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Abstract
Neurodegeneration measured through volumetry in MRI is recognized as a potential Alzheimer’s Disease (AD) biomarker, 
but its utility is limited by lack of specificity. Quantifying spatial patterns of neurodegeneration on a whole brain scale 
rather than locally may help address this. In this work, we turn to network based analyses and extend a graph embedding 
algorithm to study morphometric connectivity from volume-change correlations measured with structural MRI on the 
timescale of years. We model our data with the multiple random eigengraphs framework, as well as modify and implement 
a multigraph embedding algorithm proposed earlier to estimate a low dimensional embedding of the networks. Our version 
of the algorithm guarantees meaningful finite-sample results and estimates maximum likelihood edge probabilities from 
population-specific network modes and subject-specific loadings. Furthermore, we propose and implement a novel statisti-
cal testing procedure to analyze group differences after accounting for confounders and locate significant structures during 
AD neurodegeneration. Family-wise error rate is controlled at 5% using permutation testing on the maximum statistic. We 
show that results from our analysis reveal networks dominated by known structures associated to AD neurodegeneration, 
indicating the framework has promise for studying AD. Furthermore, we find network-structure tuples that are not found 
with traditional methods in the field.

Keywords  Alzheimer’s disease · Structural MRI · Graph embedding · Network analysis · Familywise error rate control

Introduction

Alzheimer’s disease (AD) is a progressive mental disorder 
associated with neurodegeneration that generally occurs 
in old ages. It is one of the most common diseases in sen-
iors, killing more than breast cancer and prostate cancer 
combined (Association, 2019). However, AD can only be 
formally diagnosed through an autopsy after a patient is 
deceased, encouraging the research of alternative proxies for 
AD diagnosis. There are currently three classes of potential 
biomarkers that could offer useful alternatives to assess AD 
diagnosis: �−amyloid(A), tau(T) and biomarkers for neuro-
degeneration or neuronal injury(N) (Jack et al., 2016), with 
the last class being the focus of this paper. Neurodegenera-
tion can be measured noninvasively, such as through struc-
tural MRI, but is not specific to AD as it can reflect other 
diseases (Jack & Holtzman, 2013). For example, atrophy 
is a biomarker that is often associated with AD, but also 
occurs in a variety of disorders such as epilepsy and anoxia 
(Jack & Holtzman, 2013). The lack of specificity of these 
neurodegeneration biomarkers poses a major limitation 
in their utility for early-stage clinical diagnosis of AD. A 
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promising approach to improving specificity is to consider 
patterns of volumetric changes across the whole brain, rather 
than focusing on a small number of regions. For example, in 
discussing the diagnosis of Mild Cognitive Imparment due 
to AD, Albert et al. suggests the possibility of biomarkers 
describing “complex patterns of tissue loss” through “data 
driven statistical approaches in which many different brain 
regions are evaluated simultaneously” (Albert et al., 2011).

While rare in volumetric analysis, such patterns have been 
studied extensively in functional brain imaging. One popu-
lar approach to studying brain connectomics is to extract 
information about interactions between volumetric pixels 
(voxels) from time-series functional magnetic resonance 
imaging (fMRI) data collected over a timescale of weeks, 
months or years (Cohen et al., 2017). Functional connectiv-
ity, in particular, studies temporal dependencies among ana-
tomically separated regions (Van Den Heuvel & Pol, 2010). 
There are several approaches to study functional connectiv-
ity in fMRI data. As our interests lie within the whole brain 
instead of a single voxel, we discuss only multivoxel pattern 
analysis methods that study networks as a whole (Lewis-
Peacock & Norman, 2014). A traditional method in the field 
is seed-based analysis, in which a region of interest (ROI) 
is selected, and all voxels correlated to the ROI is identified 
(Cole et al., 2010). For example, in an earlier work Biswal 
et al. studied the motor cortex to identify the sensorimotor 
network (Biswal et al., 1995). Unsupervised clustering meth-
ods including k-means, hierarchical and graph-based meth-
ods do not require a priori ROI and group voxels together 
by their similarities in time series data (Khosla et al., 2019). 
In their paper, Lee et al. uses fuzzy-c-means clustering to 
identify resting state networks (Lee et al., 2012).

Over the years, graph-based approaches have gained 
popularity in studying functional connectivity. To convert 
a brain into a graph, the regions are modeled as nodes 
and connections between regions as edges. Under this 
model, one can construct a matrix of all pairs of connec-
tions in the brain, known as the functional connectome 
(Fornito et al., 2016), of which decomposition or embed-
ding methods can be applied to uncover latent variables. 
Independent component analysis decomposes data into 
linearly independent components, grouping brain regions 
into networks based on their voxel activation correlations 
(Calhoun et al., 2001). Non-negative matrix factorization 
is a dimensionality reduction method that forces non-
negativity constraints on the components (Khosla et al., 
2019). Some popular embedding methods include Adja-
cency Spectral Embedding (ASE) (Sussman et al., 2012), 
which embeds a single symmetric adjacency matrix using 
eigenvectors corresponding to the largest eigenvalues, and 
Laplacian Eigenmap (LE) (Belkin & Niyogi, 2003), which 
embeds a single graph-Laplacian matrix using its eigen-
vectors corresponding to the smallest nonzero eigenvalues. 

