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Abstract  
 

Explorations of Metacognition Among Academically Talented 

Middle and High School Mathematics Students 

by  

Adena Elizabeth Young 

Doctor of Philosophy in Education 

University of California, Berkeley  

Professor Frank C. Worrell, Chair  

 

The purpose of this dissertation was to examine metacognition among academically talented 
middle and high school mathematics students from both educational psychology and 
mathematics education perspectives.  A synthesis of the literatures and three studies employing 
quantitative, qualitative, and mixed methodologies were used to address three research questions: 
(a) What is metacognition, (b) What are the relationships between metacognition and academic 
achievement, and (c) How should educational psychologists measure metacognition?  Literature 
review findings suggested four metacognition constructs: knowledge, regulation, beliefs, and 
awareness.  Examples of students’ metacognition during mathematics problem solving with 
regard to each of these constructs were provided.  Results of exploratory factor analysis indicated 
that scores on an existing metacognition questionnaire were structurally valid although they 
lacked concurrent and predictive validity.  Metacognition as measured by the existing 
questionnaire was not significantly or meaningfully related to measures of academic 
achievement or problem solving metacognition.  However, problem solving metacognition was 
related to both problem solving accuracy and students’ diagnostic test score and summer course 
grade.  Findings from this study suggest that more research is needed in order to (a) create a 
coherent definition of metacognition that is both taxonomical and functional, (b) examine the 
complex relationships between metacognition and academic achievement, and (c) create a 
metacognition self-report questionnaire with sound psychometric properties. 
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Explorations of Metacognition Among Academically Talented 
Middle and High School Mathematics Students 

Metacognition is a psychological construct that refers to people’s knowledge, regulation, 
beliefs, and awareness of their thinking, learning, and problem solving processes (Brown, 1987; 
Flavell, 1979).  Over the past 30 years, metacognition has come to be recognized as a factor of 
primary importance in people’s learning and performance in a wide range of domains.  For 
example the National Research Council identified metacognition as one of three components 
central to learning and teaching (Bransford, Brown, & Cocking, 2000).   

Within the field of educational psychology, much work has been dedicated to creating 
taxonomies that define metacognition (e.g., Jacobs & Paris, 1987; Krathwohl, 2002), developing 
measurement tools based on these taxonomies to capture people’s levels of metacognition (e.g., 
Pintrich, Smith, Garcia, & McKeachie, 1993; Schraw & Dennison, 1994; Sperling, Howard, 
Miller, & Murphy, 2002), and using statistical analyses to study the relationships between 
metacognition and academic achievement (e.g., Pintrich, 2002; Zimmerman, 1990).  These 
approaches are used to study metacognition across academic domains including mathematics.  In 
contrast to the research on metacognition within the field of educational psychology, there is a 
separate line of research on metacognition within the field of mathematics education.  Within the 
mathematics education research community, there have been a range of studies exploring the role 
of metacognition in performance, such as research on how metacognitive acts influence effective 
problem solving (e.g., Schoenfeld, 1985, 1987). 

In this dissertation I address two overarching goals.  The first goal is to examine the 
affordances and limitations of the educational psychology literature and research practices with 
regard to (a) conceptualizations of metacognition and its relationships to academic achievement 
and (b) metacognition measurement techniques.  The second goal is to examine how theories and 
methodologies used within the field of mathematics education may enhance how educational 
psychologists conceptualize and measure metacognition, and how they study the relationships 
between metacognition and academic achievement.  

To address these objectives, I begin by reviewing the existing literature within 
educational psychology and mathematics education regarding (a) conceptualizations of 
metacognition, (b) operationalizations of metacognition, and (c) metacognition and academic 
achievement.  Specifically, I review the conceptualizations of four main metacognition 
constructs that emerge from educational psychology and mathematics education literatures (i.e., 
regulation of cognition, knowledge of cognition, beliefs about cognition, and awareness of 
cognition) and present a synthesis of these conceptualizations.  Next, I review quantitative and 
qualitative research methods commonly used to examine metacognition within educational 
psychology and mathematics education, respectively.  Finally, I briefly review existing empirical 
findings on the relationships between metacognition and learning outcomes such as academic 
achievement and mathematics problem solving outcomes. 

Following this review of the literature, I present three studies.  In Study 1, I examine the 
psychometric properties (i.e., item reliability, structural validity, concurrent and predictive 
validity with academic achievement) of scores on an existing metacognition self-report 
questionnaire.  Findings from Study 1 are used to evaluate the affordances and limitations of the 
measurement techniques (i.e., using self-report questionnaires to study metacognition) 
commonly used in educational psychology to study the relationships between metacognition and 
academic achievement.  In Study 2, I use methodologies commonly used in mathematics 
education (e.g., think-aloud interviews ) to examine students’ uses of metacognition during a 
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mathematics problem solving task.  Findings from Study 2 are used to provide illustrative 
examples of the conceptualizations of metacognition synthesized in the review of the literature 
and to provide insight into the complexities of the relationships between metacognition and 
problem solving outcomes.  In Study 3, I combine data from Studies 1 and 2 to examine the 
relationships between metacognition and academic achievement.  Finally, I discuss how the 
findings from each study contribute to the two overarching goals of this dissertation. 
Conceptualizing Metacognition 

Conceptualizations of metacognition have expanded over time within educational 
psychology and mathematics education.  Despite the extensive theoretical and empirical 
literature on metacognition, there is no consensus definition of the construct.  Metacognition was 
first defined by Flavell (1976) as “one’s knowledge concerning one’s own cognitive processes 
and products or anything related to them” (p. 232).  Flavell (1976, 1979) described several 
aspects of metacognition, including metacognitive knowledge and metacognitive experiences, as 
well as the monitoring, regulation, and orchestration of cognitive processes.  Soon after Flavell 
(1976) introduced the term, metacognition, Brown (1978) reviewed existing research on related 
phenomena, describing several aspects that later came to be recognized as aspects of 
metacognition, including planning, checking and monitoring, and knowing when and what you 
know.   

Discussions of operational definitions of metacognition in the research literature followed 
next in the literature.  In the educational psychology literature, Brown (1987) identified two 
distinct areas of metacognition research: knowledge of cognition and regulation of cognition.  In 
the mathematics education literature, Schoenfeld (1987) distinguished between three areas of 
metacognition research: knowledge of one’s own thought processes, control or self-regulation, 
and beliefs and intuitions.  Research in both fields of study have continued to expand based on 
these theoretical frameworks. 

The early work of Flavell (1976, 1978) and Brown (1978) and the more recent work of 
Brown (1987) and Schoenfeld (1987) suggest four constructs of metacognition: knowledge of 
cognition, regulation of cognition, beliefs about cognition, and awareness of cognition (see 
Figure 1).  The theoretical and empirical bases for each of these constructs in the educational 
psychology and mathematics education literature are reviewed in the following sections. 

Knowledge of cognition. Two taxonomies of knowledge of cognition exist in the 
educational psychology literature on metacognition: Flavell’s (1979) categories of person, task, 
and strategy knowledge, and Jacobs and Paris’ (1987) categories of declarative, procedural, and 
conditional knowledge.  Knowledge of cognition is not explicitly studied in mathematics 
education.  Research about related phenomena in mathematics education is reviewed in the 
sections on beliefs about cognition and awareness of cognition. 

Flavell’s theory of metacognitive knowledge. Flavell (1979) introduced metacognitive 
knowledge as “knowledge or beliefs about what factors or variables act and interact in what 
ways to affect the course and outcome of cognitive enterprises” (p. 907).  Flavell presented these 
factors in three categories, arguing that a student’s learning and problem solving were influenced 
by metacognitive knowledge related to person, task, and strategy.  Person knowledge refers to 
knowledge and beliefs about oneself and others as learners.  This includes knowledge and beliefs 
about interindividual differences (e.g., Person A is better at math than Person B), beliefs about 
intraindividual differences (e.g., I learn math better from a teacher than a math book), and beliefs 
about universal cognitions (e.g., knowledge about how people learn math).  Task knowledge 
refers to one’s metacognitive knowledge about the demands and goals of a cognitive task, as well  
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Flavell 
(1976, 1979) 

Brown 
(1978) 

Brown 
(1987) 

Schoenfeld 
(1987) 

Knowledge 
of  

Cognition 

Regulation 
of  

Cognition 

Beliefs 
about 

Cognition 

Awareness 
of 

Cognition 

as knowledge about what information is available during the task, how variations in the available 
information may affect the outcome of the task, and, therefore, how a cognitive enterprise should 
be managed to attain the goal given what information is available. Finally, strategy knowledge 
refers to the metacognitive knowledge of what strategies are most effective in a given learning or 
problem-solving situation to attain specific goals.   

Figure 1.  Metacognition constructs researched in the fields of educational psychology and 
mathematics education. 

Jacobs and Paris’ theory of self-appraisal of cognition. Jacobs and Paris (1987) argued 
that one aspect of metacognition was self-appraisal, referring to one’s assessment of what one 
knows about a given domain or task (the other aspect was the self-management of thinking).  
According to Jacobs and Paris, self-appraisal of cognition, which was later termed by others 
(e.g., Schraw & Dennison, 1994; Sperling et al., 2002) as knowledge of cognition, consists of 
three categories of knowledge: declarative knowledge, procedural knowledge, and conditional 
knowledge.  Declarative knowledge refers to knowledge of oneself as a learner and what factors 
influence one’s performance (e.g., knowing that one has difficulty subtracting negative 
numbers).  Procedural knowledge refers to one’s knowledge about the execution of procedural 
skills (e.g., knowing how to solve a system of equations).  Conditional knowledge refers to 
knowledge about when and why to apply certain cognitive actions or strategies (e.g., knowing 
when and why to use a pictorial representation).  

Summary. Based on the work of Flavell (1979) and Jacobs and Paris (1987), there appear 
to be four types of metacognitive knowledge: person knowledge, task-specific knowledge, 
mathematical knowledge, and conditional knowledge (see Table 1).  Metacognitive person 
knowledge refers to students’ knowledge of themselves as learners including knowledge of their 
strengths and weaknesses as mathematicians, as well as what factors (e.g., setting, mode of 
learning) influence their performance during a mathematical task.  Task-specific metacognitive 
knowledge is knowledge that pertains to a specific task, and may vary between tasks.  This  
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Table 1 
 
Theories of Metacognitive Knowledge 
 
  

Theoretical Frameworks 
 

 
Types of Knowledge 
 

 
Flavell (1979) 

 
Jacobs and Paris (1987) 

   
Knowledge about oneself and others 
as learners (Person Knowledge) 

Person Knowledge Declarative Knowledge 

   
Knowledge about the demands of a 
specific task (Task-Specific 
Knowledge) 

Task Knowledge  

   
Knowledge about procedural skills 
(Procedural Knowledge) 

 Procedural Knowledge 

   
Knowledge about when and why 
certain strategies are effective to use 
(Conditional Knowledge) 

Strategy Knowledge Conditional Knowledge 

 
knowledge includes knowledge about the demands and goals of a task, as well as knowledge 
about what information and resources are available for the task (Flavell, 1979).  Procedural 
knowledge refers to knowledge about the structure of mathematics knowledge and the execution 
of procedural skills (Schraw & Moshman, 1995).  This knowledge, in contrast to task-specific 
knowledge, may be useful across mathematics tasks. Last, conditional knowledge pertains to 
knowing when and why to apply certain strategies on a task (Flavell, 1979; Schraw & Moshman, 
1995).   

Regulation of cognition. A second construct of metacognition, as described early on by 
Flavell (1976) and Brown (1978), is the regulation of cognition.  Theories and research on 
students’ regulation of their learning processes are found in both educational psychology  
and mathematics education.  The work in these two fields present similar models of the types of 
cognitive and metacognitive activities that students typically pursue during a learning or problem 
solving task, namely planning, monitoring, and evaluating.  What differs most in these different 
bodies of literature is the specific behaviors each of these broad categories of activities 
encompasses.  Additionally, it sometimes becomes difficult to differentiate metacognition from 
the cognitive and behavioral aspects of regulation.  As metacognitive activities are often 
preceded, followed, or performed in conjunction with non-metacognitive but nonetheless 
important behaviors, my goal in this section is not to strictly review the metacognitive aspects of 
regulation, but to paint a larger picture of what the processes of metacognitive regulation entail 
with regards to mathematics learning and problem solving. 
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Regulation of cognition in educational psychology. Several theories of cognitive 
regulation are presented in this section.  First, Brown’s (1987) theory of the components of 
regulation of cognition is discussed.  Next, early work by Sternberg (1980) is presented to 
elaborate on some of the specific metacognitive behaviors that students may exhibit as they 
regulate their thinking.  Finally Zimmerman’s (2002) and Pintrich’s (2004) theories of self-
regulated learning are presented. 

Brown’s theory of metacognitive regulation. Brown (1987) defined metacognitive 
regulation as “the activities used to regulate and oversee learning” (p. 68).  Brown asserted that 
these activities consisted of three types: planning behaviors, monitoring behaviors, and checking 
outcomes.  Brown provided a few examples of these behaviors (e.g., predicting outcomes as a 
planning behavior, revising learning strategies as a monitoring behavior), but did not provide a 
comprehensive definition to explain what these three types of activities fully entailed.  

Sternberg’s componential subtheory of human intelligence. More detail about the specific 
learning behaviors that fall into the categories of planning and monitoring outlined by Brown 
(1987) is provided by Sternberg (1980), who outlined six metacomponents (i.e., higher-order 
control processes used for planning and decision making) that contribute to students’ problem 
solving abilities.  According to Sternberg, planning behaviors include (a) understanding what the 
problem is that needs to be solved, (b) selecting lower-order components (e.g., skills involved in 
retrieving previously acquired information), (c) selecting representations or organizations for 
information (e.g., a spatial representation), and (d) selecting a strategy for combining the lower-
order components selected.  Monitoring behaviors include (a) deciding how much time to allot to 
each component of a task and how this allocation will affect the quality of the components, and 
(b) monitoring progress towards a solution (i.e., keeping track of what one has already done, 
what one is currently doing, and what one still has left to do).  Sternberg did not identify any 
metacomponents related to checking outcomes.  Instead, he conceptualized these 
metacomponents as being related only to students’ planning and monitoring behaviors. 
 Theories of self-regulated learning. Similar to metacognitive regulation, self-regulated 
learning is defined as “the ways in which individuals regulate their own cognitive processes 
within an educational setting” (Puustinen & Pulkkinen, 2001, p. 269).  Two models of self-
regulated learning related to metacognition are presented by Zimmerman (2002) and Pintrich’s 
(2004). 

Zimmerman (2002) defined self-regulated learning (SRL) as “the self-directive process 
by which learners transform their mental abilities into academic skills” (p. 65).  In his model, 
SRL consists of a forethought phase, a performance phase, and a self-reflection phase, each 
consisting of two major classes.  The forethought phase of Zimmerman’s model is comprised of 
task analysis processes (e.g., goal setting, strategic planning) and processes related to self-
motivation beliefs (e.g., behaving a certain way as a result of self-efficacy beliefs).  The 
performance phase consists of self-control processes (e.g., imagery, self-instruction) and self-
observation (e.g., self-recording).  Last, the self-reflection phase consists of self-judgment 
processes (e.g., self-evaluation) and self-reaction (e.g., comparing self to others).  Zimmerman 
argued that self-regulatory processes are cyclical, and occur at different points within the 
learning process.  According to Zimmerman, the forethought phase occurs prior to learning 
efforts, the performance phase occurs during behavioral implementation of learning, and the self-
reflection phase occurs after each learning effort. 

Pintrich’s (2004) model of SRL consists of four phases: (a) forethought, planning and 
activation, (b) monitoring, (c) control, and (d) reaction and reflection.  Pintrich argued that these 
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phases, which are similar to the three phases of metacognitive regulation discussed by Brown 
(1987) and the three phases of self-regulated learning presented by Zimmerman (2002), represent 
a general time-ordered sequence (i.e., beginning with planning and ending with reflection); 
however, they may often occur simultaneously and dynamically.  For example, students often 
exhibit control and monitoring behaviors concurrently.  Unique to this model of SRL, Pintrich 
organized the behaviors that students regulate into four areas within each phase: cognition, 
motivation and affect, behavior, and context.  For example, within the forethought, planning, and 
activation phase, students may regulate their learning behaviors by activating prior content 
knowledge (cognition), adopting a goal orientation (motivation and affect), planning how much 
effort they will exert (behavior), and analyzing the task (context). 

Regulation of cognition in mathematics problem solving. The frameworks outlined by 
researchers in educational psychology are very similar to the processes of mathematics problem 
solving as described by Polya (1945), Schoenfeld (1981), and Garofalo and Lester (1985).  The 
works of these mathematics researchers and educators contextualize regulation by studying how 
students regulate their thinking during problem solving situations. 

Polya’s phases of mathematical problem solving.  In his seminal book How to Solve It 
Polya (1945) outlined four phases to solving a mathematical problem, all of which are 
metacognitive in nature: understanding the problem, devising a plan, carrying out the plan, and 
looking back.  In order to understand the problem, students must understand what the given 
condistions are, and what desired condition is.  They may also question if it is possible to satisfy 
the desired condition.  Consider the following mathematics problem: “Given a rectangle with a 
length of 3 cm and diagonal of 5 cm, find the width of the rectangle.”  In the first phase of 
Polya’s problem solving framework, students need to understand that they are being asked to 
solve for the width of the rectangle (the unknown), that the rectangle has one set of sides 
measuring 3 cm and a diagonal of 5 cm (the data), and that the unknown is linked to the data 
because the unknown is the width of the triangle with a length of 3cm and a diagonal of 5 cm.  
Since the diagonal is larger than the length of the rectangle, it is possible to solve the problem. 
 In the second phase of Polya’s (1945) framework of mathematical problem solving, 
devising a plan, students must determine which calculations, computations, and/or constructions 
they must perform in order to obtain the unknown.  In the case of the rectangle with an unknown 
side, students may choose the Pythagorean theorem to solve for the unknown.  In the third phase, 
carrying out the plan, students check each step of the plan to make sure that each step is correct.  
For example, in using the Pythagorean theorem to solve for the missing side of the rectangle, 
students must make sure that they set up the correct equation (i.e., 32 + x2 = 52), then check to 
make sure that they correctly go through the steps to solve for “x.”  In the final phase, looking 
back, students must check their result and their argument.  Students may choose to derive the 
result using a different method and then compare the results of the two plans, or may check to 
see if their result makes sense.  In the case of the rectangle with the missing side, once the 
unknown is solved for, students may wish to plug their result back into the Pythagorean theorem 
and attempt to solve for one of the other sides, or may notice that their result is consistent with 
what they learned about special triangles, and recognize that “3-4-5” is one such triangle. 
 Schoenfeld’s framework of episodes and executive decisions in mathematical problem 
solving. Schoenfeld (1981) presented a protocol for examining the metacognitive actions 
students use to solve mathematics problems.  This protocol characterized seven types of episodes 
in which students engage as they solved a mathematics problem, beginning when students first 
read the problem statement and ending with the assessment of a solution.  These phases are 
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reading, analysis, planning, implementation, exploration, verification, and transition.  In the 
reading episode, students may note the conditions of the problem, state the goal of the problem, 
and assess their knowledge relative to the problem task.  In other episodes, students attempt to 
fully understand the problem (analysis) and search for relevant information that may help them 
derive a plan (exploration).  Students also create and implement a plan and assess the quality and 
implementation of the plan (planning/implementation), and may use metacognition between 
episodes to assess their current solution state and make decisions about pursuing new directions 
or approaches to solve the problem (transition).  Once students finish the problem, they may 
review, test, and/or assess their solution (verification).  Schoenfeld’s phases were used to analyze 
and describe people’s actual behavior in problem solving situations.  These phases contrast 
Polya’s phases which were prescriptive (i.e., they prescribed what to do in order to solve 
problems) rather than descriptive. 

