the number of motion vectors we

can use, and cannot operate on block boundary. It would be nice that given any

number of relevant observations to a pixel at any location, we can derive the opti-

mal coefficients to combine them to form the final prediction. To achieve this, we

propose to use a parametric approach to model the second order statistics of the

observations and the target. Specifically, we make use of the first-order Markov

model to describe the correlations between pixels in a frame. The coefficients

derived from our proposed model can automatically vary depending on both loca-

tions of motion vectors and their values to assign proper weights to each motion

vector to adapt to local statistics. As result, the parametric can achieve better

coding performance compared to the non-parametric (6.665% against 2.56% gains

in term of bit-rate saving), as the parametric approach can operate on any loca-

tion (therefore coverage area of interpolated prediction increased) and requires no

additional side information to adapt to local statistics.
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4.1 Motion Vector Selection at Encoder

We begin by introducing the motion vector selection process at a video encoder

as this process indicates the prediction accuracy of using a neighboring motion

vector as the predictor to the current block. Consider a simple block configuration

as showed in Fig. 4.2, wherein two motion vectors v0 and v1 are assigned to the

blocks through block-based motion compensation. When the difference between

v0 and v1 are large, intuitively, it implies that these two blocks might belongs

to different objects, and use one motion vector to predict the other block can

also result in large error. Therefore, even the locations of the motion vectors are

the same, the influences of the motion vectors to each other’s block should vary

depending on their values.

Figure 4.2: Block Configuration

In the block-based motion compensation, the motion vector of a standard

block B is selected to minimize the rate-distortion (RD) cost:

RD(v) =
∑
s∈B

(xk(s)− x̂k−1(s− v))2 + λR(v − vref), (4.1)
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where vref is the reference motion vector, and R(·) is the rate required to encode

the motion vector. The value of R(·) usually increases as the absolute value

of its input increases. Therefore, the encoder uses one of its causal neighbors’

(the blocks on the left or above the current block) motion vector as reference to

reduce the value. In addition to serve as a reference, each of the causal neighbors’

motion vectors is also used as the center point in the motion search process, and

the prediction error of using it is computed. The encoder then selects the best

motion vector and reference resulting minimum RD cost. Let v0 be a motion

vector from a causal neighbor, and v∗ be the optimal motion vector in terms of

RD. We have the following relationships:

∑
s∈B

(xk(s)− x̂k−1(s− v0))2 ≥

∑
s∈B

(xk(s)− x̂k−1(s− v∗))2 + λR(v∗ − v0) ≥

∑
s∈B

(xk(s)− x̂k−1(s− v∗))2 + λR(v∗ − vref). (4.2)

Without loss of generality we assume R(0) = 0. The lower bound of the prediction

error using v0 increases as the difference between the selected motion vector v∗ and

v0 increases, implying that a neighboring motion vector is less reliable when the

absolute difference between the motion vector is large. This provides a guideline

of how the prediction from a neighboring motion vector should be weighted: the

weights assigned to the prediction should decrease as the difference between the
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two motion vectors increases. Even though the above property is derived from

applying causal neighbors’ motion vectors to the current block (use v0 to predict

B1 as in Fig. 4.2), we assume the property is mutual, i.e., it also holds when

non-causal neighbors’ motion vectors are used to predict the current block (use

v1 to predict B0 as in Fig. 4.2).

4.2 Optimal Linear Estimator

Given a list of motion vector candidates {v0,v1, · · · ,vn}, we can generate a

vector of relevant observations, [x̂k−1(s− v1), x̂k−1(s− v2), · · · , x̂k−1(s− vn)], to

a pixel locating at s on the frame k. The optimal linear coefficients that minimize

the prediction error can be given by

c(s′) = E[x̂k−1(s− v)x̂k−1(s− v)ᵀ]−1E[xk(s)x̂k−1(s− v)]. (4.3)

To derive the coefficients, we only need the second-order statistics: the auto-

correlation of estimations, E[x̂k−1(s − v)x̂k−1(s − v)ᵀ], and the cross correlation

between estimations and the target, E[xk(s)x̂k−1(s − v)]. Therefore, if we can

model these for any target pixel, we can compute the optimal coefficients to com-

bine the observations.

45



AIMC - Parametric Approach Chapter 4

4.2.1 Modelling the Auto-correlation Matrix

Each element in the auto-correlation matrix is the correlation between two

observations which are essentially two pixels in the reference frame. The sepa-

rable first order Markov model is known to be a good model to characterize the

correlation between two pixels in nature images experimentally [17]. By imposing

isotropic assumption, the correlation can be modeled as:

E [x̂k−1(s− vi,j)x̂k−1(s− vm,n)] = ρ||vi,j−vm,n||1 , (4.4)

where ρ is the correlation coefficient. Note that when vi,j = vm,n, the estimates

from both motion vectors are the same, and the correlation between them is nat-

urally one. The correlation between two estimators vi,j and vm,n is characterized

by the Manhattan distance ||vi,j − vm,n||1.

4.2.2 Modelling the Cross-correlation Vector

Similarly, the same first-order Markov model can be used to derive the cor-

relation between an estimation and the target. Let the perfect estimation to the

target pixel s locate at s∗ which is pointed by v∗ in the reference frame, i.e., we
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assume x̂k−1(s
∗) = xk(s). The cross-correlation is:

E [xk(s)x̂k−1(s− vi,j)] = E [x̂k−1(s
∗)x̂k−1(s− vi,j)]

= ρ||s−vi,j−s+v∗||1 = ρd(vi,j ,v
∗), (4.5)

where d(vi,j,v
∗) is the Manhattan distance between an estimation and s∗, which is

unavailable to us. However, the observations are generated using motion vectors,

and we can have the reliability of a motion to the target pixel and estimate the

location of s∗. Therefore, we will first describe how to model the reliability.

Modeling Reliability of Motion Vectors

In general, the prediction error increases as the distance between a pixel and

the motion vector (which is assumed to be located at the center of the block as

shown in Fig. 4.3a) increases. Fig. 4.3b shows the correlation coefficients between

target pixels and their predictions with respect to the distance between a pixel’s

location and the motion vector used to generate the prediction.

Note that there are two different areas. One is the area (the regular block

B defined in BMC) whose prediction error are considered in the selection of the

motion vector. The other one is the area outside the motion compensation domain.

