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Abstract

Uncertainty in Infrastructure Deterioration Modeling and Robust Maintenance

Policies for Markovian Management Systems

by

Kenneth David Kuhn

Doctor of Philosophy in Engineering-Civil and Environmental Engineering

University of California, Berkeley

Professor Samer Madanat, Chair

Infrastructure management systems help public works agencies decide when and
how to maintain, repair, and rehabilitate infrastructure facilities in a cost effective manner.
An integral part of an infrastructure management system is a model describing how the
different infrastructure facilities to be managed deteriorate over time and with use. Many
sources of error limit the ability of management systems to accurately predict how built
systems will deteriorate. This dissertation introduces and examines different techniques
for considering error and uncertainty in deterioration modeling within an infrastructure
management system.

Techniques used include robust optimization and adaptive control. In the context
of robust optimization, both MAXIMIN and Hurwicz decision criteria are studied. Com-

putational studies involving the simulated management of pavement systems illustrate the
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strengths and weaknesses of the proposed approaches. These studies involve short-term,
limited horizon planning, as well as indefinite-term, infinite horizon planning. Single facil-
ity infrastructure management problems are presented alongside more complex problems
involving the management of a network of an arbitrarily large number of related facilities.

It is found that both robust optimization and adaptive control formulations have
certain comparative advantages. Some discussion is included of the possibility of com-
bining the robust rkand adaptive frameworks to create a new hybrid approach. Regard-
less of what approach is used, this work makes clear that consideration of uncertainty in
deterioration modeling during decision-making can alter ‘optimal’ maintenance strategies

selected and change the potential user and agency costs of infrastructure management.

Professor Samer Madanat
Dissertation Committee Chair
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Chapter 1

Introduction

The United States has historically made an extraordinary investment in its infras-
tructure. For instance, according to the GAO (2001) the federal government has spent an
average of about $59 billion annually since the 1980s on the nation’s civilian infrastructure.
The emphasis of infrastructure investment has shifted in the past 30 years toward main-
tenance rather than new construction. According to the CBO (1999), a larger and larger
proportion is being spent on the maintenance of the total expenditure on public works im-
provements, with the proportion of public non-capital spending for infrastructure increasing
from 39% in 1960 to 57% in 1994. However, the magnitude of Maintenance, Repair, and
Rehabilitation (MR&R) investment has been far from sufficient. Therefore, the critical is-
sue facing public works agencies today is how to allocate limited resources that are available
for MR&R so as to obtain the best return for their expenditure.

The MR&R resource allocation problem has come to be known as the infrastruc-

ture management problem, and infrastructure management systems have been developed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to help public agencies make optimal decisions regarding MR&R expenditures. The rec-
ommendations of infrastructure management systems are useful only if the assumptions
that underlie such tools are reasonably correct. In particular, such systems make assump-
tions relating to how facilities deteriorate that are key to the maintenance policies they
recommend.

The research presented here explains how and why assumptions made by manage-
ment systems relating to deterioration may be prone to uncertainty and error. A number of
techniques are presented as alternatives that are well suited to minimizing the extra costs
uncertainty may add to infrastructure maintenance. Several of these methodologies that
fall under the heading of robust optimization are applied to infrastructure management for
the first time here. The overall aims of the work presented here are to illustrate that uncer-
tainty in deterioration modeling can be a problem in infrastructure management, and that
there are different techniques for dealing with this uncertainty. No one technique is chosen
as the ‘optimal’ technique for dealing with decision-making in the presence of uncertainty

at the end of this text.

1.1 Outline of the Dissertation

Reading through a lengthy scientific discourse like this can be a challenge. The
reader must focus on the technical details of the current section while recalling the under-
lying methodology of the current chapter and the overall aims of the entire text. It is easy
to lose the plot, to lose track of the story being told or the characters doing the telling. An

outline of this text is presented here. The hope is that this outline will allow the reader
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to quickly and easily grasp the aims of the text as a whole and the motivations behind the
various parts of the research.

This dissertation begins with two introductory chapter entitled Infrastructure
Management and Infrastructure Deterioration Modeling. The research presented in this
dissertation is in the field of infrastructure management, and relates to how built infras-
tructure facilities are maintained. This field will be introduced to the the reader in some
detail. Infrastructure management is bifurcated into one area relating to statistical descrip-
tions of infrastructure deterioration and another relating to maintenance decision-making
given deterioration models. The final part of the introductory chapter describes uncer-
tainty in deterioration modeling. This is the central ‘problem’ that motivates the research
presented in this text.

The following two chapters describe a novel approach to dealing with the problem
of uncertainty in deterioration modeling, bringing the consideration of this uncertainty into
maintenance decision-making and making use of nascent robust optimization techniques.
One chapter relates to the management of single infrastructure facilities, while the other
considers management of a system of facilities. There are important methodological and
computational differences between single facility and system level infrastructure manage-
ment. The intuitive meaning of various robust decision-making criteria and the results of
computational case studies involving simulated management of infrastructure facilities are
emphasized.

The next chapter compares robust optimization based methodologies to adaptive

control approaches. Adaptive control is the framework currently used in situations where
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there is significant uncertainty in deterioration modeling. It is neither clearly inferior nor
superior to robust optimization based approaches. Computational studies and qualitative
comparisons reveal the relative strengths and weaknesses of the two approaches. Some
discussion is presented describing how adaptive control and robust optimization could be
combined to create a hybrid robust and adaptive methodology for infrastructure manage-
ment.

The final chapter of this text summarizes the key findings of the research presented
here. The results of the computational studies performed in various chapters are revisited
in the context of the overall findings of the research effort. Directions for future research,
of both a theoretical and a computational nature, are presented.

References to this outline have been added to the various chapters of this disser-
tation. It is hoped that this outline and the references to it make the research easier to

follow.
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Chapter 2

Infrastructure Management

Built infrastructure facilities, like power lines and paved roads, provide the foun-
dations needed for modern society to function. These facilities deteriorate over time and,
if nothing is done, may degrade to the point where they become unusable. Public agencies
monitor infrastructure facilities and take action to slow or reverse deterioration processes
through a process known as infrastructure management. The decisions made in infras-
tructure management include the selection and scheduling of Maintenance, Repair, and
Rehabilitation (MR&R) actions. There are two, often competing, objectives of infrastruc-
ture management. The primary objective is to provide the best possible service to the users
of the infrastructure in question. In the case of managing a single bridge, this might involve
minimizing the chance that the bridge in question collapses. The secondary goal of infras-
tructure management is to minimize expenditures. In order to minimize the chance a bridge
falls down, it may be optimal to rebuild the bridge every year. However, this policy forces

government agencies to spend a tremendous amount of money on bridge reconstruction that
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might be better spent elsewhere.

Infrastructure management systems are computer programs that help public agen-
cies collect information and make decisions related to infrastructure deterioration (Ferreira
et al, 2002). The dual responsibilities of information storage and decision-making go to-
gether well; in order to develop efficient MR&R policies for infrastructure facilities, it is
crucial to have large amounts of data regarding the condition of these facilities. Data
regarding past and current conditions, provided by facility inspection, are input into de-
terioration models to predict future conditions. Infrastructure management systems use
deterioration models to estimate how effective different MR&R actions will be at upgrading
the condition levels of facilities. The costs and benefits of different MR&R actions can
then be compared and ‘optimal’ policies found to maximize future levels of service provided
and/or minimize future management expenses.

Unfortunately, predicting the effects of performing MR&R activities cannot be
done with complete accuracy. Available data is limited and some statistical uncertainty
surrounds the parameters of deterioration models. Furthermore, there exists additional
uncertainty related to the choice of deterioration models and the assumptions these models
make to simplify complex real-world phenomena.

This chapter introduces the reader to the infrastructure management decision-
making process, while the following chapter focuses on deterioration modeling to support
decision-making, and the problem of uncertainty in deterioration modeling. Wherever pos-
sible detailed examples are provided. Two explicit mathematical formulations of infrastruc-

ture management problems are presented. In the next chapter, a specific, state-of-the-art
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deterioration model is presented with séme discussion of how the outputs of the deterioration
model can be used in conjunction with the mathematical formulations of the management
problem. Finally, an analysis of uncertainty in the example deterioration model is per-
formed. It is hoped that this level of detail will inform discussions, and prepare the reader

for the following chapters of this text.

2.1 Maintenance, Repair, and Rehabilitation (MR&R)
Decision-Making

Intuition will tell you that maintenance activities should be undertaken when-
ever deterioration reaches a certain point, i.e. repave the road when the potholes and
cracks in the road become ‘a problem.” The simplest decision rules follow this intuition
and involve taking maintenance actions whenever measurements of deterioration processes
reach pre-specified critical values. For instance, Flintsch and Zaniewski (1997) advocate
requiring pavement preservation activities whenever measurements of roughness or crack-
ing reach threshold values set using expert engineering judgement. Li and Madanat (2002)
and Ouyang and Madanat (2004) have formulated and solved mathematical programs for
optimal threshold values, the first relating to long-term (infinite-horizon) and the second
to short-term infrastructure management. In addition to using critical or threshold values,
Flintsch and Zaniewski (1997) and other authors also make use of mathematical program-
ming techniques to find alternate strategies for considering the two objectives of infrastruc-
ture management, maximizing facility performance and minimizing maintenance costs.

The two competing objectives of infrastructure management lead to different for-
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mulations of the ‘problem. One methodology minimizes management expenditures while
forcing public agencies to maintain infrastructure at pre-specified levels. This approach was
used in the state of Arizona’s Pavement Management System (PMS) (Golabi et al (1982);
Wang et al (1994)). The framework is well suited to determining how much budget is neces-
sary to maintain or upgrade the conditions of facilities. However, this approach provides no
incentive for raising level of service above minimum standards. An alternate view involves
maximizing level of service given a fixed management budget (Liu and Wang (1996); Wang
and Liu (1997)). This approach is logical for public agencies with budgets fixed far into the
future.

In different situations, different formulations may make more sense. In manag-
ing the roadways of an urban area, public agency budgets may be fixed for years to come
and clear benefits (in terms of reduced vehicle wear and tear, improved gas mileage, etc.)
may accrue to drivers if the quality of roads were maximized. On the other hand, if a
cash-strapped public school has to maintain temporary classroom space, it may be best to
minimize expenditures ensuring facilities are adequate until they are replaced. Generally
speaking, the best approach allows MR&R expenditures and level of service considerations
to be traded-off. This can be achieved by minimizing costs that include both agency costs
and user costs related to the condition levels of facilities. This approach provides a frame-
work where it is possible to find the ‘social-optimal’ point that minimizes total costs.

Some of the early infrastructure management system models suggested static man-
agement plans. An example of such a plan would be to seal up the cracks on a particular

roadway surface in 2 years and then repave the roadway in 6 years. Golabi et al (1982) was
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the first to recognize that a dynamic plan, responsive to the actual, realized formation of
distresses, might be more appropriate. A dynamic formulation of the plan described above
would be to seal up the cracks when severe cracking covers 10% of the roadway surface and
repave the roadway when ruts in vehicle wheel paths are more than 3cm deep. Kulkarni
(1984) showed that a more dyﬁamic model could lower management costs while raising
servicability standards.

Much work has been done in the area of dynamic decision-making for a network
of facilities. One of the first (and most influential) papers in this area was Golabi et al
(1982), which discussed the management of the pavement network in the state of Arizona.
Carnahan et al (1987) formulated the general problem of managing pavement, treating each
section of pavement independently. Chan et al (2003) added a layer of complexity, looking
at the problem of allocating a fixed budget across a multi-district area with infrastructure
management problems in each district in the area.

Extending the infrastructure management problem further, Madanat and Ben-
Akiva (1994), Ellis et al (1995), and Jido et al (2004) have considered the costs and (im-
plicit) benefits of inspecting facilities and included inspection frequency flexibility in their
infrastructure management system models. The first two of these works dealt with infras-
tructure management problems where deterioration is represented by jumps between a set
of states that summarize condition information. The third work represents the condition
of an infrastructure facility via a continuous rating. Management systems that rely on
continuous condition ratings typically assume deterministic models of deterioration, while

state-spaced models use stochastic models. This distinction will be explored in more detail
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10

in the deterioration modeling section of this work.

For now, let’s look at some specific examples involving minimizing user + agency
costs and utilizing stochastic, state-space based model of deterioration. Consider a pub-
lic agency responsible for managing bridge decks. The Federal Highway Administration
(FHwA) associates the ‘overall condition’ of a bridge deck with an integer from 0 to 9.
A bridge deck in state 1 will have failed while a bridge deck in state 9 will be like-new
FHwA (1979). The 10 point scale may seem limited, but note that the overall condition
of a bridge deck is an artificial construct and cannot be measured precisely. The set of
possible actions that can be taken on a bridge deck similarly consists of only a handful of
options. New asphalt can be overlaid on top of existing bridge decks, decks can be patched,
or even rebuilt. Decision makers study bridge deck condition ratings and decide what, if
any, maintenance actions to take. It is often desirable to have a simple and transparent rule
or policy translating bridge deck condition ratings into maintenance actions. Formulating
the problem of deciding which maintenance activities to take as a Markov Decision Problem

(MDP) allows for an ‘optimal’ version of exactly this type of policy.

2.1.1 Single Facility Markov Decision Problem (MDP) Formulation

Markov Decision Problems are ideal descriptions of situations involving limited,
discrete sets of possible states of the world (condition states), as well as of actions to take.
In addition, a solution to an MDP will consist of a simple map from condition state to action
to take. MDP formulations of infrastructure management problems abound in the literature
including Golabi et al (1982), Carnahan et al (1987), Gopal and Majidzadeh (1991) and

Golabi and Shepard (1997), the last of which relates to the management of bridges.
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11

In order to delve deeper into infrastructure management, it is necessary to study
MDP formulations of infrastructure management problems in a bit more detail. Toward
that end, let’s examine an MDP formulation related to the management of an individual
bridge deck.