 Garofalo and Lester’s cognitive-metacognitive framework. Garofalo and Lester (1985) 
created a cognitive-metacognitive framework for studying students’ mathematical performance 
that combines the work of Polya (1945), Schoenfeld (1981), and Sternberg (1980).  In this 
framework, students may engage in four types of activities consisting of orientation, 
organization, execution, and verification.  In this framework, students use strategic behavior to 
assess and understand a problem (orientation), plan their learning behaviors and the actions they 
choose to take to solve the problem (organization), regulate their behavior to conform to their 
plans (execution), and evaluate the decisions they made as well as the outcomes of their executed 
plans (verification).  These four categories are similar to those of Polya’s framework, but more 
broadly define the activities that occur in each phase.   

Garofalo and Lester (1985) argued that the amount of metacognition used in each phase 
may differ depending on the type of mathematics problem.  For example, a computational 
mathematics problem (e.g., 9876 - 5432) will require little orientation and organization for most 
students, as they may quickly recognize that the problem requires the application of a subtraction 
algorithm.  For this problem, metacognitive decisions will mostly be applied during the 
execution and verification phases of problem solving.  In contrast, given a word problem, 
students will most likely need to use more metacognitive strategies related to orientation and 
organization in addition to that related to execution and verification.  Additionally, the selection 
and use of skills may differ depending on students’ mathematical knowledge and their 
knowledge and familiarity of different skills. 

Summary. Researchers studying regulation processes have conceptualized metacognitive 
regulation in two ways.  Some have created frameworks outlining distinct phases of activity 
(e.g., Brown, 1987; Garofalo & Lester, 1985; Pintrich, 2004; Polya, 1945; Zimmerman, 2002), 
and others have described individual behaviors without clustering them into categories (e.g., 
Schoenfeld, 1981; Sternberg, 1980).  In general, the behaviors identified by these researchers fall 
into three categories: preparation activities, performance activities, and evaluation activities (see 
Table 2).  Some researchers view preparation as a single group of activities such as planning 
(Brown, 1987) or forethought (Zimmerman, 2002), whereas others have identified groups of 
behaviors within the preparation phase, distinguishing orientation from organization (Garofalo & 
Lester, 1985), and understanding the problem from devising a plan (Polya, 1945). 

Preparation activities, as described by researchers on metacognitive regulation fit into 
three subcategories: task analysis, planning, and knowledge and belief activation.  Task analysis 
behaviors include analyzing the task at hand (Zimmerman, 2002), understanding the problem  
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(Polya, 1945; Sternberg, 1980), and analyzing the information given, the conditions of the 
problem, and one’s familiarity with the task (Garofalo & Lester, 1985).  These metacognitive 
activities may take the form of reading and exploration (Schoenfeld, 1981). Planning activities 
include strategy selection (Brown, 1987; Zimmerman, 2002), time and effort planning (Pintrich,  
2004), goal setting (Garofalo & Lester, 1985; Pintrich, 2004; Zimmerman, 2002), and making 
plans on how to achieve those goals (Garofalo & Lester, 1985). Last, knowledge and belief 
activation, which few researchers have identified in their conceptualizations of metacognitive 
regulation, refers to activation of metacognitive knowledge and content knowledge (Pintrich, 
2004) as well as activation of metacognitive beliefs (Zimmerman, 2002). 

In the performance phase, students engage in two types of metacognitive activities: 
monitoring and planning (Pintrich, 2004).  Monitoring activities include self-recording and self-
observation (Zimmerman, 2002), as well as monitoring one’s cognition, motivation, affect, time 
allocation, need for help, and changing task demands (Pintrich).  Control activities (see 
Schoenfeld, 1985 for more detail) include selecting and adapting strategies (Pintrich), making 
decisions about speed-accuracy tradeoffs (Garofalo & Lester, 1985; Sternberg, 1980), self-
instruction and attention focusing (Zimmerman), and controlling effort level (Pintrich).  
Monitoring and control often occur simultaneously, and control decisions may often be the result 
of monitoring.  However, unlike some researchers who combine monitoring and control 
behaviors into a single category (e.g., Brown, 1987), in this framework, these two sets of 
behaviors are separated because it is important to identify them as distinct, although interrelated, 
behaviors. 

Last, evaluation consists of three metacognitive activities: product evaluation, task 
evaluation, and self-evaluation.  Product evaluation entails checking the outcomes of a 
mathematical task (Brown, 1987), making cognitive judgments about these outcomes (Pintrich, 
2004), and verifying that the outcome is correct and meaningful (Schoenfeld, 1981).  Task 
evaluation (Pintrich, 2004) includes evaluating the difficulty of the task, determining the causes 
of successes and errors within the task (Zimmerman, 2002), and evaluating orientation, 
organization, and execution of the task (Garofalo & Lester, 1985).  Last, self evaluation includes 
comparing one’s performance against a standard (Zimmerman, 2002) and making self-efficacy 
judgments about one’s capabilities in mathematics (Bandura, 1997). 
 Beliefs about cognition. Beliefs about cognition within educational psychology and 
mathematics education include epistemological beliefs, self-efficacy beliefs, and beliefs about 
mathematics learning and problem solving.   
 Epistemological beliefs. Literature on epistemological beliefs includes research on 
students’ beliefs about knowledge and knowing, beliefs about learning, and beliefs about 
mathematics knowledge, knowing, and learning. 

Beliefs about knowledge and knowing. Students’ beliefs about knowledge and knowing 
are often studied by those in the field of epistemology.  Many epistemological theories have been 
proposed to explain how students view knowledge and knowing (Hofer & Pintrich, 1997).  These 
theories pertain to students’ beliefs about the nature of knowledge, the nature of knowing, the 
nature of learning and instruction, and the nature of intelligence.  With regard to the nature of 
knowledge, students may hold beliefs about the certainty of knowledge (e.g., knowledge is 
absolute, knowledge is tentative, knowledge is contextual) as well as the simplicity of knowledge 
(e.g., knowledge is simple or complex, knowledge is isolated or interrelated).  With regard to the 
nature of knowing, students may hold beliefs about the source of knowledge (e.g., experts, self) 
or may believe that knowledge does not require a justification.  With regard to the nature of  
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Table 2 

Theories and Frameworks of Metacognitive Regulation 
   

  Regulation Activities 
     

Researcher(s) Phases Preparation Performance Evaluation 
 

Metacognitive Regulation 

Sternberg 
(1980) 

none 
 
 
 

Understanding the problem 
Selecting components 
Selecting representations 
Selecting strategies 

Speed-accuracy tradeoff 
Solution monitoring 

 

     

Brown 
(1987) 

Planning 
Monitoring 
Checking 
outcomes 

Predicting outcomes 
Scheduling strategies 
Vicarious trial and error 

Monitoring 
Testing 
Revising 
Re-scheduling learning 

strategies 

Checking outcomes 

 

Self-Regulated Learning 
Zimmerman 
(2002) 

Forethought 
Performance 
Self-reflection 
 
 

Task analysis 
Goal setting 
Strategic planning 

Imagery 
Self-instruction 
Attention focusing 
Task strategies 
Self-recording 
Self-experimentation 

Self-evaluation 
Causal attribution 

     

Pintrich 
(2004) 

Forethought, 
planning, and 
activation 

Monitoring 
Control 
Reaction and 

reflection 

Target goal setting 
Knowledge activation 
Time and effort planning 
Selecting cognitive strategies 

Monitoring cognition 
Monitoring task and context 

conditions 
Self-observation of behavior 
Adapting strategies 
Change/renegotiate task 

Cognitive 
judgements 

Evaluation of task 

 

Mathematical Problem Solving 
Polya 
(1945) 

Understanding the 
problem 

Devising a plan 
Carrying out the 

problem 
Looking back 

Identify unknown 
Identify data 
Identify condition 
Connect data and unknown 
Create a plan 

Carry out plan 
Check each step 
Prove correctness of steps 

Check the result 
Check the argument 
 

     

Schoenfeld 
(1981) 

Reading 
Analysis 
Exploration 
Planning 
Implementation 
Verification 
Transition 

Identify problem conditions 
Goal statement 
Knowledge assessment 
Understand the problem 
Search for relevant 

information 
Create a plan 

Monitor progress 
Assess plan quality and 

implementation 
Assess current solution state 
Select new approach/direction 

Review solution 
Test solution 
Evaluate solution 

     

Garofalo &  
Lester 
(1985) 

Orientation 
Organization 
Execution 
Verification 
 
 
 

Comprehension strategies 
Analysis of information & 

conditions 
Assessment of task familiarity  
Representation 
Difficulty assessment 
Goal identification 
Planning (global & local) 

Performance of local actions 
Progress monitoring 
Trade-off decisions 

Evaluation of 
orientation & 
organization 

Evaluation of 
execution 
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learning and instruction, students may hold beliefs about the roles of the learner, peers, 
and instructor within an educational setting.  Last, with regard to the nature of intelligence, 
students may believe that intelligence is an innate ability.   

Beliefs about learning. In contrast to the large body of literature on epistemological 
theories, which predominantly focuses on beliefs about knowledge and knowing (e.g., Hofer & 
Pintrich, 1997; Schommer, 1994), a much smaller body of literature exists focusing specifically 
on beliefs about learning (Li, 2003, 2004, 2005).  Li proposed that beliefs about learning include 
beliefs about the purposes of learning (e.g., what you gain from learning), beliefs about the 
learning process (e.g., what is required to learn something), beliefs about personal regard for 
learning (e.g., whether or not learning is important), beliefs related to affective experiences with 
learning (e.g., learning is fun), and beliefs related to social perceptions of learning (e.g., 
perceptions of those who learn well).   
 Beliefs about mathematics through an epistemological lens. Some researchers have 
proposed examining students’ mathematical beliefs using an epistemological framework.  
Through the lens of this framework, mathematical beliefs include beliefs about the nature of 
mathematics knowledge (e.g., certainty of knowledge), justifications of mathematics knowledge, 
sources of mathematical knowledge, and acquisition of mathematics knowledge (Muis, 2004).  
In a review of studies on students’ epistemological beliefs about mathematics, Muis found that 
students generally believe that mathematics knowledge is unchanging, that mathematics 
knowledge is passively handed down to them from authority figures, and that various 
components of mathematics knowledge are unrelated.  Although she attempted to use 
epistemology as a lens through which to analyze studies of students’ mathematical beliefs, Muis 
did not make connections between the beliefs she reviewed and the framework of 
epistemological beliefs.   

Francisco (2005) examined themes of mathematical beliefs in five high school students.  
These themes included beliefs about the nature of knowledge and what it means to know, beliefs 
about the source of knowledge, and beliefs about the certainty of knowing, as well as students’ 
motivation to engage in learning and how students’ views vary with particular areas of 
mathematical activity.  Students’ beliefs about the nature of knowledge and knowing (i.e., beliefs 
about what it means to know something) pertain to operational knowledge (e.g., knowing how to 
solve a problem), relational knowing (e.g., the ability to identify and articulate relationships), 
conceptual knowing (e.g., knowing the internal structure of a concept), personal knowing (e.g., 
knowing something in a personally meaningful way), and durability of knowing (e.g., knowledge 
should be lasting).  In addition, these five students also believed that knowledge is evolving 
rather than static, that knowledge should be practical (e.g., knowing how to use knowledge), and 
that knowledge is acquired by discursive activity.  With regard to beliefs about the certainty of 
knowledge, Francisco found that students believed that proving is an integral part of knowledge 
building.  Last, students have different beliefs about the applicability of mathematics knowledge 
to other academic domains (e.g., English, history, science).  Some believe that mathematics can 
be used in other areas, whereas others believe that mathematics knowledge is not useful in 
learning other subjects. 

Self-efficacy beliefs. Self-efficacy was first introduced by Bandura (1977) and 
subsequently defined as “beliefs about one’s capabilities to organize and execute the courses of 
action required to produce given attainments” (Bandura, 1997, p. 3).  Self-efficacy expectations 
are influenced by four sources of information: performance accomplishments, vicarious 
experience, verbal persuasion, and emotional arousal (Bandura, 1977), and according to 
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Bandura’s (1989) social cognitive theory, these judgments and expectations have a strong 
influence over people’s behaviors (Pajares, 1996).  Self-efficacy beliefs may influence people’s 
choices and the courses of action they choose to pursue (Pajares, 1996) and can be both self-
aiding and self-hindering (Bandura, 1989).  Self-efficacy affects task effort, task perseverance, 
and resilience following adverse situations (Pajares, 1996).  People’s self-efficacy also 
influences how high they sets their goals for a task and how committed they stays to achieving 
those goals (Bandura, 1989). 

Researchers have studied self-efficacy beliefs that are specific to mathematics.  
Mathematics self-efficacy has been interpreted in many different ways in the literature.  Taken 
literally, mathematics self-efficacy can be seen as people’s judgments of their capabilities in 
mathematics.  However, in measuring mathematics self-efficacy, researchers have narrowed this 
definition to focus on more specific mathematics abilities.  Randhawa, Beamer, and Lundberg 
(1993) distinguished between generalized mathematics self-efficacy, which deals with 
perceptions of competence in the subject of mathematics in general, and specific mathematics 
self-efficacy, which deals with perceptions of confidence in specific problems within a math 
subject such as percentages or simultaneous equations.   

Even more specifically, Hackett and Betz (1989) defined mathematics self-efficacy as “a 
situational or problem-specific assessment of an individual’s confidence in her or his ability to 
successfully perform or accomplish a particular [mathematics] task or problem” (p. 262).  Hence, 
there are varying levels at which mathematics self-efficacy can be examined.  A researcher may 
choose to study (a) self-efficacy of mathematics as a domain, such as confidence in achieving 
certain outcomes in mathematics (Pietsch, Walker, & Chapman, 2003); (b) topic-specific 
mathematics self-efficacy such as confidence in achieving high marks on percentages tests 
(Pietsch et al., 2003); or most specifically (c), task-specific mathematics self-efficacy such as 
confidence in correctly completing specific math problems (e.g., Betz & Hackett, 1983; Chen, 
2003; Hackett & Betz, 1989; Pajares & Graham, 1999; Pajares & Kranzler, 1995; Pajares & 
Miller, 1994; Randhawa et al., 1993).   

Beliefs about mathematics in the context of learning and problem solving.  Schoenfeld 
(1985) defined mathematical beliefs in the following way: 

Belief systems are one’s mathematical world view, the perspective with which one 
approaches mathematics and mathematical tasks.  One’s beliefs about mathematics can 
determine how one chooses to approach a problem, which techniques will be used or 
avoided, how long and how hard one will work on it, and so on.  Beliefs establish the 
context within which resources, heuristics, and control operate. (p. 45) 

According to Schoenfeld, beliefs are an important aspect of metacognition because these 
thoughts directly influence one’s performance on mathematics learning and problem solving 
tasks.   
 Both Schoenfeld (1988, 1992) and Lampert (1990) have studied mathematical beliefs that 
they found to directly affect students’ mathematical behaviors.  Schoenfeld found that such 
beliefs included the beliefs that mathematics taught in school has little to do with the real world, 
that only geniuses are capable of really understanding math, and that mathematics problems have 
only one correct answer.  Lampert found that students often believe that doing mathematics 
entails memorizing and following rules, formulas, and facts.  Additionally, she found that 
students believed it was not acceptable to have an opposing answer to a mathematics problem 
(i.e., an answer that differed from the teacher or the rest of the class).  Neither Schoenfeld nor 
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Lampert used a framework for categorizing students’ mathematical beliefs.  Instead, they 
examined the beliefs that they believed to most strongly shape students’ behavior. 
 A categorization of mathematics-related beliefs. De Corte, Op 't Eynde, and Verschaffel 
(2002) developed a framework of mathematics-related beliefs that combined the work of other 
researchers in the field (e.g., Francisco, 2005; Lampert, 1990; Schoenfeld, 1988, 1989).  De 
Corte et al. distinguished between three categories of beliefs: beliefs about mathematics 
education, beliefs about the self in relation to mathematics, and beliefs about the social context 
of mathematical learning and problem solving.   

Beliefs about mathematics education include beliefs about mathematics (e.g., math has 
nothing to do with the real world), beliefs about mathematics learning and problem solving (e.g., 
learning math is about memorizing rules and formulas), and beliefs about mathematics teaching 
(e.g., a good teacher is good at explaining).  Beliefs about the self in relation to mathematics 
include goal orientation (e.g., my goal is to understand the content), task value beliefs (e.g., it is 
important for me to learn this material), control beliefs (e.g., if I take notes, I will learn better), 
and self-efficacy beliefs (e.g., I am confident in my ability to understand this material).  Finally, 
beliefs about the social context of mathematics learning include students’ beliefs about the roles 
of students and teachers in the classroom, beliefs about how a mathematics problem should be 
solved, and beliefs about what it means to be a good mathematics student. 