There is a significant gap between these area since prediction accuracy outside the

motion compensation domain is irrelevant to the selection of the motion vector

and the error can be large. Therefore, we model the reliability of a motion vector
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(a) Target pixel’s location with respect to
a motion vector.
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(b) Correlations between the predictions and the targets.

Figure 4.3: Correlation Coefficients between the predictions and the target
pixels inside/outside the motion compensation domain of a motion vector.

v to a pixel s as:

r(v, s) =


exp

(
−α
(

(dx(v,s)
W

)2 + (dy(v,s)
H

)2
))

, s ∈ B

β exp
(
−α
(

(d
2
x(v,s)
W

)2 + (
d2y(v,s)

H
)2
))

, s 6∈ B

(4.6)

where β is a penalty for crossing block boundaries, dx(v, s) and dy(v, s) are the

horizontal and vertical distances between the center of the motion vector v to the

pixel s respectively; W and H are the size of the block B on which conventional

BMC is performed to generate the motion vector v. We define the probability of
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a motion vector vi to be the true motion with probability:

p(vi) =
r(vi, s)∑

vj∈N r(vj, s)
(4.7)

Modeling correlation between the target and observations

Using the probability defined in eq. (4.7), we can compute the expected Man-

hattan distance between the target and an observation generated from a motion

vector vi,j:

E [d(vi,j,v
∗)] =

∑
vm,n∈N

pm,n||vi,j − vm,n||1, (4.8)

where N is the set containing all the motion vectors we used to generate estima-

tions to the target pixel. We model the correlation between the target and the

observation as:

E [xk(s)x̂k−1(s− vi,j)] = ρE[d(vi,j ,v
∗)] (4.9)

By using this approach, we can circumvent computing the distance through guess-

ing some intermediate proxy ŝ∗ to prevent from some undesired results. To illus-

trate this, let us consider a simple 1-D example as shown in Fig. 4.4a wherein the

three motion vectors locate at −8, 0 and 8 respectively. With the probabilities,

one tempting approach would be naively defined v̂∗ = E(v) and ŝ∗ = E(v) + s.
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However, using this approach, the expected motion around the boundary between

the red and the green block will be very close to v2, resulting the estimated cross-

correlation increase as it moves further away from the location of v2 as shown in

Fig. 4.4b. This trend does not match to the actual statistics. It is only valid

if the underlying motion changes smoothly between the motion vectors. On the

other hand, using the proposed method, the derived cross-correlation changes

more properly on the boundary area.

(a) Motion vectors configuration: the motion vectors v0 = 20, v1 = 0, v2 = 100
locate at −8, 0, 8 respectively.

(b) Naive approach: v̂∗ = E(v) and ŝ∗ = E(v) + s (c) Proposed approach

Figure 4.4: Example of motion vectors configuration and the estimated cross–
correlation for the center (red) block.
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4.2.3 Overall scheme

Here we summarize the overall scheme of our proposed method:

1. For each pixel, collect the motion vector candidates from neighboring blocks.

2. Estimate auto-correlation matrix using eq. (4.4).

3. For each pixel, derive the probability assigned to each motion vector using

(4.6) and estimate the cross-correlation vector using eq. (4.9)

4. Calculate the coefficient using eq. (4.3).

Note that step 1 and 2 can be done per block. Therefore, the auto-correlation

matrix is the same for all the pixel in the same block. We can then compute and

store the inverse of the auto-correlation matrix, and therefore derivation of the co-

efficients can be very fast. Fig. 4.5 shows an example of coefficient distribution of

using two motion vector candidates. The coefficients are different even though the

motion vectors’ locations are fixed, and they decrease sharply when the difference

between the two motion vectors, D, grows large. As discussed in subsection 4.1,

the ways the coefficients vary agree with the prediction accuracy of the motion

vector, and therefore the proposed model can adapt to local statistics.
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(a) Example of motion vector configure: v0 locates at 0 and v1 locates at 8,
and D is the distance between prediction in the reference frame.

(b) The weights assigned to prediction from v0.

Figure 4.5: An illustration of weight distribution of parametric interpolation
(a two motion vectors case).

4.3 Generalization for Multi-reference Frames

Using eq. (4.4) and (4.9) we can derive the cross and auto correlations when

the motion vectors point to the same reference frame. However, in current video

coders, multiple previously reconstructed frames can be served as reference frames
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Figure 4.6: When the predictions are in different reference frames, the dis-
tance in first common frame along the prediction chain is used to compute the
correlation.

to predict the current frame. The questions raised on how to compute the cor-

relations between the observations when the motion vectors points to different

reference frames. Note that to derive the correlations, we only need to find the

distance between two observations or their motion vectors, yet as the scenes or

objects in a video sequences are barely static, the direct spatial distance (assuming

pixels are not moving) is not meaningful. To solve this, we propose the following

two methods to account for a pixel’s trajectory to find the correct distance for our

model.

Prediction Chain Tracking

Consider the example showed in Fig. 4.6 where the two motion vectors v
(0)
0 and

v
(0)
1 generates two estimates p0 and p1 respectively. The estimate p1 is predicted
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through the motion vector v
(1)
1 which points to a pixel predicted through another

motion vector v
(2)
1 . We refer this prediction structure as a prediction chain. Even

though p1 and p0 are on different reference frames, as we track along the prediction

chain of p1, we can find p′1 which is on same reference frame as p0. The prediction

p′1 is very similar to p1 as the encoder use pixel domain block matching method

for motion compensation. Therefore, the correlation of p′1 and p0 can be used to

approximate the correlation of p1 and p0, and we define the distance between the

motion vectors v
(0)
0 ,v

(0)
1 as:

dcm(v
(0)
0 ,v

(0)
1 ) =

∣∣∣∣∣
∣∣∣∣∣
m∗∑
i=0

v
(i)
0 −

n∗∑
j=0

v
(j)
1

∣∣∣∣∣
∣∣∣∣∣
1

, (4.10)

where

m∗, n∗ = arg min
m,n

m+ n (4.11)

such that v
(m∗)
0 v

(n∗)
1 point to the same reference frame. (4.12)

The correlation of the two estimations can be computed as:

E [x̂m(s− v0)x̂n(s− v1)] = ρdcm(v0,v1)

We note that if p1 is predicted using AIMC, then there will be multiple mo-

tion vectors contribute to the prediction of p1. In that case, we only use the main
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Figure 4.7: When the motion vectors point to different reference frames, and the
prediction chain method is not applicable. Linear motion is assumed, and the
motion vectors are extended to the each other’s reference frame. The average
distance between the original motions and projected motions are used to define
the distance between the two original motion vectors v0 and v1.

motion vector of p1 (the motion vector assigned by VBMC) to account for the cor-

relation between the predictions p0 and p0 for simplicity. We also note that since

the prediction residuals are in general non-zero, the approximation to the corre-

lation will be more and more inaccurate as we track deeper along the prediction

chain. Ideally, this can be solved by comparing predictions p1 and p′1 to estimate

the temporal correlation between the motion trajectory and incorporate it in our

model. However, it requires to generate additional predictions and the benefit

is not significant. As a result, we simplify the model by assuming the temporal

correlation is one, and use this method only when the prediction of one of the two

estimates and the other estimate are on the same reference frame, i.e. m∗+n∗ = 1.

