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In silico prediction of brain exposure: drug free fraction,
unbound brain to plasma concentration ratio and equilibrium
half-life

Morena Spreafico§ and Matthew P. Jacobson§

§Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 4th
Street, San Francisco, CA 94158, USA

Abstract

The focus of CNS drug pharmacokinetics programs has recently shifted from determining the total

concentrations in brain and blood to considering also unbound fractions and concentrations.

Unfortunately, assessing unbound brain exposure experimentally requires demanding in vivo and

in vitro studies.

We propose a physical model, based on lipid binding and pH partitioning, to predict in silico the

unbound volume of distribution in the brain. The model takes into account the partition of a drug

into lipids, interstitial fluid and intracellular compartments of the brain. The results are in good

agreement with the experimental data, suggesting that the contributions of lipid binding and pH

partitioning are important in determining drug exposure in brain. The predicted values are used,

together with predictions for plasma protein binding, as corrective terms in a second model to

derive the unbound brain to plasma concentration ratio starting from experimental values of total

concentration ratio. The calculated values of brain free fraction and passive permeability are also

used to qualitatively determine the brain to plasma equilibration time in a model that shows

promising results but is limited to a very small set of compounds.

The models we propose are a step forward in understanding and predicting pharmacologically

relevant exposure in brain starting from compounds’ chemical structure and

neuropharmacokinetics, by using experimental total brain to plasma ratios, in silico calculated

properties and simple physics-based approaches. The models can be used in central nervous

system drug discovery programs for a fast and cheap assessment of unbound brain exposure. For

existing compounds, the unbound ratios can be derived from experimental values of total brain to

plasma ratios. For both existing and hypothetical compounds, the unbound volume of distribution

due to lipid binding and pH partitioning can be calculated starting only from the chemical

structure.
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Introduction

The assessment of brain penetration is of central importance in the discovery of drugs

targeting the central nervous system. The classic approach to determine brain exposure is

based on measuring total drug levels in rodents. Total brain levels however, expressed as

brain/plasma ratio, are mainly driven by lipophilicity [1,2] and do not necessarily correlate

with the in vivo efficacy of the compounds, even when good in vitro potency is observed [3].

A key concept that is not addressed properly in such an approach is that the total brain and

plasma concentrations depend on plasma protein and brain tissue binding, and do not reflect

the amount of drug that is available to reach the target. For this reason, a new concept has

recently emerged that distinguishes rate from extent of brain penetration, and focuses on

unbound rather than total drug levels [3] (free-drug hypothesis). The measurement of

unbound brain and unbound plasma concentrations is directly related to the amount of drug

that is available for target binding, and it has been shown to correlate with CNS activity in

some cases [4,5,6,7,8,9,10].

While total levels are easily measured, typically by liquid chromatography and mass

spectroscopy, on brain and plasma samples, the direct quantification of the free

concentration in brain is possible only through in vivo intracerebral microdialysis [11], a

complex and invasive technique that is not practicable in a high throughput manner. For this

reason, new methods have been developed to complement the in vivo measure of total levels

with in vitro measurement of the free fraction, a corrective term that allows to estimate free

drug concentrations starting from total concentrations. The in vitro measure of brain free

fraction can be achieved with the brain homogenate [12] or with the brain slice [13, 14]

methods. The homogenate method is easier to setup and to perform, and it is the most

common method used in the drug industry [15]. Since it uses homogenized tissue, however,

it cannot distinguish between different intra- and extra-cellular compartments. On the other

hand, the brain slice method is more demanding but keeps the structure of the brain tissue

intact, maintaining the differences in concentrations between the interstitial fluid and

intracellular compartments during the measurements. Brain homogenate and slice methods

both measure drug distribution by two inversely related properties [14]: the fraction of

unbound drug in the homogenized tissue (fu,brain) and the unbound volume of distribution in

brain (Vu,brain), respectively. In this work we propose (i) a physical model to calculate in

silico the unbound volume of distribution, in order to better understand the processes

involved in drug delivery to the brain. We then use the predicted values, together with in

silico predicted plasma protein binding, as corrective terms to derive in a second model (ii)

the unbound brain to plasma ratios starting from the total ratios. In addition, an attempt to

predict the brain to plasma equilibrium half-life for a very small set of compounds is

presented (iii), for which preliminary good results are obtained.
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Currently, most of the computational tools used to predict brain penetration are quantitative

structure-activity relationships (QSARs) methods aimed at predicting total brain to plasma

concentration ratios [16, 17, 18]. Only a few have been developed to predict the unbound

levels [15, 19, 20] or brain tissue binding [21], due to the complexity of the system and to

our limited understanding of the processes involved. Active transport is usually taken into

consideration specifically by tools predicting P-glycoprotein binding [22, 23, 24] or by

pharmacokineticpharmacodynamic models where parameters are fitted by experimental

measurements [25]. Our models are aimed at the prediction of unbound drug levels from

chemical structure and attempt to derive key parameters involved in brain drug delivery

from a physical point of view, when possible, in order to better understand the mechanisms

involved and to provide predictive tools complementary to in vitro and in vivo techniques.

