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Abstract

With rapid increase in the size of videos online, analysis and
prediction of affective impact that video content will have
on viewers has attracted much attention in the community.
To solve this challenge several different kinds of information
about video clips are exploited. Traditional methods normally
focused on single modality, either audio or visual. Later on
some researchers tried to establish multi-modal schemes and
spend a lot of time choosing and extracting features by differ-
ent fusion strategy. In this research, we proposed an end-to-
end model which can automatically extract features and target
an emotional classification task by integrating audio and vi-
sual features together and also adding the temporal character-
istics of the video. The experimental study on commonly used
MediaEval 2015 Affective Impact of Movies has shown this
method’s potential and it is expected that this work could pro-
vide some insight for future video emotion recognition from
feature fusion perspective.
Keywords: videos; multi-modal scheme; modal fusion; end-
to-end; temporal characteristics

Introduction
To better understand and analyse people’s emotion response
during watching videos, it is essential to study the cognitive
determinants beneath the video presentation. Currently, con-
tent based approaches are the main trend for video emotion
analysis, and a lot of models have been proposed to help iden-
tify the emotions evoked by videos (Hanjalic, 2006), among
which affective analysis based on video visual contents have
been studied for several years. Several approaches which em-
ployed different machine learning models such as Bayesian
network (Soleymani, Kierkels, Chanel, & Pun, 2009), Hid-
den Markov Models (Kang, 2003) have been proposed and
proven applicable to tackle with this challenge.

Though visual content based video emotion analysis has
proven applicable in real applications, there still exists chal-
lenges since even the same scene could cause different emo-
tions (Choe, Chun, Noh, Lee, & Zhang, 2013). Recently au-
dio related features have also proven its effectiveness in emo-
tion analysis (Cui, Jin, Zhang, Luo, & Tian, 2010). For ex-
ample, Xu et al. tried to use audio emotional events (AEE)
such as laughing, horror sounds and other features to detect
horror and comedy movies (Xu, Chia, & Jin, 2005).

While previous studies focused on video or audio features
alone in detecting video emotion have proven their ease in
implementation, to further improve the classification perfor-
mance, some researchers indicate the possibility by combin-
ing visual features with audio features to form a hybrid fea-

ture that can carry information from two different modalities
(domains) at the same time. Such methods can be roughly di-
vided into two categories in terms of the way the features are
combined, i.e., later fusion of classifiers (Yi, Wang, Zhang,
& Yu, 2015), and early fusion scheme, in which features
are concatenated into a final classifier (Dai et al., 2015; P.,
Hayrapetyan, Tapaswi, & Stiefelhagen, 2015).

In this research, we employed the idea of modal fusion and
then proposed an end-to-end framework to integrate the vi-
sual and audio features for video emotion analysis. Recently
with the development of deep learning techniques, a lot of
advanced methods have been proposed for feature extraction.
In this research, we used convolutional neural network (CNN)
to extract video emotion related features as CNN has proven
its success in learning intermediate representations from low-
level features (Acar, Hopfgartner, & Albayrak, 2014). Af-
terwards, taking into account the temporal characteristics of
video, we further use Long Short Term Memory (LSTM)
model (Hochreiter & Schmidhuber, 1997) to integrate the ex-
tracted temporal features since it performs well on tasks that
require integration of state information over time. Finally a
multi-layer perceptron (MLP) is employed to classify the fi-
nal video emotions.

To confirm the validity of the proposed method, we imple-
ment it in the Affective Impact of Movies Task 3 in the Medi-
aEval challenge 2015 (Sjöberg et al., 2015). The task has now
become a state-of-the-art benchmark which attracted a large
number of research teams to test their models on this data set.
The experimental study result against different bench experi-
ments on this dataset shows the proposed method’s potential
in detecting video’s emotion.

Related Work
In the content-based video research, many researchers have
used a lot of models to identify the emotions triggered by
the video. Hanjalic argued the possibility to classify films
according to their emotions and proposed the concept of “ex-
pectation of emotion”, which is defined as one or a group
of emotions that a filmmaker wishes to use to communicate
with a certain culture or a particular audience through the
film (Hanjalic, 2006). Through this concept, he proposed the
video content information and its underlying characteristics
to predict emotion. Later on, Soleymani et al. proposed a
Bayesian framework to detect scene affect and the arousal
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Figure 1: Visual and Audio Aware Video Emotion Analysis Framework

and valence values with content features were used to clas-
sify video emotions into 3 classes, i.e., calm, excited positive
and excited negative (Soleymani et al., 2009). Similarly Ar-
ifin and Cheung established a framework based on the hier-
archical coupling of dynamic Bayesian networks to establish
the dependencies of the pleasure-activity-dominance emotion
model (Arifin & Cheung, 2008).

There are also various studies on video affective charac-
terization using audio features, e.g., rhythm, tempo, mel-
frequency cepstral coefficients (MFCC), pitch, zero crossing
rate. For example, three feature sets, i.e., intensity, timbre and
rhythm were extracted from audio to classify video emotion
using Gaussian mixture models (Lu, Liu, & Zhang, 2006).
Similarly, Xu et al. tried to use audio emotional events (AEE),
including laughing, horror sounds and other features to detect
horror and comedy movies (Xu et al., 2005).