Summary.  The research on metacognitive beliefs is vast and spans many separate yet 
interrelated bodies of literature.  Researchers have documented many individual beliefs held by 
students with regard to learning and mathematics in their empirical work, but much of that work 
lacks a guiding framework or organization of beliefs (e.g., De Corte et al., 2002; Francisco, 
2005).  From this review of the literature, there appears to be three types of metacognitive beliefs 
related to mathematics: beliefs about mathematics, beliefs about mathematics learning and 
problem solving, and beliefs about the self and others in relation to mathematics (see Table 3). 
 Beliefs about mathematics refer to students’ beliefs pertaining to the subject of 
mathematics itself.  Students hold beliefs about the relevance of mathematics.  For example, 
students may believe that the mathematics learned in school has nothing to do with the real 
world, or that the processes of formal mathematics have little or nothing to do with discovery or 
invention (Schoenfeld, 1988, 1992).  They may also have beliefs about the certainty of 
mathematics.  For example, they may believe that mathematics problems have one and only one 
right answer (Schoenfeld, 1992), that the answer to an assigned problem is only correct when it 
is approved by a reliable authority (Lampert, 1990), or that math knowledge is unchanging 
(Muis, 2004).  Students may also believe that components of math knowledge (e.g., algebra and 
geometry) are unrelated (Muis). 
 Beliefs about mathematics learning and problem solving refer to beliefs about the 
learning and problem solving processes that students take on when doing mathematics.  Some 
students hold very narrow beliefs about the processes required to do mathematics.  For example, 
some students believe that doing math means to memorize mathematics and apply what they 
have learned mechanically and without understanding (Schoenfeld, 1992), or that doing math 
corresponds with rules, formulas, and facts (Lampert, 1990).  Other beliefs of this nature include 
the beliefs that students who understand mathematics can solve an assigned problem quickly 
(Muis, 2004; Schoenfeld, 1988, 1992), and that there is only one correct way to solve any math 
problem, which is usually the rule the teacher has most recently demonstrated in class 
(Schoenfeld, 1992).  Many students believe that one succeeds in school by performing the tasks  
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Table 3 
 
Types of Metacognitive Beliefs 
 
  

Types of Beliefs 
 

 
 
 
Researcher(s) 
 

 
 
 

Beliefs about Mathematics 

 
Beliefs about Mathematics 

Learning and Problem 
Solving 

 
 

Beliefs about Oneself in 
Relation to Mathematics 

 
Epistemology 

 
Hofer and Pintrich (1997) Nature of knowledge Nature of knowing 

Nature of learning and 

instruction 

 

Muis (2004) Nature of math knowledge 

Justifications of math knowledge 

Sources of math knowledge 

Acquisition of Math 

Knowledge 

 

Francisco (2005) Nature of knowledge 

Source of knowledge 

Certainty of knowledge 

  

 
Self-Efficacy 

 
Bandura (1997)   Self-efficacy beliefs 

Randhawa et al. (1993)   Mathematics self-efficacy 

Topic-specific self efficacy 

Hackett and Betz (1989)   Task-specific self-efficacy 

Pietsch et al. (2003)   Mathematics self-efficacy 

Topic-specific self-efficacy 

Task-specific self-efficacy 

 
Mathematics Education 

 
Schoenfeld (1988, 1992) Beliefs about mathematics   

Lampert (1990) Beliefs about mathematics 

Beliefs about doing mathematics 

  

 



 14 

as described by the teacher (Schoenfeld, 1988), and that students are not capable of constructing 
mathematical knowledge or solving problems on their own (Muis, 2004).  Last, students hold 
beliefs about the environment in which learning and problem solving should occur.  For  
example, some students believe that mathematics is a solitary activity that is done by individuals 
in isolation (Schoenfeld, 1992), implicitly and privately (Lampert, 1990). 

Finally, students hold beliefs about themselves and others in relation to mathematics.  
These include beliefs about who is capable of doing math, for example, that only geniuses are 
capable of discovering, creating, or really understanding mathematics (Schoenfeld, 1988), that 
ordinary students cannot expect to understand mathematics (Schoenfeld, 1992), that those who 
are capable of doing math are born with a math gene and have innate ability (Muis, 2004).  These 
beliefs also include self-efficacy beliefs, that is, beliefs about one’s own capabilities in 
mathematics (e.g., I am not good at proofs, I am capable of solving systems of equations, 
Hackett & Betz, 1989; Randhawa et al., 1993). 

Awareness of cognition. The least studied metacognitive construct is what Brown (1978) 
described as knowing when and what you know and what Flavell (1979) defined as 
metacognitive experiences.  In mathematics education, Schoenfeld (1987) referred to this 
construct as reflections on one’s own thinking, and Wilson and Clarke (2004) later described it 
as awareness of cognition.  Although this phenomenon has been described in a handful of articles 
on metacognition, there is no agreement about how it is distinct from other metacognitive 
constructs, or even if it is a distinct construct.  The limited literature on phenomena related to 
one’s awareness of their thinking is reviewed here. 

Awareness of cognition in educational psychology. In their early work on 
metacognition, Brown (1978) and Flavell (1979) both described phenomena related to people’s 
awareness of their thinking.  Unlike regulation and knowledge of cognition, the idea of 
awareness of cognition was not taken up by researchers in educational psychology in subsequent 
work on metacognition.  However, this phenomenon is nonetheless relevant to an overall 
conceptualization of metacognition as it relates to mathematics learning and problem solving. 

Knowing when and what you know. Brown (1978) argued that “a very basic form of self-
awareness involved in all memory and problem-solving tasks is the realization that there is a 
problem of knowing what you know and what you do not know” (p. 82).  Brown reviewed 
literature on several concepts related to knowing when and what one knows including (a) 
metacomprehension, or knowing that one has or has not understood something, (b) knowledge 
inference, or the ability for one to estimate the state of their own knowledge, (c) confidence in 
one’s response to a problem, and (d) awareness of task difficulty. 

Metacognitive experiences. Flavell (1979) defined metacognitive experiences as a key 
aspect of metacognition.  According to Flavell, metacognitive experiences are “any conscious 
cognitive or affective experiences that accompany and pertain to any intellectual enterprise” (p. 
906).  Such thoughts and feelings about one’s own thinking include feeling like you do not know 
or understand something, or feeling like you are confused.  Metacognitive experiences can 
influence students’ regulation of cognition (e.g., a student who feels confused may go back to the 
planning phase and re-analyze the task) as well as their knowledge of cognition (e.g., a student 
who realizes he doesn’t know how to use a strategy to solve a problem may revise his strategy 
knowledge so that he does not select this strategy in the future). 

Awareness of cognition in mathematics problem solving. In mathematics education, 
Schoenfeld (1987) named knowledge about one’s own thought processes as one of three 
categories of metacognition (control and beliefs being the other two).  However, he argued that 
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research on students’ awareness and assessment of their thinking had fewer direct implications 
for mathematics educators than the research on control and beliefs.  Subsequently, most 
metacognition research in mathematics education has focused on self-regulation and beliefs.  
One exception is Wilson and Clarke (2004) who examined students’ awareness of their thinking 
in relation to solving mathematics tasks. 

Wilson and Clarke’s definition of metacognitive awareness.  Similar to Flavell (1979), 
Wilson and Clarke (2004) argued that a key component of metacognition is metacognitive 
awareness.  Wilson and Clarke argued that awareness is a distinct component of metacognition 
involving one’s awareness of their thinking.   Specifically, metacognitive awareness refers to a 
students’ awareness of where they are in the learning or problem solving process, as well as 
knowledge the mental processes that are in progress as he or she is learning or solving a math 
problem.   

Summary.  Brown (1978), Flavell (1979), and Wilson and Clarke (2004) highlight a 
potentially valuable aspect of metacognition that has been overlooked in the majority of studies 
on metacognition (see Table 4).  According to these authors, awareness of cognition includes 
both cognitive and affective components.  It should be noted that metacognitive awareness is a 
term used in this paper to describe a unique aspect of metacognition.  This perspective is in 
contrast with other researchers (e.g., Cheng, 1993; Schraw & Graham, 1997) who use the term, 
metacognitive awareness, as a synonym for the general term of metacognition (i.e., knowledge 
and regulation of one’s cognitive processes).   

Summary.  Metacognition is a psychological construct studied in the fields of 
educational psychology and mathematics education.  Based on a review of the literatures in both 
fields, there appear to be four metacognition constructs related to mathematics learning and  
problem solving: metacognitive knowledge, metacognitive regulation, metacognitive beliefs, and 
metacognitive awareness.  Each of these constructs has been defined in different ways by 
different researchers.  A synthesis of the types of thinking entailed within each construct is 
presented in Table 5.  In this dissertation, metacognition will be used as a broad term that 
encompasses these four constructs.  Further research is needed to contextualize these types of 
thinking within actual learning and problem solving situations.  Further research is also needed 
to examine the relationships between the four metacognition constructs. 
Measuring Metacognition 
 It can be seen from the many conceptualizations of metacognition that there is not a 
single definition of metacognition.  Similarly, there are multiple ways used to measure 
metacognition.  When researchers design empirical studies of metacognition, they must not only 
decide which theory of metacognition from which to draw, but they must also decide how to 
operationalize that theory.  Existing measurement techniques include self-report questionnaires, 
student interviews, teacher ratings, observations of students’ overt behaviors, and examinations 
of student work (Boekaerts & Corno, 2005; Desoete & Roeyers, 2006).  Of these measurement 
techniques, two address students’ internal (i.e., non-observable) processes: self-report 
questionnaires and student interviews.  These two techniques are described below. 

Metacognition self-report questionnaires. Most scales measuring metacognition have 
been developed for adult populations (e.g., Pintrich et al., 1993; Schraw & Dennison, 1994) or 
measure only one aspect of metacognition (e.g., metacognitive regulation; Pintrich & De Groot, 
1990).  Currently, the Junior Metacognitive Awareness Inventory (Jr. MAI; Sperling et al., 2002) 
is the only scale developed to measure both metacognitive knowledge and metacognitive 
regulation among school-aged children and adolescents.   
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Table 4 
 
Theories of Metacognitive Awareness 
 
  

Theories of Metacognitive Awareness 
 

 
 
Awareness of… 

 
Flavell 
(1979) 

 
Brown 
(1979) 

 
Wilson and Clarke 

(2004) 
 

 
What one knows and doesn’t know 

 
 

 
 

 

 

What one does and does not understand    

The task difficulty for oneself    

One’s affective state    

Where one is in the learning or problem 

solving process 

   

One’s mental processes in progress    

 



 17 

 
 
 
Table 5 
 
Metacognition Constructs and Subconstructs 
 
Metacognitive Knowledge 

 
Metacognitive Regulation 

Person knowledge 

Task-specific knowledge 

Mathematics knowledge 

Conditional knowledge 

Preparation 

Task analysis 

Planning 

Knowledge activation 

Performance 

Monitoring 

Control 

Evaluation 

Product evaluation 

Task evaluation 

Self evaluation 

 

Metacognitive Beliefs Metacognitive Awareness 

Beliefs about mathematics 

Beliefs about mathematics learning and 

problem solving 

Beliefs about oneself and others in relation to 

mathematics 

Awareness of what one knows 

Awareness of what one understands 

Awareness of personal task difficulty 

Awareness of one’s affective state 

Awareness of place in the learning process 

Awareness of mental processes 
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 Jr. MAI.  Sperling et al. (2002) developed the 18-item Jr. MAI to measure both 
metacognitive knowledge and metacognitive regulation among adolescents.  The metacognitive 
knowledge subscale of the Jr. MAI reflects the view of metacognitive knowledge as declarative 
knowledge, procedural knowledge, and conditional knowledge (Jacobs & Paris, 1987; Schraw & 
Dennison, 1994).  The metacognitive regulation subscale reflects five regulatory behaviors: 
planning, information management, monitoring, debugging, and evaluation.   

Structural validity of Jr. MAI scores. Sperling et al. (2002) used two studies to examine 
the psychometric properties of Jr. MAI scores in two samples of sixth through ninth graders.  In 
both studies, exploratory factor analysis (principal component extraction with orthogonal 
varimax rotation) was used to determine the factor structure of the Jr. MAI.  The authors used .35 
as the minimum coefficient value to determine item salience. 

In their first study, Sperling et al. (2002) presented a two-factor and a five-factor solution.  
In the two-factor solution, Factor 1 consisted of four knowledge items and all nine regulation 
items and Factor 2 consisted of three knowledge items and two regulation items (two of which 
were cross-loaded on Factor 1).  In the five-factor solution, four of the five factors consisted of a 
combination of knowledge and regulation items, and the fifth factor was a non-viable duplet.  
Nine items had salient cross-loadings on multiple factors.  In their second study, Sperling et al. 
also presented two-factor and five-factor solutions.  In the two-factor solution, Factor 1 consisted 
of seven regulation items and two knowledge items.  Factor 2 consisted of two regulation items 
and eight knowledge items (two of which were cross-loaded on Factor 1).  In the five-factor 
solution, one factor consisted of six regulation items, three of the four factors consisted of a 
combination of knowledge and regulation items, and one factor was a non-viable duplet.  Five 
items had salient cross-loadings on multiple factors.  Sperling et al. concluded that the results of 
the second study supported the theoretical structure of the Jr. MAI.  However, the results of their 
factor analysis did not yield clean metacognitive knowledge and metacognitive regulation 
factors. 

Concurrent validity of the Jr. MAI scores with academic achievement. Sperling et al. 
(2002) used bivariate correlations to examine the relationships between Jr. MAI scores and 
academic achievement.  They found that total Jr. MAI scores were not significantly correlated 
with problem solving (r = -.08) or reading comprehension (r = -.00).  The authors did not 
examine the correlations between the individual Jr. MAI subscales (i.e., Factor 1 and Factor 2) 
and academic achievement.  These results suggest that the Jr. MAI lacks concurrent validity with 
academic achievement. 

Problem solving interviews. Problem solving interviews are another method for 
assessing internal cognitive processes such as metacognition.  One type of problem solving 
interview is a concurrent report interview during which students think aloud while concurrently 
solving math problems.  Another type of problem solving interview is a retrospective report 
interview during which students reflect on past learning or problem solving experiences.  
Examples of concurrent report (i.e., think-aloud) and retrospective report (i.e., stimulated-recall) 
interviews are described below.   

Think-aloud interviews. A qualitative method for assessing students’ metacognition is 
using think-aloud interviews (e.g., Hammouri, 2003; Lawson & Rice, 1987; Montague & 
Applegate, 1993; Santos-Trigo, 1996).  During think-aloud interviews, subjects are given 
problems to solve and asked to report their thinking aloud as they solve each problem.  The 
purpose of the interview is not for the subjects to analyze or to explain their thinking, but merely 
to provide a monologue of their thoughts as they occur.  Ericsson and Simon (1993) found that 
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verbalizing information is a way of gathering reliable data about subjects’ cognitive processes, 
and that these reports are generally valid as long as subjects are not being asked to verbalize 
information they would not otherwise attend to.  Think-aloud interviews have been used by 
researchers to study problem solving behaviors among a variety of subject populations including 
elementary school children (Swanson, 1990), middle school students (Montague & Applegate, 
1993), and college undergraduates (Hammouri, 2003).   

Stimulated-recall interviews. Stimulated-recall interviews were first used by Bloom 
(1953, cited in O'Brien, 1993).  During stimulated-recall interviews, students are shown video 
footage of themselves engaged in a learning or problem solving task and asked specific questions 
about what they were doing, thinking, and/or feeling at specific moments.  Through these 
interviews, researchers can gather information about students’ cognitions and affects that may 
not have been apparent through observation alone.  According to Edward-Leis (2006), reliability 
and validity of stimulated-recall data can be maximized by (a) adhering to strict protocols such 
as the use of non-directive questioning, (b) administering the interview soon after the recorded 
episode, and (c) allowing both the interviewer and the interviewee to pause the video to 
maximize the opportunities for the interviewee to identify and explain his or her internal 
thoughts.  Edward-Leis argued that it is important for the interviewer to take a neutral stance 
during questioning.  In doing so, the interviewer is less likely to lead the interviewee to make up 
responses that do not reflect what he or she was actually thinking or doing. 

Limitations of current measurement techniques. Self-report questionnaires and 
problem solving interviews are two methodologically different ways to gather information about 
metacognition.  Each has affordances and limitations.  Metacognition self-report questionnaires 
provide information about students’ perceptions of their metacognitive behaviors.  Due to the 
relative ease of administration, these questionnaires can be used to collect data from large 
samples, can be scored easily, and yield data that can be used for statistical analyses.  However, 
they often lack acceptable psychometric properties (Desoete & Roeyers, 2006).  Additionally, 
subjects’ beliefs about their behaviors as reported on questionnaires often do not match their 
actual behaviors, suggesting that questionnaire data may not always accurately reflect the 
subjects’ actual practices (Schoenfeld, 2002).   Although metacognition questionnaires are most 
often tied to theoretical frameworks (e.g., Jacobs & Paris, 1987), they often lack concurrent 
validity with classroom behaviors (e.g., Sperling et al., 2002).   

Problem solving interviews tend to elicit more information about students’ thinking than 
self-report questionnaires due to their qualitative nature.  They are also directly connected with 
actual problem solving tasks and require less speculation on the part of the interviewee.  
However, administration and interpretation of problem solving interviews take substantially 
more time than self-report questionnaires, making it difficult to study large samples of students 
in a given study.  More research is needed to determine the concurrent validity of metacognition 
self-report questionnaires with problem solving interviews. 
Metacognition and Academic Outcomes 
 Metacognition and academic achievement. Substantial research has demonstrated the 
importance of metacognition on academic achievement in the field of educational psychology.  
For example, students with high metacognitive knowledge are (a) able to adjust their own 
cognition and thinking to be more adaptive when solving problems, (b) more capable of 
transferring their knowledge of strategies to new learning situations, and (c) learn and perform 
better in the classroom than those who have little or no knowledge of cognition (Pintrich, 2002).  
Similarly, students who regulate their own learning and problem solving processes demonstrate 
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superior academic functioning (e.g., placement into advanced level courses, high mathematics 
achievement test scores; Zimmerman, 1990), superior  performance on classroom tasks and 
assignments (Pintrich & De Groot, 1990), and generally higher levels of academic achievement 
(Gaskill & Hoy, 2002).  Most educational psychology studies of metacognition and academic 
achievement have used statistical analyses to establish the positive relationships. 
 Metacognition and problem solving outcomes. Research in the field of mathematics 
education has shown that students’ regulation of and beliefs about cognition influence both their 
problem solving behaviors and problem solving outcomes (Schoenfeld, 1985, 1992).  For 
example, Schoenfeld (1985) examined students’ problem solving on a challenging mathematics 
task and found that the absence of control contributed directly to students’ failure.  Schoenfeld 
(1985) also found that students’ and experts’ belief systems influenced how they approached and 
attempted to solve math problems. 
 Summary. Educational psychologists and mathematics educators have reported similar 
findings regarding the big picture of metacognition: Metacognition is related to academic 
achievement.  Educational psychologists have used questionnaires to measure students’ general 
metacognitive knowledge and metacognitive regulation and shown statistically significant 
relationships to general outcomes such as classroom learning and achievement test performance.  
In contrast, mathematics educators have examined students’ metacognition during specific 
learning and problem solving situations and shown how this metacognition influences the 
outcomes of these situations. 
The Present Studies 

The two overarching goals of this dissertation were (a) to examine the affordances and 
limitations of theory and research on metacognition within the field of educational psychology, 
and (b) to examine how theories and methodologies used within the field of mathematics 
education may enhance how educational psychologists conceptualize and measure metacognition 
and study the relationships between metacognition and academic achievement.  In the preceding 
sections, these goals were addressed through a review of the existing educational psychology and 
mathematics education literatures.  These goals were further addressed in the following three 
studies.   