First of all, let I be the set of condition rating states possible for this bridge deck.
This might be the set of FHwA bridge deck condition ratings {0, 1, ..., 9}. Similarly, let 4 be
the set of actions that can be taken. This problem will be formulated as one of minimizing
costs, both related to management expenditures and the level of service the facility provides.
Say u(%) is the user cost associated with the bridge deck being in state ¢, while ¢(, a) is the
agency cost of performing maintenance action a on the deck when it is in condition rating
state i. Performing maintenance involves incurring agency costs now to lower future user
costs. To compare present and future costs, it is necessary to consider discounting. Let a
be the discount amount factor we will use. (o = T—i—r where r is the discount rate.) Finally,
it is necessary to describe the effects of performing MR&R activities. Let p(j|i,a) be the
conditional probability of the bridge deck being in condition rating state j a year after
being in state ¢ with action a applied. Given the above definitions, the following Dynamic
Programming (DP) recursion holds:

Single Facility Infrastructure Management Problem (SFIMP)

w(i) = min (i, au(i)) + () + a3 p(ili, au(i))vess ()] (2.1)

as(i)€A el
where v:(7) is the least expected cost, from year ¢t forward, of managing the deck starting
in state %, and a;(%) is the optimal action to take in year ¢ if the bridge deck is in condition

state <.
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It would be possible to manage the bridge deck for a planning horizon of T years,
given terminal costs (v (%) values). Simply work backwards starting at time T'— 1. For each
condition state, examine each action in turn and find the expected costs from year T — 1
through year T'. In each case, note the action that minimizes expected costs (ar—1(%)) and
the minimum expected costs incurred (vr-1(¢)). Repeat this process for year 7' — 2 using
the values for vr_1(¢) and continue working backwards till reaching year 0, the current time.
Optimal actions to take in all condition states possible, at all times, will have been noted.

It would also be possible to manage the facility in question for a long time, using
‘infinite horizon’ dynamic programming. One approach to solve infinite horizon problems
is policy iteration: Choose an arbitrary initial management policy a that maps condition
states to actions to take, and find the fixed point values for v(7) terms such that Vi € I we
have v(3) = g(4, a(4)) +u(i) + [ ;e1 p(jl4, a(4))v(4)]. Next, select a new management policy
a’ such that Vi € I, /(i) = arg gl(iir)lg(i,a’(i)) + u(d) + a[Y;er P4, a'(3))v(4)]. Using the
new management policy a’, recalculate fixed point costs v. Continue along the same lines,
until the management policy and costs remain constant from one iteration to the next. The
optimal management policy and expected future costs result.

Note that although the discussion was framed in terms of managing a bridge deck,
the above formulation was general enough to apply to any infrastructure facility. The spe-
cific costs and transition probabilities associated with any facility, or class of homogeneous
facilities, could be input and the above mathematical recursion solved. If a heterogeneous
set of facilities were to be managed, different instances of the above math program could

be solved for each facility and an overall solution found that minimizes the total user +
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agency costs across the system. However, this analysis makes the unrealistic assumption
of a management budget able to cover the expenses of whatever maintenance actions are

necessary to minimize total costs.

2.1.2 System Level MDP Formulation

The state of Arizona’s Department of Transportation (ADOT) was reported, in
1994, to manage 12,000 km of pavement divided into 1,765 separate ‘sections’ (Flintsch and
Zaniewski (1997)). The decisions of which actions to take on the separate facilities cannot
be made independently, since the funds for all activities are constrained by a fixed budget.
Every year, instead of selecting the one action to take on a single facility, it is necessary
to select a separate action to take for each facility in the network. The space of possible
solutions to the problem of what to do in one year has grown tremendously from the case
of managing a single facility. Similarly, the space of possible conditions of all facilities to
be managed has grown tremendously.

Note that managing a single facility for a horizon of T years involved going through
and comparing all possible actions in all possible condition rating states each and every
year / policy iteration. This becomes computationally very challenging if a large number
of facilities have to be managed simultaneously. The procedures used to solve the single
facility infrastructure management problem are forms of dynamic programming. It is well
known that dynamic programming becomes increasingly difficult as the dimensions of a
problem increase, the so-called ‘curse of dimensionality.’

There are clever procedures for solving a MDP-type network level infrastructure

management problem while avoiding the curse of dimensionality. A classic example is
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included in the Pavement Management System (PMS) used by the Arizona Department of
Transportation (ADOT) (Golabi et al (1982)). This system minimizes the lifecycle costs
of the pavement sections managed by the ADOT using convex optimization techniques.
Facilities are separated into groups based on their construction, environment, and current
condition ratings. ADOT’s PMS recommends MR&R actions for fractions of facilities in
the different groups. Pavement managers are given leeway in determining which specific
facilities to choose to make up the fractions selected by the PMS.

An example of a mathematical programming formulation of a system level infras-
tructure management problem is presented here. This example is built using the classic
ADOT PMS as a template. In this example, it is assumed that there is a network of N
facilities to be managed for a period of T years. To simplify the analyses, each of these
N facilities is considered identical in the sense that each deteriorates in exactly the same
manner. There will be some discussion later of how this assumption may be relaxed. Deci-
sions have to be made regarding all facilities simultaneously because there is a management
budget b, that dictates how much can be spent on MR&R activities in year ¢.

For decision variables, let z; ¢;(a) be the fraction of all facilities, in state 4 in year ¢,
that will have action a applied. Like the original ADOT PMS, the decision variable produces
fractions of facilities to which MR&R . actions should be applied. This formulation does not
offer explicit facility by facility guidance. However, there are benefits to allowing engineers
with immediate knowledge of the facilities in question to choose a repair plan out of a set
considered equivalent by an asset management system. Furthermore, the formulation shown

here has the crucial advantage of allowing the scope of the problem to be independent of
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the number of facilities in the network.

Let f:(4) be the expected fraction of all facilities, in year ¢, that will be in condition
rating state 4. Assume at the start of the management exercise, the conditions of all facilities
are known. It would the be possible to construct fo(%), the starting fractions of all facilities
in different states. Then, given a management policy x and transition probability matrix p,
the expected fractions of facilities in different states one year into the management exercise
and throughout the planning horizon can be computed. Thus fy is a parameter and f;
where t > 0 is fixed by z and p.

System Level Infrastructure Management Problem (SLIMP)

T
min Y~ a![ 37 3 [9(i, a) + u(@)]fi(6)wie(@) V] (22)
t=0 i a

subject to the following constraints:

(1) 22 9(,0) fuld) migla) N <by | vte {0,1,2,...,T}
(2) Z%:ft(@) x5 t(a) p(jli,a) = fir1(4) Vi, t€{0,1,2,...,T}
(3) zi(a) >0 Vi,a,t € {0,1,2,...,T}

The math program shown above minimizes the discounted sum of user and agency
costs over the planning horizon. Constraint (1) demands that the expected agency spending
does not run over the allowable budget in any given year. Constraint (2) is the key to
how deterioration is considered in decision-making. Decisions made in a given year must
be based on the expected conditions of facilities, which are obtained from the decisions
made the previous year and the transition probability matrix. Constraint (2) says that
at a time t the expected number of facilities in a state j is equal to the sum across all

states of the expected number of facilities in the state at time £ — 1 times the respective
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probabilities of transitioning into state j. It is worth noting here that constraint (2) and
the pre-specified fy, taken together, ensure that all facilities are accounted for and make
a constraint like > ;.7 3=, c 4 f:(¢) = 1 unnecessary. Finally, constraint (3) ensures negative
fractions of facilities are never considered.

If a heterogeneous set of facilities were to be managed, the SLIMP presented above
could be modified. Imagine facilities are separated into classes with each facility within a
class considered to be homogeneous. Each class could then be associated with a different
set of user and agency costs, transition probabilities, and decision variables. The objective
function could be modified to sum costs across all facility classes. Similarly, the sum of
agency costs across all facility classes could be kept below some maximum budget.

The SLIMP math program shown above is an example of an MDP formulated as a
convex optimization program. The word convex is used because the constraints are convex
functions of the decision variables, and we are minimizing a convex objective function.
There are well known, efficient techniques for solving problems like this that avoid a ‘brute-
force’ comparison of each and every potential solution. A review of convex optimization is
beyond the scope of this text, but for now note that there is plenty of commercially available
software that quickly and efficiently solves problems like the one shown above.

Criticism of MDP formulations, like the ones shown here, often revolve around
the fact that they are “memoryless” or “history-independent.” In the MDP formulations
here, all facilities in the same condition state are treated as identical. Perhaps not all
bridge decks with the same FHwA rating face identical prospects with respect to future

deterioration. Perhaps some benefit could be gained by considering more information, like
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the history of FHwA ratings or MR&R actions taken for individual bridge decks. However,
the definition of condition state can be generalized to include histories of FHwA ratings and
MR&R actions taken. Through this process of ‘state augmentation,” MDP formulations can
incorporate historical data, though this leads to an increase in complexity.

The more serious restrictions of MDP formulations of infrastructure management

problems are:

e that proper definitions have to be found for a discrete sets of condition states so
that all facilities in the same condition state will be homogeneous with regards to

deterioration over the next year / time step,

e that accurate and precise transition probabilities have to be found to describe the

deterioration of all facilities from condition state to condition state, and

e that the spaces of condition states and actions to take have to be small enough to

allow optimization of the infrastructure management problem

2.1.3 Conclusion

Single facility and network level MDP infrastructure management problems were
presented above. It should be clear now what criteria are important in infrastructure man-
agement decision-making, and what the strengths and weaknesses of the MDP approach
are. In the models shown, the transition probabilities (p(j|¢,a) terms) define deteriora-
tion. In the next chapter, we consider how p(j|i,a) terms and other possible parameters of

deterioration modeling are set.
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Chapter 3

Infrastructure Deterioration

Modeling

The level of service an infrastructure facility provides deteriorates as time passes
and ‘distresses’ accumulate. In the case of a simple roadway surface, distresses may take a
number of forms including ruts (depressions in vehicle wheel paths) and fatigue or alliga-
tor cracks (sets of connected cracks on the surface of the roadway). Mathematical models
have been developed to predict how specific distress measures, like the severity of rutting,
change over time. Other models summarize information related to multiple distresses into
an aggregate overall servicability measure. The artificial construct of an aggregate measure
is employed to simplify reporting and suit the requirements of political decision-making
(Paterson (1993)). For example, tlhe decision-making problems shown in the preceding sec-
tion used condition rating state spaces that represent some form of aggregated information

related to deterioration. Mathematical models that predict how distress measurements or
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overall condition ratings on infrastructure facilities change over time are known as deterio-
ration models.

The first important pavement performance model was created by the American
Association of State Highways Officials (AASHO) (AASHTO, 1993), and was based on the
results of the AASHO Road Test. The AASHO Road Test involved measuring the perfor-
mance of various test concrete roadway loops as trucks repeatedly drove around the loops.
This provided a large amount of experimental data, data generated from purpose built
facilities subject to accelerated usage (and possibly environmental) conditions. Alternate
studies have used field data from measurements of in-serice facilities to eliminate any po-
tential bias stemming from the use of experimental data. Prozzi and Madanat (2004) and
others have even shown how the large bodies of experimental data may be considered in
conjunction with field data using joint estimation techniques.

Deterioration models in general focus on three areas when predicting deterioration:
the structural composition of the built infrastructure, how the facility will be used, and the
environmental conditions the facility will face. The AASHO pavement performance model

cited above estimated the overall ‘damage’ done to a pavement section, at a time ¢, as

N,
&

until time ¢, and p and w are parameters estimated from data that reflect the characteristics

>w where N; represents the number of Equivalent Single Axle Loads (ESALs) applied

of particular roadway surfaces and sets of environmental conditions (AASHTO (1993)).
Prozzi and Madanat (2004) extended the analysis of the AASHO model and identified

independent variables including:

e asphalt concrete mix characteristics, and strength of the pavement (structural condi-
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tions);
o axle loads and configurations (usage conditions);
e temperature, moisture, freezing, and thaw (environmental conditions).

Deterioration models can be classified as being deterministic or stochastic. Deter-
ministic models reduce distress evolution or level of service degradation to a deterministic
process that can be precisely quantified. In the AASHO model, once estimates for p and w
have been found, a count of ESALs applied on a particular roadway will provide one precise
estimate of the damage done to that roadway. However, in Carnahan et al (1987) it was
noted that pavement condition quality can actually “vary considerably” even when similar
pavement sections are subjected to similar stresses. Stochastic models of deterioration rec-
ognize this ‘randomness’ and assign probabilities to a range of different estimates of damage
domne.

Stochastic models are typicaliy parametric, in the sense that a functional form
is assumed to describe the relationship between independent variables and stochastic de-
terioration. Data are used to estimate the parameters associated with such models. It is
worth noting that there has been some research in the areas of non-parametric and semi-
parametric deterioration modeling. In particular, DeStefano and Grivas (1998) did not
agssume any functional form in defining transition probabilities associated with deteriora-
tion. Mauch and Madanat (2001) used the Cox proportional hazards model to create a
more descriptive model of deterioration without pre-specifying distributions for parameters
relating independent variables and deterioration.

The Mauch and Madanat (2001) work cited above is an example of a time-based
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deterioration model. In this formulation, probabilities are estimated related to the length
of time facilities spend in particular condition rating states. The alternative to time-based
models is state-based models that look at the probabilities of condition state changes over
fixed time intervals. Time-based models are more flexible than state-based models since they
allow consideration of distress progression over different time frames. However, it should
be clear how state-based models are sufficient for MDP formulations of the infrastructure
management problem like those presented in section 2.1.

In this section, we examine one state-of-the-art, time-based, stochastic deteriora-
tion model found in Mishalani and Madanat (2002). Although the model chosen allows for
consideration of different time frames, special attention will be paid to explaining how the
model could be used to provide inputs to optimization algorithms based on discrete time-
step MDP formulations of the infrastructure management problem (as presented in section
2.1). In keeping with the discussions of the preceding section, consider the deterioration of

a bridge deck rated by the FHwA on a 10 point scale.