However, several limitations lie within these graph-based 
approaches. First, they embed one graph at a time, and 
combining individual embeddings across multiple graphs 
is not a straighforward task. Second, the results are dif-
ficult to interpret, and further analysis is required (Yang 
et al., 2020).

One technique for embedding multiple graphs at once 
is omnibus embedding, in which the matrices of multiple 
graphs are combined into one and embedding is done on 
the big matrix (Levin et al., 2017). However, the combined 
matrix is usually very large and require lots of computa-
tional power. Dictionary learning is another framework for 
uncovering low-dimensional embeddings across multiple 
graphs, allowing for group comparison. Drawing upon 
clustering and linear decomposition methods, this method 
allows for additional constraints to achieve better formed 
solutions (Abraham et al., 2013). In the work of D’Souza 
et al. (D’Souza et al., 2019), they use a dictionary learning 
method to model interactions between resting state func-
tional MRI and behavioral data in Autism Spectrum Disor-
der. Their method finds shared dictionary elements across 
multiple graphs and a subject specific loading onto the ele-
ments, which are then used as inputs to a neural network 
for disease prediction (D’Souza et al., 2019). In the work of 
Wang et al. (Wang et al., 2019), they propose a joint graph 
embedding method to estimate a low dimensional embed-
ding across multiple graphs and each graph’s projection onto 
that embedding, which we will discuss more in detail in 
Section 2.2.

In this work, we shift our attention away from func-
tional connectivity and propose a graph-based approach to 
study neurodegeneration using correlations in volumetric 
data over time. In Alzheimer’s disease, tau tangle accu-
mulation is known to follow a stereotyped pattern, begin-
ning in the transentorhinal region (stage I-II), spreading to 
the limbic regions (stage III-IV), and eventually moving 
throughout the isocortex (stage V-VI) Braak and Braak 
(1991). Evidence is accumulating from digital pathology 
and brain morphology that patterns of neurodegeneration 
follow this tau deposition Tward et al. (2020); Stouffer 
et al. (2022, 2023); Sadaghiani et al. (2022); Xie et al. 
(2022); Lyu et al. (2023), and therefore we hypothesize 
that correlations in neurodegeneration among these tempo-
ral lobe structures may provide a signal that is specific to 
early Alzheimer’s. Our previous work Miller et al. (2015a) 
examined the timing of neurodegeneration throughout 
this medial temporal lobe network, but this spread of 
pathology throughout a characteristic network has been 
observed in other diseases as well such as Huntington’s 
Ross et  al. (2014), Parkinson’s Visanji et  al. (2013);  
Kordower (2014), depression Small et al. (2011) as well 
as other work in Alzheimer’s disease AD Yin et al. (2014). 
The analysis we propose here provides an opportunity to 
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identify these networks from whole brain data in Alzhei-
mer’s and other disorders.

Other authors have previously proposed graph-based anal-
ysis of volumetric brain imaging data applied to neurological 
disease. For example Zugman et al. (2015) describes the use 
of “structural covariance” and Yin et al. (2023) describes the 
use of a “morphological connectivity network” to quantify 
characteristic brain networks involved in schizophrenia. Ear-
lier work Bullmore and Bassett (2011) has proposed similar 
approaches termed “anatomical connectivity”. However, 
each of these methods creates a single graph that describes a 
population, whereas our approach leverages time series data 
to produce a connectivity graph for each individual. This 
approach allows us to model variability between different 
individuals, and perform statistical testing on a well-posed 
joint model for graph valued random variables Chung et al. 
(2021). To our knowledge, this is the first time joint graph 
embeddings have been used to study volumetric brain data.

Similar to methods reviewed above, we model each brain 
as a graph where a node represents a structure of interest 
and an edge represents a correlation in atrophy patterns 
between two structures (Xu, 2021). We then use a multi-
graph embedding technique to try and understand these 
patterns and uncover potential biomarkers by applying mul-
tigraph embedding to study neurodegeneration over a long 
timescale (relative to fMRI measures). In addition, we hope 
to increase the specificity of neurodegeneration biomarkers 
by modeling the dataset with a more complex pattern than 
existing approaches. Rather than looking at volume changes 
in each structure individually in the traditional mass univari-
ate method (Pengas et al., 2012), we add complexity by char-
acterizing pair-wise relationships between structures in the 
context of uncovered networks. Furthermore, we illustrate 
how our embedding coefficients can be fed into machine 
learning algorithms for potential diagnostic applications, and 
how samples can be drawn from our model to visualize the 
brain’s typicality and variability, interpolating between (or 
extrapolating beyond) healthy and diseased states.