Similarly, the cross-correlation is computed by replacing ||vi,j−vm,n||1 in eq. (4.8)

with dcm(vi,j,vm,n).
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Motion Vector Extension

The prediction chain described in the previous method can also end if a pixel

is predicted using intra-prediction. Therefore, other than the scenario wherein

the first common reference frame is too far away along the prediction chains,

the first method is simply not applicable when a prediction chain ends before

we can find a common reference frame. When either one of these two situations

happens, we assume pixels move linearly and extend the motion vectors to each

other’s reference frames to derive the distance for computing correlations between

the estimates. Specifically, let v0 and v1 point to frame m and n respectively

as shown in Fig. 4.7. We extend the motion vector to each other’s frame and

compute:

dext(v0,v1) =

∣∣∣∣∣∣∣∣v0 −
m− k
n− k

v1

∣∣∣∣∣∣∣∣
1

and dext(v1,v0) =

∣∣∣∣∣∣∣∣v1 −
n− k
m− k

v0

∣∣∣∣∣∣∣∣
1

, (4.13)

where k is the current frame. We define the distance between the two motion

vectors to be the average value of the distances on the two frames:

dav(v0,v1) =
dext(v0,v1) + dext(v1,v0)

2
(4.14)

Then the correlation between the two estimates is

E [x̂m(s− v0)x̂n(s− v1)] = ρdav(v0,v1) (4.15)
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Figure 4.8: The distributions of average square prediction error reduction of
using two different strategies to model the correlation of estimates from two
motion vectors pointing to different reference frame. The red dots denote the
median, and the error-bars shows the first to third quantiles.

Comparison between the two proposed methods

The prediction chain tracking method utilizes the motion information to ac-

count for the trajectory of a pixel and therefore can describe their correlation

more accurately, while the motion vector extension method is more general and

can be applied to any scenario. Fig. 4.8 shows the distributions of averaged

squared prediction error reduction of a block using both methods when they are

all applicable and motion vectors point to different reference frames. It shows

that indeed, using the prediction chain tracking method we can get more accurate

prediction. Therefore, we try to compute the distance between the two motion

vectors according to the following order:

1. Manhattan distance if they point to the same reference frame.
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2. Prediction chain tracking if the first common reference frame can be reached

in one step (eq. (4.11) = 1).

3. Motion vector extension.

4.4 Experimental Results

We now describe the experiments and the results of using the proposed para-

metric approach. Since the focus of this work is on breaking the block structure

and optimally weighting the influence of each motion vector in the motion field.

We first test our method using the encoder configuration described in Chapter

3 wherein the compound (bi-directional) prediction mode is disabled, as when

compound mode is used, the encoder specifically searches for two motion vec-

tors to create the final prediction to a block. This compound prediction mode

can be viewed as a block-based version of multi-hypothesis prediction using two

estimators. Therefore, the functionality of proposed approach overlaps with the

compound prediction mode to some extent. Then we enable the compound mode

and test our method on the baseline without the restriction. The correlation co-

efficients between pixels ρ in eq. (4.4) is set to be 0.99, which is obtained by

analyzing the pixel correlation within the prediction block of Keiba sequence, and

for the parameters in eq. (4.6), we set α = 0.025, B = 0.8.

Table 4.2 summarizes the experimental results. The third column shows the
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BD-rate saving over the baseline with the compound mode disabled. Compared

with the non-parametric AIMC, the gain from parametric method is doubled.

There are several factors involved. First, the parametric approach uses the “ac-

tual” location (center of a block) of a motion vector to derive the its influence

onto its neighbor, while in the non-parametric approach, we divide a large block

into smaller ones and therefore the location of the motion vector is shifted. Sec-

ond, the boundary area of a superblock is skipped due to inefficiency to spend

additional side information on those off-grid blocks. For a superblock/CTU par-

titioned into 16 × 16 blocks, the boundary area comprises of around 46% of en-

tire superblock/CTU. However, the parametric approach can be applied on any

location, and therefore the performance increases as coverage area of AIMC in-

creases. Finally, the coefficients derived from the parametric model can automat-

ically adapt to local statistics. The additional side information to indicate which

sets of coefficients in the non-parametric approach is saved.

The fourth column of Table 4.2 shows the BD-rate saving over the baseline

where the compound mode is enabled. We can observe that the gain reduces

largely when the compound mode is enabled, wherein the encoder is allowed to

use two different motion vectors for a blocks, and combine the predictions from the

motion vectors with proper weights. The compound mode is used when a single

motion vector cannot produce a satisfactory prediction. As we can observe from

the table, for the video sequences has complex textures or complicated motions
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(such as Waterfall), the encoder tend to use the compound mode to generate more

accurate predictions. The percentage of inter-predicted area predicted by the

compound mode ranging from 60%− 70% for that kind of videos. Fig. 4.9 shows

that, with compound mode enabled, the prediction is more accurate, and the

coding performance increases correspondingly. Note that the encoder specifically

searches for a second motion vector to minimize RD cost when the compound mode

is used. As shown in Table 4.1, this increases computational complexity at the

encoder side by more than 130%, while our AIMC simply reuses the neighboring

motion vectors and weights their influences in a proper way. The AIMC approach

only increases the complexity by about 21% but is able to retain most of the

gain achieved by the compound prediction mode. We observe that one of the two

motion vectors of a compound-predicted block is usually the same or very close to

one of its neighboring motion vectors. In this scenario, the inaccurate prediction

of using a single motion vector can be addressed by our AIMC approach later.