3.1 Survival Analysis

Survival analysis deals with situations where a certain process ‘survives’ for a
stochastic length of time and then stops. The length of time, 7', a bridge deck spends
in a certain FHwA condition state can be thought of as a survival time. Let f(t) be the
probability density function of T" and F(t) be the cumulative density function of 7. One

function of interest is the survival function S(t), the probability that the bridge deck remains
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in the specified state through at least time ¢.
S(t)=1-F(t) (3.1)

There is a relationship between the survival function and the probability density function

of T.

_ _d5@)
b dt (32)

Another function that might be of interest is the hazard rate function h(t), the instantaneous

risk that the bridge deck will leave the condition state at time t:

Prit<T<t+Ajt<T)

mE) = iiglo A
o) = Jim (=T ()
h(t) = % (3.3)
Equations 2.4 and 2.5, taken together, yield
h(t) = ~dlo§;9(t) (3.4)
and:
S(t) = e~ Jo hr)dr (3.5)

If S(t) and h(t) can be defined, they provide a model for bridge deck deterioration.
This model, in turn, can be used to parameterize simpler models that can be used in decision-
making. For example, the math programs in the preceding section on this chapter relied on
transition probabilities to describe infrastructure deterioration. Notice that the conditional

probability a bridge deck will be in a particular condition state 7 in year ¢ + 1 given that it
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was in state ¢ in year ¢ with no action applied, p;(%|¢, none) can be expressed as a function

of the survival function:

S(t+1)

0 (3.6)

pi(i¢, none) =

Also note that if p.(i|i, none) does not depend on ¢, then we have a Markovian transition
probability p(i|¢, none).

Assume the condition of a facility only worsens over time, and that we know sur-
vival functions for states ¢ and ¢ — 1. It would then be possible to find the probability that
a facility in state ¢ at time t is in state ¢ — 1 at time ¢ 4+ 1. Simply condition on the time

the facility spends in state 2:

1

peli — 1}i, none) = _/0 (Si_a(1 — T))(%{—))m
or, in terms of the hazard function:
1
o _ . (hi(t +7))(Si(t + 7)) »
peli — 1], none) - :/O (Si_1(1 =) 0 Ydr (3.7)

Again, assuming p.(¢ — 1|¢,none) does not depend on ¢, this would represent a transition
probability that could be plugged into the decision-making problem formulations shown
earlier. Other transition probabilities could be estimated using similar techniques.

So far our use of survival analysis has been fairly vague, there have been no at-
tempts to describe the structure of hazard rate or survival functions. Survival analysis has
merely provided a framework which allows for an arbitrarily detailed model of deterioration
yet can provide inputs (transition probabilities) to decision-making platforms that rely on

simplified models of deterioration.
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3.2 The Weibull Distribution

In order to estimate specific values of interesting functions, it is useful to as-
sume the distributions associated with survival time T values adhere to pre-specified form.
Clearly, the length of time a bridge deck or other facility spends in a condition state must
be positive. It is useful to incorporate a term measuring the degree to which T exhibits
positive or negative duration dependence. Markovian transition probabilities assume no
duration dependence, i.e. that the length of time a facility has spent in a state is irrelevant
to how long it will remain in that state in the future. Measuring duration dependence can
provide insight as to how appropriate it is to use Markovian transition probabilities. One
useful model can be built by assuming the duration of time a bridge deck spends in a state

follows the Weibull distribution. The hazard rate is then:
h(t) = pAPtP~1 (3.8)

where A and p are non-negative parameters to be estimated from data. X is known as the
scale parameter because it multiplies and scales ¢t values while p is known as the shape
parameter because of its importance in determining the shape of the hazard rate. p is also
a measure of duration dependence. If p < 1, then there is evidence of negative duration
dependence and the longer a facility has spent in a condition state, the less likely it will
remain in that state. Likewise, p > 1 is a sign of positive duration dependence.

Given the hazard rate from above, the survival function takes the form:

S(t) = e~ (3.9)
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Similarly, given these hazard and survival functions, it must be that:
F(t) = pAPtp—le (WP (3.10)

Clearly, there are important characteristics of bridge decks that are relevant in
modeling time-in-state. Some factors that have been found to be statistically significant
when looking at reinforced concrete bridge decks in Indiana are presented in Table 3.1

(Mishalani and Madanat, 2002).

Binary Variables Description of when set to 1

hw class 1 Interstate, rural, open to traffic

hw class 3 Other primary road, rural

hw class 5 Secondary road, rural, state jurisdiction

region Northern Indiana

wear surf 1 Concrete wearing surface material (no protective system)
type 2 Concrete (not prestressed), continuous deck

Continuous Variable | Description

age age at beginning of time in state or observation period (years)

Table 3.1: Deterioration model fit: Bridge deck characteristics related to deterioration

In order to include the variables from Table 3.1 in our analysis, say that for bridge
deck ¢, the parameter A; that appears in hazard and survival functions depends on the
characteristics of bridge deck 7. ); must be non-negative to ensure the hazard function is

non-negative. Say then that:

A = ePXi (3.11)

where X; is a column vector of exogeneous variables that describe the characteristics of
bridge deck 4 and (3 is a row vector of parameters to be estimated.
Data. is available from the Indiana Bridge Inventory (IBI) regarding both the char-

acteristics of bridge decks in Indiana and the time these decks spent in state 8. Parameters
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p and (3 introduced in the previous section can be estimated from this data, as was done
in Mishalani and Madanat (2002). The data available contains both uncensored and right
censored data points measuring the time different bridge decks have spent in state 8. Right
censoring refers to situations where it is known that the bridge deck spent at least a certain
amount of time in state 8.

Maximum likelihood estimation presents a reasonable way to estimate p and 8 and
can incorporate uncensored and right censored data. The likelihood of a transition out of
state 8 at a time ¢; is f;(¢;) for bridge deck 7. Similarly, the likelihood that bridge deck ¢
was in state 8 through time ¢; is S;(¢;). Assuming each bridge deck 7 has one observation

associated with it, this yields the likelihood function over all observations:
L= H[fi(ti)]é" [Si(t:)] % (3.12)

where 4; is an indicator variable that takes value 1 if the data associated with bridge deck
¢ is uncensored and O if the data is right censored. According to equations 2.11 and 2.12
then

L =[[pXre)ke et (3.13)

%

Taking the natural log of both sides yields

log(L) = (logp) Y 6i+p Y diloghi+ (p— 1) bilogt; — > (Ait;)? (3.14)
i i i i
or equivalently

log(L) = (logp) Y 6 —p> 6:BXi+ (p—1)> dilogt; — > (tie PXiy (3.15)
i i B B
Equations 2.16 and 2.17 define the log-likelihood as a function of p and 8. Maxi-

mizing these functions gives Maximum Likelihood Esimates (MLEs) for p and 5. Using the
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Indiana Bridge Inventory data, estimated values for p and 8 matched those in the literature

(Mishalani and Madanat (2002)) and are presented in Table 3.2.

Variable Parameter Value
hardware class 1 -0.639
hardware class 3 -0.553
hardware class 5 -0.574
region -0.840
age 0.153
wearing surface 1 -0.801
pavement type 2 0.384
constant 2.13
p - 1.93

Table 3.2: Detérioration mode] fit: Estimated values of parameters related to bridge deck
deterioration

Given the parameter values from Table 3.2, it is possible to construct the probabil-
ity and cumulative density functions associated with the time different bridge decks spend
in state 8. For example, Figure 3.1 shows the pdf of time in state 8 for a 10 year old bridge
deck on a rural interstate in Southern Indiana that is made of prestressed concrete with a
protective system.

Figure 3.2 shows the conditional probability of the same type of bridge deck re-
maining in state 8 for 1 year plotted against the length of time the deck has already spent
in state 8. The risk of a bridge deck leaving state 8 is clearly related to how long it’s previ-
ously been in state 8. This was clear from the fact that the MLE for p is 1.93 (significantly

greater than 1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

i
0.02
|

0.01
i

0.00
I

e

year

Figure 3.1: Deterioration model fit: Pdf of the time a bridge deck will spend in state 8
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Figure 3.2: Deterioration model fit: Probability of a bridge deck remaining in state 8 for 1
year as a function of the time already spent in state 8
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A detailed example of a deterioration model has been described. It is only one of
many infrastructure deterioration models in the literature. Some constructive criticisms of
deterioration médels have been made in the past.

For instance, models sometimes consider maintenance as an explanatory variable
when it is in fact usually a function of the condition of managed infrastructure, creating
endogeneity bias (Ramaswamy and Ben-Akiva, 1990). Field data often provides a time
window during which infrastructure assets failed or distresses appeared. The absence of
exact event times, if not properly accounted for, creates censoring bias (Prozzi and Madanat,
2004). In the case of pavements, experimental data suffers from its failure to consider
material aging, or varying traffic speeds and paths (Archilla, 2001). Returning to pavements,
the original AASHO model referenced previously made use of a large experimental data set
but set parameters using only data from sections of pavement that had failed during trials,
leading to truncation bias (Prozzi and Madanat, 2004). Statistical techniques can address
truncation, censoring, and endogeneity bias, while joint estimation techniques can address
the bias experimental data models may have vis a vis field data models.

A state-of-the-art time-based deterioration model was presented in this section.
This deterioration model and those used in practice today are quite sophisticated‘and
based upbn best statistical practices. The next section will address difficulties related to
deterioration modeling that cannot be addressed using statistical techniques. The goal of
the next section of this paper is not to critique deterioration models in use today, but to

draw attention to their limitations.
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3.3 The Curse of Uncertainty

Clearly, the conditional probabilities (p(jli,a) terms) drive math programs like
those shown in section 2.1. It is known that the solution to a MDP “is often quite sensitive
to changes in the transition probabilities” (Nilim and El Ghaoui, 2004). This is troubling
because it is difficult to say precisely what the conditional probability of a bridge deck (or
other facility) being in state j is one year after it was in state ¢ with action a applied. Data
regarding deterioration may be limited and accumulate slowly; changes in the condition of
a bridge deck may take years before they are noticeable. Condition ratings used to describe
bridge decks are artificial constructs and expert judgement regarding how transitions occur
between different condition ratings may be quite limited. Finally, there may be factors
important to the manner in which a bridge deck deteriorates that are not, and in many

cases cannot be, considered in state-of-the-art deterioration models.

3.3.1 Parametric vs. Epistemic Uncertainty

Problems associated with the definition of condition states or, broadly speaking,
the choice of deterioration model, can be differentiated from problems associated with set-
ting transition probabilities or fixing the parameters of a deterioration model. The first
set of problems is more fundamental and relates to errors in our intuition and understand-
ing of deterioration. Let’s call uncertainty that stems from these type of errors epistemic
uncertainty since it relates to a fundamental lack of knowledge. In contrast, statistical un-
certainty related to the choice of parameters for deterioration models assumed to be valid

will be referred to as parametric uncertainty.
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Epistemic uncertainty may stem from a variety of sources, including uncertainty
in how to characterize the condition of an infrastructure facility, how to characterize the
independent variables that relate to the condition of that facility, and how to characterize the
interaction between the independent variables and the condition of the facility. Some of the
independent variables that were identified in the preceding section of this chapter related to
environmental conditions. It is famously difficult to describe how environmental conditions
change over time, and it is no clearer to describe even the form of how these conditions
impact the condition of infrastructure facilities. Similar difficulties arise in describing how a
facility will be used in the future. It may even be difficult to describe precisely how a facility
was used in the past, or how it was constructed, and how this relates to deterioration.

Parametric uncertainty, in contrast, stems from a small number of sources. It is
primarily associated with the limited, and at times biased, data used to calibrate deterio-
ration models. Even if the complex form of the mathematical relation between structural,
usage, and environmental conditions and the condition of an infrastructure facility were as-
sumed known, limited data would make it impossible to precisely parameterize the relation.

In the next subsection of this text, evidence of epistemic uncertainty and estimates
of the magnitude of parametric uncertainty in the sample deterioration model introduced

in the preceding section will be presented.

3.3.2 Quantifying Uncertainty

Let’s return to the example deterioration model introduced in the previous section
of this paper. Figure 2.2 showed the conditional probability of a bridge deck being in state

8 one year after being in state 8, as a function of the time that facility has already spent in
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state 8. As Figure 2.2 makes clear, the risk of a bridge deck leaving state 8 is related to how
long that bridge deck has already been in state 8. Any assumption otherwise does not hold
and a deterioration model making this type of assumption would incur errors associated
with epistemic uncertainty. In this case, probabilities associated with leaving state 8 could
range between 0.8 and 1.0 and using one fixed value could result in using a probability that
is as much as 0.2 off. It is not typically so easy to quantify the potential magnitude of errors
associated with epistemic uncertainty.

However, there are techniques that can be used to estimate the magnitude of sta-
tistical uncertainty associated with parameter estimates. For instance, the non-parametric
bootstrap method can be used to estimate uncertainty surrounding terms set using a col-
lection of independent and identically distributed (i.i.d.) data points. Clearly, the raw data
of time in state for the different bridge decks in the state of Indiana used earlier in this text
are not independent and identically distributed. However, it is possible to create data that
are more plausibly i.i.d..

Residual data values left over after deterioration model fitting may be assumed
to be ii.d.. However, it is possible that explanatory variables remain related to residual
values after fitting. Luckily, focusing attention on one particular highway class and wearing
surface at a time negates any potential differences between residual data values associated
with different highway classes and wearing surfaces. As Table 3.3 demonstrates, there
remain enough data values relating to decks with different highway class, wearing surface

combinations to allow this type of analysis.
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hw class 1 3 5 | other
wear surface 1 24 1 64 | 81 35
not wear surface 1 23145 | 35 61

Table 3.3: Deterioration model uncertainty: Counts of bridge deck sample population by
hw class and wear surface

Also note that resampling from absolute residual data values and attaching these
to expected times in state could create a situation where the sum of the two yields a
negative value. This would correspond to an observation of a negative time in state, which
is impossible. Say that a bridge deck has characteristics that can be represented by a
variable vector X and that this bridge deck has an expected time in state E[T(X)] and an
observation of time in state 77 (X). The residuals data value associated with this bridge deck
would be T1(X) — E[T(X)] whereas the relative residual data value would be Tl()é);lz;g(X) .
Relative residuals are always greater than or equal to -1. Resampling from this data pool,
multiplying the results by expected times in state and adding expected times in state cannot
yield negative data values.