Material and Methods

Data Preprocessing

We obtain our data from Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.​loni.​usc.​edu). The ADNI 
was launched in 2003 as a public-private partnership, led by 
Principal Investigator Michael W. Weiner,MD. The primary 
goal of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET), 
other biological markers, and clinical and neuropsychologi-
cal assessment can be combined to measure the progression 
of mild cognitive impairment (MCI) and early Alzheimer’s 
disease (AD). Specifically, we took the ADNI1 3Y1.5T Lon-
gitudinal FreeSurfer dataset (Wyman et al., 2013) prepared 
by University of California, San Francisco, comprised of 699 
individuals in total. We selected 108 regions of interest com-
mon in studying neurodegeneration, excluding non-brain and 
whole-brain structures as we are interested in structures on a 
smaller scale. We selected a cohort in which each individual 
has at least 3 visits during the span of 3 years. Note here that 
the number of time point required for each subject is not 
fixed, as long as it is greater than 2, as 2 time points does 
not give a meaningful correlation matrix. For subjects with 
missing volumes, we forward filled in time by taking the 
measure from the most recent previous visit, note that the 
initial visit had no missing values for all subjects. We model 
each individual’s brain as a graph, where each anatomical 
structure is a node and an edge exists between two nodes 
if they are highly correlated during neurodegeneration. For 
each individual in the cohort, we converted volumetric data 
into a correlation matrix of size 108 by 108 and then an 
adjacency matrix based on a threshold of 0.8 by absolute 
value, as shown in Fig. 1. We note here as there is no "gold 
standard" for choosing a threshold, previous work have used 
0.1 in Kiar et al. (2017), 0.8 in Zhuo et al. (2018), or based 
on graph density and statistical significance in Bullmore and 
Bassett (2011). To investigate the potential for sensitivity to 

Fig. 1   An example of trans-
formation for one individual’s 
selected structures

https://adni.loni.usc.edu/
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this choice, we ran additional experiments with thresholds 
of 0.7 and 0.9, and produced similar results. In particular, 
the structure with the top 10 highest loadings in each sig-
nificant network were the same. For defining disease groups, 
the Clinical Dementia Rating (CDR) is referenced, which 
consists of 5 levels: 0 (None), 0.5 (Questionable), 1 (Mild), 
2 (Moderate), and 3 (Severe) (Morris, 1991). We decided 
a threshold of <= 1 to separate the group into none/mild 
and severe cognitive impairment. After filtering and pre-
processing, the cohort contains 494 individuals, specifically 
the none/mild group with 322 and the severe group with 172.

Multiple Random Eigengraphs and Joint Graph 
Embedding

We first review the mathematical model and original joint 
graph embedding algorithm proposed by Wang et al. (Wang 
et al., 2019), of which our algorithm is based on. In this 
work, we refer to a random graph as a graph in which the 
edges are generated under a probability distribution. The 
Multiple Random Eigengraphs (MREG) is a mathematical 
framework modeling multiple random graphs (Wang et al., 
2019). Consider a set of m unweighted and undirected graphs 
with the same n vertices denoted by {Gs = (Vs,Es)}

m
s=1

 . Let 
h1, ..., hd be normalized vectors in ℝn that span a subspace 
of dimension d, contributing to a large amount of variability 
in the set of graphs, and �1,… , �d be vectors in ℝm such that 
∑d

k=1
�k[s]hkh

T
k
∈ [0, 1]n×n for all � (Wang et al., 2019) for 

subject s. With these parameters known, we could generate 
a sample graph described here and illustrated in Fig. 2: 

1.	 Identify each group specific network, and subject spe-
cific loadings

2.	 Carry out the product to form a score for each edge

3.	 Apply the softmax function to form a probability for 
each edge

4.	 Sample independent Bernoulli random variables for each 
possible edge

Under this procedure, the adjacency matrix As for each 
graph Gs should be modeled as follows (Wang et al., 2019):

Note here each As is symmetric, as opposed to sampling 
independently above and below the diagonal. The h vectors 
span the latent subspace shared by the set of multiple graphs, 
and the � vectors represent graph-specific loadings onto the 
subspace (Wang et al., 2019).

The original joint graph embedding algorithm by Wang 
et  al. (Wang et  al., 2019) estimates a low dimensional 
embedding of the latent space across multiple graphs and 
each graph’s projection onto that embedding under the 
MREG model. It estimates the subspace by minimizing 
the sum of squared errors (SSE) between the subspace and 
adjacency matrices. (Wang et al., 2019). In this work, we 
implemented a modified version of the Wang et al. algorithm 
as discussed below.