We also note that, as shown in Fig. 4.10, the encoder picks the compound mode

more often when encoding the high-resolution videos in our test set. Therefore,

AIMC has larger gain for low resolution than for high resolution video in Table

4.2.

One way to further boost the performance of AIMC is to incorporate it into

the motion vector selection loop of a block. In our current implementation, the

encoder is not aware of the AIMC when selecting motion vectors, and therefore
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Table 4.1: Computational complexity increments against baseline (with the
compound mode disabled) at the encoder.

AIMC (with compound mode disabled) Compound Mode Enabled

+21.14% +139.01%

will choose to use the compound mode even though AIMC can provide a good

prediction afterward. By incorporating AIMC into the loop, the encoder can

properly weight the impact of neighboring motion vectors and form a more ac-

curate prediction without using a second motion vector (which needs additional

side-information) at the very beginning.
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Figure 4.9: Coding performance comparison.
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Table 4.2: BD rate reduction for the proposed approaches relative to AV1. The
last column shows the percentage of inter-predicted area used compound mode
when the mode is enabled.

Bit-Rate Bit-Rate % of
Resolution Sequence Reduction (%) Reduction (%) Compound

(Compound Mode (Compound Mode Mode
Disabled) Enabled) Used

CIF

Waterfall -11.358 -2.871 78.9
Stefan -6.008 -1.982 55.7
Mobile -10.902 -2.72 73.0

Container -5.231 -0.139 79.4
Ice -2.131 -0.949 28.5
Bus -6.135 -2.082 60.7

Flower -8.728 -2.314 59.2
Coastguard -5.078 -0.64 74.5

Foreman -5.240 -2.161 44.5

416 × 240
BlowingBubbles -7.318 -1.672 68.6

BQSquare -12.565 -1.728 78.0

832 × 480
Keiba -2.071 -1.329 27.2

BQMall -3.884 -0.594 55.4
1080 × 720 Shields -7.972 -0.822 78.0

1920 × 1080

BasketballDrive -3.427 -0.714 67.0
BQTerrace -10.037 -0.935 71.3

Cactus -7.076 -0.998 69.7
Kimono1 -3.416 -0.672 68.6

Rush hour -2.07 -0.616 48.9
Average -6.665 -1.629
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(a) Statistics for low resolution video sequences (352× 240 and 416× 240).

(b) Statistics for high resolution video sequences (1080×720 and 1920×1080).

Figure 4.10: Average percentage of inter-prediction modes usage for four dif-
ferent block sizes.
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Chapter 5

Advances in Hierarchically

Structured Multi-Reference

Prediction

In this Chapter, we introduce a multi-layer multi-reference prediction framework

and a new compound prediction mode for effective video compression. Current

AOM/AV1 baseline uses three reference frames for the inter prediction of each

video frame. This Chapter first presents a new coding tool that extends the total

number of reference frames in both forward and backward prediction directions.

A multi-layer framework is then described, which suggests the encoder design and

places different reference frames within one Golden Frame (GF) group to differ-

ent layers. The multi-layer framework leverages the existing coding tools in the
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AV1 baseline, including the tool of “show existing frame” and the reference frame

buffer update module of a wide flexibility. The use of extended ALTREF FRAMEs

is proposed, and multiple ALTREF FRAME candidates are selected and widely

spaced within one GF group. ALTREF FRAME is a constructed, no-show reference

obtained through temporal filtering of a look-ahead frame. In the multi-layer

structure, one reference frame may serve different roles for the encoding of differ-

ent frames through the virtual index manipulation. Finally, as reference frames

cover a wider range, the original compound prediction modes are insufficient to

utilize the temporal variations. We introduce a new compound prediction mode,

selectively weighted compound mode, which allows the encoder to weight the pre-

dictions from different reference frames more flexible. The experimental results

have been collected over several video test sets of various resolutions and char-

acteristics both texture- and motion-wise, which demonstrate that the proposed

multi-layer approach achieves a consistent coding gain compared to the AV1 base-

line. For instance, using PSNR as the distortion metric, an average bitrate saving

of 5.57+% in BDRate is obtained for the CIF-level resolution set, some of which

has a gain of up to 13+%, and 4.47% on average for the VGA-level resolution set,

some of which up to 18+%. In addition, with the new compound prediction mode,

we can further boost the performance by in average 0.6%.
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5.1 Introduction

Google embarked on the open-source project entitled WebM [18] in 2010 to

develop open-source, royalty unencumbered video codecs for the Web. WebM

released two editions, first VP8 [19] and then VP9 [6], where VP9 achieves a coding

efficiency similar to the latest video codec from MPEG entitled HEVC [4]. VP9

has delivered a huge improvement to YouTube in terms of quality of experience

metrics over the primary format H.264/AVC [20]. Google then joined the Alliance

for Open Media (AOM) [2] effort for a Joint Development Foundation project

formed with a few other industrial leaders, to define and develop media codecs,

media formats, and related technologies, still under the open standard. In this

Chapter, we focus on the multiple reference inter prediction aspect for the to-be

first edition of the AOM video codec, namely AV1.

The use of multiple reference frames facilitates a better inter prediction for

videos with a variety of motion characteristics, such as the presence of occlusion

and uncovered objects, lighting changes, fade-in and fade-out effects, static back-

ground, etc. The state-of-the-art techniques proposed the use of both short-term

references and long-term references (LTR) [21] to adapt to the specific content and

motion features presented in the coded frame. The Rate-Distortion (RD) perfor-

mance optimization requests a trade-off between identifying the best reference for

one coded frame and the overhead bits spent in signaling the multi-reference can-

didates [22–24]. Further, the encoder-side computational complexity should be
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considered [25]. Leveraging the multiple reference resources, one video frame may

be forward predicted or backward predicted or both, referred to as bidirectionally

predicted [26]. Special modes have been designed to effectively encode these bi-

predictive frames, i.e. B frames, including the use of DIRECT mode [27, 28] and

the design of hierarchical B frames [29].