In fact, there is a complex interaction between the audio
and visual contents to determine the perceived mood. As
such the video emotion analysis has begun to use feature
fusion method to classify emotion into different classes (Yi
et al., 2015). Similarly, Trigeorgis et al. selected the low
level descriptors with the traditional adaboost as a classifier
(Trigeorgis et al., 2015). Wang and Cheong derived the char-
acteristics of multimodality by probabilistic inference based
on two SVM models (Wang & Cheong, 2006), where one
SVM model is designed to process audio data and extracts
the corresponding advanced audio information, while another
SVM model is used to classify the captured video segments.

However, since these framework extracts basic features,
they lack the ability to use raw inputs to automatically learn
mid-level representations. With the development of deep
learning techniques, some deep learning based approaches
are also proposed in the literature. For example, Kahou et
al. used a deep convolution neural network to analyse facial
expressions within a frame and used a deep belief net to cap-
ture audio feature (Kahou et al., 2016). Levi and Hassner also

used convolution neural network to capture visual features to
classify video into seven emotions (Levi & Hassner, 2015).

Proposed Approach

The overall pipeline of the proposed visual and audio aware
emotion analysis framework is depicted as Fig. 1, where the
whole process is divided into three steps: 1) video segment
and low level feature extraction; 2) bi-modal visual and audio
feature fusion; and 3) temporal feature integration and emo-
tion classification.

Video segment and low level feature extraction

To analyze video emotion, it is necessary to firstly divide a
video into short videos with a length of t seconds. In this
study we set t = 1 so that a video of length T will have T
slices. This segmentation has two benefits. First, since the
length of each video is different, this segmentation gives us
better access to the visual and audio features. Second, Be-
cause of the temporal characteristics of the video, cutting the
video into the same segments can be used for subsequent re-
current neural networks.

For each segment, we need to extract its visual and audio
features separately. As to the visual features, we extract the
k key frames for each segment. Due to the strong correla-
tion among frames within a second, we select k = 1. The
key frame is defined as the frame with the closest RGB his-
togram to the mean RGB histogram of the whole video clip
using the Manhattan distance (Zhu, Jiang, Peng, & Zhong,
2016). Assume that a video clip V contains n frames, the
RGB histogram of i-th frame is defined as h(i). The Man-
hattan distance D between two frames i and j is calculated as
follows:

D(i, j) = |h(i)−h( j)| (1)
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and the key frame will be:

argmin
i

D(i,
1
n

n

∑
j=1

h( j)) (2)

After getting the key frame, it will be resized to 256∗ 256
pixel, as suggested in (Krizhevsky, Sutskever, & Hinton,
2012) as input for fine-tuning. The concept of fine-tuning
is to use a model pre-trained on a large dataset, replacing its
last layers, and fine-tune the weights on new task using back-
propagation. In this study, AlexNet (Krizhevsky et al., 2012)
is employed. AlexNet consists of five convolution layers and
three fully connected layers. Here we select the fc7 layer of
AlexNet which has 4096 neurons as our visual features.

As to the audio features, the traditional methods for audio
emotion analysis need to select proper audio features, e.g.,
MFCC, energies, flatness, and etc. But they often have to con-
duct a lot of repeat tests to choose the best features. In order
to take full advantage of the depth convolution neural network
model in extracting data features, the original features of the
data should be kept as much as possible in order to avoid
losing information. In this research, we process the audio
to spectrogram (Barker & Virtanen, 2016), which is a visual
representation of the spectrum of frequencies in a sound. We
set the window function to 40ms and the hop size to 20ms to
generate a spectrogram every second using short-time Fourier
transform with a Hamming window (Allen, 1977). The re-
sulting image is resized to 256∗256 pixels, here we also use
the method of AlexNet finetune to extract the fc7 layer as a
feature of the spectrogram.

Bi-modal visual and audio feature fusion
From the last step we obtained visual and audio features for
video emotion analysis. However, the length of features of
both visual and audio is long and there maybe many redun-
dancy in the features. It will be helpful if we can combine the
two types of features and then reduce the overall dimension.

Let xa ∈ RD denotes audio features and xv ∈ RD denotes
visual features, where D ∈ R is the dimension of audio and
visual features, the joint representation of features by fusion
modal can be written as:

x f = αag(xa;wa)+αvg(xv;wv) (3)

where g(.) denotes the hidden layer of both audio and visual
channel. αa defines the weights of audio features and αv de-
fines the weights of visual features at the same time. The
hidden layer of audio features is:

g(xa;wa) = θ((wa,xa)+ba) (4)

where θ denotes the activation function (rectified linear units
(Zeiler et al., 2013), sigmoid etc.) of the audio hidden layer.
Similarly the hidden layer of visual feature is:

g(xv;wv) = θ((wv,xv)+bv) (5)

Temporal feature integration and emotion analysis
Though previous steps we have obtained fused features from
visual and audio perspective, there is still a challenge about
how to predict corresponding emotion status. Furthermore,
in previous step the features are about a single frame, taking
into account the temporal characteristics of video, it is nec-
essary to study how these features can be used over time. In
this research we will use the LSTM model to fuse sequence
features together.