Using 500 groupwise bootstrapped simulations of resampling relative error values
provided distributions of estimated deterioration model parameters as shown in Figure 3.3.
Note that the observed distributions appear roughly but not exactly symmetric and normal,
neither of which was an assumption of the non-parametric bootstrap analysis performed.

Table 3.4 shows confidence intervals around parameter estimates. The mean of
most parameter estimates are close to the original parameter estimates, indicating little bias
in these values. However, there does appear to be some bias in the estimation of parameters
associated with region and type of bridge deck, as well as with the shape parameter p.

Importantly, the confidence intervals surrounding most of the parameters appear sizable.
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Figure 3.3: Deterioration model uncertainty: Histograms of estimated parameter values
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95%

confidence 75% | mean | MLE
hw class 1 | (-1.05,-0.29) | (-0.79,-0.48) | -0.64 | -0.64
hw class 3 | (-0.91,-0.15) | (-0.69,-0.36) | -0.52 | -0.55
hw class 5 | (-0.93,-0.17) | (-0.71,-0.38) | -0.55 | -0.57
region (-1.10,-0.70) | (-0.96,-0.80) | -0.89 | -0.84
age (0.14,0.16) | (0.15,0.16) | 0.15 | 0.15
wear surf | (-1.07,-0.54) | (-0.92,-0.67) | -0.80 | -0.80
type (0.27,0.66) | (0.37,0.55) | 0.46 | 0.38
constant | (1.65,2.58) | (1.91,2.29) | 2.11| 2.13
D (1.81,2.35) | (1.03,2.17) | 2.06 | 1.93

Table 3.4: Deterioration model uncertainty: Confidence intervals of model parameters

Figure 3.4 demonstrates that the uncertainty in the estimation of parameters of
bridge deck deterioration leads to uncertainty in the probability density function of how
long a bridge deck will spend in state 8. The figure places a 95% confidence interval around
the function shown in Figure 3.1, the pdf of time in state 8 for a 10 year old bridge deck on
a rural interstate in Southern Indiana that is made of prestressed concrete with a protective
system.

Figure 3.5 places a 95% confidence interval around the function shown in Fig-
ure 3.2, the estimated conditional probability of remaining in state 8 for 1 year. It was
already discussed how difficult it would be to set one value to describe the probability of
remaining in state 8 for one year given that this quantity depends on the time the deck has
already spent in state 8. The situation is made more complex with the recognition that
significant uncertainty surrounds conditional probabilities values even for a fixed ¢t. Given
Figure 3.5, the best one can do is to say that the probability of a bridge deck in state 8

remaining in state 8 through the next year is most likely between 0.6 and 1.0.
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3.4 Conclusion

This section has provided logical reasons why there might be significant uncer-
tainty in infrastructure deterioration modeling, and has shown empirical evidence of this
uncertainty. This uncertainty is ignored in traditional MDP formulations of the infrastruc-
ture management problem. (Note how the management problems presented in section 2.1
of this text assumed an accurate and precise Markov chain model of facility deterioration.)

A few questions immediately arise:

e What alternatives exist for considering uncertainty more explicitly within the infras-

tructure management process?

What are the trade-offs between these alternatives?

e Would consideration of uncertainty alter optimal infrastructure management policies?

Would consideration of uncertainty alter optimal infrastructure management costs?

This series of related questions motivates the research that will be presented in the following

chapters of this text.
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Chapter 4

Robust Infrastructure
Management: At the Single

Facility Level

One strategy for dealing with uncertainty involves using robust optimization to
guide decision-making. Robust optimization is a modeling methodology to solve optimiza-
tion problems in which parameters are not known precisely but known to be in certain
ranges, or to belong to certain sets ( “uncertainty sets”). The approach is to seek solutions
that are not overly sensitive to any realization of uncertainty.

In the field of infrastructure management and elsewhere, stochastic optimization
techniques have been used to deal with situations where there is significant uncertainty
regarding how a (possibly deterministic) system behaves. Robust stochastic optimization is

the more appropriate methodology to use when there is a stochastic system to be managed
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and that system cannot be precisely modeled. In robust stochastic programming, no true
underlying stochastic model of the data is assumed to be known. A robust feasible solution
is one that tolerates changes in the parameters of the problem, up to a given bound known
a priori, and a robust optimal solution is a robust feasible solution with the best possible

value of the objective function.

4.1 Introduction to Robust Optimization

The origins of robust optimization can be traced back to work done by Soyster
in 1973. Soyster considered linear programming problems where the feasible region was
defined in terms of set containment. In this model, instead of fixing model parameters used
to define the feasible region, Soyster allowed them to vary within pre-specified convex sets.
Soyster maximized benefits ensuring the proposed solution was feasible for all possible values
of model parameters, a methodology he admitted ‘provides an ultraconservative strategy’
(Soyster, 1973).

Bertsimas and Sim (2004) modified Soyster’s formulation to allow the ‘level of
conservatism’ to be adjusted. In the Bertsimas model, uncertainty is measured in terms
of the number of linear constraints that may be violated. It is possible to obtain different
solutions considering different numbers of constraints that may be violated. This allows
for an analysis of how optimal strategies change as more and more initial assumptions are
considered possibly erroneous. However, it may not always make sense to define uncertainty
in terms of number of initial assumptions violated. For instance, there may be more or less

uncertainty surrounding different constraints of a mathematical program.
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El Ghaoui has used likelihood regions and entropy bounds to perform robust opti-
mization using a statistically sophisticated representation of uncertainty (El Ghaoui (2003),
Nilim and El Ghaoui (2004)). The El Ghaoui work allows for the consideration of differ-
ent levels of conservatism via adjustable entropy or likelihood bounds. In addition, the El
Ghaoui work was one of the first to apply robust optimization to dynamic programming.
This is especially important given that the Single Facility Infrastructure Management DP

Recursion presented in section 2.1 was set up to be solved via dynamic programming.

4.2 The Maximin Criterion

A sample robust optimization problem will be presented in this section. It repre-
sents one way that the Single Facility Infrastructure Management DP Recursion presented
in Section 2.1 might be reformulated to consider uncertainty in transition probabilities.

In the Single Facility Infrastructure Management DP Recursion, we used a tran-
sition probability matrix p to define deterioration. Given that there may be uncertainty
surrounding this matrix, let’s now consider a whole “uncertainty set,” P, that includes
many transition probability matrices, any one of which may define the system in question.

Consider minimizing costs assuming that nature will act as an opponent. This
decision criterion is known as the MAXIMIN criterion and is quite well known in the liter-
ature of game theory. Given that the motivation for using robust optimization was a lack
of knowledge of how to precisely set transition probabilities, it makes sense to avoid assum-
ing anything about how likely it is that different transition probability matrices within P

describe deterioration. The MAXIMIN decision criterion makes no such assumptions. Ad-
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ditionally, the majority of work in the field of robust optimization uses such an approach.
Alternatives to the MAXIMIN approach will be discussed shortly. For now, examine a
DP recursion based on the Single Facility Infrastructure Management Problem (SFIMP)

showing how a robust MAXIMIN formulation might look in practice.

w(i) = min max [[u(i) + (i, ()] + Ut ar(8))vr1(5)]] (4.1)

It is possible to say more about the uncertainty set P. As a set containing transi-
tion probability matrices, it must be that any element p € P must bein I x I x A — [0, 1]
and must satisfy Elp(jh’,a) =1 (Vi € I,a € A) and p(jli,a) > 0 (Vi,j € I,a € A).

Jj€
Additional constraints need to be added to ensure that any matrix p in the set P is a plau-
sible description of deterioration. Robust optimization will be performed considering, and
only considering, transition probability matrices in the uncertainty set, so the definition of
uncertainty set becomes crucial to problem formulation.

In the formulation developed here, an “uncertainty level” § will be employed. d
will be a parameter set ahead of time to a value between 0 and 1, with a higher value
corresponding to a higher degree of uncertainty. Setting the uncertainty level to 0 implies
no uncertainty, meaning an uncertainty set is defined that includes only the transition
probability matrix ¢ given by some initial set of assumptions. Increasing the uncertainty
level adds new transition probability matrices to the set. The uncertainty level can be
thought of as a measure of level of conservatism, as laid out in Bertsimas and Sim (2004),

to be adjusted by decision-makers according to their beliefs and preferences.

In this example, a transition matrix will be included in the uncertainty set if and
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only if the difference between any element of the transition matrix and the corresponding
element of the matrix ¢ is less than or equal to the uncertainty level. Thus, in addition
to the above constraints on elements p € P, add the constraint that |p(j|s, a) — q(j|i, a)| <
0 (Vi,j € I,a € A). Seen in this light, the uncertainty level represents how large an
error in estimated transition probabilities is considered possible. An uncertainty level of
0 would correspond to assuming a known transition probability matrix accurately and
precisely defines an infrastructure asset’s decay. On the other hand, an uncertainty level of
1 corresponds to a complete lack of confidence in any given transition probability matrix.
The formulation of this example is admittedly very simple. The same amount of
uncertainty is assumed to surround all transition probability estimates. The form of this
uncertainty is always the same, real transition probabilities are assumed to fall within a
symmetric box around initially assumed transition probability estimates. It is definitely
possible to imagine more complex definitions of uncertainty sets. For instance, in Chapter
5 a formulation is introduced where the uncertainty sets surrounding different transition
probability estimates are different and related to standard error distributions. However, for
now our simple definition of uncertainty is sufficient. The aim here is only to show a sample
robust infrastructure management problem, and then to test to see if this formulation
yields substantially different results as compared to non-robust formulations. Furthermore,
it is worth noting that the formulation shown here requires only the specification of an
‘uncertainty level’ with a clear intuitive meaning. For practicing engineers and political
policy makers, the simplicity of this approach may be a strength rather than a weakness.

Moving forward, it is now possible to build a complete formulation of a Single
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Facility Robust Infrastructure Management Problem (SFRIMP).

Single Facility Robust Infrastructure Management Problem (SFRIMP)

w(i) = min max [u(i) + 90, ai(9)] + >t av(D))ve ()] (42)

where P={peIxIxA—[0,1]:|p(jli,a) —q(jli,a)| <6 (Vi,j € I,a € A), %p(ﬂi,a) =
J
1 (Viel,a€ A), p(jli,a) >0 (Vi,j€l,ac A)}
The constraints on the set P can also be written as constraints of the math pro-
gram. Such a formulation is more typical of the field of Operations Research, and can be

directly input into mathematical program solver software.

Alternate Formulation (SFRIMP)

(5) = min mas [[u(i) + 90, au(9)) + L3 p(lis @) oer1 ()] (4.3)
e jel

subject to the following constraints:

(1) Ip(jli,a) — q(jli,a)| < 6 Vi,jelanda€ A

(2) > p(jli,a) =1 VieIandae A
jel

(3) p(jli,a) 20 Vi,jel anda€e A

Planning agencies may perceive the MAXIMIN approach being used here to be
too conservative. When managing a large network of facilities, it may be too costly, and
unrealistic, to manage each one under the assumption that nature is always malevolent.
However, it is important to note that by controlling the uncertainty level, decision-makers
will be able to control how conservative optimal strategies will be.

There are some alternatives to the MAXIMIN approach. Averbakh (2000) has

proposed a methodology for finding minmax regret solutions to problems with uncertainty
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objective function coefficients. A minmax regret strategy minimizes the maximum regret, a
measure of the opportunity cost of selecting one strategy when a better strategy existed for
a particular realization of uncertainty. This approach is still fairly conservative, considering
worst-case values of regret. A more optimistic strategy, known as MAXIMAX, is similar to
MAXIMIN but involves acting under the assumption that nature will work with decision
makers instead of against them. The most realistic point of view would be to recognize that

nature will act neither as an adversary nor as an ally, but somewhere in between.

4.3 The Hurwicz Criterion

One attractive alternative involves applying the Hurwicz criterion, as laid out
in Hurwicz (1951). The Hurwicz criterion allows a decision maker to set his or her own
‘optimism level,” 3. The optimism level 8 must be a number between 0 and 1. The
pessimism level is defined as 1 - the optimism level. Decisions are then made by selecting
actions that maximize benefits obtained by summing the optimism level times the greatest
possible benefit level with the pessimism level times the least possible benefit level. An
optimism level of 0 would correspond to minimizing costs assuming deterioration is the
most severe of all the rates of deterioration considered possible. This decision criterion
would be equivalent to MAXIMIN. An optimism level of 1 would correspond to minimizing
costs assuming deterioration is the least severe considered possible. All optimism levels
between 0 and 1 trade off costs in the most severe case with costs in the least severe case.

Note that consideration of best and worst case outcomes requires using two dif-

ferent transition probability matrices. Let p® be the transition probability matrix that
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corresponds to ‘best case’ conditions and let p* correspond to ‘worst case’ conditions. In
the context of asset management, a robust optimization problem that employs the Hurwicz
criterion might be defined as below.

Single Facility Hurwicz Robust Infrastructure Management Problem (SFHRIMP)

v(4) = min max min
ag (’L) pYeP prP

[u(d) + g(i, @ ()] + (&) [(8) (3 2°(Glis as(iorsa (1) + (1= B) (3 1 (3lis as())vsa ()]
jel jerI
(4.4)
Again, this formulation can be altered to reflect the traditional formulation structure used
in Operations Research.

Alternate Formulation (SFHRIMP)

v¢(¢) = min max min
ay(i) P¥  pb

[u(3) + g(i, a ()] + (&) [(B) (X p*(ilis ax@ura () + (1 = B) (22 9 (Gl ae(@)vea ()]
jelI jeI

(4.5)

subject to the following constraints:

(1.1) 1p°(5]3, @) — q(jli,a)] < & Vi,je€landac€ A

(1.2) 1P (ili, @) — q(jli, a)| < 6 Vi,j el andac A

(2.1) | %pb(ﬂi,a) =1 Vielanda€ A
J

(2.2) %pw(jli, a)=1 ViecTlanda€ A
J

(3.1) p°(jli,a) >0 Vi,jeIlandac A

(3.2) pY(jli,a) 2 0 Vi,jelandae A

Hurwicz criterion based robust optimization does require the specification of both

an uncertainty and an optimism level. Planning agencies may find it difficult to specify
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how much uncertainty they have with regards to infrastructure decay rates, or may find it
undesirable to have to place a level of optimism on their management strategies. However,
asset management clearly does involve managing systems with some degrees of uncertainty.
The more the issue of uncertainty and the decision of how to manage it are discussed, the
more informed asset management policies will be.