In this Chapter, we first introduce a new coding tool that extends the num-

ber of reference frames in AV1 from three to six to increase the flexibility and

adaptability for the multi-reference prediction. Furthermore, we describe the en-

coder design through the exploit of extended ALTREF FRAMEs, and form a multi-

layer framework facilitated by the two coding tools provided in AV1, namely the

“show existing frame” and the virtual index manipulation. Finally, we introduce

a new compound prediction mode, selectively weighted compound mode, which

allows the encoder to weight the prediction from different reference frames more

flexible to best utilize the wide temporal variations from more diverse references

provided by the new structure. The experimental results validate the efficiency of

the multi-layer structure and the new compound mode with a consistent coding

gain compared to the AV1 baseline over a variety of video test sets in various

resolutions.
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5.2 A New Coding Tool

5.2.1 AV1 Baseline Reference Frame Design

Current AOM/AV1 baseline uses three reference frames for the coding of

each inter-coded frame: LAST FRAME, GOLDEN FRAME, and ALTREF FRAME.

The three references used by one specific coded frame are selected from a refer-

ence frame buffer that can store up to eight frames. In general, an AV1 encoder

may select LAST FRAME from a near past frame, and GOLDEN FRAME from a

distant past. ALTREF FRAME is a no-show frame usually constructed from a

distant future frame through temporal filtering. An AV1 encoder may apply dif-

ferent temporal filtering strength to construct an ALTREF FRAME, adapting to

various motion smoothness levels across frames. A so-called Golden Frame (GF)

group can be established, and all the frames within one GF group may share the

same GOLDEN FRAME and the same ALTREF FRAME. LAST FRAME may be up-

dated constantly. When the distant future frame that provides ALTREF FRAME

is actually being coded, it is referred to as an OVERLAY frame but treated as a

regular inter frame. OVERLAY frames usually cost fairly small amounts of bits as

ALTREF FRAME may serve as an ideal prediction.

AV1 baseline designs two types of inter prediction: A block predicted from

one reference frame with a corresponding motion vector is said to be in a single

prediction mode, while a block predicted using two different reference frames and
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Figure 5.1: AV1 reference frame buffer update.

two corresponding motion vectors is said to be in a compound mode. Compound

prediction always chooses the two predictions from two different directions, and

generates a new predictor by simply averaging the two single predictors.

The reference frame buffer update in AV1 is realized through two syntaxes in

the frame level: First is an eight-bit reference Refresh Flag, with each bit signaling

whether the corresponding frame in the reference buffer needs to be refreshed or

not by the newly coded frame; The second syntax is a mechanism referred to as

“Virtual Index Mapping”, as shown in Fig. 5.1. Each of the three references is

labeled by a unique virtual index, and both the encoder and the decoder maintain a

Reference Frame Map to associate a virtual index with the corresponding physical

index that points to its location within the reference buffer. Both the Refresh Flag

and the virtual indices are written into the bitstream. The advantage of using

such mapping mechanism is to largely avoid memory copying whenever reference

frames are being updated.
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5.2.2 Extended Reference Frame - A New Coding Tool

To make full use of the reference frame buffer designed to store a maximum of

eight frames, we propose a new coding tool that extends the number of reference

frames for each coded frame from three to six. Specifically, we add LAST2 FRAME,

LAST3 FRAME, and BWDREF FRAME, where the former two references are usu-

ally selected from past for forward prediction and the later selected through

look-ahead for backward prediction. Moreover, different from ALTREF FRAME,

BWDREF FRAME leverages the existing coding tool provided by the AV1 baseline,

namely the “show existing frame” feature, to encode a look-ahead frame with-

out applying temporal filtering, thus no corresponding OVERLAY frame is needed.

The use of BWDREF FRAME is more applicable as a backward reference at a rel-

atively shorter future distance. The extended reference frames allow a total of

six candidates for the single prediction mode, and a total of 8 candidates for the

compound mode as a combination of a forward predictor and a backward predic-

tor are considered. Consequently, each video frame is offered an extensively larger

set of multi-reference prediction modes, thus leading to a great potential for the

rate-distortion (RD) performance improvement.

To efficiently encode the extended number of references, context-based, bit-

level binary tree structures are adopted, as shown in Fig. 5.2a and Fig. 5.2b.

Depending on the availability and the final coding modes of the two neighbor-

ing blocks within the causal window - on the top and at the left, five contexts
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(a) single reference prediction

(b) compound prediction

Figure 5.2: Binary tree structure design for context-based, bit-level entropy
coding of the extended reference frames.

are designed for the coding of every bit in either single reference or compound

prediction.

Moreover, through the use of BWDREF FRAME, a symmetric framework of

multi-reference prediction is established for the compound mode: (1) A BWDREF FRAME

may be selected from a nearer future frame, paired with the nearer past LAST FRAME;

(2) A BWDREF FRAME may be selected from a father future frame, paired with

the father past LAST2 FRAME; and (3) ALTREF FRAME may be selected from a

distant future frame, paired with the GOLDEN FRAME in the distant past. The use
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of extended reference frames that are spread out widely thus allows an adaptation

to the dynamic motion characteristics within one video sequence.

5.3 Encoder Design - A Multi-Layer Framework

Aligned with the new coding tool introduced in Session 5.2, we address the

encoder design in this session. An extended ALTREF FRAME scheme is proposed,

which adopts more than one ALTREF FRAME candidates within one GF group.

Still complied with the syntax that allows one ALTREF FRAME at maximum for

the coding of each frame, several frames may be buffered to act as ALTREF FRAME

serving for different frames. These candidates may be selected from various lo-

cations within the GF group and have various temporal filtering strengths ap-

plied. A multi-layer framework is then constructed with the aid of the extended

ALTREF FRAMEs. Such encoder design is targeted to make full use of the eight-

frame spots in the reference buffer and best leverage the new coding tool of ex-

tended reference frames.

5.3.1 Extended ALTREF FRAMEs

As illustrated in Fig. 5.1, the “Virtual Index Mapping” mechanism specifies

how the reference frame buffer is updated. Both the encoder and the decoder use

identical virtual indices associate with the same reference frame, and maintain a

respective Reference Frame Map to track the corresponding physical location in
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Figure 5.3: Encoder design using extended ALTREF FRAMEs.

the reference frame buffer. Within one GF group the encoder may buffer mul-

tiple frames to serve as the ALTREF FRAME candidates, which is referred to as

the extended ALTREF FRAME scheme. To facilitate such an encoder design, an

ALTREF Map is exploited only at the encoder side, as shown in Fig. 5.3. The

ALTREF Map in essence is used to track the encoder’s choice on the current se-

lected ALTREF FRAME. It stores the virtual indices of all the ALTREF FRAME can-

didates, and the virtual index associated with the current selected ALTREF FRAME

is written to the bitstream.