Limitations of the Original Framework

The original framework assumes a large enough number 
of vertices to provide accurate estimates. In the original 
paper’s experiment analyzing brain data, there were 1105 

(1)As[i, j] ∼ Bernoulli

(

d
∑

k=1

�k[s]hk[i]hk[j]

)

, for i ≥ j

(2)As[i, j] = As[j, i], for i < j

Fig. 2   An example of MREG for the same individual and structure in Fig. 1



605Neuroinformatics (2023) 21:601–614	

1 3

vertices, but here we work with only 108 vertices. As such, 
we identify several limitations when applying the original 
framework and algorithm above to neurodegeneration data, 
which we will address and modify in our version: 

1.	 The constraint that probabilities lie in [0, 1] is difficult to 
enforce in practice. The original method assumes a large 
enough sample space that gives desirable results, but 
does not hold up in smaller sample spaces. In fact, when 
we reanalyzed our data using the least squares estimator 
described in the original paper, the resulting matrix was 
not a probability matrix, with a maximum value of 1.53 
and a minimum of −0.17. While embeddings from this 
model still have useful applications, it cannot be sam-
pled from, for example, to produce visualizations as in 
our Fig. 6.

2.	 Incorrect estimation of diagonal entries contributes a 
negligible amount of error when the number of vertices 
is large, but contributes significantly in our case. We ran 
experiments by applying our algorithm with and without 
considering diagonal entries and comparing the binary 
cross entropy (BCE) loss between the two optimizations 
for various numbers of structures. If working with fewer 
than 40 structures, our method reduces the BCE loss 
by 29%. For our dataset, the BCE loss was reduced by 
0.011%.

3.	 The SSE loss function does not correspond to a log 
likelihood under the proposed Bernoulli model, and 
therefore resulting parameter estimates do not have 
desirable properties of maximum likelihood estimators. 
For example, they are not guaranteed to be asymptoti-
cally unbiased or efficient, whereas our estimators are. 
On the other hand, the SSE loss can be optimized more 
efficiently than our method.

Now we state our main contribution and novelty in this 
work. First, we address the three limitations listed above by 
(1) introducing a sigmoid function to the model to guarantee 
edge probabilities are in [0, 1], (2) adding constraints on 
the diagonal such that parameter estimates are not forced to 
fit diagonal entries that carry no meaning (since diagonal 
entries of a correlation matrix are always 1), and (3) extend-
ing the original algorithm (Wang et al., 2019) to identify 
maximum likelihood estimators by gradient descent. With 
these modifications, our embedding algorithm generates 
probabilities suitable for a Bernoulli model, which we will 
describe more in detail below. Secondly, we develop and 
implement a novel statistical testing framework to detect 
complex patterns including network-structure pairs and 
triples, rather than a machine learning classifier. To our 
knowledge, our approach to testing patterns has not been 
performed to analyze joint graph embedding results on brain 
imaging data before.

Modifications to MREG

In this section, we precisely state our modifications to the 
MREG model in Wang et al. (Wang et al., 2019). Consider 
the set of m unweighted and undirected graphs with the same 
n vertices denoted by {Gs = (Vs,Es)}

m
s=1

 , where a vertex rep-
resents a brain structure of our interest and an edge repre-
sents a strong correlation between structures. We modify the 
interpretation of h and state that the h vectors now span a 
space of parameters that encode the probability when acted 
on by a sigmoid function. This sigmoid function guaran-
tees sigmoid(

∑d

k=1
�k[s]hkh

T
k
) ∈ [0, 1]n×n even in the case of 

small samples, addressing limitation 1. Secondly, we force 
diagonal entries to be 1 since a structure’s relation with itself 
is not of interest in this work, addressing limitation 2. Our 
modifications to Eqs. 1 and 2 are as follows:

An example transformation from the latent subspace and 
subject specific loading to adjacency matrices observed in 
our data is illustrated in Fig. 2.

Our Maximum Likelihood Joint Graph Embedding 
Algorithm

We change the algorithm to better fit the constraints of our 
study and estimate the subspace by minimizing the binary 
cross entropy (BCE) loss, which is the log likelihood under 
the model. Let Es[i, j] be a symmetric matrix representing 
edge probabilities between structures i and j for subject s, 
then the BCE loss is minimized as in Eq. (7), where As are 
the observed adjacency matrices:

Note here that the diagonal terms do not contribute to our 
loss function. By replacing the original loss function with 
BCE, we will have a well characterized maximum likelihood 
estimator even in the small sample case, addressing limita-
tion 3. We take a greedy approach in finding the optimal 

(3)

As[i, j] ∼ Bernoulli

(

sigmoid

(

d
∑

k=1

𝜆k[s]hk[i]hk[j]

))

, for i > j

(4)As[i, j] = As[j, i], for i < j

(5)As[i, j] = 1, for i = j

(6)sigmoid(x) =
1

1 + exp(−x)

(7)
argmin

�,h

−
1

m

m
∑

s=1

n
∑

i=1

n
∑

j=i+1

As[i, j] log(Es[i, j])+

(1 − As[i, j]) log(1 − Es[i, j])
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representation of the latent space used in the original method 
Wang et al. (2019), where we start with a 1D optimization 
problem, and then expand to the second dimension while 
keeping the first dimension fixed to find the optimal repre-
sentation. The algorithm is implemented as follows:

We coded in python and PyTorch, and used automatically 
calculated gradients for gradient descent. The algorithm took 
30 minutes to run on a computer with 10-core CPU. Conver-
gence in all 4 dimensions is shown in Fig. 3a, where at every 
10,000 iterations we observe the loss dropping quickly after 
adding another dimension, and converging before the next 
dimension is added.