In Study 1, I examined the psychometric properties of students’ scores on Sperling et al.’s 
(2002) Jr. MAI.  The specific research goals of Study 1 were to examine students’ Jr. MAI scores 
with regard to (a) reliability, (b) structural validity, and (c) concurrent and predictive validity 
with academic achievement measures.  In Study 2, I examined students’ metacognition as they 
worked through a mathematics problem solving task.  The specific research goals of Study 2 
were (a) to describe students’ thinking during mathematics problem solving tasks and (b) to 
examine the ways in which metacognition influenced students’ problem solving solution 
accuracy.  In Study 3, data from Studies 1 and 2 were combined to examine the relationships 
between metacognition and academic achievement.  The specific research goals of Study 3 were 
(a) to examine the predictive validity of students’ Jr. MAI scores with their problem solving 
metacognition and problem solving accuracy and (b) to examine the relationship between 
students’ problem solving metacognition and academic achievement measures. 
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Study 1 
 In this study, the Jr. MAI (Sperling et al., 2002) was used to examine metacognition 
among a sample of middle and high school students attending a summer program for 
academically talented adolescents.  The goals of this study were to examine students’ Jr. MAI 
scores with regard to (a) reliability, (b) structural validity, and (c) concurrent validity with grade 
point average (GPA), mathematics grade, and mathematics diagnostic test (MDT) score, and (d) 
predictive validity with summer course grade. 
Method 
 Participants. Participants were 183 adolescents who completed a math course at a 
summer program for academically talented middle and high school students in 2009.  
Adolescents attending this summer program were admitted based on multiple indicators of 
academic talent (e.g., teacher recommendation, GPA; Klein, 1991).  Participant demographic 
data were obtained from the program database.  The sample was 54% female and ranged in age 
from 11 to 17 (M = 13.29, SD = 1.31).  Participants represented a range of ethnic groups: Asian 
American (n = 132; 72%), European American (n = 14; 8%), African American (n = 4; 2%), 
Latino (n = 10; 6%), Multiethnic (n = 9; 5%), and other (n = 12, 7%), with two participants 
declining to state their ethnicities.  Participants’ family incomes varied with higher incomes 
being overrepresented: Less than $30,000 (n = 14; 8%), $30,000 - $60,000 (n = 12; 7%), $60,000 
- $100,000 (n = 37, 20%), more than $100,000 (n = 112; 61%).  Eight participants (4%) declined 
to state their family income.  The participants’ mean grade point average was 3.89 (SD = .19). 
 Measures.  In this study, metacognition was measured using the Jr. MAI (Sperling et al., 
2002).  Academic achievement measures included GPA, mathematics grade, MDT score, and 
summer course grade. 

Jr. MAI.  The 18-item Jr. MAI (Sperling et al., 2002) was used to measure participants’ 
metacognition (see Introduction and Appendix A for more details).  The Jr. MAI was designed to 
measure aspects of metacognitive knowledge (i.e., declarative, procedural, and conditional 
knowledge) and metacognitive regulation (i.e., planning, information management, monitoring, 
debugging, and evaluation) as defined by Jacobs and Paris (1987).  Following this theory of 
metacognition, the Jr. MAI consists of two subscales: metacognitive knowledge (Knowledge) 
and metacognitive regulation (Regulation).  Each subscale consists of nine Likert-scale items 
with response options ranging from 1 (Never) to 5 (Always).  For this study, the questionnaire 
instructions were modified to focus on metacognition during mathematics problem solving as 
opposed to studying in general.  Mean subscale scores were calculated to determine students’ 
levels of metacognitive knowledge and regulation.  In order to be consistent with Sperling et al.’s 
study, an overall Jr. MAI mean score (MCT) was also calculated. 

Academic achievement.  Achievement variables examined in this study were 
participants’ most recent mathematics grade and GPA, mathematics diagnostic test (MDT) score 
(Mathematics Diagnostic Testing Project, 2006), and final course grade in their summer program 
mathematics course.  

Mathematics grade and GPA.  Information regarding participants’ mathematics grades 
and GPA were gathered from school report cards from the school year preceding the summer 
program.  Mathematics grades were coded on a scale of zero to four (e.g., A = 4.0, A- = 3.7, B+ 
= 3.3).  To calculate GPA, participants’ most recent grades in academic subjects (e.g., English, 
History, Science, Mathematics) were scored on a scale of zero to four, and GPA consisted of the 
mean across the academic subjects.  GPA and mathematics grade data were not available for four 
of the 183 participants, as these participants did not receive letter grades at their schools. 
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MDT.  The MDT is a mathematics readiness test that assesses participants’ mastery of 
mathematics material that is required to succeed in the next level of mathematics (Mathematics 
Diagnostic Testing Project, 2006).  The MDT offers readiness tests for Algebra I, Geometry, 
Algebra II, Pre-calculus, and Calculus.  Each MDT contains 45 to 50 items, and is scored by the 
percentage of items correct.   

Summer course grade.  At the end of the summer program, all participants received a 
final mathematics course grade based on homework, participation, test scores, and projects.  
Grades ranged from A+ to B-, and students achieving below a B- received either a Pass or No 
Pass.  Letter grades were coded on a scale of 2.7 to 4.3 (e.g., A = 4.0, A- = 3.7, B+ = 3.3), and 
Pass and No Pass grades were coded as 2 and 1, respectively. 
 Procedure.  Data were collected in three steps.  Mathematics grades and GPA were 
gathered from the program database in the spring preceding the summer program.  Two weeks 
prior to the start of the summer program, all participants attended a diagnostic testing session 
during which they completed the MDT followed by the Jr. MAI.  At the end of the six-week 
summer program, final course grades were collected from the program database.   
Results 
 Preliminary analyses. Means, standard deviations, and internal consistency reliability 
estimates of Knowledge, Regulation, and Total scores are presented in Table 6.  Internal 
consistency reliability estimates were calculated using Cronbach’s alpha.  All three estimates 
were greater than .70.  Knowledge and Regulation subscales scores were significantly and 
moderately correlated (r = .56, p < .01).  Means and standard deviations for participant academic 
achievement (i.e., GPA, math grade, MDT score, summer course grade) are also provided in 
Table 6.  

Structural validity. Exploratory factor analysis (principal axis extraction) was used to 
determine the factor structure of the Jr. MAI.  Factorability of Jr. MAI scores was based on the 
determinant of the correlation matrix (.007), Kaiser-Meyer-Olkin Measure of Sampling 
Adequacy (KMO = .83), and Bartlett’s test of sphericity, χ2(153) = 869.64, p <.001, which all 
indicated that the correlation matrix of Jr. MAI scores was factorable.  Communality estimates 
were in the low to moderate range.  Given a variable to factor ratio greater than 20:3 (18:2) and a 
sample size of close to 200 participants (n =183), factor analysis should result in a convergent 
and admissible solution (MacCallum, Widaman, Zhang, & Hong, 1999). 
 Multiple criteria were used to determine the number of factors to extract.  The theoretical 
framework (Schraw & Dennison, 1994) suggested a two-factor structure, whereas parallel 
analysis (Hayton, Allen, & Scarpello, 2004; Watkins, 2000) suggested a three-factor structure, 
and the eigenvalue rule and scree test suggested a five-factor structure.  Subsequently, two-, 
three-, four-, and five-factor solutions were examined.  A floor of .40 was used to determine item  
salience (Floyd & Widaman, 1995).  For each solution, both oblique and orthogonal rotations 
were examined. 
 Two-factor solution. Structure coefficients from the two-factor oblique rotation are 
reported in Table 7.  This solution accounted for 37.14% of the total variance in Jr. MAI scores.  
Fourteen of the 18 items achieved factor loadings greater than .40.  Factor 1 (Regulation)  
consisted of seven of the nine metacognitive regulation items (excluding R6 and R17), and 
Factor 2 (Knowledge) consisted of seven of the nine metacognitive knowledge items (excluding  
K5 and K12).  Reliability estimates for the Regulation factor (α = .80), Knowledge factor (α = 
.75), and all 14 items achieving a factor loading greater than .40 (α = .85) were all greater than  
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Table 6 
 
Descriptive Statistics of Jr. MAI Scores and Academic Achievement Variables 
 
 
Subscale 

 
n 

 
M 

 
SD 

 
α 

 
Range 

 
 
Jr. MAI Scale 
 

     

 Knowledge 183 4.21 .66 .72 1.67 – 5.00 
 

 Regulation 183 3.54 .71 .81 1.89 – 4.78 
 

 Total 183 3.91 .46 .85 1.83 – 4.89 
 

       
Academic Achievement 
 

     

 GPA 179 3.89 .19  2.57 – 4.00 
 

 Mathematics Grade 179 3.95 .20  3.30 – 4.30 
 

 MDT 183 87.42 10.94    44 – 100 
 

 Summer Course Grade 183 3.57 .61  1.00 – 4.30 
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Table 7 
 
Two-Factor Solution From Principal-Axis Extraction/Oblimin Rotation of Jr. MAI Scores 
 
 
Item 

 
Factor 1 

Regulation 

 
Factor 2 

Knowledge 

 
h2 

 

 
     

R9 -  I think about what I really need to learn before I begin a task .74 -.07 .43
R7 - I ask myself if I learned as much as I could have once I finish a task .68 -.14 .32

R10 - 

 

I ask myself questions about how well I am doing while I am  

learning something new 
.64 .05 .43

R18 - I set specific goals before I begin a task .55 .06 .40
R15 - I ask myself periodically if I am meeting my goals .54 .10 .47
R11 - I focus on the meaning and significance of new information .49 .14 .43
R8 - I ask myself if I have considered all options when solving a  problem .43 .23 .37
K1 - I am a good judge of how well I understand something -.16 .71 .35
K2 - I can motivate myself to learn when I need to .04 .60 .39
K4 - I know what the teacher expects me to learn -.07 .52 .23

K14 - I have control over how well I learn .16 .48 .38
K16 - I find myself using helpful learning strategies automatically .17 .47 .36
K3 - I try to use strategies that have worked in the past .06 .44 .27

K13 - I use my intellectual strengths to compensate for my weaknesses .24 .40 .39
R17 - I ask myself if there was an easier way to do thing after I finish a task .33 .19 .29
R6 - I draw pictures or diagrams to help me understand while learning .33 .03 .19

K12 - I learn more when I am interested in the topic .06 .19 .29
K5 - I learn best when I know something about the topic .03 .13 .26

    
Eigenvalues (initial) 5.16 1.53  

% of variance (initial) 28.64 8.50  

α .80 .75 
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.70.  Factors were moderately correlated (r = .57).  Identical Regulation and Knowledge factors 
were found in the two-factor solution using orthogonal rotation.  
 Three-, four-, and five-factor solutions.  The three-factor, four-factor, and five-factor 
oblique rotations as well as the three-factor orthogonal rotation each resulted in a version of a 
Knowledge factor and a version of a Regulation factor with the remaining factors being non-
viable duplets.  The four-factor and five-factor orthogonal rotations resulted in a version of a 
Knowledge factor, a version of a Regulation factor, and a Mixed factor containing both 
knowledge and regulation items with the remaining factor(s) having either one or two salient 
items. 

Concurrent and predictive validity. Bivariate correlations were used to examine the 
concurrent and predictive validity of (a) total Jr. MAI scores, (b) Jr. MAI subscale scores based 
on Sperling et al. (2002)’s Knowledge and Regulation factors, and (c) Jr. MAI subscale scores 
based on the Knowledge and Regulation factors identified in the current study with measures of 
academic achievement (i.e., GPA, mathematics grade, MDT score, summer course grade). 

Correlation coefficients are presented in Table 8.  Total Jr. MAI scores were not 
significantly correlated with any measure of academic achievement, r = │.00│ - │.12│.  Scores 
based on Sperling et al.’s (2002) Knowledge subscale were not significantly correlated with any 
measure of academic achievement, r = │.01│ - │.10│, nor were scores for the original 
Regulation subscale, r = │.00│ - │.12│.  Similarly, neither the Knowledge subscale scores, r = 
│.00│ - │.08│, nor the Regulation subscale scores, r = │.01│ - │.13│, identified in the current 
study had significant correlations with any measure of academic achievement.  All academic 
achievement variables were significantly correlated with each other, r = │.20│ - │.45│, p < .01. 
Discussion 
 The purpose of this study was to examine the psychometric properties of Jr. MAI scores 
among a sample of academically talented middle and high school students.  Statistical analysis 
suggests that Jr. MAI scores are reliable in this academically talented sample.  Furthermore, 
exploratory factor analysis yielded a two-factor structure consistent with Jacobs and Paris’s 
(1987) metacognition theory.  These results contrast with previous exploratory factor analysis 
results by Sperling et al. (2002).  Although Jr. MAI scores were found to be structurally valid, 
they lacked concurrent validity with measures of academic achievement (i.e., GPA, mathematics 
grade, MDT score) and predictive validity with final summer course grade in mathematics.  The 
absence of a relationship between Jr. MAI scores and academic achievement is consistent with 
Sperling et al.’s findings.   

There are three possible explanations for the lack of concurrent and predictive validity of 
Jr. MAI scores.  The first is that metacognition (as measured by the Jr. MAI) is not significantly 
related to academic achievement.  This explanation is contrary to metacognition theory (e.g., 
Brown, 1987) and past studies substantiating this relationship (e.g., Pintrich, 2002; Zimmerman, 
1990).  Second, the Jr. MAI scale may not assess the metacognitive behaviors that influence 
academic achievement.  Third, participants’ self-reports may not accurately reflect the 
metacognitive behaviors that they employ in school (Schoenfeld, 2002).   
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Table 8 
 
Correlations of Jr. MAI Scores with Achievement Variables (n = 183) 
 

  
Achievement 

 
 

 
GPAa

 
MGa

 
MDT 

 
CG 

 
 

Jr. MAI Total Score 

 

-.00 

 

.05 

 

-.12 

 

.01 

Jr. MAI Subscale Scores – Sperling et al. (2002) Factors     

Knowledge -.01 .04 -.10 .07 

Regulation .00 .04 -.12 -.04 

Jr. MAI Subscale Scores – Current Study Factors     

Knowledge .00 .03 -.07 .08 

Regulation .01 .04 -.13 -.04 

Achievement     

GPAa -- .40* .29* .24* 

MGa  -- .20* .17 

MDT   -- .45* 

CG    -- 

 
Note. MG = Mathematics grade; CG = Summer course grade. 
 
a n = 179. 
 
*p < .01 
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Study 2 
In this study, problem solving interviews were used to examine metacognition among a 

sample of the participants from Study 1.  The goals of this study were (a) to describe students’ 
use of metacognition during each phase of problem solving and (b) to examine how students’ use 
of metacognition during each phase of problem solving affected their problem solving solution 
accuracy. 
Method 

Participants. Participants included 30 adolescents from Study 1 (see Procedure for 
participant recruitment details).  The participants were 63% female (n = 19) and ranged in age 
from 11 to 16 years old (M = 12.57, SD = 1.406).  Participants represented several ethnicities 
including Asian American (n = 16, 53%), European American, (n = 6, 20%), African American 
(n = 1, 3%), East Indian (n = 3, 10%), Latino (n = 1, 3%), and Other (n = 3, 10%).  Participants 
were enrolled in the following summer mathematics courses: Pre-Algebra (n = 6), Algebra I (n = 
4), Geometry (n = 7), Algebra II (n = 6), and Pre-Calculus (n = 7). 

Measures. Participants’ metacognition was examined through a problem solving 
interview.  The interview process and the mathematics problem analyzed in this study are 
described below. 

Problem solving interview. Individual problem solving interviews were used to assess 
participants’ metacognition.  Interviews consisted of an introduction, a concurrent report section, 
and a stimulated-recall section (see Appendix B for Interview Script).  During the introduction, 
participants were told that the purpose of the interview study was to better understand how 
students like themselves think when they solve math problems.  During the concurrent report 
section, participants were presented with one practice problem and three mathematics problems, 
and asked to report their thinking aloud while solving each problem.  During the stimulated 
recall section, participants were shown the video recordings of their concurrent report interviews 
and asked to elaborate upon what they were doing, thinking, and feeling as they solved each 
question. 

The mathematics problems used in the problem solving interview were selected based on 
criteria presented by Hammouri (2003).  Specifically, problems were chosen that (a) could be 
solved using multiple strategies, (b) required multiple cognitive/metacognitive strategies, and (c) 
could be solved with prior knowledge that all participants should have covered in school.  Given 
these criteria, three problems were selected from recommendations made by Alan Schoenfeld 
and Betina Zolkower in personal communications (May, 2009).  One of these three problems 
(the train problem) was selected for a fine-grained analysis. 

The train problem. The train problem was selected for analysis because it elicited a wide 
range of metacognition among participants.  The problem was presented as follows: 

Train A leaves UC Berkeley station travelling at 50 miles an hour on Track X.  Three 
hours later, Train B leaves the station travelling 60 miles an hour on Track Y, which is 
parallel to Track X.  How long does it take Train B to catch up with Train A?   

The train problem can be solved using many different strategies.  The three most common 
strategies are described next. 