Materials and Methods

Dataset

Compounds with known structure and available experimental values of (i) free drug

fractions in brain and in plasma, or (ii) unbound brain to plasma concentration ratios were

collected from different sources [5, 12, 13, 15, 26, 27, 28, 29]. The experiments were

performed after intravenous doses on mouse and rat, using tissue homogenate, brain slice

and microdialysis methods. A total of 146 compounds with experimental values of brain

unbound fraction (or unbound volume of distribution) and 133 with experimental values of

unbound brain to plasma concentration ratio were collected. Compounds present in more

than one dataset were retained as duplicates. Total brain to plasma concentration ratios (Kp)

where calculated from AUC values measured in plasma and brain, when available. Unbound

brain to plasma concentration ratios (Kp,uu,b) were calculated by correcting total values with

free fractions in brain and plasma. For the Ooie dataset [28], the fraction of unbound drug in

brain was calculated by dividing the compound concentration in the interstitial fluid

(estimated from brain dyalisate) and the total concentration in brain. Seven compounds with

experimental data from Liu et al. [30] were used to model the brain equilibrium half-life.

The compounds were downloaded from PubChem [31] when available or generated with

Maestro [32], followed by preparation with LigPrep [33]. The logP and QPlogKhsa

descriptors were calculated with QikProp [34]. pKa values were calculated with Epik [35].

Permanent cations were discarded because the calculation of QikProp properties require the

compounds to be neutralized.

Unbound volume of distribution (Vu,brain) model

Our Vu,brain model is based on the hypothesis that lipid binding and pH partitioning are the

main mechanisms determining the amount of unbound drug in the brain intersititial fluid.

Our aim is to test if, under these assumptions, it is possible to adequately predict Vu,brain for

a given set of compounds. Other relevant mechanisms that are not included in the current

model are active transport (from interstitial fluid to the cells in the brain parenchyma and

vice versa) and metabolism, as well as shape and size of the compounds [36].
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In our study three aqueous compartments are considered: brain interstitial fluid (isf),

cytoplasm (cyto) and lysosomes as representative of the cellular acidic compartments (lyso).

The pH partitioning component is based on Friden's partition model [15] proposed by the

authors in order to reproduce Vu,brain values (measured with the brain slice method) starting

from fu,brain values (measured with the homogenate method):

(1)

and

(2)

where Vu,brain is the unbound volume of distribution as measured by the brain slice method,

Kp,uu,cell is the unbound drug partitioning coefficient of the cell, and fu,brain is the free brain

fraction obtained wit the homogenate method. The above equations describe the partitioning

of the compounds due solely to different pH in the interstitial fluid and cellular

compartments, but they do not include active transport mechanisms. Physiological values

are used for pH and relative volumes [15] (pHisf=7.3; pHcyto=7.0; pHlyso=5.0; Visf=0.2;

Vcyto=0.79; Vlyso=0.01). Kp,uu,cell acquires values around 1 for neutral compounds, lower

then 1 for acids and higher than 1 for bases.

In addition to the aqueous compartments, a lipid compartment (lip) is included as follows

and as shown in Figure 1. In the hypothesis that fu,brain obtained from the homogenate

method estimates primarily non-specific binding, and that non-specific binding is largely

due to partitioning between lipid and aqueous environments, we attempt to use in silico

predicted values of the octanol-water partition coefficient (logP), corrected by the volume of

lipids in the brain, as a surrogate of the experimental fu,brain. Under these assumptions, we

can approximate fu,brain with the following equation:

(3)

where Cwat and Coct are the concentrations of the compounds in aqueous and lipidic

environments at steady state, Vwat and Vlip are the volumes of the aqueous and lipid

compartments in the brain tissue, logP is the octanol-water partition coefficient, and the

Vlip/Visf ratio is calculated assuming that lipids occupy 11% of the brain volume [37].