5.3.2 Multi-Layer-Multi-Reference Framework

A multi-layer framework may be constructed using the extended ALTREF FRAMEs,

and an example is given in Figure 5.4a. This framework constructs a multi-layer

structure where the top layer frames are coded through the prediction from the

lower layers. As discussed in Sec. 5.2.1, one GF group starts with the coding

of either a KEY FRAME or an OVERLAY frame, serving as the GOLDEN FRAME,

followed by the coding of a distant future ALTREF FRAME candidate, denoted

as ALT0 in the figure. These two frames together form the bottom layer of the
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(a) Symmetric multi-reference prediction in display order

(b) Symmetric multi-reference prediction in encoding order (SE for non-filtered
ALTREF FRAMEs and O for filtered ones

Figure 5.4: An example of the symmetric multi-layer multi-reference framework.

multi-layer structure. Given a GF group, we propose to use the new coding tools

to construct multi-layer structure with the following steps.

Step 1. Insert k extended ALTREF FRAMEs and space them equally in the GF

group. Since the extended ALTREF FRAME along with the original ALTREF FRAME

lay out the bottom layer of the hierarchy structure, they will all serve as a dis-

tant future reference. We ensure there is enough space between each frame in the

bottom layer by letting

k = min

(⌊
length(GF)

4

⌋
− 1, 2

)
.

Note that due to the size constraint of the reference buffer, the maximum number

of ALTREF FRAME allowed is two.
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The extended ALTREF FRAME’s divide the GF group into several subgroups.

Compared to the original ALTREF FRAME, the extended ALTREF FRAME’s are al-

ways located closer to the current coded frame, hence, a predictor of higher quality

may be obtained without the use of temporal filtering. When an ALTREF FRAME

is not filtered, the “show exsisting frame” flag is turned on and no OVERLAY

frame is added. The coding of both ALT2 and ALT1 may choose ALT0 to serve

as their ALTREF FRAME.

Step 2. Following coding order, the BWDREF FRAME in each subgroup is

constructed and formed the second layer from the top of the multi-layer structure.

Through the virtual index manipulation, coding of the BWDREF FRAME will use

the near ALTREF FRAME (e.g. ALT2 or ALT1) to serve as its BWDREF FRAME

and the distant ALTREF FRAME (ALT0) to serve as its ALTREF FRAME.

Step 3. The remaining frames in the GF group form the top layer of the

multi-layer structure. These frames use the near future reference frame as their

BWDREF FRAME, and the next future reference frame as their ALTREF FRAME,

if available. For instance, in Figure 5.4a, all the first frames in the top layer

of each subgroup have their own BWDREF FRAME and ALTREF FRAME explicitly

coded. For those second frames in the top layer of each subgroup, through virtual

index manipulation, the two available ALTREF FRAME candidates may serve as

BWDREF FRAME and ALTREF FRAME respectively. For instance, for Frame 6,

ALT2 may serve as BWDREF FRAME and ALT0 may serve as ALTREF FRAME.
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For the last frame in the last subgroup of the GF group, i.e. Frame 13 in the

figure, ALT0 is the only available backward reference, which may simply act as

ALTREF FRAME and no BWDREF FRAME may be used.

Such coding structure is designed to minimize the decoding delay while to

maintain a diversifying reference frame list to achieve a larger coding gain for the

GF group. It is noted that the virtual index manipulation is only conducted at the

encoder side, as the decoder simply identifies the virtual index associated with a

specific reference frame from the bitstream. The encoder determines whether one

buffered reference frame should act as BWDREF FRAME or act as ALTREF FRAME.

We still maintain the size of reference frame buffer in the new coding tool the same

as that specified in the AV1 baseline, considering the overall encoder complexity

as well as the hardware design for the AV1 codec.

5.4 Experiment Results

In this section the experimental results of using extended reference frames

are presented. The encoder adopts the proposed multi-layer framework and the

results are compared against the AV1 baseline. We have tested the new approach

over four different data sets, namely low-res, derflr, medium-res, and hd-res, where

the first two sets contain video clips of the CIF/SIF-level resolution, the third set

contains VGA-level resolution, and the last set contains HD-level resolution (e.g.

720p). The overall results are summarized in Table 5.1. The example results of
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individual video clips for the low-res and medium-res are given in Table 5.3. In

all cases, we simply use a VBR bitrate-controlled test condition, where videos

are run at a range of target bitrates with a standard rate-control mechanism to

obtain RD curves. The BDRate [30] is computed using the global PSNR as the

distortion metric.

Compared against AV1 baseline, the new coding tool of the extended reference

frames and the corresponding multi-layer encoder design increase the computa-

tional complexity at both the encoder and the decoder, but have a nearly negligible

impact on the decoder side, as described in Table 5.2.

Table 5.1: Coding gains of the multi-layer framework using extended refer-
ence frames compared against AV1 baseline in terms of BDRate reduction over
datasets of various resolutions.

Data Set low-res derflr medium-res hd-res

Ext-Refs -5.573% -4.465% -4.471% -3.192%

Table 5.2: Computational complexity increment of the proposed approach com-
pared against AV1 baseline.

Encoder Side Decoder Side

Ext-Refs +74.16% +2.12%
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Table 5.3: Coding gains of the multi-layer framework using extended reference
frames compared against AV1 baseline in terms of BDRate reduction on the
low and mid resolution datasets (50 video clips).

Video Resolution BDRate Video Resolution BDRate
Saving Saving

(%) (%)

akiyo CIF -5.789 BQMall 832×480 -6.117
bowing CIF -3.885 BasketballDrillText 832×480 -3.937

bridge close CIF -5.908 BasketballDrill 832×480 -2.970
bridge far CIF -6.777 Flowervase 832×480 -4.109

bus CIF -4.528 Keiba 832×480 -1.274
city CIF -5.041 Mobisode2 832×480 -2.671

coastguard CIF -9.797 PartyScene 832×480 -5.837
container CIF -12.683 RaceHorses 832×480 -1.340

crew CIF -3.642 aspen 480p -2.751
flower CIF -13.176 crowd run 480p -11.267

foreman CIF -4.433 old town cross 480p -4.323
harbour CIF -8.018 red kayak 480p 1.840
highway CIF -2.426 rush field cuts 480p -9.318
husky CIF -4.256 sintel trailer 2k 480p -4.825

ice CIF -4.308 snow mnt 480p 0.496
mobile CIF -12.347 speed bag 480p -7.850

motherdaughter CIF -4.794 station2 480p -2.548
news CIF -3.214 tears of steel1 480p -4.122

pamphlet CIF -1.446 tears of steel2 480p -6.668
paris CIF -3.305 touchdown pass 480p -2.321

signirene CIF -5.419 west wind easy 480p -1.235
silent CIF -3.380 controlled burn 480p -1.340

students CIF -6.415 crew 4CIF -2.476
tempete CIF -9.465 harbour 4CIF -8.387
waterfall CIF -7.412 ice 4CIF -2.876
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5.5 Selectively Weighted Compound Prediction