Arithmetic catching up strategy. If the conditions of this problem are understood, it can 
be solved using arithmetic.  Specifically, one could note that Train A travels for 150 miles (50 
miles per hour times 3 hours) before Train B leaves the station.  Once Train B leaves the station, 
it travels 10 miles an hour faster than Train A (60 miles per hour minus 50 miles per hour).  
Therefore, for every hour Train B travels, it catches up by 10 miles.  Given that Train B has 150 
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miles to catch up with Train A, and that it takes one hour to catch up 10 miles, it will take 15 
hours (150 divided by 10) to catch up with Train A. 

Algebraic strategy.  One can apply the formula for the distance travelled (distance = rate 
by time), knowing that when Train B catches up with Train A, they will have travelled the same 
distance.  Therefore, the rate of Train A (50 mph) multiplied by the time that Train A travels will 
be equal to the rate of Train B (60 mph) multiplied by the time that Train B has travelled.  Since 
the problem asks for the time that Train B travels, it is best to assign a variable (x) to describe the 
time that Train B travels.  Since Train A left the station three hours before Train B, it will have 
travelled three more hours than Train B (x + 3) by the time the trains catch up.  Therefore the 
equation 50(x + 3) = 60(x) can be used to find the time it takes for Train B to catch up with Train 
A, with the value of x that is determined by solving this equation being the final answer. 

Counting strategy. Third, this problem can be solved by making a chart or other visual 
representation of the distances that each Train travels each hour (see Figure 2). Since Train A 
starts three hours ahead of Train B at 50 miles an hour, it will have travelled 150 miles before 
Train B begins.  When Train B begins, it travels 60 miles in its first hour of traveling, meanwhile 
Train A travels another 50 miles, totaling 200 miles.  For every hour after that, Train A will gain 
50 miles and Train B will gain 60 miles.  Using a chart, one can count the total number of hours 
it will take for Trains A and B to travel the same distance. 

 
Miles Travelled by Train A 50 100 150 200 50 300 350 400 … 800 850 900

Miles Travelled by Train B -- -- -- 60 120 180 240 300 … 780 840 900

Hours Travelled by Train B -- -- -- 1 2 3 4 5  13 14 15 

 
Figure 2. Train problem counting strategy. 

Procedure. Participant recruitment took place on the first day of the summer program.  
Each mathematics course in the program (11 classrooms) was visited by the lead investigator and 
students were invited to participate in a mathematics problem solving interview study.  Parental 
consent forms were distributed to all students, and the first 30 students who returned completed 
consent forms were selected to be the Study 2 participants.   

Individual problem solving interviews were conducted during the six weeks of the 
summer program.  Interviews lasted approximately one hour, and subjects received $10 upon 
completion of the interview.  Two video cameras and a microphone were used to record 
interview data during each interview.  Camera 1 was used to record the full duration of the 
interview capturing the participant, the interviewer, and the television used for the stimulated- 
recall.  Camera 2 was used to record participants’ written work up close during the concurrent 
report section of the interview.  The microphone was used for the full duration of each interview.  
During the interview, the interviewer recorded observational field notes and collected the 
participant’s written work at the end of the interview. 

Several data sources emerged from the problem solving interviews.  First, digital audio 
and video files were created from the video camera and microphone recordings.  Second, 
transcripts were created from these recordings.  Specifically, Camera 2 audio-video files were 
used to transcribe the concurrent report section of the interviews and microphone audio files 
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were used to transcribe the stimulated-recall section of the interviews.  The microphone audio 
files were corrupted during data collection for three of the interviews.  In these cases, Camera 1 
audio-video files were used to transcribe the stimulated-recall section of the interviews.  Finally, 
field notes and participants written work were treated as written artifacts. 
Results 

Metacognition during problem solving. In this section, illustrative examples of the 
metacognition participants exhibits in each phase (i.e., preparation, performance, evaluation) of 
the problem solving process are presented.  Illustrative examples of the absence of metacognition 
in each phase are also presented.   

Metacognition in the preparation phase. Metacognition in the preparation phase 
involves assessing the train problem and identifying both what information was given and what 
the problem was asking for.  It also involves analyzing the problem mathematically and then 
using the given information and the understanding developed through assessment and analysis to 
create an appropriate plan.  Two examples are used to illustrate the presence and absence of 
metacognition.  First, Cailin is used as an exemplar to illustrate how participants used sufficient 
metacognition.  Next, Brice is used as an exemplar to illustrate the absence of sufficient 
metacognition.  A summary contrasting the metacognition used by Cailin and Brice is presented 
following the two examples. 

Cailin: An example of sufficient metacognition. Cailin exhibits a range of metacognitive 
thinking that contributes to her ability to generate a mathematically accurate algebraic strategy to 
solve the train problem.  Cailin begins by noting the information given in the problem, drawing a 
picture representation of the problem, and deciding on the type of strategy – in this case, an 
algebraic strategy – to solve the problem. 
 
Line 1: So, here's the station, Track X, Track Y.  50 mph here and 3 hours.  3hours later.  Ok.  

3 hours later.  60 mph.  [Draws Figure 3] 
Line 2: And the distance.   
Line 3: So the distances should be equal when they catch up to each other.   
Line 4: So distance equals rate times time [writes d = r*t].   

 

 
 

Figure 3. Cailin’s initial representation. 
 
Cailin explains in her stimulated-recall interview that as she read the problem her first thought 
was that this was a “distance, rate, time problem.” She reasons that because of the nature of the 
information given in the problem (i.e., mph, trains, time, distance, rate), “I figured it was going 
to be something like this…I knew I had to use that [D = RT] equation” (D = RT equations are a 
standard form taught in high school mathematics curriculum). 



 30 

 After deciding to create an algebraic equation to solve the problem, Cailin continues to 
develop her understanding of the problem in ways that will allow her to create an equation (see 
Figure CR2). 
 
Line 5: Ok, and this [points to Track X]… 
Line 6: Oh, the time should be equal.   
Line 7: Oh, ok.  So, let's see…50 miles per hour times [writes “50* =”]… 
Line 8: Oh, how long does it take, so you have to find the time [fills in t so the equation reads 

50*t = ] 
Line 9: And then 60mph and that's 3 hours later.   
Line 10: So let's see.  How can I show that in variables?   
Line 11: Um...hmm...60mph is the rate [writes 60 on the other side of the equal sign].   
Line 12: And time, so, hmm, distance has to be equal.  t [writes "(t"] hmm, minus.   
Line 13: Maybe I shouldn't use an equation. 
 

 
Figure 4. Cailin’s initial equation 
 
Cailin tries to write an equation that represents her understanding of the problem.  She also 
continues to develop her understanding of the problem in ways that will facilitate her ability to 
write an equation.  She explains her thinking during Lines 5 – 12 in her stimulated-recall 
interview. 

I was trying to figure out which was equal…I was trying to figure out, ok, time needs to 
be equal, does the distance need to be equal?  When will they catch up…it was taking me 
a long time to figure out where I needed to place the variable and to show that one of the 
trains was three hours later.  How do I make that equal when one is three hours ahead and 
how do I put that in correct units? 

However, Cailin realizes that she is having difficulty and questions both her method and 
understanding of the problem. 

I was like, I know the formula, I should be able to plug everything in and it should be ok.  
But then I was struggling a little bit to set up the equation.  You know what should go 
where and what units, so I think I was just a little bit frustrated because I was like, 
hmmm, this seems like it’s not that difficult…I was getting frustrated with having to 
think of some way to put the 3 in there.  And after the parentheses there I was trying to 
step back and think because it was getting too complicated…I was trying to rely on a 
formula and maybe a picture to help.  But when I was, it was so difficult to visualize the 
three hours ahead and put it in the formula, it didn’t really fit.” 
So far, Cailin has read the problem, decided to use an algebraic equation to solve the 

problem, developed an initial understanding of the problem, attempted to create an equation 
based on her understanding of the problem, and realized that she is having difficulty writing an 
equation based on her current understanding of the problem.  Next, Cailin takes a step back and 
asks herself, “How does this make sense?” She attempts to better understand the problem by 
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drawing a second picture representation of the problem and making mathematical sense of the 
information she is given in the problem. 

 
Line 14: How does this make sense? 
Line 15: Leaving from the same place.  Why is this taking me so long? Leaving from the same 

place.   
Line 16: 3 hours later…60mph.   
Line 17: Ok, so it's going 10 mph faster.   
Line 18: So, if it leaves 3 hours later, 3 hours later...ok, so they have to be...hmm.   
Line 19: So you don't know the time.   
Line 20: So this has to be…and 3 hours... 
Line 21: 
 

So I'll show this behind.  And then 3 hours later.  It says how long does it take train B 
to catch up with train A.  So they just have to be at the same place  

Line 22: Ok.  So, 50 should equal, hmm… 
Line 23 Why is this taking me so long? This doesn't seem this difficult.   
 

 
 
Figure 5. Cailin’s second picture representation. 

 
In her stimulated-recall interview Cailin explains that she drew a second representation in 

order to solidify her understanding of the problem without worrying about the equation: “I tried 
to draw a second picture to maybe straighten out those thoughts and maybe not be so bogged 
down about the equation and just think about it…just thinking common sense.”  This thinking 
allows her to develop a deeper conceptual understanding of the problem, but she struggles to 
connect her understanding with an equation.  This indicates to her that her understanding is still 
incomplete. 

 I figure I knew everything, it was just sometimes when I get these problems, I get 
stumped just trying to get everything I know, all the data etc., together so it’s in a fluent 
equation or problem that I can solve.  So I figured as soon as I just figured out what was 
going on that I could put it all together and it would make sense. 
Cailin’s first attempt to take a step back and figure out “how does this make sense” is 

productive in the sense that it helps Cailin continue to develop her understanding of the problem.  
However, she knows that there is still more to understand.  Moving forward, Cailin stops herself 
again and makes another change in her thinking.  This time, she stops thinking about creating an 
equation altogether and focuses on understanding the problem mathematically.   
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Line 24: Let's see.  How else can I show this?  Hmm.  I think I'm making this too complicated.  
 
Cailin explains her thinking in her stimulated-recall interview. 

“I had to just take a step back and go 50 miles per hour means it’s going 50 miles in one 
hour, and three hours ahead, so 50 times 3…So then just stepping back and thinking 
about the broader picture and not worrying about this formula…then I was able to figure 
out how to put this in.  But then I went back to the formula and fit it in.  I think I just 
needed to step back and think about what was really happening because the formula 
didn’t really represent that 100%...I was transitioning to the need to think this out and not 
just worry about the equation.” 

Once Cailin takes this step back and begins to think about the problem mathematically, she is 
quickly able to create an equation that reflects her mathematical understanding of the problem. 
 
Line 25: Hmm, ok, so if it's going 50 miles each hour and it leaves 3 hours…so that would be 

at 150.  Ok so this Track X will be 150 miles. 
Line 26: So how long will it take 60 miles to get there.   

Line 27: 3 hours behind…So after 3 hours it's starting…It will continue…ok, so when Train Y 
is starting, that will already by 150 miles ahead and it's continuing at that rate. 

Line 28: So plus 50 t.  T can be the number of hours.  And then this is starting when it's 
already at 150.  So this should equal 60 times the time [Writes final equation]. 

Line 29: That makes more sense.   
 

 
 
Figure 6. Cailin’s final equation. 
  

Brice: An example of insufficient metacognition. Unlike Cailin, Brice has difficulty using 
metacognition to develop a mathematical understanding of the train problem.  Instead, he spends 
his time in the preparation phase attempting to derive an equation from the given information 
and his vague memory of a formula using distance, rate, and time.  

 
Line 1: ‘K.  So this problem…I have to remember how to do this.   
 Um, first I’m gonna set up the loca- the beginning point which will be UC Berkeley.  

Starts to travel so Train X…Train Y…starts to travel at 50 miles per hour…Train Be 
leaves the station travelling…Wait.  Three hours later, so the time between will be 
three hours starting at 60 miles per hour. 

Line 2: How long will it take for them to catch up. 
Line 3: So, um, there’s three hours in between.   
Line 4: So I’m going to think about this for a second.   
Line 5: Um, 50 miles per hour…x is…Train X is equal to…the miles per hour…uh, how long 

does it take for the train to catch up.  Um, 3 hours later…so… 
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Figure 7. Brice’s picture representation. 

 
In Lines 1 – 5, Brice begins to develop an understanding of the problem, as evidenced by 

his diagram (see Figure 7).  However, as he begins to develop a strategy to solve the problem, he 
recalls a memory of doing “this kind of math” – a train problem – in seventh grade.  Based on his 
memory, he decided to use an equation using distance, rate, and time.  At this point, he abandons 
his conceptual understanding of the problem and focuses on constructing an equation based on 
multiplying distance and rate to get time. 

 
Line 6: Oh yeah, I remember the DRT problems.   
Line 7: So the distance which would be the distance is going to be…let me think about 

that…that would be three hours, so, oh, 3 hours later.  So I’m going to see if I can do 
this by…so maybe 50 times 3 which is 150…that would be…so Train X would 
already have been out for 150 miles.  Ok, so basically, uh, Train X has already been 
out for 150 miles and that means…how long will Y take for it to reach…uh, wait.  
X…um…the distance is going to be, um…oh, oh, oh.   

Line 8: So the distance is going to be X, and then Train Y will be Y plus 150.  The rate will 
be 50…this is 60, and we’re looking for 50x…this will be 60(y + 150), um, so when 
will it equal. 

Line 9: So, uh, Y…oh, no, this is actually [changes y’s to x’s]…because that’s x + 50, which 
is the same…um, 50x + 60(x + 150)…50x + 60x…150 times 60, um, let’s see, so 
pluss 9000.  Oh no wait…no…the equal part of this…um…is going to…oh…those 
[50x and 60x+9000] are equal. 

 

 
 
Figure 8. Brice’s DRT chart and equation. 
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Once Brice decides to use a DRT formula, he has difficulty stimulating his memory and 

applying his knowledge of distance, rate, and time to this problem.  He explains his thinking 
further in his stimulated-recall interview. 

I filled in as distance because I knew it didn’t have anything to do with distance.  I was 
trying to [figure out] time but I didn’t know anything about distance.  The only thing the 
word problem gave was the rate and this little bit about time – the three hours – but it 
talked nothing about distance so I knew distance was a constant number…there’s this 
constant part that I’m talking about is distance and they stop – meet up at one point which 
is still in reference to distance and I’m looking for time…at first I was thinking about 
putting a variable as time, but that didn’t work out because I didn’t have – well, I don’t 
know exactly why I didn’t put something in time. I guess it didn’t feel right.  I guess I 
always put it with distance. 
Summary. Cailin exemplified kinds of metacognitive thinking that facilitated her success 

in the preparation phase of problem solving.  With regard to metacognitive regulation, she was 
able to assess the problem right away.  At first, her lack of analysis hindered her from developing 
an appropriate algebraic expression.  However, once she took a step back and asked herself, 
“how does this make sense,” she was able to develop a conceptual and mathematical 
understanding of the problem that allowed her to develop an appropriate equation.  In contrast, 
Brice did not exhibit sufficient metacognitive regulation during the preparation phase.  Although 
he was able to identify the information given in the problem, he spent little to no time analyzing 
the problem, and therefore did not have a conceptual understanding of what the problem was 
asking.  Brice focused on writing an equation based on the numbers given in the problem rather 
than on a mathematical understanding of the problem, resulting in an inappropriate equation. 

Metacognitive knowledge, metacognitive beliefs, and metacognitive awareness 
influenced both Cailin’s and Brice’s thinking as they developed strategies to solve the train 
problem.  Both participants drew on their metacognitive knowledge about the mathematical 
relationships between distance, rate, and time as a starting place for their strategies.  Cailin’s 
knowledge about a DRT strategy was complete and correct and facilitated her development of an 
appropriate equation.  Brice’s knowledge about the relationships between distance, rate, and time 
was incomplete, and his application of this knowledge was inaccurate.  Brice knew that it was 
possible to apply a formula to find time when distances and rates are given, but he did not know 
the correct formula or how to apply it to the train problem.  Cailin applied other metacognitive 
knowledge (person knowledge, to be exact) to generate her equation.  She knew that she was 
most comfortable solving problems using equations and that diagrams helped her to understand 
math problems.  These aspects of metacognitive knowledge helped her as she worked through 
the preparation phase by guiding how she chose to think about and solve the problem.  In 
contrast, Brice did not appear to use any other metacognitive knowledge in trying to solve the 
problem. 

There appeared to be several metacognitive beliefs that influenced Cailin’s thinking as 
she developed her equation.  The three most influential beliefs were (a) that math problems, 
equations, and mathematics in general are supposed to make sense, (b) that she would be able to 
solve the problem once it made sense, and (c) that she was capable of making sense of the 
problem.  These beliefs guided her thinking, which resulted in her taking a step back mid-way 
through the preparation phase in order to understand the broader picture.  As a result, she focused 
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on developing her mathematical understanding of the problem and ultimately developed an 
appropriate equation.   

Brice was operating under a very different set of metacognitive beliefs which were 
counterproductive.  His very first statement—that he had to “remember how to solve this—was 
evidence that he believed that there is a right way to solve math problems.  A belief that may be 
inferred from his thinking during the preparation phase is that mathematics is about creating and 
solving equations and that it need not (or does not) make sense.  These beliefs affected his 
thinking as he created an equation that lacked mathematical meaning from a problem that he 
never completely understood. 

Finally, Cailin and Brice exhibited very different levels of metacognitive awareness.  
Cailin not only identified when she was getting stuck and feeling frustrated, but also identified 
where and why she was stuck (e.g., not knowing how to represent the three hour difference 
between the trains).  Cailin was also aware of when she was on the right track and was confident 
that her equation was correct.  Brice, in contrast, had little metacognitive awareness as he created 
his equation.  He did not appear to be aware of his lack of understanding of the problem or of his 
lack of understanding about how to correctly set up a DRT equation.  He was also not aware that 
his equation was incorrect.   

Metacognition in the performance phase. Metacognition in the performance phase 
involves monitoring both one’s progress and one’s execution of the strategy developed in the 
preparation phase of problem solving.  In the case of a counting strategy, monitoring progress 
involves making sure that the trains were getting closer in distance to each other over time.  
Monitoring strategy execution involves making sure that distances were added correctly and 
numbers were lined up correctly.  Two examples are used to illustrate the presence and absence 
of metacognition in the performance phase, both involving similar counting strategies.  Amelia 
uses sufficient metacognition to monitor the execution of her counting strategy.  In contrast, 
Dylan does not use sufficient metacognition and does not effectively monitor the execution of his 
counting strategy.  A summary of the metacognition used by Amelia and Dylan as they execute 
their strategies is presented after these examples are described. 