By combining equations (1), (2) and (3) we obtain a physical model to estimate Vu,brain

entirely in silico:

(4)

Values of logP and pKa are calculated with QikProp and Epik, respectively.
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Unbound brain to plasma concentration ratio (Kp,uu,b) model

Unbound brain exposure is assessed by Kp,uu,b, which can be derived by total exposure with

the following equation [3]

(5)

where Kp,uu,b, is the unbound brain to unbound plasma concentration ratio, Kp is the total

brain to plasma concentration ratio (measured as AUCbrain/AUCplasma), fu,b is the free

fraction in brain, and fu,p is the free fraction in plasma. We used each term of equation (5),

in logarithmic form, to build a regression model where the coefficients are fitted to

experimental values of Kp and calculated values of fu,b and of fu,p in order to reproduce

observed Kp,uu,b values:

(6)

where

(7)

Since the value of the free fraction in brain or plasma is a number between 0 and 1, we scale

the calculated fu,b and fu,p values to be comprised in the range [0, 1]. When fu,b or fu,p is

equal to 0, the value of log(fu,b) or log(fu,p) is set to the minimum finite value. Values of

Vu,brain are calculated with (4) and values of QPlogKhsa are human serum albumin

predictions performed with QikProp. The coefficients a, b, c and d are parameters fitted with

the least square method through the generalized linear models module of R2.13.0 [38]. All

the plots are also produced with R. The goodness of fit is measured by the coefficient of

determination (R2):

(9)

where RSS is the residual sum of square, TSS the total sum of squares, yi is the experimental

value of the molecule i, ŷ is the value predicted by the model built on the training set and ȳ
is the average experimental value of the training set.

Equilibrium half-life model

Liu et al. [30, 39] proposed to quantify the time required by a drug to achieve brain

equilibrium by the intrinsic brain equilibrium half-life (t1/2eq,in), which is inversely

correlated with permeability and free fraction in brain:

(10)
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where PS is the permeability-surface area product and fu,b is the free fraction in brain. We

attempt to qualitatively determine the intrinsic brain equilibrium half-life entirely in silico,

by calculating fu,b with equations (4) and (7), and PS with the physical model of passive

membrane permeation from Leung et al. [40]. Since the permeability coefficient calculated

by the model from Leung et al. is a general measure of passive membrane permeability that

is not fitted to reproduce the permeability-surface area product, the values of calculated

passive permeability have been scaled in the range of the PS values measured for the studied

compounds [30] (max value=1024 ml*h-1*kg-1; min value=6.4 ml*h-1*kg-1).

Results and Discussion

Unbound volume of distribution (Vu,brain) model

Vu,brain is an apparent volume term that indicates how much of a compound is distributed in

the interstitial fluid, compared to both the amounts entering into interstitial fluid and

intracellular compartments [3]. Depending on whether the target of interest is present in the

interstitial fluid or inside the brain cells (neurons, astrocytes, pericytes), it would be

desirable to tune the value of Vu,brain accordingly. Small values of Vu,brain (0.2 ml/g brain)

indicate that the compound is primarily present in the interstitial fluid; higher values (0.8

ml/g brain) indicate that the compound is distributing between interstitial fluid and

intracellular compartments; very high values (>0.8 ml/g brain) indicate non-specific binding

[3]. A predictive tool for Vu,brain would be beneficial in this context.

Since our model includes partitioning into cellular compartments, the performance of the

model is better evaluated through comparison with measurements by the slice method rather

then those by the homogenate method. For this reason, we applied equation (4) to Friden's

library [15] to predict Vu,brain obtained with the slice method. The calculated values show a

good correlation (R2=0.70) with the experimental values (see Table 1 and Figure 2),

especially considering that no parameter has been fitted to the model. The equation is

derived only from the physical principles that we hypothesize describe the major

contributions affecting the free drug fraction in brain: lipid binding and pH partitioning. The

correlation of logP alone with the experimental data (R2=0.52) indicates that logP provides a

good, albeit crude, estimate of brain non-specific binding. By including pH partitioning, we

can significantly improve the correlation for this set of data, suggesting that pH partitioning

indeed plays an important role in brain distribution.

The slope of the fitted line is smaller then one (0.43), indicating that the calculated values

span a broader range relative to the experimental data. This behaviour is due to the fact that

the single factors contributing to the calculated Vu,brain have not been weighted to fit the

experimental data. A possible improvement in prediction could be obtained by training our

model with experimental data, with the potential disadvantage of lower transferability.