In the previous sections, we introduce a new coding tool to extend the total

number of reference frames from three to six to cover a wider temporal range. The

increased flexibility allows the encoder to adapt to local variations. In Chapter 4,

we observed that the majority of inter-predicted in video sequences are predicted

using the compound mode, in which the two different predictions are combined

either by simply averaging the two predictions, or by weighted averaging them

according to their temporal distances to the current frame. The later method as-

sumes that the prediction temporally closer to the current frame has less noises. It

is generally true for uncompressed video sequences. However, for video compres-

sion, the predictions are from reconstructed frames rather than the actual sources.

The quantization noises introduced by the encoding process can surpass temporal

noises, and moreover the encoder can use different quantization levels for different

frames based on current bit usage. As a result, a closer frame might have larger

noises than a further frame. To address this, we introduce another variation of the

compound modes wherein we allow the encoder to select the dominant prediction

(out of the two predictions), which provides better prediction to current block.

The encoder then combines the predictions with optimal linear coefficients. We

add the proposed method as the third option of the compound modes. Even at

the cost of increased overhead for selecting the compound modes and signaling the

additional side information to indicate the dominant motion vector, the experi-
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mental results show significant improvement, which demonstrates the effectiveness

of the proposed method.

5.5.1 Background

In AV1 codec, compound predictions can be generated by two different ap-

proaches. Other than simply equally average the predictions from the two direc-

tions, the predictions can also be weighted based on the closeness of the reference

frames to the current frame [31]. Basically, in this distance weighted compound

prediction mode, it assumes the pixels along the motion trajectory can be model

as the first order Markov process as shown in Fig. 5.5:


sl = ρ

|l−m|
t pm + nm

pn = ρ
|n−l|
t sl + nl,

(5.1)

where pm is a pixel at reference frame m, sl is a pixel at current frame l, ρt is the

temporal correlation, and n is the noise. Using this model, the optimal weights

to combine the two predictions in different reference frames can be derived by

solving

arg min
wl,m,wl,n

E
[
(sl − (wl,mpm + wl,npn))2

]
.
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Figure 5.5: Pixels along motion trajectory can be model as first order Markov

process: sl = ρ
|l−m|
t pm + nm and pn = ρ

|n−l|
t sl + nn.

Assuming the noises are uncorrelated, the optimal coefficients are

wl,m =
ρm

1 + ρmρn
and wl,n =

ρn
1 + ρmρn

, (5.2)

where ρm = ρ
|l−m|
t and ρn = ρ

|l−n|
t .

5.5.2 Selectively Weighted Compound Prediction

In the previous subsection, a weight assignment method based on the first order

Markov model was introduced. However, in video compression, the predictions

are from reconstructed frames in which quantization noises can be introduced

during the encoding process. The quantization noises are in general larger than

the temporal noises at the operational points of lossy compression. Moreover,
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the quantization level for each frame is not maintained the same, and is adjusted

according to the frame’s position in the coding structure and the current bit usage.

A closer frame can have coarser quantization which leads to larger overall noises.

As a result, the location of dominant prediction (which has smaller noises) cannot

be determined based on closeness to the current frame, and assigning weights

based on temporal distances can be inefficient. Since the encoder has access to

the target frame, it can directly test which one of the two predictions has smaller

noises. We propose to directly model the predictions as:


pm = sl + nl,m

pn = sl + nl,n,

(5.3)

where n is the overall noise, and pm and pn are predictions to sl in reference frame

m and n respectively. We assume their noises, nl,m and nl,n, are independent and

Laplace(λl,m) distributed, whose probability density function are defined as:

f(x|λ) =
λ

2
exp(−λx) (5.4)

The optimal weights to combine the predictions can be derived by solving:

min E(s− (wmpm + wnpn))2 (5.5)

s.t. wm + wn = 1, , (5.6)
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which yields

wm =
E(n2

l,n)

E(n2
l,m) + E(n2

l,n)
and wn =

E(n2
l,m)

E(n2
l,m) + E(n2

l,n)
. (5.7)

Mode and Weight Design

Ideally, different coefficients that are optimal for each block can be used. How-

ever, the additional cost for signaling the coefficients can out-weight the benefit

of prediction improvement. Therefore, we propose to use a one-bit indicator to

signal the direction of the dominant prediction and design a fixed set of weights.

Specifically, the one-bit indicator can be viewed as to rearrange the predictions

such that pm in eq. (5.3) is always the dominant prediction. Note that, there

are already two variations of compound mode exist in AV1 as described in Sec-

tion 5.5.1. Therefore, we focus on designing the coefficients for the blocks which

can benefit most from the our newly introduced mode, i.e., we focus on the set

of blocks, B, whose RD cost can be improved by the new compound mode and

design weight

w∗ = arg min
w

∑
b∈B

SSEscp(b, w) (5.8)

84



Advances in Hierarchically Structured Multi-Reference Prediction Chapter 5

where SSDscp(b, w) is the sum of square prediction error of a block b using the

new compound mode with the weight w and

B = {b : SSEscp(b, w
′) + λR(new compound mode) < RDsel(b)}, (5.9)

where w′ is the optimal weights for the block b derived from eq.(5.7), R(new

compound mode) = 2 is the rate for the new compound mode including the

indicators for both the mode and the dominant prediction, and RDsel(b) is the

RD cost of the mode the encoder selects without using the new compound mode.