Amelia: An example of sufficient metacognition.  Amelia is an example of a student who 
demonstrates metacognition, particularly in the performance phase, using a counting strategy. 

 
Line 1: If it goes for 3 hours at 50 mph, it'll go 150 miles.   
Line 2: But if that goes...so  if it keeps going, then for an hour, it'll reach 60 and it'll reach 

200.  That'll be 1 hour.  Then 2 hours is 250, 120.  3 hours is 300, 180.  350, 240 is 4, 
5, 6...400, 450, preset.  ok, so that's 300, 360.   

Line 3: 7 is 500, agg, it's going to take a while.  Um, 420.   
Line 4: [Turns paper to landscape orientation] Then 8 is 550, 480.  Then 9 is 600… 540, ah 

ha!   
Line 5: 650, 600.  Closer!   
Line 6: So what does that mean.  ok.  700, 750.  640 [mistake -- added 40 instead of 60].  680. 
Line 7: [Turns paper back to portrait orientation then back to landscape] 
Line 8: Not quite sure it will!   
Line 9: 800, 740.   
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Figure 9. Amelia’s initial counting strategy. 
 
Line 10:  [flips to new paper]  14, 15… gonna set up my paper so I can keep going [labels 

paper to 22 hours] 
Line 11: Ok, so 850, 900, 950...[lables 50's to 100]...start from there. 
Line 12: I left off at...ok that makes me 800, 860, um, 920, no!   
 

 
 
Figure 10. Amelia’s initial counting strategy (cont.). 

 
Amelia first thought that indicates monitoring in the performance phase is her statement in Line 
3 that “it’s going to take a while.”  She explains her thinking in her stimulated-recall:  “Because 
at this point, they’re so far apart and they’ve been pretty far apart and they’re only catching up 
very very slowly.  So it will take it quite a while to catch up.”  Amelia confirms that she began 
noticing the difference in the distances around seven hours, and that she continued to monitor 
this difference on and off. 



 37 

“I started to pay attention here [at 7 hours] and then 10, 12, 13, and so on.  And then I 
realized that at about 16 it’s going back up because if the difference here is 50 but back 
here it’s 80 and then 60…and then went to 50 and then back here it’s gone back 
up…Here it was 50, here it was 40, but at this point it was starting to go back up.” 

When asked why she stopped at Line X, she replies, “I think that’s the point where I’ve 
convinced myself that something is wrong.” 
 
Line 13: But then [looks back at first page of work]... OH!!!  ok.  I completely did this wrong. I 

started going by 40's.   
Line 14: Let's...where'd I know I left off...ok, let's go back to 8, 9, 10, 11.  ok so for 8 that'd be 

550, 600, 650, 700.   
Line 15: Ok, so that'd be 480, plus 6, is 540.  plus 6 is 600, 660. 
Line 16: 12, 13, 14...750, 800, 850.  .  Ah!  720, 780, 840.   
Line 17: 15 would be 900 and 900.   
Line 18: It'll take it 15 hours. 
 

 
Figure 11. Amelia’s revised counting strategy. 
 
Once Amelia identifies that something is wrong, she goes back through her work, finds her 
initial mistake, and fixes the mistake by re-doing her work beginning at the eighth hour (see 
Figure EM3).  She continues to monitor her addition accuracy and the decreasing distance 
between the two trains and arrives at the correct answer. 

Dylan: An example of insufficient metacognition.  Similar to Amelia, Dylan also uses a 
counting strategy to solve the train problem (see Figure 12).  Although Dylan’s plan is 
mathematically correct, Dylan makes several calculation mistakes which lead him to an incorrect 
answer.  He consistently adds 50 to the top number (representing the distance travelled by Train 
A) but does not consistently add 60 to the bottom number (representing the distance travelled by 
Train B).  Instead of adding 60, he incorrectly adds 40 to 480 and adds 50 to 520, 630, and 740.  
As a result, he miscalculates the total distance Train B travelled in relation to Train A.  Recall if 
this strategy is executed correctly, Trains A and B meet when they have each travelled 900 miles.  

 
Line 1: So when Train B leaves Train A is already 150 miles away. 
Line 2: So this is 0, 150 at 1 hour.  So then 2 hours, 2 hours, 3 hours.  This is 4 hours. 
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Line 3: So at 4 hours this is at 200, this is at 60.  At 5 hours 250, 120.  6 hours is 300 180.  7 
hours is 350, 240 and then 8 hours is 400, 300. 

Line 4: Yay. 
Line 5: 9 hours. 3, 4, 5, 6, 7, 8, 9 hours is 450, 360. 10 hours is 500, 420.  11 hours is 550, 

480.  12 hours is 600, 520. 
Line 6: 7 hours – err – 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 hours is 650, 570.  14 hours is 700, 

630.  15 hours is 750, 680.   
Line 7: Then 800, 740.  850, 790.  900, 850.  950, 910.  1000, 970.  1050, 1030.  1200 – or 

1100, 1090.  And then 1150 and 1150. 
Line 8: So that’s 3 hours, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 

hours. 
Line 9: So it’ll take 20 hours to catch up with Train A. 
 

 
Figure 12. Dylan’s counting strategy. 
 

Dylan shows some signs of monitoring (e.g., “yay”) at Line 4, counting hours to make 
sure he has written them out correctly at Line 5.  But he does not monitor his addition as he adds 
50 to the top number and 60 to the bottom number.  When Dylan’s mistakes are pointed out to 
him, he is surprised.  When asked if he was doing any thinking to monitor as he completed the 
addition, he replies, “I guess not.”  However, he was monitoring his progress in some sense, 
saying that he did notice that “one is increasing faster than the other one.”  Dylan best describes 
his monitoring in the following statement: “Yes, I was checking, but no, I wasn’t checking.”  He 
explains that he thought he was monitoring his work sufficiently, but is convinced after seeing 
his mistakes that this was not the case. 
 Summary. Both Amelia and Dylan exhibited some metacognitive regulation (i.e., 
monitoring) as they executed their counting strategies.  Amelia’s regulation was effective and 
sufficient, and Dylan’s was not.  Both Amelia and Dylan noticed how the distances between the 
trains changed over time and thought that this change was an indication that they were on the 
right track, so to speak.  Amelia paid closer attention to these differences than Dylan.  She 
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eventually noticed that there was something wrong with the way that the distances were 
changing over time (due to her addition mistakes) whereas Dylan did not.  Once she established 
that something was wrong, she reviewed her work, identified her mistakes, and corrected the 
mistakes resulting in a correct solution.  In contrast, Dylan’s lack of sufficient monitoring 
resulted in many addition mistakes that went unnoticed and resulted in an incorrect solution. 
 The piece of metacognitive knowledge that appeared to directly influence Amelia and 
Dylan’s metacognitive regulation and overall thinking as they executed their counting strategies 
was their knowledge (for Amelia) or lack of knowledge (for Dylan) about how accurate they are 
at adding two and three digit numbers together.  Amelia knew that she tended to make small 
arithmetic errors, which could have contributed to her active monitoring.  In contrast, Dylan 
most likely did not know his own weakness in addition, which could have resulted in less close 
monitoring. 
 It is not apparent how Amelia and Dylan’s metacognitive beliefs influenced their 
monitoring as they executed their counting strategies.  Their metacognitive awareness, however, 
played a critical role in their monitoring.  At first, both Amelia and Dylan thought that they were 
on the right track, which is evidence of metacognitive awareness.  As they continued to execute 
their strategies, Amelia because aware that something was not correct, which led her to review 
her strategy.  This feeling of uncertainty led to productive thinking that allowed her to correct her 
mistake.  Dylan never became uncertain of his work, showing a lack of awareness that led him to 
complete his strategy without ever discovering his mistakes. 
 Metacognition in the evaluation phase. The metacognition exhibited in the evaluation 
phase involves verification that (a) the answer was realistic, (b) the answer was derived correctly 
from the plan, and (c) that the answer made sense relative to the problem.  Cailin, whose thinking 
was previously presented as an example of sufficient metacognition in the preparation phase, are 
used as an example of sufficient metacognition in the evaluation phase.  Tori and Diana are used 
as examples of insufficient metacognition.  A summary of the metacognition contributing to the 
presence and absence of verification follows. 
 Cailin: Another example of sufficient metacognition. Recall Cailin, who used sufficient 
metacognition to develop an appropriate algebraic strategy in the preparation phase.  During the 
evaluation phase she develops an appropriate equation and easily solves the equation to get her 
solution (Line 30).  Before finishing the problem, Cailin evaluates her solution by questioning 
whether the solution makes sense in light of the problem.   
 
Line 30: Ok, so 10t would equal 150 and t would equal 15. 
Line 31: Hmmm, that seems a bit long. 
Line 32: Um, ok, [how does this] make sense? 
Line 33: So this is already going to be 150 miles ahead cause it’s leaving 3 hours ahead.  So 

it’ll have that 150 miles jump start plus 50.  It’s rate time show ever long the time is 
taking should equal 60, which is the rate of Train Y, times the same amount of time, 
which is why they’ll be equal. 

Line 34: Ok, so that makes sense. 
Line 35: Ok, so my final answer is 15 hours. 

 
Cailin explains that after she got her answer, she wanted to check to see if her answer 

made mathematical sense relative to the problem.: “I always finish my thought and then say, 
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‘Ok, does that answer really make sense?  Does how I got it really make sense?’”  Once Cailin 
relates her answer back to the original problem, she becomes confident in her answer. 
 Tori and Diana: Examples of insufficient metacognition. Tori uses a counting strategy to 
solve the train problem and concludes incorrectly that it took 12 hours for Train B to catch up 
with Train A.  Her mistakes, which go unmonitored in the performance phase, involve 
incorrectly set up her counting strategy and also making arithmetic errors (see Figure 13).  When 
Tori finishes her counting strategy and both trains had reached a distance of 700 miles she says, 
“Ok, so it takes 12 hours for Train B to catch up with Train A” and hands in her paper without 
any further thinking about the problem.  When asked why she didn’t check her solution at the 
end of the problem she replies, “Yeah, well, um, usually I just check the answers in the back of 
the book to see if I did it right.  But if I got it wrong, I go back in and check.” 

 

 
 
Figure 13. Tori’s counting strategy. 

 
Diana uses the equation 50t = 60(t – 3) to solve the train problem (see Figure DM).  In 

this equation, the variable “t” represents the time that Train A travels and “(t – 3)” represents the 
time that Train B travels.  Diana accurately simplifies the equation and solves for t and then says, 
“It’d be 18 hours until Train B catches up with Train A.”  She finds the time that Train A travels, 
but not Train B.  However, she does not take the time to consider her answer before handing in 
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her paper.  When asked why she didn’t check his work, she states that she didn’t know how.  “I 
was pretty sure it [my answer] fit…Sometimes I go back and check – plug it in – but I guess I 
didn’t this time since I knew I didn’t have distance so I wasn’t quite sure how I should check my 
work.” 

 

 
Figure 14. Diana’s algebraic strategy. 
  

Summary.  The absence of verification in the evaluation phase, as illustrated by Tori and 
Diana, is a stark contrast to Cailin’s complete verification of her solution.  Cailin returned to the 
original problem and verified that her answer made sense relative to the information given and 
asked for in the problem and her mathematical understanding of the problem.  In contrast, Tori 
and Diana did not even attempt to verify their answers mathematically or conceptually.   
 Metacognitive knowledge appeared to contribute, in part, to Diana’s lack of 
metacognition, as she claimed that she did not know how to verify her answer.  For Cailin and 
Tori, metacognitive knowledge did not appear to have a direct relation to their choice to verify or 
not verify their solutions.  Metacognitive beliefs, again, played a large roll in why Cailin chose to 
verify her solution and why Tori and Diana did not.  Cailin’s beliefs about mathematics needing 
to make sense, as described earlier, led her to question whether or not her answer made sense 
once she solved her equation.  It was not important for Tori or Diana to make sense of their 
answer.  Their goal was to find an answer that fit their strategy, which is a very different way of 
viewing mathematics.  Finally, Cailin showed metacognitive awareness by communicating 
uncertainty about her answer after she solved her equation.  She knew that she was not 
completely confident in her answer.  This changed after she verified her answer.  Tori and Diana 
showed no awareness of their solution inaccuracy, which likely contributed to their lack of 
solution verification. 
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Metacognition and solution accuracy. Participants exhibited a range of metacognition 
as they solved the train problem.  The presence and absence of metacognition influenced the 
plans they developed in the preparation phase, the solutions they came to as they carried out their 
plans in the performance phase, and the final solutions they reported in the evaluation phase.  
Additionally, metacognition led students to identify and correct mistakes made in the preparation 
(e.g., inappropriate plans, incomplete or inaccurate conceptual understanding of the problem) 
and performance (e.g., arithmetic mistakes) phases.  A diagram illustrating the ways 
metacognition influenced participants’ trajectories through the problem solving process is 
presented in Figure 15.  In this study, eight different problem solving trajectories were observed.  
Three of these trajectories resulted in a correct final solution and five resulted in either an 
incorrect final solution or termination of the problem.  

Problem solving trajectories resulting in a correct solution. Eleven participants (37%) 
demonstrated productive thinking that resulted in correct solutions to the train problem.  These 
participants followed three different problem solving trajectories (see Figures 16 – 18). 

Trajectory 1. The most common trajectory among participants who reported a correct 
solution is presented in Figure 16.  Participants following this trajectory (n = 7) exhibited 
sufficient understanding of the train problem in the preparation phase and created a plan that 
would work to solve the problem (for example, recall Cailin’s use of metacognition in the 
preparation phase).  In the performance phase, they used sufficient metacognition (e.g., 
monitoring) to accurately complete their plan and obtain a correct solution (for example, recall 
Amelia’s use of metacognition in the performance phase).  For these participants, their use of 
metacognition in the preparation and performance phases resulted in plans and solutions that 
were correct.  Some of these participants used metacognition in the evaluation phase to verify 
their solutions and some did not.  Since all of the participants who followed Trajectory 1 derived 
correct solutions in the performance phase, the absence of metacognition in the evaluation phase 
did not affect their solution accuracy. 

Trajectory 2. Similar to participants who followed Trajectory 1, participants who 
followed Trajectory 2 (n = 2) exhibited sufficient metacognition in both the preparation and  
performance phases as they solved the train problem.  However, Trajectory 2 was slightly more 
complex (see Figure 17).  Following this trajectory, participants began the problem by exhibiting 
sufficient metacognition in the preparation phase and developing an appropriate plan to solve the 
problem.  In the performance phase, they began to follow through with their plans, but as they 
monitored their performance and understanding of the problem, they made the decision to return 
to the preparation phase.  Next, these participants focused their thinking on developing a deeper 
understanding of the problem which they took forward with them as they returned to the 
performance phase for a second time with new or enhanced plans to solve the problem.   Finally, 
these participants solved the problem using their final plans.  Similar to participants in Trajectory 
1, the metacognition used in the preparation and performance phases resulted in accurate 
solutions, so they reported accurate final solutions regardless of the amount of metacognition 
they used in the evaluation phase. 
 Jamal is one of the two participants who solved the train problem following Trajectory 2.  
He starts by using a variation of the counting strategy using two parallel number lines (see Figure 
19).   
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= Began with a good plan; PREP = Return to preparation phase;  = Terminated problem; X 
= Inappropriate plan [in preparation] or incorrect solution [in performance/evaluation];  = 
Appropriate plan [in preparation] or correct solution [in performance/evaluation]). 
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Figure 16. Trajectory 1. 
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Figure 17. Trajectory 2. 
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Line 1: [Reads problem aloud] 
Line 2: Um, normally, since it says x and y, I would assume that it’s a graph.  But it says 

parallel so I’m going to put it as parallel lines.  And I’m going to make segments – 
which are – I’m going to estimate how long they might be, so maybe I’ll put that as 
10 miles and – are they coming from opposite directions? [waits for response] 

Line 3: [AY: Read the problem again] 
Line 4: Ok.  [Reads problem silently] Oh, ok.  Oh, so they’re on parallel tracks leaving from 

the same station. 
Line 5: Ok, so 10 miles for every segment.  That’s 20. 30, 40, 50, 60, 70, 80, 90, 100, 110, 

120. I might need more than that.  And oh, so this is x and that’s y.  10, 20. 30, 40, 50, 
60, 70, 80, 90, 100, 110, 120.  I’m gonna recount that to make sure I’ve got it right.  
And, um, I’m gonna put points at each end.   

Line 6: So for x it’s travelling at 50 miles per hour, so I’ll go over 5 – 1, 2, 3, 4, 5 – and I’ll 
put a dot there.  And it’s 3 hours later, so I’m gonna do it 2 more times.  And of 
course I’m gonna go off [the paper].  So 1, 2, 3, 4, 5.  So I’ll continue the line.  Can I 
go on the back [of the paper] 

Line 7: [AY: I can give you more paper.] 
Line 8: 130, 140, 150, 160, 170, 180, 190, and 200 for now.  And 1, 2, 3, 4, 5.   
Line 9: And finally, um, the other Train B starts.  And it’s going 60 miles per hour so you 

count 6.  1, 2, 3, 4, 5, 6.  Put a dot there.  And at the same time you do x again.  1, 2, 
3, 4, 5.  Then we’ll do y again.  1, 2, 3, 4, 5, 6.  And we’ll do x again. 

Line 10: 210, 220, 230, 240, 250, 260, 270, 280, 290, 300.   
Line 11: 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 

and 300.   
Line 12: Then you go another 5.  2, 4, 5.  And 6.   

MC?

MC?

MC?

MC?

X 

MC?MC?

Figure 18. Trajectory 3. 
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Line 13: Wait let me check.  Oh, 2, 4, 6.  Put a dot there.  And then do it again. 
Line 14: Wait, no. [scans back down Track X with his pen]  K, and then go up here. 
Line 15: And pretty much I’m gonna kinda do this quickly. 

 

 
Figure 19. Jamal’s initial counting strategy. 
 
In Lines 1 – 15, Jamal’s strategy is mathematically correct and helps him to conceptualize how 
the distance between Trains A and B changed over time.  However, at the time, Jamal feeels like 
his strategy is “confusing” and that it would be easier to attempt to solve the problem 
arithmetically, as he does in Lines 16 - 18.   
 