Hyperparameter Tuning

For hyperparameter tuning, we first estimate an optimal 
dimension of the latent space to account for the majority of 
the variation in observed correlation matrices. To do this, 
we computed an eigendecomposition for each subject’s cor-
relation matrix, and found that 4 components provided a 
reasonable reconstruction accuracy. A scree plot for one 
typical subject is shown in Fig. 3b. Next, we performed a 
grid search over several orders of magnitude for the gradient 
descent step sizes corresponding to h and � , and selected the 
largest parameters that gave convergence without oscillation. 

We decided to set the step size for h to 2 and the step size 
for � to 20000.

Significance Testing

We develop and implement a novel test statistic similar to 
F-type statistics (i.e. comparing sum of square error under 
two different models) to test for differences in networks and 
structures between the two groups, and use permutation 
testing on a maximum statistic to control for Familywise 
Error Rate (FWER) at 5% (Nichols & Hayasaka, 2003). In 
addition, we compare the difference between groups after 
accounting for confounders: age, intracranial volume and 
APOE gene status by least squares regression. APOE gene 
status was modeled as a categorical (as opposed to cardi-
nal) variable, where an individual may have 0, 1, or 2 cop-
ies. Other studies of neurodegeneration have used similar 
covariates in analysis. For example studying morphom-
etry in early Alzheimer’s, Miller et al. (2013) and Miller 
et al. (2015b) accounted for intracranial volume and sex, in 
studying morphometry in schizophrenia Yin et al. (2023) 
accounted for age and sex. Our choices of confounders were 
inspired by Judea Pearl’s backdoor criteria Neuberg (2003), 
regressing out a sufficient set of variables we believe have 
a causal effect on both disease status and morphology. In 
particular, we chose not to adjust for sex, as we believe its 
largest impact on morphology is mediated by brain size, 
which we have already adjusted for. We included APOE 
status as a covariate to understand what additional informa-
tion morphology can tell us about disease beyond what is 
already known from genetics. For a cohort with m subjects, 
d networks, and n structures, we define the test score as 
Scoresij =

∑

k �k[s]hk[i]hk[j] for subject s and structures i and 
j. We pass the score through a sigmoid to give probabilities 
E, and estimate these variables by maximum likelihood. We 

(a) (b)

Fig. 3   a. Convergence in all 4 dimensions with the algorithm b. Scree plot with elbow at 4 dimensions
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form the tensor Tskij = �k[s]hk[i]hk[j] to get a three-tuple for 
each subject s, of which we will perform statistical tests by 
comparing how close it is to its group-dependent or group-
combined average, after accounting for confounders. By 
summing over various combinations of indices in T before 
statistical testing, we are able to test for: 

1.	 networks only
2.	 structures only
3.	 network-structure pairs
4.	 structure-structure pairs
5.	 network-structure-structure triples

While network only and structure only are fairly straight-
forward to explain as they represent the networks’ and 
structures’ association with neurodegeneration in AD, the 
rest are more difficult to interpret. We can view network-
structure pair as studying the structure’s association with 
disease status through its role in the network. We can view 
structure-structure pairs as discovering structures that, when 
correlated with another structure, have significant effect on 
disease status. Lastly for the triple, we can interpret it as  
the effect on disease status as the pair of structures, through 
their combined role in the network. We note here that tests 
for 2 include the standard mass univariate approach of  
Hayasaka et al. (2004), and test for 4 include permutation 
testing on the absolute value of correlation coefficients, 
described for example in Bullmore and Bassett (2011). As 
standard tests for items 2 and 4 exist, we will focus our work 
on 1, 3, and 5. To our knowledge, our framework for testing 
patterns involving networks, pairs, or triples has not been 
performed to analyze brain imaging data before.

Confounder Regression Analysis

We perform least square regression analysis to test for true 
signals not caused by common confounders for AD and neu-
rodegeneration. We start with a design matrix D containing 
a column of 1 s (for mean), and columns for age, intracranial 
volume and APOE gene status, and estimate a coefficient 
matrix Ĉ for confounders. From Ĉ the SSE for one group is 
calculated as follows:

Here T is reshaped into a matrix from a tensor for calcula-
tion. Next, we calculate the SSE for splitting the cohort into 
two groups: none/mild and severe AD. We first form D′ , 
which has an additional column to D indicating disease sta-
tus. We then perform the same regression, with D′ replacing 

(8)Ĉcombined = (DTD)−1DTT

(9)T̂combined = ĈcombinedD

D in Eqs. 8 and 9 to find T̂ twogroups . In the next sections, we 
will use T̂combined and T̂ twogroups to calculate the sum of square 
errors (SSE) when considering one vs. two groups.