Uncertainty levels associated with transition probability matrices can be derived
from confidence intervals surrounding the statistics provided by deterioration models. De-
terioration models that are based on large data sets of infrastructure deterioration over
extended periods of time will produce smaller uncertainty sets than less refined models.
Optimism levels are more subjective. However it will be shown that the asset manage-
ment problem can be made robust without making its computational complexity too great,
making it is possible to imagine solving a particular asset management problem numerous
times with various optimism (and uncertainty) levels to see how performance and reliability
guarantees can be traded off.

It still might be possible to characterize the formulations shown above as too
conservative on the grounds that certain transitions might be considered, even though such
transitions are considered impossible in real life. It is a relatively simple task to ensure
that certain ’impossible’ transitions are never considered in robust optimization. In the
definition of P, simply fix corresponding transition probabilities to O.

Alternately, in the language of Operations Research, it is possible to add a decision
variable m where m € I x I x A — {0, 1} ensures whenever an initial model considers transi-

tions impossible, models considered in the optimization do likewise. Additional constraints
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are required in the optimization problem:
e q(jli,a) + m{jli,a) > 0 Vi,jelandac A
* p(jli,a) m(jli,a) =0 Vijelandac A

OR, for Hurwicz robust optimization:

e q(jli,a) + m(jli,a) >0 Vijjelanda€ A
e p°(jli,a) m(jli,a) =0 Vijelandae A
e p¥(jli,a) m(jli,a) =0 Vijelanda€e A

The new constraints work as follows. For any 4,7 € I and a € A, if ¢(j|i,a) = 0 then
m(j|i,a) must be set equal to 1. This forces p(j|i,a) or p°(jli,a) and p*(jli,a) to O to
satisfy the remaining constraints. If ¢(j]i,a) > 0, then the first constraint is not binding
on m(j|¢,a). It will be set equal to 0 so that the remaining constraints are not binding on
p(jli, a) or p°(jli, @) and p*(jls, a).

The optimization problems described here are not as complex as they might appear
at first glance. The Hurwicz criterion asset management problem just combines the costs
associated with best case and worst case transition probability matrices. The simplest way
to solve this problem is to first solve problems of finding best and worst case transition
probabilities and associated cost-to-go functions for all potential actions in all states.

Transition probability matrices are included in the uncertainty set if and only if
their every term is within the uncertainty level of some given matrix. Thus the constraint of
being in the uncertainty set is “separable” into individual constraints on individual probabil-

ities. Note that different transition probabilities are only linked by the fact that they must
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together form a complete transition probability matrix, so the sum of the probabilities from
any initial state-action pair must be 1. In any given state 4, taking action a, maximizing costs
just implies finding a solution to the objective function rslea?g([c(i, a)+a Y ier p(ili, a)veya(5)]
which can be reduced to gle%{ > jerlp(§li, a)ve+1(5)]. This maximization problem can be
solved exactly by altering the initial model transition probability matrix via shifting prob-
ability from less costly to more costly states. How much probability can be shifted is

determined by the constraints used to define P. The computational complexity is limited

to the size of the transition probability matrix.

4.4 Computational Studies

In order to illustrate the application of robust dynamic programming algorithms
to infrastructure management problems, an example is presented here. A one lane-mile seg-
ment of highway pavement is managed according to a policy obtained from infinite horizon
robust dynamic programming. Previous research provides a ready source of data for how
pavement deterioration can be modeled via static transition probabilities. However given
the uncertainty in these transition probabilities, potential cost savings can be achieved by
applying robust dynamic programming to this problem. It is worth noting that uncertainty
is of more concern for infrastructure assets that have less refined deterioration models than
pavement sections. Thus robust optimization may actually be better suited to the man-
agement of infrastructure assets like underground pipelines and drainage systems, where

collecting data regarding deterioration is more problematic.
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4.4.1 Problem Specifications

When managing a section of pavement, the decisions to be made include when and
how to maintain, overlay, or reconstruct the pavement. In the example presented here, it is
assumed that the choices of actions to take in any given year are those presented by Durango
and Madanat (2002). These actions include: (1) do nothing, (2) routine maintenance, (3)
1-in overlay, (4) 2-in overlay, (5) 4-in overlay, (6) 6-in overlay, and (7) reconstruction.

The costs of the actions presented here are derived from empirical work done by
Carnahan et al (1987) and are included in Table 4.1 and Table 4.2. These costs vary
according to the condition state of the pavement. A section of pavement is said to be
in state 1 if it is unusable and in state 8 if it is brand new, with the intermediate states
representing intermediate condition ratings. In the course of the computational studies
done here, condition state 1 is to be avoided at all costs. Alongside agency costs, user costs

associated with various pavement condition ratings are included in calculations.

Condition rating Action to take

1 2 3 4 5 6 7
0.00 2.00 10.40 1231 16.11 19.92 25.97
0.00 140 8.78 10.69 14.49 18.30 25.97
0.00 083 7.15 9.06 12.86 16.67 25.97
0.00 0.65 473 6.64 10.43 14.25 2597
0.00 031 220 411 791 11.72 2597
0.00 0.15 2.00 391 771 11.52 2597
0.00 004 190 3.81 7.61 11.42 2597

O 3 S UL~ W N

Table 4.1: Agency costs (dollars per lane-yard) of performing different MR&R actions on
pavement with different condition ratings.
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Condition rating Cost (dollars per lane-yard)
25.00

22.00

14.00

8.00

4.00

2.00

0.00

00~ O UL Wi

Table 4.2: User costs (dollars per lane-yard) associated with pavement characterized by
different condition ratings.

In their study, Durango and Madanat (2002) present three sets of transition
probability matrices. The matrix that describes a section of pavement deteriorating at
a “medium” rate is meant to reflect the current best estimate of how a given, random
section of pavement will deteriorate. This transition probability matrix is itself derived
from normal distributions associated with the performance of various pavement manage-
ment maintenance actions, (Madanat and Ben-Akiva 1994). The parameters of the normal
distributions are presented in Table 4.3. The inclusion of alternate “fast” and “slow” rates
of deterioration draws attention to the fact that the “medium” estimate may under or over
estimate decay in meaningful ways.

In the present example, the medium decay rate probabilities are used to initialize
the robust dynamic programming application. Various uncertainty and optimism levels are
considered. The policies obtained by robust optimization are compared to those obtained
via non-robust optimization, and resulting expected costs calculated. Cases where the actual

probabilities that guide system dynamics are ‘best-case’ and ‘worst-case’ are considered.
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Action Deterioration rate
Slow Medium Fast
Mean effects

1. -0.25 -0.75 -1.75
2 0.50 0.00 -0.50
3 1.75 1.00 0.25
4 3.00 2.00 1.00
5 4.25 3.00 1.75
6 5.50 4.00 250
7 8.00 6.00 4.00

Standard deviation
0.30 0.50 0.70

Table 4.3: Mean and standard deviation of effects of actions on the condition rating of a
pavement section.

The specifics of pavement management, as described above, will be used to create
programs that simulate pavement management. Different decision-making methodologies
will be tested, under different scenarios (best or worst-case), and the expected discounted
costs of management noted. The ‘control’ strategy in this case will involve taking actions
always assuming that the medium deterioration rate is correct. This assumption may or
may not hold depending of if there is uncertainty (i.e. error) in initial assumptions or
not. MAXIMIN and Hurwicz robust decision-making algorithms that are constrained to fix
transition probabilities initially assumed to be impossible to 0 are compared to the control.
It will be assumed that these robust algorithms correctly specify system uncertainty. This
means that the performance of robust decision-making assuming an uncertainty level of 0.4

will be tested under best and worst-case scenarios given a true uncertainty level of 0.4.
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4.4.2 Results

In this particular set of computational studies, actions found to be optimal in a
robust sense differed substantially from those optimal in a non-robust sense. Table 4.4
displays MAXIMIN robust optimal policies for varying uncertainty levels. Note that the

MAXIMIN robust policy when uncertainty level is 0 is the optimal policy for non-robust

optimization.

Uncertainty level | Optimal policy

state 8 7 6 5 4 3 2
0.0 2 3 4 4 5 6 7
0.1 2 3 4 5 6 6 7
0.2 2 3 4 5 6 6 7
0.3 2 3 45 6 77
0.4 3 4 4 5 6 77
0.5 4 4 4 5 6 7 7
0.6 4 4 5 6 6 7 7
0.7 4 5 6 6 6 7 7
0.8 4 5 6 6 7 7 7
0.9 4 5 6 6 7 7 7
1.0 4 5 6 6 7 7 7

Table 4.4: Single facility robust optimization: Maximin robust optimal actions when differ-
ent uncertainty levels are considered

The optimal management policies in MAXIMIN robust optimization are more
conservative than those employed in non-robust optimization, especially as uncertainty be-
comes more significant. However, the actions i)rescribed by the MAXIMIN robust dynamic
programming algorithm can yield significantly lower agency + user costs when compared
to that prescribed by non-robust dynamic programming. For example, assuming transition
probabilities follow those considered in the MAXIMIN robust algorithm (i.e. worst-case

transition probabilities) costs are presented in Table 4.5.
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Uncertainty level 00{01(062|03|04|05| 06| 07] 08| 09] 1.0

non-robust cost 13 30| 46| 62| 78| 94 | 110 | 126 | 142 | 154 | 162
MAXIMIN robust cost | 13| 30| 46| 62| 72| &0 | 8 | 8 ! 8| 8| 80

Table 4.5: Single facility robust optimization: Worst-case future discounted costs of man-
aging a like new pavement

Figure 4.1 depicts the cost savings achieved by using the MAXIMIN robust algo-
rithm rather than the non-robust algorithm by uncertainty level. Note that savings from
using robust optimization techniques increase both in size and in relative terms as the
uncertainty level increases. Figure 4.2 shows the ranges of potential costs of using the non-
robust approach, by uncertainty level. The MAXIMIN robust optimization recognizes the
potential for extraordinarily large costs in cases where uncertainty is high and chooses to
maintain the pavement on a more regular basis in order to limit the potential maximum
costs. Figure 4.3 shows the ranges of potential costs of using the MAXIMIN approach, by
uncertainty level.

Clearly MAXIMIN asset management limits the maximum costs, but Figure 4.3
also shows that MAXIMIN is unable to lower costs as much as non-robust asset management
systems can in best-case situations. This is one of the shortcomings of the MAXIMIN
approach, and one area in which the less conservative Hurwicz robust optimization is able

to do substantially better.
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Figure 4.1: Single facility robust optimization: Relative and absolute benefit of using max-
imin robust optimization in worst-case conditions :
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Figure 4.2: Single facility robust optimization: Cost ranges of non-robust asset management

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

(=
Lr‘_) —
Q
) O
[77) h
3
0] O] O o) o o
0]
(o -
Yo}
O
O (V]
I I i { | I
0.0 0.2 0.4 0.6 0.8 1.0

Uncertainty Level

Figure 4.3: Single facility robust optimization: Cost ranges of Maximin robust asset
management
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Optimism level

Optimal policy
in state 8

0.0

0.00 - 1.00

[\

0.2

0.00 - 1.00

04

0.00 - 0.11
0.12-0.41
0.42 - 0.98
0.99 - 0.99
1.00 - 1.00

0.6

0.00 - 0.09
0.10-0.14
0.15-0.21
0.22 - 0.55
0.56 - 1.00

0.8

0.00 - 0.08
0.09 - 0.12
0.13-0.15
0.16 - 0.38
0.39 - 0.78
0.79 - 1.00

1.0

0.00 - 0.07
0.08 - 0.12
0.13-0.15
0.16 - 0.51
0.52 - 0.81
0.82 - 1.00
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Table 4.6: Single facility robust optimization: Hurwicz optimal actions at different uncer-
tainty and optimism levels

Like MAXIMIN robust optimization, Hurwicz criterion based robust optimiza-

tion can yield management policies that are significantly different from those provided by

non-robust asset management. Optimal policies by uncertainty and optimism levels are

presented in Table 4.6. For each of the different uncertainty levels, optimism levels of 0.00,

0.01, ... , 1.00 were set. The table groups together ranges of the optimism level that yielded

similar optimal policies.
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Note that as uncertainty increases, the range of policies that might be optimal
increases, so the choice of optimism level becomes more important. Also note that the
non-robust optimal policy is not chosen by the Hurwicz robust optimization for uncertainty
levels greater than 0.4. This seems to indicate that the policy chosen by the non-robust
optimization does a relatively poor job in terms of best and worst case transition probability
matrices. This is logical since non-robust asset management does not consider best and
worst-case scenarios, it only works with one set of transition probabilities.

Figure 4.4 presents the cost ranges of Hurwicz robust optimization. The Hurwicz
robust optimization is able to reap the benefits of best-case transition probabilities, incurring
near zero maintenance costs, but also able to limit the worst-case costs. In many ways, the
cost ranges observed under this type of asset management offer a suitable compromise
between the conservativeness of MAXIMIN style robust optimization and the optimism of

MAXIMAX or non-robust schemes.
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Figure 4.4: Single facility robust optimization: Cost ranges of Hurwicz (optimism = 0.5)
robust asset management.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

4.5 Conclusion

Robust optimization offers one way to mitigate against the effects of uncertainty in
the deterioration models that underlie infrastructure management systems. Applying robust
optimization to the management of a single infrastructure facilities can achieve significant
cost savings. These savings can also be thought of as the costs associated with uncertainty
in the transition probability matrices used in management systems that ignore uncertainty.