Line 16: And I’m gonna say that pretty much they’re the same except this is 150 miles ahead 

cause 3 hours times 50 equals 150. 
Line 17: And then it goes – it gets – so you have to subtract 10 from it every time cause 60 is 

10 more than 50.   
Line 18: So that means it would take 15 hours if you take off the zero. 
Line 19: Wait, no.  I think I did that wrong.  Um, I think so.  18.  Um, yeah, I’m just going to 

go ahead and do this.  Cause now I’m confusing myself. 
 

 
 
Figure 20. Jamal’s second strategy. 
 
Jamal elaborates on his thinking in his stimulated recall interview. 

I was thinking that Y is ten miles faster than X…that was the speed difference…X was 
already 150 miles ahead when Y started, so 150…that is how many miles away it is...It’s 
basically 150 divided by 10 which is the number of miles divided by the number of miles 
per hour…10 goes into 150 15 times so that’s 15 hours. 

Despite having a correct mathematical representation of the problem, Jamal is not confident with 
his answer.  He becomes confused and feels like he “made a mistake or something.”   
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I was confused between the two [strategies] because this [first strategy] wasn’t fully 
completed and I went out of it and I went up here [to the second strategy] because I wanted 
to do it faster. And then I think I didn’t know the pattern yet.  I probably had the pattern in 
my head and I lost my train of thought.” 

Next, he returns to his original strategy, saying that although this first strategy had “seemed 
confusing” at the time, his second strategy “seemed more confusing.”  Relative to the second 
strategy, his first strategy “seemed like a better way.”  
 
Line 20: Now from this mark I’m going to start doing 20 miles.  Make it a little faster.  Might 

go up more eventually.  And 320, 340, 360, 380, 400, 420, 440, 460, 480, and 500.  
And the same for the other line.   

Line 21: And then 50, and let’s see.  2, 4, 6.  And another 5.  and then 1, 2, 3.  So 1, 2, 3, 4, 5, 
6.  1, 2, 3, 4, 5, 6, 7, 8.   

Line 22: So you need another here ‘cause there’s a 3 hour difference.   
Line 23: And 60 and another 50.   
Line 24: Now they are, let’s see, 20, 40, 60, 80 miles away.   
Line 25: I’m gonna check how many hours that took.  1, 2, 3, 4, 5, 6, 7. 
 

 
 
Figure 21. Jamal’s full counting strategy. 
 
In Lines 24 – 25, Jamal determines that Trains A and B have travelled for 7 hours and are now 
80 miles apart.  He then uses thinking similar to the thinking he uses in his second strategy to 
confirm that the answer is 15 hours, as he reports initially in Line 18. 

I counted and found it [i.e., the remaining distance between Trains A and B] was 80 and 
to check that I counted up these – the dots [i.e., how many hours Trains B had already 
travelled].  1 2, 3, 4, 5, 6, 7.  That meant (7 + 8) / 10.  Is, um, 15. 
 

Line 26: So considering they were 150 miles behind, I’m going to say that my answer is 
correct. 

Line 27: 15 hours.  And I’m finished. 
  
Jamal’s success in this problem was due to the thinking that he developed using both his 
counting and arithmetic strategies.  The counting strategy allows him to begin observing how the 
distance between the trains changed over time, and the arithmetic strategy allows him to begin 
conceptualizing the relationship between distance and time mathematically.  Finally, returning to 
the counting strategy helps Jamal to fully understand the arithmetic strategy he has developed. 
 Trajectory 3. Participants who followed Trajectory 3 (n = 2) differed from participants 
who followed Trajectories 1 and 2 in that they initially lacked sufficient metacognition in the 
preparation phase (see Figure 18).  These participants developed an inappropriate plan due to an 
underdeveloped conceptual understanding of the problem.  However, participants who followed 
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Trajectory 3 caught their mistaken plans in the performance phase and returned to the 
preparation phase to develop a deeper understanding of the problem and create a mathematically 
appropriate plan.  Once their new plan was in place, these participants used sufficient 
metacognition as they worked through the performance phase for a second time, resulting in an 
accurate solution.  Similar to participants who followed Trajectories 1 and 2, metacognition in 
the evaluation phase did not affect their solution accuracy.   
 Anthony is one of the two participants who followed Trajectory 3.  He initially develops 
an inappropriate plan (50t = 60[t + 3]) to solve the train problem. 
 
Line 3: So, Train A leaves UC Berkeley Station traveling 50 miles an hour on Track X.  3 

hours later, train b leaves, so this is track x [draws track x], train b leaves the station 
travelling 60 mph on track y, so that's the same station, so train b, on track y [writes 
train b, draws track y].  And this train is travelling 50 mph, and this is travelling 60 
mph [labels speeds next to tracks].  Which is parallel, 

Line 4: Ok that's good. 

Line 5: Um, how long does it take train b to catch up with train a. 
Line 6: So let's say t equals the amount of time [writes “t – time”], so it travels 50 miles in 1 

hour and this travels 60 miles in 1 hour.  3 hours -- oh it's 3 hours later.  Oh.  So this 
time must be...let's say this is time in hours [writes in hours next to t -- time], 

Line 7: So this is t here is t, and this is t plus 3 [writes t + 3].  so the time it takes [writes d=rt] 

Line 8: So the distances have to be equal.   
Line 9: So let's say this is d1, d2.  [writes d1 and d2 next to tracks x and y, writes d1=d2] d1 

has to equal d2.  this travels 50 miles in 1 hour, that's the speed.  So 50t, and this is 60 
(t+3) [labels tracks],  

Line 10: So I have to look for when this equals... 
Line 11: [writes 50t = 60(t – 3), simplifies equation] 

Line 12: 10t…well… 
 

 
 

Figure 22. Anthony’s initial algebraic strategy. 
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Anthony describes his thinking as he realizes in the performance phase that he has made a 
mistake: 

“I’m getting this negative time, which doesn’t make sense…It’s only when I got down 
here [Line 12] that I realized that something is wrong…I think I wanted to believe first 
that I made a mistake on how I did the problem instead of that I misinterpreted the 
problem, because that’s worse…That means I have to start all over.  I just wanted to see 
where I made my mistake.  And at the end, I looked at the problem again.” 

Anthony’s metacognition in the performance phase leads him to reconsider the problem.   
 
Line 13: The distance this train [Train A] travels has to equal the distance this train [Train B] 

travels for them to meet. 
Line 14: Travels 50 miles per hour…[looks over her page of work]…3 hours later. 
Line 15: [writes 50t + 150 = 60t] 
Line 16: [crosses out +3 from 60(t+3) and changes 50t to 50 (t+3) next to diagrams]  
Line 17: This is...[solves new equation, writes t=15].  15 hours. 
 

 
 

Figure 23. Anthony’s final algebraic strategy. 
 
 Problem solving trajectories resulting in an incorrect or no solution. Nineteen 
participants (63%) exhibited thinking that resulted in incorrect or no solutions to the train 
problem.  These participants followed five different problem solving trajectories (see Figures 25 
– 29) 

Trajectory 4. Two participants solved the train problem following Trajectory 4 (see 
Figure 24).  Similar to participants who followed Trajectories 1 and 2, these participants 
exhibited sufficient metacognition in the preparation phase and developed accurate plans.   
Unlike participants in Trajectories 1, 2, and 3, these two participants made mistakes as they  
carried out their plans in the performance phase.  These mistakes went unnoticed in the 
performance phase due to a lack of metacognition (i.e., monitoring).  Finally, in the evaluation  
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Figure 25. Trajectory 5. 
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Figure 27. Trajectory 7. 
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MC?

MC?

Figure 28. Trajectory 8. 

 
phase, these participants did not verify their solutions and reported incorrect final answers.  For 
participants following Trajectory 4, the absence of metacognition in the performance and 
evaluations phases (despite sufficient metacognition in the preparation phase) resulted in 
incorrect solutions. 
 Trajectory 5. Participants who worked the train problem following Trajectory 5 (n = 6) 
began in the preparation phase similarly to participants who followed Trajectory 3 (see Figure 
25).  These participants did not develop a sufficient conceptual understanding of the problem and 
therefore developed inappropriate plans to solve the problem.  Also similar to participants who 
followed Trajectory 3, these participants realized in the performance phase that either their plans 
were not working or that they were confused and needed to re-evaluate the problem, leading 
them to return to the performance phase.  Unlike participants who followed Trajectory 3, 
participants who followed Trajectory 5 were unable to use metacognition to develop a deeper 
understanding of the problem or an appropriate plan.  Instead, they developed a second plan that 
was also incorrect.   

Five of the six participants who followed Trajectory 5 carried out their second incorrect 
plans and reported incorrect answers without using sufficient the necessary metacognition to 
identify their mistakes in the evaluation phase.  One participant realized as he was carrying out 
his second plan in the performance phase that the plan was not working, and returned to the 
preparation phase for a third time.  Once in the preparation phase, this participant was still unable 
to use sufficient metacognition and developed a third inappropriate plan which he used, resulting 
in an incorrect answer.  Similar to the other participants who followed this trajectory, he did not 
use sufficient metacognition in the evaluation phase to verify his answer, resulting in a final 
incorrect answer.   

Jaylen is one of the six participants who followed Trajectory 5. 
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Line 1: [Reads problem aloud] 
Line 2: So, I’d make a chart and I’d put time and rate and distance.   
Line 3: So Train A and then Train B.  And then it [Train A] goes 50 miles and then Train B 

leaves 60 miles.   
Line 4: And since there’d be time, and then t plus 3 because it’s – it leaves 3 hours later.  So 

this would be 50t and then 60(t + 3) 
Line 5: So then it’d be 60t + 180 = 50t. 
Line 6: And then you’d subtract 50t and then subtract 50t so it’d be 10t + 180 = 0.  And 

subtract 180, so it’d be -180 = 10t.  So you divide by 10, divide by 10, so it’d be t = -
18. 

Line 7: So then it’d be…so it’d be…so it’d be minus 3 instead of plus 3.  [Changes t+3 in chart 
to t-3, changes equation from 60t + 180 = 50t to 60 – 180 = 50, changes 10t + 180 = 0 
to 10t – 180 = 0]. 

Line 8: So you’d add 180 and then it’d be 18. 
Line 9: So it’d be 18 hours.  Yeah. 

 

 
 
Figure 29. Jaylen’s complete algebraic strategy. 
 
As Jaylen solves his first equation, he notices that something was wrong.   

“[I realized] I didn’t really figure it out.  It wouldn’t make sense…since it was -180 and it 
just would be a really weird answer…you want a positive number because you want to 
know how long it takes and that’s time.  Then it wouldn’t make sense if it was -18 
hours.” 

Jaylen explains the thinking that led to changing the distance Train B travels from t + 3 to t – 3. 
Because I was going over my equation and I was thinking where I went wrong and when 
I checked I saw that I subtracted 180 and that got me a negative.  And I was thinking it 
might be because it was t-3 and I got the minus from distributing 60 into t+3 so I thought 
of negative 3. 
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His thinking does not lead him to a more complete understanding of the problem or relate the 
math to the problem.  Instead, he is focused on changing the math to give him a positive answer.  
Once he changes his equation and gets a positive answer, he is satisfied with the answer, and 
does not go back to verify that this answer maakes sense in terms of the problem. 

Trajectory 6. Participants who followed Trajectory 6 (n = 2) used sufficient 
metacognition in the preparation phase to develop accurate plans (see Figure 26).  In the 
performance phase, both participants decided that their counting strategies were not appropriate 
for solving the problem (although they were actually correct and working), and returned to the 
preparation phase.  Once back in the preparation phase, the participants lacked the metacognition 
necessary to develop a second appropriate plan or a deeper understanding of their first plan.  
Instead, they developed one or more inappropriate plans which they carried out without 
sufficient metacognition in the performance or evaluation phases, resulting in an incorrect final 
solution.  One participant moved back and forth through the preparation and performance phases 
multiple times, developing three inappropriate plans in addition to her appropriate plan before 
reporting her final incorrect solution.  The other participant, Fiona, develops only one 
inappropriate plan following her correct plan, which she carries out resulting in an incorrect 
solution. 

 
Line 1:  [Reads problem aloud] 
Line 2: K, I’m gonna make a chart.  So Train A, Train B.  Then rate times time is distance. 
Line 3: Is that what they’re asking me? 
Line 4: 3 hours later.  Yeah. I think so. 
Line 5: So 50 miles per hour.  Um, this one’s going 60 miles per hour.  3 hours – so, 3 hours.  

So if this train started at x, this one started at x+3. 
Line 6: But that would be how long it was travelling for, and that’s not what they told me. 

 

 
 

Figure 30. Fiona’s initial DRT chart. 
 
Fiona reveals that her choice to use a DRT chart is based on her memory of past 

experiences using DRT charts to solve similar problems at school.  She explains that when she is 
given a rate, “I make a chart so I can see what’s going on and maybe use the rate times time 
equals distance thing.”  However, she has difficulty filling out the chart. 

I was thinking they didn’t give me any time for Train A, they just told me it was 50 miles 
per hour and that would probably be my variable.  And it said 3 hours later.  I was 
thinking, ‘ok, it’s x + 3’ and after that I was considering 50x and that would be 60x + 3.  
And I’m not sure that’s exactly what they want. 

Fiona is unable to develop an algebraic strategy so instead, she develops a counting strategy.  
 
Line 7: So Train A is on Track X.  Train B is on Track Y. 
Line 8: Ok, well if it’s going 50 miles per hour and I know that 3 hours later Train B left, then 

Train A must be going for at least 3 hours.  And it if was, then it covered how much 
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distance?  50 times 3 is 150 miles.  And then Train B started and was going 60 miles 
per hour. 

Line 9: If you add another hour, then this [Train A] would have gone 200 and this [Train B] 
would just be 60. 

Line 10: If I give it another hour, that’d be 250 and 120.  And another hour it’d be 300 and 
180.  And another one would be 240 and 250 

Line 11: This is kindof just guess and check.  It’s not really a good way to solve a problem. 
 

 
 

Figure 31. Fiona’s counting strategy. 
 
Fiona describes her thinking about switching from an algebraic strategy to the counting 

strategy, which she labels, “guess and check.” 
Here I was using guess and check because I couldn’t find a way to set up an equation.  
And if I could find the answer guessing and checking it, then that would be the only way 
[to solve the problem].  So I started adding 50 to the bottom and 60 to the top a couple of 
times and they were quite far apart each time so I figured that I was not getting very close 
any time soon.  So guess and check would not be the best way to solve this.   

Fiona’s counting strategy is mathematically correct, and she was on the right track.  However, 
she does not realize this and decides to create an algebraic strategy instead.  She explains that her 
counting strategy “would end up giving me the answer, but I thought it would be better to solve 
it using an equation because this might take a really long time.”  Therefore, Fiona does not think 
her counting strategy is a realistic and viable way to solve the problem. 
 Next, Fiona returns to her original idea of using a DRT chart to create an algebraic 
equation. 
 
Line 12: So that means, ok, ok.  If this [the rates and times in the table] was correct then it’d be 

50x and this would be 60(x + 3). 
Line 13: Which would be 60x + 180 and I guess that would be equal to 50x? 
Line 14: Would the distances be equal? 
Line 15: Ok, well, if they were, then 10x = -180. 
Line 16: But that doesn’t make sense.  It can’t be negative. 
Line 17: I’m not really sure how to solve this. 
 

       
 
 

Figure 32. Fiona’s completed algebraic strategy. 
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Fiona explains that she became stuck when she got a negative solution to her equation.  
She is unable to find the source of her mistake. 

The train couldn’t be travelling for negative amount of time or for a negative distance, so 
I obviously had done something wrong…I thought maybe there was something wrong 
with my arithmetic but I checked and it was fine.  So I wasn’t really sure [what I had 
done wrong]…I was pretty sure I was going to have to ask somebody else how to solve 
this and learn from them because these kind of problems require this kind of method. 

After finding a negative solution, Fiona chooses to quit the problem instead of returning to the 
planning phase or revisiting her counting strategy which would have eventually led her to a 
correct solution (if she carried out the strategy accurately).  She explains why she chose to quit 
instead of going back to her counting strategy. 

I know from previous experiences that that’s not exactly how they want you to solve it.  
Because I’ve done that on a test before and gotten the right answer but still docked points 
because that’s not the way they taught me and the way they want me to solve it.  So I 
guess in the real world you could do it that way, but I don’t know… 

 Trajectory 7. Participants who followed Trajectory 7 (n =7) lacked metacognition in all 
of the phases of problem solving (see Figure 27).  Due to the absence of metacognition in the 
preparation phase, these participants developed inappropriate plans.  Three of these plans were 
algebraic (i.e., 50x = 60(x - 3), 50x = 60(x + 3), 50x = 60x – 90), three of these plans involved 
counting strategies that were setup incorrectly (e.g., beginning sequence with Train B at 60 miles 
when Train A is at 150 miles), and one plan was a variation of the 150/10 strategy (i.e., 180/10 
instead of 150/10).  In the performance phase, these participants carried out their plans without 
monitoring their progress, resulting in inaccurate solutions.  Finally, these participants lacked the 
metacognition that would have led them to identify that their solution was incorrect and to return 
to the preparation phase to re-analyze the problem.   

Trajectory 8. Students who followed Trajectory 8 both lacked the most metacognition in 
the performance phase (see Figure 28).  These participants were able to identify the information 
that was given in the problem, but were unable to conceptually understand the problem and could 
not generate any plan at all.  Instead, these participants chose to terminate the problem in the 
preparation phase.  Faith is one of the participants who followed Trajectory 8. 

 
Line 1: [Reads Problem] 
Line 2: So Train A leaves UC Berkeley Station travelling at 50 miles…miles per hour.   So 

that’s Train A and this is Track, this is A and this is going to be Track X.  Three hours 
later, Train B leaves the station travelling 60 miles per hour.  So this is 50 miles and B 
is 60 miles.  And this is on a different track, Y, which is parallel to track X, so these 
two are parallel. 

Line 3: So how long does it take B to catch up with A. 
Line 4:  [Writes 50] A can be…50A…60…[pause]…Oh wait.  [Crosses out 50A = 60] 
Line 5: I actually don’t know how to solve these problems. 
Line 6: AY:  Do you want to give it any more tries, or are you done? 
Line 7: Like, I don’t know how to solve it, like I had this problem at school and I just didn’t 

know how to do it.  Can I stop with this?  I don’t think I can do this. 
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Figure 33. Faith’s attempt to develop a plan. 
 