Networks

We start by testing for significant networks and obtain the 
test statistic Xk for network k by reducing (i.e. summing 
over) additional dimensions. Let T̂g

k,i,j
 be the expected value 

matrix under our linear model for dimension k, structures i 
and j, and subjects in group g. We remove extra dimensions 
by calculating the SSE between one group vs. two groups 
and Xk as follows:

To control the FWER at 5%, we use permutation test-
ing and take the max over k at each iteration and define the 
threshold as the 95 percentile of 10,000 simulation results 
(Nichols & Hayasaka, 2003).

Network Structure Pairs

Similar to networks only, we calculate the SSE in the two 
settings but reduce one fewer level as follows:

We follow the same permutation testing procedure and 
take a max over k, i instead of just k at each iteration.

Network Structure Structure Triples

Lastly for triples, we form the test statistic:

We follow the same permutation testing procedure and 
take a max over k, i, j at each iteration.

In our experiments, we performed the analysis twice: with 
and without adjusting for confounders. Note that not adjust-
ing for confounders is a special case of T estimation, where 
T̂g is simply the mean over all subjects in group g. In the 
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results section, we will present the former, and make brief 
comparisons to the latter.

Code Availability

Our source code and documentation are available on 
GitHub at https://​github.​com/​tward​lab/​joint_​graph_​
embed​ding_​AD. To replicate our work, first agree to 
the user agreement by ADNI and download the ADNI1 
3Y1.5T Longitudinal FreeSurfer dataset by University 
of California, San Francisco (Wyman et al., 2013). Put 
all files under a directory named dataset, and first run 
the Jupyter notebook preprocess, then the notebook 
joint_graph_embedding_analysis . We document our code 
with Sphinx (Brandl, 2021), and save documentations in 
docs. More details on how to replicate our work can be 
found in our GitHub repository.

Results

Significant Networks Associated with AD 
Neurodegeneration

Out of the 4 networks identified from joint graph embed-
ding, we found the first 2 extremely significant, after 
accounting for confounders. Upon examination in Table 1, 
both networks are dominated by structures believed to 
be associated with AD neurodegeneration. For example, 
our work has demonstrated the involvement of amygdala 
(uncovered in network 1) in early Alzheimer’s Miller et al. 
(2015b). In defining criteria for diagnosing Alzheimer’s 
disease McKhann et al. (2011) describes “disproportion-
ate atrophy on structural magnetic resonance imaging in 
me-dial, basal, and lateral temporal lobe” (uncovered in 
network 2). We show the results from permutation testing 
and the statistics for each network in Fig. 4 and visualize 

the structures in network 1 and 2 in Fig. 5. In Table 1, we 
include the top 10 structure by absolute value of loading 
in each network.

Significant Network Structure Pairs Associated 
with AD Neurodegeneration

For network-structure pairs, we rejected 170 out of 432 
network structure pairs. While most rejected pairs occur 
in networks previously found significant, the pairs are not 
exclusive to network 1 and 2 only. Three structure pairs in 
network 3 were found significant. In Table 2, we show the 
top 5 significant pairs ranked by p-value.

Significant Network Structures Triples Associated 
with AD Neurodegeneration

For network-structure-structure triples, we rejected 753 out 
of 46656 possible triples. The network and structures found 
significant are again not a subset of those found significant 
in the network-structure pair. In Table 3, we show the top 5 
significant triples ranked by p-value.

Results Comparing Confounder Regression and No 
Regression

While the results were similar to those shown above, 
the analysis without accounting for confounders found 
more structures and networks significant than analysis 
with confounder regression. For networks only, network 
3 became slightly significant, and networks 1 and 2 
remained highly significant. The top 10 structures were 
the same for networks 1 and 2 in both analysis, but those 
in structure 3 and 4 were different. For tuples analysis, 
we found 205 instead of 170 pairs and 1171 instead of 
753 triples significant. The networks and structures found 
significant in triples are not a subset of those found in 
pairs and vice versa.

Fig. 4   Histogram of permuta-
tion testing after accounting for 
confounders

https://github.com/twardlab/joint_graph_embedding_AD
https://github.com/twardlab/joint_graph_embedding_AD
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Results Comparing Significant Structures 
and Structure‑Structure Pairs with Existing Methods

Here we compare the significant structures and structure-
structure pairs found by our method and existing methods. 
For structures only, we compare results to mass univariate 
analysis Hayasaka et al. (2004). Here we calculate atro-
phy rate per patient for each structure and find the group 

SSE by subtracting from the group mean. The test statistic 
is calculated as SSEcombined − (SSEAD + SSEhealthy) and the 
95 percentile threshold is found using permutation testing. 
The mass univariate method rejected 36 structures out of 
108, which is a subset of the structures our method found 
significant.