Fig. 5.6a shows the distribution of blocks whose RD cost can be improved

by the proposed method with optimal weight w′. We arrange n0 such that it

correspond to the noises of the predictions have smaller errors. Due to additional

signaling overhead, when the optimal weights are close to even the encoder will

prefer to use simple-average compound mode, or when one prediction is much

better than the other the encoder prefer to use single motion vector mode. As a

result, only the blocks whose the ratio of the noises within a certain range can be

benefited from the design. Specifically, as shown in Fig. 5.6b, the distribution can

be fitted by a line which indicates most efficient operating point (noise ratio) of

the proposed method.
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(a) Blocks can be benefited from the proposed method are within a certain
range due to additional side information required.

(b) The noise ratio of the distribution can be fitted by a line.

Figure 5.6: Distribution of blocks whose RD cost can be improved by the
proposed method with optimal weight w∗. E[n0] denotes the average prediction
error of a block using the better prediction, and E[n1] denote the average
prediction error of the other.
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5.5.3 Experimental Result

We now describe the experiments and results for the proposed method. To

test the efficiency of proposed method, we encode the first 100 frames of each

video sequences using target bit rate mode, wherein the encoder can adjust QP

values to match the targeted bit-rate. The encoder that adopts the proposed

compound mode requires additional side information to specify the particular

prediction mode and the dominate prediction.

Figure 5.7 shows the coding performance of proposed method across different

target bit-rates on the video sequences of F lower and M obile. Table 5.4 summa-

rizes the BD rate reduction of all test sequences. From Figure 5.7, we can observe

that the gain is consistent over all bit-rate range. Compared to the baseline, the

proposed method can achieve average bit-rate reduction up to 1.5% on videos

with complex textures such as F lower. It is because the prediction accuracy also

affected by the interpolation filters which used to account sub-pixel displacement.

The filters in general act as low-pass filters and will introduce additional noise,

and the noise is more prevalent for the moving objects with complex texture. As

a result, the Markov model is much more inaccurate. In Figure 5.8. we show the

percentage of the inter-predicted area covered by a compound prediction mode.

We first observe that the percentage of area covered by the distance weighted

compound prediction mode increases as the bit-rate increases. It is because in the

low bit-rate range, the quantization noise is more dominant than the temporal
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noise, rendering inefficiency for this mode. We can also observe that the area

covered by the proposed method ranging from 17%−25%, which demonstrate the

effectiveness of our design.

Table 5.4: BD rate reduction for the proposed new compound prediction ap-
proaches relative to AV1.

Bit-Rate
Resolution Sequence Reduction (%)

CIF

Waterfall -0.522
Stefan -1.072
Mobile -1.212

Container -0.224
Ice -0.804
Bus -0.350

Flower -1.514
Coastguard -0.253

Foreman -1.028

416 × 240
BlowingBubbles -0.441

BQSquare -0.355

832 × 480
Keiba -0.412

BQMall -0.133
1080 × 720 Shields -0.901

1920 × 1080

BasketballDrive -0.476
BQTerrace -1.593

Cactus -0.630
Kimono1 -0.598

Rush hour -0.020
Average -0.660
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Figure 5.7: Coding performance of proposed selective weighted compound pre-
diction mode.
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Figure 5.8: Percentage of compound prediction modes in inter-predicted area.
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Chapter 6

Conclusion and Future Work

This dissertation primarily focuses on the optimal design of motion compensation

scheme, wherein the impact of a motion vector had previously confined within

in a rigid rectangular block. We propose to break such a boundary by explicitly

treating motion vectors as pointers to the observation sources, and use neighboring

motion vectors to form multiple estimates to a target pixel. The research is

established upon this and devises several advanced techniques in an estimation-

theoretic framework to efficiently utilize the motion fields and derive optimal

weights to combine the estimates.

In Chapter 2, we propose a novel adaptive interpolated motion compensation

(AIMC) approach, wherein the neighboring motion vectors are used as relevant

estimators to the target and formulate the problem of combining multiple esti-

mates as a linear estimation problem. The optimal linear coefficients are derived
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through a training algorithm, which is developed to avoid over-fitting and to min-

imize the reconstruction error rather than prediction error as it is the ultimate

goal for video compression. As a single set of coefficients cannot account for the

varying correlation between estimators, we train K-sets of coefficients and allow

the encoder to switch between them to adapt to local statistics.

In Chapter 3, we extend the AIMC approach in Chapter 2 to the variable block

sizes setting which is widely adopted in modern video coders. By introducing an

interpolation tree structure which can be inferred from the original partition tree,

we enable the substantial gains from employing variable block sizes partitioning,

and further improve its performance while maintaining simplicity of the original

AIMC approach. A flag is added per superblock/CTU to adapt to the content of

video frames to properly enable the interpolated prediction when necessary.

The non-parametric approach introduced in Chapter 2 and 3 requires addi-

tional side information to switch between interpolated coefficients to adapt to

local statistics. In addition, to efficiently train and store the coefficient we are

restricted to operate on the interpolation area of predefined shapes. In Chapter

4, we address these issues by introducing a parametric approach. We propose a

parametric model which incorporates the Markov property for image signal and

the correlations between motion vectors in the motion field generated at the en-

coder. As a result, the coefficients derived from the model can automatically

adapt to local statistics without requiring additional side information, and we can
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implement AIMC at any pixel location using any number motion vectors. Exper-

imental results show substantial improvement over the non-parametric approach,

which demonstrate the efficiency of the proposed method.

The current implementation of AIMC simply update predictions after motion

vectors have been generated with the conventional block-based approach. An

interesting observation is, without having encoder aware of the AIMC operation

during the motion search process, the encoder can spend unnecessary bits trying to

find a second motion vector (to use bi-directional/compound prediction mode) to

improve the prediction accuracy which can be achieved through AIMC. Therefore,

one of the future works would be to incorporate the proposed model into the

motion selection loop.

In Chapter 5, we focus on optimizing the AV1 encoder, an open source video

encoder founded by the Alliance of Open Media (AOM). By recognizing the dis-

advantage of using almost only the nearest frame as a reference frame, we first

introduce a new tool to extend the number of reference frame from three to seven,

which allows the reference frames cover a wider temporal range to adapt to local

variations. We then design a coding structure which allocates reference frames

properly to diversify the reference frame positions to maximize the efficiency of

increased number of reference frames. Finally, we introduce a selectively weighted

compound prediction mode which acts as a complementary role to the existing

compound modes. The newly introduced mode allows the encoder to select the
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dominate predictions from two directions, and combine them with the weights op-

timized for the blocks where the existing compound modes fall short. Simulations

shows consistent performance gain over all bit-rate range.
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