A bootstrap simulation of the computation of bridge deck deterioration transition
probabilities, based on the statistical uncertainty surrounding parameters used in this pro-
cess, revealed standard errors in the range of 0.2 to 0.4. Consideration of these standard
errors supports uncertainty levels of 0.5 or greater. The computational study undertaken
here reveals the potential for significant benefits associated with considering uncertainty of
this magnitude.

It is worth noting that the work presented so far focuses upon the management
of a single infrastructure facility, in this case a single lane-yard of pavement. Although
the models presented here are benchmarked in a specific pavement management problem,
they are generalizable to a wide range of problems regarding the management of different
infrastructure assets. Furthermore, the models presented here may be modified to consider

the management of a system of infrastructure assets.
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Chapter 5

Robust Infrastructure

Management: At the System Level

In the previous chapter, robust optimization was applied to single facility infras-
tructure management. The results obtained in parametric studies demonstrated that robust
optimization was able to limit excess costs associated with errors in infrastructure deteri-
oration modeling. This chapter is an extension of the work of the previous chapter to the
more complex system level case.

Recall that in the last chapter, several infrastructure management recursions were
shown, all of which could be solved via dynamic programming. Also recall that in Chapter
2, it was discussed how dynamic programming becomes computationally intractable for the
large scale problems associated with maintaining a system of infrastructure facilities related
by a common management budget. A convex optimization problem was presented that

aimed to capture a sophisticated approach to system level infrastructure management. In
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this chapter, alternate robust optimization problems will be presented. Solution strategies
will be discussed, and computational studies similar to those done in the last chapter of the

text will be run.

5.1 The Maximin Criterion

As in the preceding section, first consider a MAXIMIN robust optimization prob-
lem. Recall that this involves taking the management actions to minimize costs, given that
nature will select a worst-case transition probability matrix to maximize costs. Begin with
the System Level Infrastructure Management Problem (SLIMP) of Section 2.1. Now mod-
ify this formulation so that the transition probability matrix p becomes a decision variable,
with the worst-case (i.e. highest-cost) matrix in the uncertainty set P considered during
optimization.

System Level Robust Infrastructure Management Problem (SLRIMP)

T

minmax > a'[ 3 3 [9(i, o) + u(@)]f(6)wiz(a) V] (5.1)

T PEP I “icl aca

subject to the following constraints:

1) 22 g(ia) f1(3) @ie(a) N < by vt e {0,1,2,..,T}
(2) ;;ft(l) x;t(a) p(jli,a) = frr1(4) Vi, t€{0,1,2,..,T}
(3) z;(a) >0 Vi,a,t € {0,1,2,.., T}

Assuming the uncertainty set P is defined as before, all terms in any matrix p € P must be
within the uncertainty level J of the corresponding terms in some initial estimate matrix

q. This leads to the definition of P used before, namely P ={pe I xI x A — [0,1] :
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Ip(jlé,a) — q(jli,a)| < 6 (Vi,j € I,a € A), ;p(jli,a) =1(¥i € I,a € A), p(jli,a) 2 0
je

(Vi,j € I,a € A)}. It also leads to an alternate formulation of the System Level Robust

Infrastructure Management Problem (SLRIMP).

Alternate Formulation(SLRIMP)

mmmaxZa [Z Z (D] fe(D)zie(a )N} (5.2)

i€l acA

subject to the following constraints:

(1) ¥ 0(i,0) 1) ais(a) N < b vte {0,1,2,..., T}
(2) 2 X :0) ziala) pli, a) = frn (9) Vi t€{0,1,2,..,T}
(3) zis(a) >0 Vi,a,t €{0,1,2,..., T}
(4) | p(jli, @) — q(jli,a) < 6 Vi, i a
(5) >jerp(ili,a) =1 Vi, a
(6) p(li,a) 20 Vj.i,a

5.1.1 Solution Strategy

The formulations of the System Level Robust Infrastructure Management Problem
shown above may appear quite complex. However, a few inferences can be made that point
towards a solution strategy.

First note that transition probabilities capture deterioration and condition states
often represent varying levels of facility decay. Seen in this light, it becomes intuitively
clear that ‘worst-case’ conditions refer to situations where deterioration proceeds faster

than anticipated. To achieve this effect, take the initial probability matrix estimate g and
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shift probability from less decayed states to more decayed states in a manner similar to
that employed in the single facility case. The amount of probability that can be shifted
depends on the constraints of P. This method typically provides the ‘worst-case’ transition
probability matrix p.

Next note that fixing p makes it possible to find the least-cost management policy
z, and vice-versa. In fact, the problem of finding the optimal z for a fixed p is identical
to the (non-robust) System Level Infrastructure Management Problem of Section 2.1. So
it is possible to form a worst-case transition probability matrix p and use this to find the
optimal policy z. If it is not clear that the matrix p chosen is in fact the worst-case transition
probability matrix, it is possible to fix the chosen policy z and then solve for the worst-
case transition probability matrix. Continue iterating until a fixed management policy and
transition probability matrix are found.

It is now clear that p represents the worst-case or highest-cost transition probability
matrix for the management policy z. Similarly, x represents the optimal or least-cost
management policy for the transition probability matrix p. Thus, all policies other than z
must have at least as great worst-case costs and z must be the MAXIMIN robust optimal

solution to the system level infrastructure management problem.

5.2 The Hurwicz Criterion

Computational studies relating to the management of single facilities demonstrated
how using a robust approach based on the Hurwicz criterion to guide infrastructure main-

tenance decision-making could be worthwhile. This section generalizes the MAXIMIN ap-
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proach to system level infrastructure management introduced in the previous section to
create a methodology based on the Hurwicz criterion.

Use of the Hurwicz criterion requires consideration of best and worst case tran-
sition probability matrices, p® and p* respectively. Notice now that in the System Level
Infrastructure Management Problem (SLIMP) it is necessary to keep track of fi(a) terms,
the expected fractions of all facilities, at time ¢, in condition state a. Consider a two time
step infrastructure management problem. The present condition of the facilities, as rep-
resented by fo(a) terms, is known. In the following year, the expected condition of the
facilities depends upon transition probabilities. The Hurwicz criterion involves considering
best and worst case conditions, so let ff(a) and fi*(a) describe the expected conditions of
the facilities in best and worst cases respectively. Then the management problem can be
expressed:

System Level Hurwicz Robust Infrastructure Management Problem (SLHRIMP)

min max min 3~ 3= [g(i,0) +u()] [fo(i)zio(e) + (B110) + (1 = O () zir(@] N (53)

T pw b
pYEP pbeP i€l acA

subject to the following constraints:

(1) £ 9(6a) foli) ai0(a) N < by
(1.2) S 96a) 726 wiala) N < by
(1.3) ;Za:g(i, a) f1’(4) zia(a) N < by
(2.1) 2% foli) wio(a) p(ili, @) = f1(5) Vj
(2:2) S fo@) wio(a) p* (il a) = f(3) i
(3.1) :;,t(a) >0 Vi,a,t € {0,1}
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This mathematical program is fairly complex, and it is only for a two year man-
agement horizon. Consider a situation where the management horizon is extended to three
years. In order to consistently apply the Hurwicz criterion, in the second year best and
worst cases must be considered regardless of what happened between years one and two.
So, it is necessary to consider best and worst case conditions in year two and in each of
these situations best and worst case scenarios for year three. Thus, the number of possible
scenarios for year three is 4 and in year ¢ is 2¢~!. The complexity of Hurwicz criterion based
decision-making increases exponentially with the length of the planning horizon. Figure 5.1

illustrates this point graphically.

Figure 5.1: System level robust optimization: The complexity of Hurwicz criterion based
robust optimization
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The increasing complexity of using the Hurwicz criterion in robust decision-making
was not noticed during single facility infrastructure management because problems were for-
mulated in terms of a recursion representing only a single year of management. In system
level infrastructure management, as considered here, it is necessary to make decisions re-
garding maintenance throughout a (possibly long term) planning horizon at once. Despite
its increasing complexity, as shown in Figure 5.1, the Hurwicz criterion remains an inter-

esting approach to robust system level infrastructure management.

5.3 Computational Studies

In order to test the utility of the robust approaches to system level infrastructure
management presented above, computational studies were run. As in the preceding chapter,
these studies relate to the simulated management and deterioration of pavement. A network
of 10,000 lane-yards of pavement will be managed for a period of 5 years. The different
sections of pavement are assumed to be homogeneous with the same user and agency costs
defined in the preceding chapter (see Table 4.1 and Table 4.2). The facilities to be managed
are related by a joint management budget of $25,000 that can be spent on MR&R activities
each year. Again, the unusable condition state, state 1, is to be avoided. As in the case of
the computational studies of the last chapter, emphasis is placed on tracking management
policies selected by robust and non-robust optimization, as well as the expected costs these
policies incur, in trials representing worst and best case conditions given various uncertainty

levels.
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5.3.1 Results

The actions prescribed by the MAXIMIN robust linear programming algorithm
are able to achieve significant (user + agency) cost savings in worst-case conditions, when
compared to traditional non-robust optimization. Figure 5.2 shows the accumulated five

year management costs accrued to both the users of the system and the planning agency.

Figure 5.2: System level robust optimization: Worst case costs of maximin robust and
non-robust asset management
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Figure 5.2 shows the worst case costs of asset management, both using an approach
that seeks to minimize those costs and the non-robust approach, as a function of uncertainty.
If the uncertainty level exceeds 0.8 then the worst case cost of non-robust optimization is
undefined. Given the available budget, non-robust optimization is unable to meet the level
of service requirement that the worst condition state be avoided. At the same uncertainty
levels, robust optimization is able to meet budget and service requirements. The reason is
that the non-robust management scheme either chooses not to spend or inefficiently spends
its available budget in the first years of asset management. The belief that decay occurs
slower than it actually does leads to a crisis in later years when the planning agency suddenly
realizes in one year that given its budget it cannot maintain the system above the minimum
service requirement within budget.

In order to illustrate the failure of non-robust optimization algorithms in situations
where there is great uncertainty, it would be beneficial to see the management policies
recommended by the algorithms and the evolution of deterioration over time. Management
policies for system level infrastructure management consist of fractions of all facilities, in
given condition states at given points in time, to which to apply different management
actions. A complete management policy is a matrix of size |I| x T x |A| where |I] is the
number of condition states, T is the length of the planning horizon, and |A| is the number of
management actions possible. It is thus difficult to present numerous complete management
policies succinctly.

That being said, it is possible to present information regarding management policy

chosen and deterioration progression for one example computational study. Consider the
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fractions of all facilities in different condition states and to which different actions will be
applied for one example involving an uncertainty level of 0.6 and non-robust optimization.

Table 5.1 presents the results.

Year Condition Fraction Action Fraction Agency costs User costs

1 8 1.00 2 1.00 0.40 0.00
2 8 0.24 2 0.24 2.50 2.72
7 0.16 3 0.31
6 0.60 4 0.45
3 8 0.20 2 0.20 2.50 3.26
7 0.15 3 0.52
6 0.56 4 0.28
5 0.09
4 8 0.13 2 0.32 2.50 4.35
7 0.12 3 0.47
6 0.47 4 0.21
5 0.28
5 8 0.03 1 0.12 2.50 6.60
7 0.09 2 0.42
6 0.33 3 0.46
5 0.49
4 0.02
3 0.04

Table 5.1: System level robust optimization: Fractional Variables of Condition State and
Actions Taken

Note that Table 5.1 shows a case where a non-robust optimization algorithm rec-
ommended not spending the entire available agency budget in year 1. Given an assumption
of a medium deterioration rate and a desire to minimize user 4+ agency costs, this is the
logical thing to do. However, deterioration proceeds faster than anticipated. The condi-

tion of facilities rapidly deteriorates as user costs expand. Similar scenarios play out when
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the uncertainty level were set to 0.8 or higher, but in these cases deterioration proceeds
- so rapidly that non-robust decision-makers are unable to prevent facilities from becoming
unusable,

While MAXIMIN robust optimization yields lower costs in worst case conditions,
non-robust optimization produces lower costs if decay proceeds as anticipated by the initial
model. It is interesting to look at the additional cost of robust optimization in this scenario
(shown in Figure 5.3), and in particular to compare this potential extra cost of robust
management with the potential savings observed earlier in worst-case conditions (Figure
5.2).

Discontinuities in costs in Figure 5.3 are associated with the fact that at certain
threshold levels of uncertainty, robust asset management schemes may decide to alter their
maintenance schedule recommendations. The costs of asset management in the expected
case were plotted on the same scale as the costs in the worst case shown before. Note that
the potential savings achieved by robust optimization in worst case conditions are of a larger
scale than the extra costs in expected case conditions. This was by no means guaranteed;
MAXIMIN robust optimization does not even consider costs in expected case conditions.
Next consider the total cost ranges possible under traditional and MAXIMIN robust asset

management, as shown in Figure 5.4.
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Figure 5.3: System level robust optimization: Expected case costs of maximin robust and
non-robust asset management
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Figure 5.4: System level robust optimization: Cost ranges of maximin robust and non-
robust asset management
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MAXIMIN robust optimization dramatically shrinks the range of potential costs
associated with asset management in cases of decay rate uncertainty. Cost uncertainty may
be undesirable to planning agencies, particularly given the political environment in which
they operate. It is worth noting that the extra costs of MAXIMIN robust management as
compared to traditional management in best case conditions are actually slightly greater
than those seen earlier in expected case conditions. MAXIMIN robust management is more
conservative than traditional asset management schemes and incurs excess costs more or
less in proportibn to how benevolent conditions are. Thus, consideration of the whole range
of costs that are possible may suggest the use of Hurwicz style robust optimization.

The cost ranges of Hurwicz management are presented in Figure 5.5. Note that
Hurwicz robust optimization is able to achieve worst-case ¢osts comparable to those of
MAXIMIN robust optimization. Furthermore, Hurwicz robust optimization is able to sig-
nificantly lower best-case costs as compared to MAXIMIN robust optimization. These
results are in line with those shown in the preceding chapter related to the management of

a single infrastructure facility.
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Figure 5.5: System level robust optimization: Cost ranges of hurwicz robust (for 8 = 0.5)
and non-robust asset management
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5.4 Conclusion

As in the case of single facility management, robust optimization was shown to
offer potentially significantly lower costs of maintenance than non-robust optimization. In
addition, the computational studies presented in this chapter illustrated how ignoring un-
certainty and incorrectly estimating deterioration rates can lead to management failures.