For structure-structure pairs, we compare to a method 
described in Bernal-Rusiel et al. (2013). For each pair, we 
fit a linear line between considering the combined group 
only or AD/normal groups, and calculate the SSE difference. 
Again, we run permutation testing to find the 95 percentile 
threshold. The method rejected the null hypothesis for 127 
pairs, 79 of which are commonly shared with our finding 
(62% overlap).

Results Comparing Greedy and Non‑Greedy 
Optimization

We considered the effect of greedy optimization (as 
described in the original implementation in Wang et al. 
(2019) versus joint optimization over all dimensions 
simultaneously. The former has the advantage that network 
modes are ordered in terms of the variance they explain 

Fig. 5   Visualization of significant networks

Table 1   Top 10 structures ranked by loading of each network

network 1 network 2 network 3 network 4

Left Right Middle Right Caudal Fifth
Pericalcarine Temporal Middle Frontal Ventricle
Left Left Middle Right Superior Right
Pallidum Temporal Frontal Lingual
Right Left Inferior Right Rostral Left
Pericalcarine Temporal Middle Frontal Precuneus
Right Left Superior Left Superior Right Lateral
Pallidum Temporal Frontal Occipital
Right Right Inferior Left Caudal Left Superior
Accumbens Area Temporal Middle Frontal Parietal
Right Right Lateral Left Rostral Right
Amygdala Ventricle Middle Frontal Precuneus
Right Left Lateral Right Inferior Right Superior
Caudate Ventricle Parietal Parietal
Left Accumbens Right Superior Left Left Inferior
Area Temporal Precentral Parietal
Left Choroid Left Inferior Right Left Isthmus
Plexus Lateral Ventricle Precentral Cingulate
Left Right Right Left Cerebral
Amygdala Fusiform Supramarginal Cortex

Table 2   Top 5 significant pairs ranked by FWER-corrected p value

network-structure pairs p-value

1-Right Pallidum <1e-4
2-Left Inferior Lateral Ventricle <1e-4
2-Left Fusiform <1e-4
2-Left Entorhinal <1e-4
2-Left Cerebral Cortex 1e-4
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(similar to principal component analysis). We repeated our 
experiments using a non-greedy approach, and saw that 
each network recovered had the same 10 structures with 
the highest loadings. On the other hand, when using the 
non-greedy approach our statistical results were different, 
with our null hypothesis rejected for only one network, 
but more network-structure pairs and network-structure- 
structure triples rejected.

Subject Specific Analysis

To illustrate a possibility for further subject-specific analysis 
using the results from our method, we built a logistic regres-
sion model using subject-specific loadings from our method 
along with age, APOE status and ICV. The classification 
model predicts each subject’s disease status, 1 for AD and 
0 for normal. We compare two model results with 10-fold 
cross validation: one with just age, APOE status and ICV, 
and the other with added loadings from our method. The 
first model had an ROC-AUC (area under the receiver oper-
ating characteristic curve) of 0.72 while the second had an 
improved ROC-AUC of 0.78, indicating some added utility 
by including our results in subject-specific analysis.

Discussion

In this work, we applied a joint graph embedding method 
(similar to a multivoxel dictionary embedding method), 
which would typically be used to study functional connec-
tivity, to volumetric data in neurodegeneration. We extended 
the original algorithm (Wang et al., 2019) and implemented 
our maximum likelihood joint graph embedding algorithm 
to identify significant structural networks from volumetric 
data in Alzheimer’s disease cohorts (Wyman et al., 2013). 
We showed that our version of the algorithm has promise 
in uncovering latent dimensions that are easy to interpret 
and visualize. In addition, we developed and implemented a 
novel testing procedure and tested for significant networks, 
network-structure pairs and network-structure-structure tri-
ples. We performed analysis to regress out common con-
founders in AD in hope of gaining more discovery power 

and make a few comments here between our results. We 
found fewer significant pairs and triples when taking con-
founders into account than not. This is expected, as some 
structures previously found significant may be caused by 
confounders. While networks 1 and 2 remained unchanged 
and highly significant, indicating that changes in these net-
works are due to disease progression, network 3 was no 
longer a significant network. The structures’ change in net-
works 3 and 4 also indicate these structures may have been 
significant due to common confounders such as age.