Given the reasonable correlation obtained, we prefer to keep the model independent from

any dataset and aim at a broader applicability. Another possibility for improving our model

would be to include active transport, both uptake and efflux, which due to its complex nature

is not accounted for by the present model.
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We then tested our model on several other data sets, including data obtained with the

homogenate method. The correlations with experimental data, reported in Table 1 and

Figure 3, indicate that the model has a good predictive power for most of the data sets. The

Ooie dataset contains only 4 compounds and was therefore merged with the Becker dataset.

The model has a lower correlation coefficient for the Kalvass and Summerfield data sets,

implying that, for those sets, factors other than logP and pH partitioning might be required to

explain the measurements. For the Kalvass dataset indeed, active transport can explain the

under-predicted values for 5 compounds: digoxin, doxorubicin, ivermectin, nelfinavir and

saquinavir, which have been shown to interact with P-glycoprotein [41]. The remaining

compounds of the dataset are all within or slightly exceed (vinblastine) one logarithmic unit

from the trend line. From the Summerfield dataset, only one compound (ciglitazone) is

largely under-predicted but no information about active efflux was found.

Unbound brain to plasma concentration ratio (Kp,uu,b) model

Kp,uu,b is a measure of the extent of the distribution of the unbound compound between

brain and plasma [3]. Values close to one indicate passive diffusion across the blood brain

barrier, values greater than one indicate uptake, and values less than one indicate efflux from

the blood brain barrier. Given the abundance of Kp values in the literature, it would be of

interest to infer Kp,uu,b values from Kp without performing additional experiments. Here we

calculate unbound levels (Kp,uu,b) using equation (6), starting from experimental total levels

(Kp) and free fractions in brain and plasma (fu,b, fu,p) calculated in silico. By using Friden's

dataset as a training set to fit the parameters of our model, we obtain a good correlation

between experimental and predicted values for these compounds (R2=0.79, Figure 4). To

check the predictive ability of our model, we apply it to calculate Kp,uu,b values for all of the

remaining data sets: the prediction rate is high for Kalvass (R2=0.74, 27 compounds),

Maurer (R2=0.82, 33 compounds) and Becker and Ooie (R2=0.89, 12 compounds) data sets.

Like in the case of the Vu,brain model, the correlation coefficient is low for the Summerfield

dataset (R2=-2.2, 15 compounds). However, only for three compounds (flurbiprofen,

ibuprofen and naproxen) the error in prediction is largely exceeding one logarithmic unit.

An improved correlation (R2=0.57) can be obtained for this set by parametrizing the model

separately. The performance of the model is particularly good considering that only 30% of

the data (40 compounds from the Friden data set) were used to train the model and 70% of

the data (93 compounds coming from different sources) were used to test the predictive

power of the model. In all cases, we observe an improvement in correlation when using our

model instead of using the Kp values alone (the correlation between Kp,uu,b and Kp is

R2=0.62 on all the data sets combined). The predictions for all compounds are shown in

Figure 4 and 5.

Equilibrium half-life model

The time needed by a drug to reach equilibrium in the brain is inversely related to

permeability and free brain fraction [30]. By calculating permeability and free brain fraction

in silico, we built a model that is able to correctly distinguish slow from fast equilibrating

molecules for 6 out of 7 compounds from the study of Liu et al. [30] (Figure 6). These

compounds were administered subcutaneously, which allows a relatively constant blood

level, well suited for steady-state measurements. The slower compounds, fluoxetine and
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CP-141938, which both need one hour to reach brain equilibrium after subcutaneous dose,

are correctly classified as slower molecules by our model, while caffeine, propranolol,

theobromine and theophylline, which equilibrate quickly in 0.1 hours, are also correctly

identified as faster molecules. The compound NFPS (N[3-(4′-fluorophenyl)-3-(4′-

phenylphenoxy)propyl]sarcosine) is the slowest compound to reach the equilibrium and it is

not correctly classified by our model. Our predictions are only qualitative and, more

importantly, seven compounds are too few to draw any solid conclusion. However,

preliminary results are encouraging and an application to a bigger dataset is underway to

validate our model.

Conclusions

We presented a simple physical model to predict the unbound volume of distribution in

brain (Vu,brain) from chemical structure, which was validated on several data sets. The

model is based on predicted lipid binding and pH partitioning in interstitial fluid,

intracellular and lysosomal compartments. It does not include fitted parameters and it is

therefore independent of the dataset used. Even if the model does not include active

transport processes, the good predictions observed for numerous data sets confirms that lipid

binding and pH partitioning are important aspects of brain exposure. To our knowledge, the

presented model is the first published in silico model for predicting the unbound volume of

distribution in brain.