The fact that robust optimization recommends significantly different ‘optimal’
management policies than non-robust optimization makes it clear that the policies recom-
mended by infrastructure management systems are sensitive to the (possibly erroneous)
assumptions of the systems. The potential cost savings of robust optimization in the com-
putational studies shown here make it clear how important these policy differences are.
It should be clear now that it is essential to consider the assumptions of infrastructure
management systems before trusting their results.

It should also be clear now that it’s possible to consider uncertainty during decision-
making via robust optimization. If traditional robust optimization techniques are viewed
as being ‘too conservative,” it has been shown how an alternate decision criteria, like the
Hurwicz criterion, can be used. Furthermore, it is worth noting that the degree of conser-
vatism of robust optimization approaches depends upon the manner in which uncertainty
sets are defined. Robust infrastructure management using relatively small uncertainty sets
provides results more or less analogous to non-robust infrastructure management.

One thing that may seem odd about the computational studies performed so far is
that during simulated infrastructure management facilities are observed deteriorating, but

this information is not used to update initial estimates regarding deterioration processes.
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The work done so far may have left the reader under the impression that all infrastructure
management systems in use today ignore the issue of uncertainty in deterioration model-
ing and do not keep track of how deterioration actually proceeds. This is untrue. Many
modern infrastructure management systems use adaptive control approaches to reduce the
uncertainty associated with imprecise initial models of facility deterioration. The following
chapter describes state-of-the-art adaptive control formulations. Comparisons will be made
to the robust optimization approaches discussed to this point, including computational

studies and qualitative analyses comparing the performance of both approaches.
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Chapter 6

Comparing Adaptive and Robust

Infrastructure Management

6.1 Adaptive Control in Infrastructure Management

The developers of modern infrastructure management systems have recognized the
presence of uncertainty in the deterioration models used in practice. Therefore, they have
included a model updating step in these management systems, where data collected as
part of condition surveys are used to update deterioration model parameters. For example,
Harper et al (1990) use Bayesian methods to update the parameters of their deterioration
models. Likewise, the popular bridge management system Pontis updates transition prob-
ability matrices over time (Golabi and Shepard, 1997). Durango and Madanat (2002) have
proposed a decision support system where the uncertainty in the deterioration model is

represented by a probability mass function of deterioration rates. Rather than updating
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the parameters of the deterioration model, it is this probability mass function of deteriora-
tion rates that is updated in light of inspection data in their system. Irrespective of these
differences, the common element in these three systems is that they are adaptive, in that
they combine model updating and optimization.

Broadly speaking, there are two types of adaptive optimization routines. Open
Loop Feedback Control methods alternate between updating model parameters and opti-
mizing decision making with respect to the most recent estimates of parameters. Closed
Loop Control improves on this methodology by explicitly considering the future updating of
deterioration model parameters within present time MR&R optimization. Unfortunately,
consideration of the many ways a network of facilities may deteriorate and how this will
lead to different updated deterioration model parameters is not always possible within the
framework of a solvable optimization problem. For this reason, adaptive infrastructure
management systems that deal with a network of related facilities are typically based on
Open Loop Feedback Control (OLFC) approaches.

In adaptive control, model uncertainty is often modeled by treating deterioration
model parameters as continuous random variables. The successive updating of these param-
eters will improve the representation of the actual deterioration process only if the variables
converge to their true values. For this to happen, a large number of observations have
to be made for every combination of MR&R action performed and infrastructure facility
condition state. This means that all MR&R activities must be applied to infrastructure
facilities in every possible condition state a sufficient number of times. This may not happen

in adaptive infrastructure management systems because the optimization process will tend
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to select only a subset of MR&R activities to apply to each condition state. As a result,
the deterioration model parameters relating to state-action pairs that are not selected a
sufficient number of times may converge to incorrect values. This is a limitation of all
OLFC-based adaptive optimization approaches.

However, the most serious limitation to the effectiveness of the adaptive control
approach is probably that while managing a network of infrastructure facilities, data on con-
dition, deterioration, and the effectiveness of different MR&R actions accumulates slowly.
Thus, adaptive control approaches require a long time to improve the precision of the tran-
sition matrices and, during this time, will incur high costs associated with transition matrix

uncertainty.

6.1.1 An Example Adaptive Control Approach

An adaptive control approach is here presented using a MDP formulation like those
presented in section 2.1 of this paper. New condition information is used to recalculate
estimates of transition probabilities (call these 7(j|¢,a) terms). New condition information
takes the form of a multinomial random variable; facilities are being observed as being in
one of a discrete and mutually exclusive set of condition rating states. It is assumed that
transition probability estimates follow the fairly general Dirichlet distribution, the conjugate
distribution to the multinomial (as in Madanat et al (2004)). Then, updating transition
probabilities becomes straightforward.

Let n(jli, a) represent the number of facilities that have been observed transition-
ing from state % to state j in the time step after having action a applied. Further, let N (i, a)

represent the number of facilities that have been observed in state ¢ with action a applied
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(N(i,a) = 32;n(jli,a)). Every time step, it would be possible to update the counts, the
n(jli,a) and N(i,a) terms.
Given these counts, the maximum likelihood estimates of transition probabilities
are quite simple to calculate.
(il o) = S0 (6.)
These transition probability estimates can then be used in infrastructure management
decision-making. For example, plug the w(j|¢,a) terms as the p(j|¢,a) terms in the Single

Facility Infrastructure Management Problem (SFIMP). As information becomes available,

n(jli,a) and N (7, a) counts can be updated and new estimates calculated for 7 (j|¢, a) terms.

Figure 6.1: OLFC Adaptive control: Agency responsibilities over time.
|

! year 0 Tyear 1 Tyear 2
Initial Conditions Inspection Inspection
Using available data and/or Update N (z,a) and Set Parameters
expert judgement, set N(i,a)  n(j|i,a)terms. Solve MDP
and n(j|¢,a) terms. Set Parameters Take MR&R Actions
Set Parameters Solve MDP
Using equation 5.1, Take MR&R Actions
set m(j|7, a) terms.
Solve MDP

Solve the appropriate infrastructure management problem.
Take MR&R Actions
Take the actions recommended by the solution to the management problem.
Figure 6.1 shows the responsibilities, over time, of a planning agency using an Open
Loop Feedback Control (OLFC) adaptive control approach to infrastructure management.

Planning agencies are responsible for taking MR&R actions, and often times are required by

law to perform condition surveys that involve inspecting facilities. Many agencies already
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use MDP formulations to determine which maintenance actions to perform. Thus, the only
step that might be considered an additional responsibility is that of setting parameters given
up-to-date counts of condition state transitions. It was already shown that this additional
responsibility is quite simple computationally. This step really involves making use of the
most up-to-date information available to help guide decision-making, and should not be
skipped over.

Note that in Figure 6.1 the possibility of setting N(Z,a) and n(j|¢, a) terms using
‘expert judgement’ was raised. Harper et al (1990) have written about how expert judge-
ment may be a valuable source of information to use in setting transition probabilities of
MDP formulations of infrastructure management problems. As data becomes available, it
makes perfect sense to seek some mechanism for combining expert judgement and empirical
data. The adaptive control approach shown above leaves open this possibility.

Consider initially setting N(7,a) terms to reflect how much weight is given to
the initial assumptions of expert engineers. Larger values for these terms will mean a set
amount of new data will have less impact on estimated transition probabilities. Smaller
values for N(i,a) terms will give less weight to expert judgement vis a vis new empirical
data. Next, consider setting n(j|¢, a) terms so that initial estimates of transition probabili-
ties, m(jli,a) = %J(L%)— terms reflect expert judgement regarding the likelihood of different

transitions occurring.

6.1.2 Systematic Probing

The approach described above learns about infrastructure deterioration by observ-

ing facility condition information and relating this to the information regarding maintenance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

actions performed the previous time step. No information will be gathered with regards to
maintenance actions perceived to be sub-optimal during decision-making, and estimates of
the coéts and benefits of these actions will remain unchanged. This, in turn, will keep these
alternate maintenance actions unattractive during decision-making.

In order to learn about alternate policies not initially favored by robust opti-
mization, it is necessary to ‘probe’ the system. This implies taking actions believed to be
sub-optimal given current information in order to learn more about the system in question.
For example, it may be beneficial to make decisions using a e-greedy policy in combination
with the adaptive control approach presented previously. This involves taking actions con-
sistent with the results of a management problem 100-¢ percent of the time and selecting
a random action (all possible actions equally likely to be selected) e percent of the time
where € is some small number. Alternate strategies are also possible; e-greedy represents
only one (simple) strategy of systematic probing. Systematic probing involves balancing
exploitation, the desire to perform actions currently believed to be best, with exploration,

the desire to test the efficacy of various actions and determine which actions truly are best.

6.2 Computational Studies

Adaptive control and robust optimization both represent strategies for mitigating
the impacts of deterioration model uncertainty during infrastructure management. It there-
fore makes sense to study and compare the performance of each in computational studies
simulating infrastructure management.

The studies of the preceding two chapters investigated the performance of robust
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optimization assuming it was possible to correctly ascertain the uncertainty level surround-
ing estimated transition probabilities. This assumption may be unrealistic and likely pro-
duces results that favor robust optimization over alternate techniques unable to make use
of this assumed accurate knowledge of levels of uncertainty. In the computational stud-
ies that are presented here, robust optimization strategies with various assumed levels of
uncertainty, none fully correct, are studied.

Similarly, adaptive control methodologies with various e-greedy strategies are stud-
ied. It should be remembered that adaptive control methodologies need to consider the
problem of balancing the desire to explore with the desire to exploit, and need to formulate
a strategy for doing so. e-greedy strategies of the type used here represent only one type of
strategy out of many.

The computational studies presented here once again involve pavement mainte-
nance. In Chapter 3, Tables 4.1 and 4.2 identified the costs of pavement maintenance
activities and pavement deterioration. Table 4.3 outlined three rates of pavement deteri-
oration, described only as being fast, medium, and slow. For the computational studies
done here, four scenarios are considered. In the first scenario, the ‘real’ deterioration rate
used to simulate decay is the fast rate, but the initial assumptions of the ‘decision-maker’
are that deterioration will be slow. Similarly, scenario two involves a real deterioration rate
characterized as slow and an assumption that deterioration will be fast. Scenarios three and
four involve initial assumptions that deterioration will be medium coupled with real deteri-
oration that is fast and slow, respectively. The different scenarios are chosen because they

represent a mix of over and under estimation of deterioration rates, as well as of different
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degrees of error in initial assumptions.

In all cases, a pavement network is managed and user + agency costs are minimized
in the absence of any strict agency budgets. 60% of the network is assumed to start the
planning exercise in (best) condition state 8, 20% in state 7, 10% in state 6, 5% in state 5, 3%
in state 4, and 2% in state 3. Simulations of management are run, for each of several adaptive
control and robust optimization methodologies. Simulations are necessary because different
realizations of deterioration lead to different assumptions used in, and results of, decision-
making algorithms, which in turn impact future observations of deterioration. The overall
process is complex and stochastic and the true expected costs of different management

strategies cannot be calculated using a closed-form expression.

6.2.1 Results

The results, in terms of costs of infrastructure management, of the computational
studies are presented on the following few pages. Graphs of the costs of adaptive control
management mechanisms, with various values for ¢, the probing fraction, are presented
above graphs of the costs of robust optimization management, with various assumed\ un-
certainty levels. These sets of graphs are presented for the four scenarios outlined in the
preceding section. A solid line on each the graphs indicates the (low) expected cost of
maintenance given perfect information (a model of deterioration known to be correct at the

start of the planning exercise).
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Figure 6.2: Adaptive vs. Robust: Cost ranges of adaptive control management, deteriora-
tion = fast, assumed deterioration = slow
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Figure 6.3: Adaptive vs. Robust: Cost ranges of robust management, deterioration = fast,
assumed deterioration = slow

100

Cost per Facility

0.0 o.2 0.4 0.6 0.8 1.0 1.2

Uncertainty Level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



88

Figure 6.4: Adaptive vs. Robust: Cost ranges of adaptive control management, deteriora-
tion = slow, assumed deterioration = fast
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Figure 6.5: Adaptive vs. Robust: Cost ranges of robust management, deterioration = slow,
assumed deterioration = fast

3B
B
[l
z 8-
(53
[5=1
L
=
=
E77]
jo]
(]
< ]
Lo
<o —

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Uncertainty Level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

Figure 6.6: Adaptive vs. Robust: Cost ranges of adaptive control management, deteriora-
tion = fast, assumed deterioration = medium
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Figure 6.7: Adaptive vs. Robust: Cost ranges of robust management, deterioration = fast,
assumed deterioration = medium
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Figure 6.8: Adaptive vs. Robust: Cost ranges of adaptive control management, deteriora-
tion = slow, assumed deterioration = medium
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Figure 6.9: Adaptive vs. Robust: Cost ranges of robust management, deterioration = slow,
assumed deterioration = medium
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Approaches based on both adaptive control and robust optimization do not per-
form as well as those that correctly estimate deterioration. Clearly the issue of adaptive
control versus robust optimization is irrelevant if deterioration processes are well under-
stood.

It is not immediately clear which probing fractions produce the best results in
adaptive control methodologies. Setting the probing fraction, and indeed the systematic
probing strategy, is an art and not a science. On the other hand, some clear trends are ob-
servable in relating the performance of robust optimization methodologies to the values for
uncertainty level. In cases where deterioration proceeds faster than anticipated, Graphs 6.3
and 6.7, strategies involving larger uncertainty levels outperform those involving smaller un-
certainty levels. On the other hand, in cases where deterioration is slower than anticipated,
Graphs 6.5 and 6.9, the opposite is true.