Our framework shows promise in that it discovered struc-
tures commonly believed to be associated with AD neurode-
generation. We point out several strengths in our framework. 
The method offers a new way to view neurodegeneration in 
AD, where we can not only study networks and structures 
by themselves, but also their interaction with one another 
in terms of pairs and triples. Each of the three groups of 
findings gives us more information on structural correla-
tions than traditional methods (Pengas et al., 2012), and we 
also find structures not found by previous methods, such as 
mass univariate analysis (Bernal-Rusiel et al., 2013). Since 
these pairs and triples are a novel description of neurode-
generation patterns, we will briefly state their interpretation. 
For example, our discovered pairs can be interpreted as “the 
right pallidum displays a significant association with disease 
status, through its role in network 1”. As another example, 
our discovered triples can be interpreted as “the interaction 
between the left inferior temporal lobe and right middle tem-
poral lobe displays a significant association with disease 
status, through its role in network 2”. One future direction of 
this study is to examine more closely the interpretation and 
meaning of the networks and their loadings. Furthermore, 
the results can be used as an additional source of information 
in clinical studies. We gave an example of how the results 
may be used in further subject-specific analysis by imple-
menting a classifier that predicts disease status, and showed 
that it outperforms the classifier with the same architecture 
but the loadings removed. Another example is to sample 
from a model with group average loadings, and interpolate 
and extrapolate connectivity to generate networks for sub-
jects along a continuum between healthy and diseased. We 
include a visualization in Fig. 6 using 5 different values of � 
(from top to bottom) for a fixed h, and generating networks 
by sampling from our probability matrix 3 times (from left 
to right) for each � . The � values we used interpolate and 
extrapolate between the mean for the AD and control group: 
p𝜆̄control + (1 − p)𝜆̄AD for p ∈ {1.5, 1.0, 0.5, 0.0,−0.5} . Val-
ues outside [0,1] represent extrapolation, which is possible 
because our model is guaranteed to result in probability 
matrices in the range [0,1].

Secondly, the dataset used in our study, ADNI (Jack 
et al., 2008), is very well characterized, it is more robust 
and spans a longer period than most clinical data. Thirdly, 

Table 3   Top 5 significant triples ranked by FWER-corrected p value

network-structure-structure triples p-value

2-Left Inferior Temporal-Right Middle Temporal <1e-4
2-Left Middle Temporal-Right Middle Temporal <1e-4
2-Left Superior Temporal-Right Middle Temporal <1e-4
2-Left Inferior Temporal-Left Middle Temporal <1e-4
2-Left Middle Temporal-Left Superior Temporal 1e-4
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though increased complexity in algorithm and testing proce-
dure often require more computational time, our algorithm 
embeds 494 patients with 108 structures in just 30 minutes 

and runs significance testing in 4 hours. We experimented 
with cohort and structure sizes and show runtime results in 
Fig. 7. We note that while the algorithm’s runtime scales 

Fig. 6   Visualization of networks sampled from our model using 
a fixed h (measured from data), and values of � along a continuum 
between the mean for control and the mean for AD. We include 

extrapolation (top and bottom row) as well as interpolation (middle 
row), and draw 3 independent samples to understand variability in 
each case (columns)
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linearly in subjects, it is exponential in structure counts. 
However, as studies often do not include a large set of 
structures, it should not be of big concern to users. On the 
other hand, our algorithm shows good time complexity with 
increased cohort sizes.

By offering more flexibility in terms of patterns that we 
can identify, we hope that our framework will reveal bio-
marker patterns more sensitive to AD.

Next we discuss a few limitations in this work. First, due 
to our high standard of cohort selection, this dataset may not 
be representative of clinical MRI subjects. As such, a natural 
future direction for the study is to apply this framework to 
clinical datasets, which represent a more diverse popula-
tion. Secondly, our findings are on a population scale instead 
of an individual scale, which may lead to additional biases 
when applying to individual clinical diagnosis. We believe 
that using a more fine-grained separation of the cohort, as 
opposed to modeling disease status as only two groups, may 
help address this issue. Thirdly, we note that since there has 
been little work done to apply graph embedding methods to 
study volumetric data in Alzheimer’s Disease cohorts, we do 
not have result comparisons with “state-of-the-art” methods. 
As with most unsupervised methods, there is no ground truth 
for evaluation to draw a conclusion on which method is best. 
Rather, we offer an additional method in analyzing group 
differences between healthy and diseased individuals based 
on neurodegeneration. As mentioned above, more work 
needs to be done to clearly and fully interpret the meaning 
of the network-structure pairs and triples.

In the fMRI community, network models enabled the 
transition from focusing on individual hotspots involved 
in specific tasks, to modeling brain wide activity in rest-
ing states Lee et al. (2013). These models helped to launch 
massive undertakings such as the human connectome pro-
ject Elam et al. (2021). We believe that the incorporation of 

network models such as the one presented here in analysis 
of structural data may have a similar impact on the field of 
brain morphometry: transitioning from analysis of single 
regions in a mass univariate approach, to analyzing brain-
wide patterns of tissue loss. With the recent development of 
potential drugs to treat Alzheimer’s disease, methods like 
ours that can quantify complex patterns of neurodegenera-
tion will be essential for noninvasively identifying patients 
who would benefit the most. We believe that the develop-
ment and dissemination of algorithms such as this one, 
through open source code and well documented examples, 
will play an important role in helping to reduce the burden 
of Alzheimer’s disease on our aging population.
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