A second model, based on the calculated values of unbound volume of distribution and free

fraction in plasma, was developed to derive unbound brain to plasma concentration ratios

(Kp,uu,b) starting from experimental values of total ratios. The use of calculated brain and

plasma free fractions is shown to improve the predictions over a model that uses Kp alone.

Our model, trained on a dataset of 40 compounds, produced good agreement on several

external sets, where the experimental values were determined in different laboratories and

even using different methods, suggesting that the model is general and is minimally

dependent on the specific training set.

Finally, a model that predicts brain equilibrium half-life by the use of calculated

permeability coefficient and calculated brain free fraction is proposed. The preliminary

results obtained for a small dataset of 7 compounds are encouraging.

Future developments are underway to improve the in silico tools for designing drugs

targeting the central nervous system, with the aim of identifying and quantifying the most

important processes involved in determining the rate and extent of brain exposure. For

example, the effects of active transport across the blood brain barrier and metabolism

require further investigation, and incorporating these aspects into the presented model is

likely to be beneficial in improving the accuracy of predicting Kp,uu,b in silico.
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Abbreviations

AUC area under the curve

fu,brain fraction of unbound drug in brain

fu,plasma fraction of unbound drug in plasma

icf intracellular fluid

isf interstitial fluid

lip lipidic compartment

Kp total brain to plasma concentration ratio

Kp,uu,b unbound brain to unbound plasma concentration ratio

Kp,uu,cell unbound drug partitioning coefficient of the cell

logP logarithm of the octanol water partition coefficient

PS permeability-surface area product

QPlogKhsa prediction of binding of human serum albumin

t1/2eq equilibrium half-life

Vu,brain unbound volume of distribution
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Figure 1.
Compartments considered in this study to compose the brain parenchyma. ISF: interstitial fluid; LIP: lipids; CYTO: intracellular

compartment; LYSO: lysosomes.
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Figure 2.
Experimental and predicted log(Vu,brain) for the partition model on the Friden's dataset. The solid line indicates the trend

between predicted and experimental values calculated on all data sets, the dotted lines are drawn at one logarithmic unit from the

trend line. Predicted values are computed from chemical structure alone, with no adjustable parameters.

Spreafico and Jacobson Page 13

Curr Top Med Chem. Author manuscript; available in PMC 2014 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Experimental and predicted log(Vu,brain) for the partition model on several data sets: Kalvass, blue; Maurer, red; Becker+Ooie,

green; Summerfield, magenta. The solid line indicates the trend between predicted and experimental values calculated on all

data sets, the dotted lines are drawn at one logarithmic unit from the trend line. Predicted values are computed from chemical

structure alone, with no adjustable parameters.
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Figure 4.
Experimental and predicted Kp,uu,b values for the model on Friden dataset, used as a training set. The solid line indicates the

agreement between experimental and predicted values and the dotted lines are drawn at one logarithmic unit difference.
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Figure 5.
Experimental and predicted Kp,uu,b values for the model on several data sets, used as test sets: Kalvass, blue; Maurer, red;

Becker+Ooie, green; Summerfield, magenta. The solid line indicates the agreement between experimental and predicted values

and the dotted lines are drawn at one logarithmic unit difference.
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Figure 6.
Observed experimental equilibrium half-life plotted against the product of in silico calculated permeability and free brain

fraction. Red circles: rapidly equilibrating compounds (observed t1/2eq=0.1 hours: caffeine, propranolol, theobromine,

theophylline). Orange squares: medium equilibrating compounds (observed t1/2eq=1 hour: Fluoxetine and methoxy-3-[(2-

phenylpiperadinyl-3-amino)-methyl]-phenyl-N-methyl-methane-sulfonamide). White triangle: slowly equilibrating compound

NFPS.
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Table 1

Correlations on the different data sets used between experimental and predicted Vu,brain values provided by

our physical model.

# Compounds Reference Type of data R2

52 Friden 2011 Slice 0.70

33 Maurer 2005 Homogenate 0.69

12 Becker 2006 + Ooie 1997 Slice, Microdialysis 0.79

34 Kalvass 2007 Homogenate 0.32

15 Summerfield 2006 Homogenate 0.13

146 All data sets Slice, Homogenate 0.55
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