Discussion  
 In Study 2, think-aloud and stimulated-recall interviews were conducted to examine 
students’ metacognition as they solved mathematics problems.  Data from problem solving 
interviews provided illustrative examples of metacognitive regulation, knowledge, beliefs, and 
awareness.  In each phase, participants’ metacognitive knowledge, beliefs, and awareness 
contributed to their ability to regulate their thinking and problem solving.  The illustrative 
examples presented in this study may contribute to conceptualizations of metacognition in the 
field of educational psychology by providing functional and contextual examples of 
metacognition. 
 Data from problem solving interviews also showed that participants use or non-use of 
metacognition in the different phases of problem solving resulted in many different problem 
solving trajectories.  Participants’ use of metacognition was consistent across phases in some 
trajectories, and inconsistent across phases in others.  The variety of different trajectories follwed 
by participants indicate that the relationships between metacognition and problem solving 
accuracy are complex.  Overall, participants’ use of metacognition in each phase had a 
substantial impact on their problem solving solution accuracy.   
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Study 3 
In this study data from Studies 1 and 2 were used to analyze the relationships between 

metacognition and academic achievement.  The specific goals of this study were (a) to determine 
the predictive validity of students’ Jr. MAI scores with problem solving metacognition and 
problem solving accuracy, and (b) to examine the relationship between students’ problem 
solving metacognition and academic GPA, math grade, MDT score, and summer course grade. 
Method  

Participants and measures. Participants were 30 middle and high school mathematics 
students attending a summer program for academically talented students who participated in both 
Studies 1 and 2.  See Study 2 Method section for participant demographic information.  
Variables examined in this study were Jr. MAI scores, metacognition during problem solving,  
and measures of academic achievement.  

Jr. MAI. Metacognition was measured quantitatively using the Jr. MAI (Sperling et al., 
2002; see Study 1 for details).  Scores for Knowledge and Regulation were derived from the 14 
Jr. MAI items that were found to be salient in the exploratory factor analysis in Study 1.   

Metacognition during problem solving. Participants’ level of problem solving 
metacognition was determined based on the metacognition they exhibited as they solved the train 
problem (see Study 2 for details).  Participants who exhibited consistent metacognition across all 
phases of problem solving (i.e., Trajectories 1 and 2) as well as participants who exhibited strong 
metacognition in some but not all phases (i.e., Trajectories 3 and 4) were classified as having 
high problem solving metacognition.  Participants whose absence of metacognition resulted in 
“wild goose chases” (Schoenfeld, 1985, p. 116; i.e., Trajectories 5 and 6) and participants who 
did not use metacognition in any phase of problem solving (i.e., Trajectories 7 and 8) were 
classified as having low problem solving metacognition.   

Academic achievement. Academic achievement measures examined in this study were 
GPA, mathematics grade, MDT score, summer course grade (see Study 1 for details), and 
problem solving solution accuracy.  Problem solving accuracy was measured by the total number 
of mathematics problems participants solved correctly during the problem solving interview.  
Scores ranged from zero to three problems correct. 
Results 

Mean Jr. MAI subscale scores (i.e., Knowledge and Regulation) and mean academic 
achievement scores (i.e., GPA, math grade, summer course grade, and MDT score) are presented 
in Table 9.  Frequencies of levels of problem solving metacognition and problem solving 
accuracy are also presented in Table 9. 

Jr. MAI scores, problem solving metacognition, and solution accuracy. The 
predictive validity of Jr. MAI scores with problem solving metacognition was examined using 
independent t-tests.  The predictive validity of Jr. MAI scores with problem solving accuracy 
was examined using bivariate correlation analysis. 

There was no statistically significant or meaningful difference in Knowledge scores 
between participants with low problem solving metacognition (μ = 4.13, SD = .38) and 
participants with high problem solving metacognition (μ = 4.30, SD = .66; p > .05, Cohen’s d = 
.33).  Similarly, there was no statistically significant or meaningful difference in Regulation 
scores between participants with low problem solving metacognition (μ = 3.72, SD = .69) and 
participants with high problem solving metacognition (μ = 3.55, SD = .72; p > .05, Cohen’s d =  
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Table 9 

Descriptive Statistics of Metacognition and Academic Achievement Variables 

 n % M SD Range 

Jr. MAI      

 Knowledge 30 -- 4.20 .52 2.86 - 5.00 

 Regulation 30 -- 3.65 .70 2.14 - 4.86 

Problem Solving Metacognition      

 High 13 43%    

 Low 17 57%    

Academic Achievement      

 GPA 27  3.90 .19 3.33 - 4.00 

 Math Grade 27  3.97 .17 3.30 - 4.30 

 Course Grade 30  3.45 .63 2.00 - 4.30 

 MDT 30  85.5 9.0 64.0 - 100 

Problem Solving Solution Accuracy      

 0 Problems Correct 6 20%    

 1 Problem Correct 7 23%    

 2 Problems Correct 9 30%    

 3 Problems Correct 8 27%    
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.33).  Neither Knowledge scores (r = .04) nor Regulation scores (r = -.07) were significantly 
correlated with problem solving accuracy. 

Problem solving metacognition and academic achievement. Mean academic 
achievement scores for participants with low and high problem solving metacognition are  
presented in Table 10.  There was no statistically significant or meaningful difference in GPA (p 
> .05, d = .26) or math grade (p > .05, d = .06) between participants with low and high problem 
solving metacognition.  There was no statistically significant difference in summer course grade  
or MDT score between participants with low and high problem solving metacognition (p > .05).  
However, effect sizes indicated that the differences in these latter two variables were 
meaningfully different.  That is, participants with higher problem solving metacognition received 
higher summer course grades (d = .55) and higher MDT scores (d = .54) than participants with 
low problem solving metacognition. 
 

Table 10 

Mean Academic Achievement Scores by Problem Solving Metacognition 

  GPA  Math Grade  CG  MDT  

 n M SD  M SD  M SD  M SD 

PS-MC             

 Low 17 3.88a .22  3.98a .08  3.30  .68 83.4 9.3 

 High 13 3.93 .15  3.97 .25  3.64  .53 88.18 8.2 

Note.  CG = Summer course grade. PS-MC = Problem solving metacognition 
a n = 14 

 

 
Discussion 
 Results indicated that Jr. MAI scores were not predictive of participants’ use of 
metacognition during problem solving.  They were also not predictive of participants’ problem 
solving solution accuracy.  Participants’ problem solving metacognition did not have a 
meaningful relationship with their GPA or mathematics grades; however, problem solving 
metacognition did have a meaningful relationship, captured with medium effect sizes, on 
summer course grades and MDT scores.   
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General Discussion 
The two overarching goals of this dissertation were (a) to examine the affordances and 

limitations of the ways that educational psychologists operationalize metacognition, measure 
metacognition, and study the relationships between metacognition and academic achievement, 
and (b) to consider how theories and methodologies from mathematics education may contribute 
to the theories and methodologies used by educational psychologists to study metacognition.  A 
synthesis of the educational psychology and mathematics education literatures and three 
empirical studies were used to address these goals. 
Defining Metacognition 
 Metacognition within the field of educational psychology has been considered a fuzzy 
construct.  Most researchers in this field (e.g., Brown, 1987; Schraw & Dennison, 1994) define 
metacognition as metacognitive knowledge and metacognitive regulation, both of which are 
further defined by taxonomic categories of thinking.  Literature from mathematics education and 
findings from Study 2 may contribute to educational psychologists’ definitions of metacognition 
in two ways.  First, theories from mathematics education broaden the definition of metacognition 
by including metacognitive beliefs and metacognitive awareness (which were described early on 
by Flavell [1979] and Brown [1978] but never taken up by contemporary educational 
psychologists).  The examples of students’ thinking during problem solving presented in Study 2 
provide support for the inclusion of metacognitive beliefs and metacognitive awareness as 
important metacognition constructs.  Beliefs and awareness contributed both to students’ use of 
metacognitive regulation as well as to their problem solving accuracy. 
 Second, mathematics education literature may broaden the conceptualizations of 
metacognition by giving functional definitions of metacognition.  Within the field of 
mathematics education, metacognition is conceptualized as thinking that takes place in specific 
contexts.  Such definitions may help to address the lack of clarity in educational psychology 
definitions.  As educational psychologists continue to develop their conceptualizations of 
metacognition, they may benefit from exploring the role of different contexts within their 
definitions of metacognition. 
Metacognition and Academic Achievement 

The relationships between metacognition and academic achievement examined in this 
study varied based on the operationalizations of metacognition and achievement used.  
Metacognitive knowledge and regulation, as measured by the Jr. MAI (Sperling et al., 2002) 
were not significantly or meaningfully related to school achievement (i.e., GPA or math grade), 
mathematics content mastery (i.e., MDT score), mathematics summer course achievement, or 
mathematics problem solving accuracy.  Similarly, metacognition, as measured by think aloud 
and stimulated recall during mathematics problem solving tasks, was not significantly or 
meaningfully related to school achievement.  However, metacognition during problem solving 
was meaningfully related to mathematics content mastery and mathematics summer course 
achievement.  Also, as shown by the eight problem solving trajectories presented in Study 2, 
there is a complex relationship between problem solving metacognition and problem solving 
outcomes.  In future studies of metacognition and achievement, it will be important to be 
thoughtful about the ways in which both constructs are operationalized in order to draw 
meaningful conclusions about their relationships. 
Measuring Metacognition 

Self-report questionnaires are an important methodological tool for studying 
psychological constructs like metacognition (Desoete & Roeyers, 2006).  Findings from Study 1 
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indicated that the scores from the 14-item Jr. MAI were a structurally valid operationalization of 
metacognitive knowledge and metacognitive regulation as defined by Sperling et al. (2002).  
This questionnaire is useful because it measures both Knowledge and Regulation among 
adolescents.  However, it is limited with regard to (a) the concurrent and predictive validity of 
scores with measures of academic achievement and other measures of metacognition and (b) the 
scope of the metacognition constructs it measures. 

Further research is needed to modify the Jr. MAI (Sperling et al., 2002) or to create a new 
self-report questionnaire that measures aspects of metacognition that have meaningful 
relationships with achievement and actual metacognitive behaviors.  Researchers may also wish 
to consider including items assessing metacognitive beliefs and metacognitive awareness on this 
questionnaire.  The findings of this dissertation also suggest that mixed method studies may be 
useful in examining the validity of questionnaires assessing metacognition.  
Conclusion 
 In this dissertation, I reviewed existing literature and presented three studies that 
examined metacognition and its relationships to academic achievement.  Based on a review of 
educational psychology and mathematics education literatures, I identified four metacognition 
constructs related to the types of metacognition (i.e., knowledge, regulation, beliefs, and 
awareness) that students use during mathematics tasks .  In Study 1, I examined the psychometric 
properties of Jr. MAI scores (Sperling et al., 2002) and concluded that these scores were reliable 
and structurally valid, but lacked a meaningful relationship with GPA, mathematics grade, MDT 
score, and summer course grade.  In Study 2, I presented examples of how students used 
metacognitive regulation, metacognitive knowledge, metacognitive beliefs, and metacognitive 
awareness in each phase of problem solving and presented eight different problem solving 
trajectories that students followed based on their use of metacognition.  In Study 3, I found that 
students’ Jr. MAI scores were not significantly or meaningfully related to their problem solving 
metacognition or problem solving accuracy.  Students’ problem solving metacognition was not 
meaningfully related to GPA or mathematics grade, but it was meaningfully related to MDT 
score and summer course grade. 

Metacognition is a complex construct that has been defined and studied in many ways by 
researchers in the fields of educational psychology.  Theories and methodologies from 
mathematics education may help to clarify to the ways that educational psychologists define and 
measure metacognition.  Using mixed methodologies in future research will allow educational 
psychologists to better understand metacognition and its relationships to academic achievement. 
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Appendix A 

Jr. Metacognitive Awareness Inventory (Jr. MAI, Sperling et al., 2002) 

We are interested in what learners do when they are solving math problems.  Please read the 
following sentences and fill in the bubble for each answer that relates to you and the way you are 
when you are solving math problems for school work or home work.  Please answer as honestly 
as possible. 
 
1 = Never 2 = Seldom 3 = Sometimes 4 = Often 5 = Always 
 
 1     2     3     4     5 

1.  I am a good judge of how well I understand something  O    O    O    O    O 

2.  I can motivate myself to learn when I need to  O    O    O    O    O 

3.  I try to use strategies that have worked in the past  O    O    O    O    O 

4.  I know what the teacher expects me to learn O    O    O    O    O 

5.  I learn best when I know something about the topic O    O    O    O    O 

6.  I draw pictures or diagrams to help me understand while learning O    O    O    O    O 

7.  I ask myself if I learned as much as I could have once I finish a task  O    O    O    O    O 

8.  I ask myself if I have considered all options when solving a problem O    O    O    O    O 

9.  I think about what I really need to learn before I begin a task O    O    O    O    O 

10.  I ask myself questions about how well I am doing while I am learning 

something new 

O    O    O    O    O 

11.  I focus on the meaning and significance of new information O    O    O    O    O 

12.  I learn more when I am interested in the topic O    O    O    O    O 

13.  I use my intellectual strengths to compensate for my weaknesses O    O    O    O    O 

14.  I have control over how well I learn O    O    O    O    O 

15.  I ask myself periodically if I am meeting my goals O    O    O    O    O 

16.  I find myself using helpful learning strategies automatically O    O    O    O    O 

17.  I ask myself if there was an easier way to do thing after I finish a task O    O    O    O    O 

18.  I set specific goals before I begin a task  O    O    O    O    O 
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Appendix B 

Problem Solving Interview Script 

A.  Introduction 
 
My name is Adena Young, and this is my assistant Leo White.  We are graduate students at UC 
Berkeley, and we are interested in knowing more about how students like you think while you are 
doing math.  For your interview today, I am going to ask you to solve some math problems.  As 
you are doing each problem, I am going to ask you to think aloud.  What I mean by think aloud 
is that I want you to tell me everything you are thinking from the time you first see the question 
until you are finished with the problem.  You do not need to plan out what you say, or try to 
explain to me what you are saying, just pretend like you are alone and speaking to yourself.  I 
will give you one practice problem so you can practice thinking aloud while you do math, then I 
will ask you to solve three more math problems.  After you are finished with all of the problems, 
we will watch your interview on the screen, and I will ask you to tell me about what you were 
doing, thinking, and feeling as you solved each problem.  If at any time during the interview you 
want to stop or need to take a break, just let me know. 
 
There are just a couple more things before we get started.  Do you have a cell phone?  Please 
make sure that your cell phone is off if you have one.  Since we are video taping you doing math 
aloud, it’s important that you speak loudly and clearly, and that you keep your paper in this area 
(indicate the area on the table) so we can get all of your writing on tape. Some kids get nervous 
around cameras, but I want you to try your best to do these math problems just like you would 
solve problems at school or at home for homework and to ignore the cameras.  If you start to get 
nervous, please let me know. 
 
Do you understand what we are going to do?  Do you still agree to participate in this research 
study? 
 
B.  Concurrent Report Section 
 
B1.  Practice Problem 
 
We will begin with a practice problem to help you practice thinking aloud.  Please solve this 
problem while thinking aloud.  Remember say everything you are thinking from the time you first 
see this question until you are finished with the problem.  You may write down as much as you 
like on your paper, and let me know if you need more paper.  [Present Practice Problem] 
 
 
Rope costs $1.50 per foot.  How much money will Michael need to spend for rope in order 
to enclose a 70-foot by 30-foot garden? 
 
 
Thank you.  Next I will have you solve three more problems.  I will ask you to do the same thing 
that you did for this practice problem. 
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B2.1.  Problem 1 
 
Please solve this first problem while thinking aloud.  Remember say everything you are thinking 
from the time you first see this question until you are finished with the problem.  
 
[Present Problem 1.  Allow participant to solve problem.] 
 
 
Train A leaves UC Berkeley station travelling at 50 miles an hour on Track X.  Three hours 
later, Train B leaves the station travelling 60 miles an hour on Track Y, which is parallel to 
Track X.  How long does it take Train B to catch up with Train A?   
 
 
 
B2.2.  Problem 2 

 
Please solve this second problem while thinking aloud.  Remember say everything you are 
thinking from the time you first see this question until you are finished with the problem.  
 
[Present Problem 2.  Allow participant to solve problem.] 
 
 
Jo has three numbers which she adds together in pairs. When she does this she has 
three different totals: 11, 17 and 22. What are the three numbers Jo had to start 
with?  
 
 
B2.3. Problem 3 

 
Please solve this last problem while thinking aloud.  Remember say everything you are thinking 
from the time you first see this question until you are finished with the problem.   
 
[Present Problem 3.  Allow participant to solve problem.] 
 
 
Find the area of DEBF. 
 

F

A B

CD

E
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C. Stimulated Recall Section 
 
Next I am going to play back the video recording of your interview so far.  As we watch the 
video, I’d like you to tell me the things you were doing, thinking, and feeling from the time that 
you first saw the problem until when you were finished with the problem.  Any time you want to 
tell me what you were doing or thinking just pause the video.  I may also pause the video to ask 
you what you were doing or thinking.  Do you have any questions? 
 
Initial Question: 
What was your first thought when you saw this problem? 
 
Questions to further thinking: 
What were you doing/thinking/feeling  here/at this point/right then?” 
Why did you… 
How did you decide to… 
 
Final Questions: 
Is there anything else you were thinking or feeling when you solved this problem? 
What did you think about this problem? 
 
D.  End of Interview 
That is the end of the interview.  Thank you for your participation.  As compensation for your 
time and effort, you are receiving $10.  I will need you to sign a receipt saying that you have 
received this money.  Thank you again for your participation in this study. 
 


	 Cailin: Another example of sufficient metacognition. Recall Cailin, who used sufficient metacognition to develop an appropriate algebraic strategy in the preparation phase.  During the evaluation phase she develops an appropriate equation and easily solves the equation to get her solution (Line 30).  Before finishing the problem, Cailin evaluates her solution by questioning whether the solution makes sense in light of the problem.  
	Cailin explains that after she got her answer, she wanted to check to see if her answer made mathematical sense relative to the problem.: “I always finish my thought and then say, ‘Ok, does that answer really make sense?  Does how I got it really make sense?’”  Once Cailin relates her answer back to the original problem, she becomes confident in her answer.