Note that the costs of robust optimization, using a fairly large uncertainty level,
are significantly less than those of adaptive control in comparing Graphs 6.2 and 6.3 or
Graphs 6.6 and 6.7, when real deterioration is characterized as fast but initial assumptions
were that deterioration would be slow or medium. As was mentioned previously, robust
optimization leads to fairly conservative management strategies that involve significantly
more regular maintenance of facilities than non-robust optimization might recommend. This
approach saves a lot in user costs when deterioration is faster than initially anticipated.

The flip side to this argument is that robust optimization wastes money in excess
agency costs when deterioration is slower than initially anticipated. Note how robust op-

timization, particularly when using a fairly large uncertainty level, can cost significantly
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more than adaptive control as in comparing Graphs 6.4 and 6.5.

It is interesting to note that acting under the naive assumption that initial assump-
tions are correct often produces lower management costs as compared to adaptive control.
(Acting naively is here shown as using robust optimization with a 0% uncertainty level.)
In the case studies shown here, initial assumptions were discarded once data was obtained
regarding deterioration. It may be better to incorporate initial assumptions and weight
them as equivalent to a certain number of empirical observations, in a manner similar to
that discussed after Figure 6.1.

Taken together, the graphs presented on the preceding few pages do not uniformly
favor adaptive control over robust optimization or vice-versa. Apart from the costs incurred,

there are important differences between the two approaches.

6.3 Qualitative Comparisons

Adaptive control is explicitly learning about the system it is managing, while
robust optimization is not. Thus, at the end of the simulated management exercises pre-
sented above adaptive control will have a more accurate representation of the underlying
true transition probability matrix than will robust optimization.

However, it is important to recognize that in the computational studies there was
always a true underlying transition probability matrix that defined deterioration. There was
no epistemic uncertainty of the form that robust optimization is well suited to considering.
Adaptive control methodologies necessarily assume a functional form to define deterioration,

and then assume another functional form for the distribution of estimates of parameters
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of deterioration models. In the computational studies examined in the preceding section,
the assumptions of the adaptive control methodologies were more or less correct. One of
the benefits of robust optimization based approaches is that it is typically not necessary to
make assumptions regarding the distribution of estimates of deterioration model parameters.
Furthermore, the assumed functional form of the deterioration model itself becomes less
important since parameters are not considered fixed but rather as belonging to (possibly
large) uncertainty sets.

While the assumptions made by adaptive decision-makers in the preceding section
were more or less correct, the primary assumptions made by robust decision-makers regard-
ing uncertainty levels and uncertainty sets were incorrect. The uncertainty surrounding an
initial assumption of a fast deterioration rate when deterioration could actually be slow, or
vice-versa, is not the same as saying there is an uncertainty level of 0.2 or 0.4.

It is interesting to compare the necessity of specifying an uncertainty level in
robust optimization and that of possibly specifying a weight to give to initial assumptions
in adaptive control. In both cases, this relates to noting how much faith should be placed
in expert judgement or initially available data regarding deterioration. It is clear that in
problems of infrastructure management involving significant uncertainty, it is necessary, at
the start, to estimate how much weight should be given to initial estimates of deterioration
model parameters. The agreement between robust optimization and adaptive control based
approaches on this matter can lead to speculation on the possibility of combining the two

approaches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94
6.4 Towards A Hybrid Management System

The best approach to dealing with situations where there is significant uncertainty
regarding facility deterioration may be to combine adaptive deterioration modeling with
robust decision-making. In this way, new data is used to re-evaluate deterioration model
parameters and limit the future magnitude of uncertainty while decision-making is done
recognizing the current extent of uncertainty. Such a hybrid approach is possible given that
robust control methodologies focus on changing decision-making algorithms, while adaptive
control approaches are concerned with updating deterioration models after decisions have
been made.

The basic idea of the hybrid approach is simple. Whenever information regarding
the deterioration of infrastructure facilities is collected, update the statistical models of
deterioration used in decision-making. Particular attention must be paid to quantifying the
uncertainty surrounding the terms of the deterioration models. Then this information can
be passed.to a robust optimization routine, which will provide infrastructure management

strategies that are optimal given current levels of uncertainty.

6.4.1 An Example Hybrid Approach

Return now to the example adaptive control approach introduced in this chapter
where it was assumed that estimated rows of a transition probability matrix follow the
Dirichlet distribution. Given this assumption, standard errors associated with transition

probability estimates may be calculated.

. __ n(j|z,a)(N(z, a’) — n(]lza a))
o(7li,a) = \/ (NG, a2 (NG a) + 1) (62
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Standard error terms can be used to describe statistical or parametric uncertainty,
uncertainty related to the size of the data sets used to come up with parameter estimates. If
it is believed that epistemic uncertainty is sizable, it would be wise to sum terms represent-
ing this more fundamental, underlying uncertainty with terms related to standard errors.
For example, let v(j|i,a) be a term estimating the epistemic uncertainty surrounding the
transition probability estimate 7(j|i,a). Then one robust mathematical program that could

be used in a hybrid approach to infrastructure management would be:

(i) = minmax [g(i, af) + u(i) + oY p(ili, ad)orsr (9] (6:3)

with the added constraints that:

(1) Ip(4li, a) — 7 (j]i, a)| < 20(jl}%, a) + v(jli, @) ~ Vja
(2) p(jli,a) > 0 Vj,a
(3) éfjp(jli, a)=1 Va

In flowchart form, the hybrid approach that has been outlined above, including
systematic probing, could be represented as in Figure 6.10. Note that parameters are
updated whenever inspections take place; between condition surveys, robust infrastructure

management would be used without adaptive parameter estimates.
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Figure 6.10: Adaptive and robust infrastructure management: Flowchart of agency respon-

sibilities over time.

Initial Conditions

Using available data and/or expert judgement, set N(¢,a) and n(j|i, a) terms.

Inspection

Observe conditions and update n(j|i, a)
and N(7,a) counts.

4

Set Parameters
Using equations 5.1 and 5.2,
set 7(j|i,a) and o(j|i,a) terms.

Solve Robust MDP
Solve recursion 5.3, for all states ¢

Deterioration
Time passes. Facilities deteriorate.

(Hidden from decision-maker.)

and all years t from T backwards
to the present.

Take M&R Actions
Select and perform M&R actions.

For each facility:

With probability 1-e take the action rec-
ommended by the solution to the robust
optimization problem.

With probability € select a random action to
take, all actions being equally likely to be
selected.

A hybrid approach to infrastructure management, like the one presented above,

appears to provide an excellent way to deal with situations where there is significant de-

terioration rate uncertainty. As an adaptive approach, this methodology will allow an

infrastructure management system to learn about deterioration and how fast it progresses.

As a robust approach, this methodology will be less sensitive to errors in initial assumptions

regarding deterioration processes and to errors in assumptions related to the distribution

of estimates of deterioration model parameters. The extent of uncertainty will be reduced

over time, while decision-making is always done recognizing current levels of uncertainty.
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This is not to say that no concerns arise in combining adaptive control and ro-
bust optimization. Recall that in adaptive control there was some concern about the fact
that information is only gathered on the effectiveness of actions that have actually been
performed. This may be even more of a problem in cases where robust optimization is
combined with adaptive control. Worst case costs are used to guide management decisions.
The sizes of uncertainty sets used to come up with worst case scenarios relate directly to
how much information is available. Thus, the impacts of actions not taken will be highly
uncertain, leading to high estimates of worst-case costs, and sub-optimality in the eyes of a
robust decision-maker. One effect of using robust decision-making in the context of adap-
tive control may be to strengthen the chain involving the (possibly incorrect) assumption
that an action is sub-optimal, the failure to take that action, the failure to gather more
information about that action, and the continued assumed sub-optimality of that action.

It’s not clear if the concern raised above represents a serious detriment to the ability
to combine adaptive control and robust optimization based methodologies for infrastructure
management. It may be that the interaction between the two methodologies is insignificant
compared to the basic problem of balancing exploitation and exploration in an adaptive
control problem. Further study in this area would be worthwhile. It may be that a hybrid
approach is the best way to manage infrastructure in situations where there is significant

deterioration model uncertainty.
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Chapter 7

Conclusion

The past few chapters of this dissertation have presented results obtained during
several different research efforts. It is worthwhile to briefly summarize the findings of these
chapters and re-examine their relation to one another.

This work began with an introduction to the field of infrastructure management
and specifically to the problems of infrastructure deterioration modeling and infrastructure
maintenance decision-making. Examples of mathematical formulations of both deterioration
modeling and maintenance decision problems were presented. Next came a section detailing
the problem of uncertainty in infrastructure deterioration modeling. Explanations were
provided as to why there is reason to believe that there is uncertainty in deterioration
modeling. Evidence was brought forward to show that, in fact, there is some proof of
this uncertainty. It was hypothesized that this issue of uncertainty might be important in
infrastructure maintenance decision-making, despite the fact that it was often ignored. This

issue then became the problem that motivated the analyses and research efforts presented
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in the remaining chapters of this dissertation.

The next two chapters of the work showed that considering uncertainty during
decision-making can lead to vastly different recommended maintenance actions and man-
agement costs as compared to those that result from ignoring uncertainty. Single facility and
system level problems were formulated and computational studies relating to the simulated
management of both single facilities and systems of facilities were performed. Many of the
results presented in this pé\rt of the text can be interpreted as showing the maximum po-
tential costs of ignoring uncertainty. The form of consideration of uncertainty used, robust
optimization, was also presented as a potential mechanism for infrastructure management
in the presence of uncertainty. It is worth noting that this is the first time that robust opti-
mization has been studied in the context of infrastructure management. A Hurwicz criterion
based form of robust optimization was offered as an alternative to the possibly conservative
MAXIMIN criterion form most commonly used in the field of Operations Research.

The chapter directly before this conclusion compared robust optimization to the
method currently favored for use in infrastructure management in the presence of uncer-
tainty, adaptive control. A sample adaptive control formulation was presented and computa-
tional studies were run comparing the performance of adaptive control and robust optimiza-
tion. Pains were taken to ensure computational studies run did not favor either approach.
It was found that neither robust optimization nor adaptive control based methodologies
consistently outperform each other. There are interesting qualitative differences between
the two approaches, and these were discussed. Finally, the possibility of combining the two

methodologies was investigated and a hybrid approach was formulated. There was some
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discussion of what the strengths and weaknesses of such a hybrid approach might be.

7.1 Future Directions

The research that was presented here recommends several areas for future study.

A few of the most promising and pragmatic areas of study are briefly outlined below.

Statistical Testing of Deterioration Model Uncertainty

The research that was presented in this dissertation included a section labeled
‘Quantifying Uncertainty’ where some statistical testing was undertaken in an attempt
to estimate the magnitude of the uncertainty surrounding transition probabilities used in
infrastructure management systems. The most memorable data from this section resulted
from a bootstrap analysis that placed uncertainty bounds around one particular estimated
transition probability. This analysis was sufficient to prove that even in state of the art
deterioration models, there exists significant uncertainty. However, if a robust optimization
scheme were really to be used in practice, it would be necessary to come up with more
sophisticated descriptions of uncertainty.

Bootstrap analyses, similar to the one presented in this dissertation, could be per-
formed on the parameters of all sorts of different deterioration models relating to different
infrastructure facilities. Alternate non-parametric methods, like the jackknife could be in-
vestigated, as could more traditional parametric techniques. Emphasis could be placed
on the relationship between the uncertainty surrounding different but related deterioration

model parameters.
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Applying Different Robust Optimization Formulations to Infrastructure Management

Assuming a detailed description of deterioration model uncertainty were to be
found, it would be useful to have a robust optimization formulation of the infrastructure
management problem that could take advantage of this increased resolution. The robust op-
timization formulations presented in this dissertation assumed a ‘box’ model of uncertainty
where true transition probabilities were assumed to lie in a closed range of possible val-
ues. The most advanced robust optimization models, like those found in El Ghaoui (2003)
allow for consideration of how the uncertainty surrounding different transition probability
estimates are related.

It should be noted at this point that it remains to be seen whether engineers work-
ing at planning agencies would be comfortable with the added complexity of more detailed
descriptions of uncertainty and robust optimization formulations. This issue too is worthy
of further investigation. It is important to know what planning agencies perceive as the
strengths and weaknesses of infrastructure management systems in use today, in order to

best plan how to modify these systems to improve performance.

Testing the Hybrid Approach

A hybrid, adaptive and robust, approach to infrastructure management was pre-
sented in the latter sections of this text. Issues were raised as to whether this approach
would offer any material benefit over alternate adaptive or robust approaches. In order

to gain a better understanding of the performance of hybrid style approaches, it would be
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beneficial to test different hybrid formulations against simulated infrastructure management
problems. Special attention should be paid to how well the approaches estimate uncertainty
surrounding deterioration model parameters. It is imperative to the success of any robust
methodology that uncertainty be estimated accurately. Special attention should also be
paid to how well the approaches learn how deterioration progresses. The promise of the
adaptive approach is that it learns, but this learning is predicated on the fulfillment of

certain assumptions that may or may not hold.

7.2 Final Thoughts

Statistician Leo Breiman once noted that he was “deeply troubled by the current
and past use of data models in applications, where quantitative conclusions are drawn and
perhaps policy decision are made” since “conclusions are about the model’s mechanism, and
not about nature’ mechanism” (Breiman, 2001). This dissertation has shown that there are
indeed errors in even state of the art models used to define infrastructure deterioration. This
is worrying because these models are used to provide quantitative conclusions regarding
infrastructure maintenance. However, alternate methodologies are available for guiding
infrastructure maintenance decision-making that are less sensitive to uncertainty or error
in model formulation.

It is hoped that this work convinces those in the field of infrastructure management,
as well as in other fields, to test the assumptions of the models they use to simplify complex
real world phenomenon. Even in situations where little or no empirical data is available,

robust methodologies can provide logical mechanisms to aid decision-making. Adaptive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

methodologies can provide frameworks where new data is used as soon as it is collected
and the consideration of the desire to ‘explore’ the effectiveness of alternate actions can
be brought into the discussion of which actions are ‘optimal’ to take. A combined hybrid
and robust approach may yet provide the most logical mechanism for making decisions in
the presence of uncertainty. The number of important decisions made in the presence of

uncertainty, and the promise of this research, is nearly limitless.
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