Recurrent Neural Networks (RNNs) are powerful networks
and it can model input sequences of different lengths, be-
cause the parameters of the network can be shared over dif-
ferent parts (Mikolov, Karafiát, Burget, Cernocký, & Khu-
danpur, 2010). RNNs are often trained by Back-Propagation
Through Time (BPTT) algorithm, but the main problem with
the BPTT is that the gradients tend to vanish or explode which
was resulted by propagating the gradients down through lay-
ers. Therefore it is difficult to learn efficient long-term de-
pendencies. To overcome this limitation, the Long-Short-
Term-Memory (LSTM) (Hochreiter & Schmidhuber, 1997)
units have been created to capture long-term dependencies.
LSTMs have the ability to remove or add information to the
cell state through a well-designed structure called a “gate”. It
is believed that the LSTMs can model the temporal aspect
of induced emotions in our task. Various units have been
proposed in the community to constitute a LSTM. In this re-
search, we employed the LSTM units described in (Zaremba
& Sutskever, 2014). The LSTM unit of time step t consists
of three sigmoidal gates, i.e., input gate it , output gate ot , for-
getting gate ft . The most important part of the LSTM unit is
a linear self-loop state cell ct . The memory cell unit ct is a
sum of two terms: the previous memory cell unit ct−1 which
is modulated by ft , and gt , a function of the current input and
previous hidden state, modulated by the input gate it. ht de-
notes the hidden layer’s output at step t. We can update our
hidden layer for time step t as follows:

it = σ(Wxixt +Whiht−1 +bi) (6)

ft = σ(Wx f xt +Wh f ht−1 +b f ) (7)

ot = σ(Wxoxt +Whoht−1 +bo) (8)

gt = tanh(Wxcxt +Whcht−1 +bc) (9)

ct = ft � ct−1 + it �gt (10)

ht = ot � tanh(ct) (11)

where xt is the current fusion feature, ht−1 is the previous
hidden layer vector. x� y denotes the element-wise product
of vectors x and y. In addition, Wxi, Wx f , Wxo, Wxc, Whi, Wh f ,
Who, Whc are weights for the gates, and bi, b f , bo, bc are biases
for the gates. σ is the nonlinear methods (e.g., sigmoid or
tanh).

The output of the last time step of LSTM unit will be the
input of the fully connected neural network, also known as
multi-layer perception (MLP).The hidden layers and parame-
ters of MLP will discuss in experiment. The prediction layer
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will have 3 units yl (l = 0,1,2) and the class probability is
calculated by taking the softmax as below:

yl : p(yl = c) =
exp(yl ,c)

∑c′∈C exp(yl ,c
′
)

(12)

where C denotes the three emotion states. Finally the label
with the max probability will be the expected label.

Experimental Study
Dataset
In order to fairly verify the performance of our proposed
method, we implement it on the dataset provided by Me-
diaEval 2015 Afective Impact of Movies task (Sjöberg et
al., 2015), which consists of 10,900 short video clips ex-
tracted from 199 Creative Commons-licensed movies of var-
ious genres. It is an extension of the LIRIS-ACCEDE dataset
(Baveye, Dellandréa, Chamaret, & Chen, 2015), which origi-
nally contains 9,800 excerpts extracted from 160 movies.The
MediaEval 2015 task added 1,100 video clips additionally
from 39 movies. The dataset is divided into training set and
test set. The training set consists of 6,144 videos extracted
from 100 movies while the test set includes 4,756 videos
extracted from the remaining 99 movies. These videos last
from 8 to 12 seconds and start and end with a cut or fade.
The ground truth for each of 10,900 video clips consists of
discrete labels for arousal (calm-neutral-active) and valence
(negative-neutral-positive).

Evaluation Metrics & Baseline
In order to evaluate the affective detection task, the offi-
cial and complete method is global precision (Sjöberg et al.,
2015), which is the proportion of the number of correctly as-
signed videos in the total video samples and is defined as:

Precision = Nc/Nt (13)

where Nc is the number of videos which are assigned to the
correct class, and Nt is the total number of test videos. In this
research, we only compare the results obtained for the arousal
classification. This is because compared to arousal, valence
is not sensitive in the dataset. As such comparing the results
of the arousal classification is a commonly adopted choice
(Sjöberg et al., 2015).

To evaluate applicability of the model fusion approach, in
this research we compared it against the proposed approach
in predicting arousal values using only the image features or
audio features. Furthermore, we also compared the proposed
approach against early fusion and later fusion methods, re-
spectively. In the early fusion model we simply concatenate
the audio and video features together, while in later fusion
schema, we firstly trained two MLP classifiers to represent
the two modalities separately. Their predictions are denoted
as pa and pt and the overall output emotion class can be as-
signed by

p = αpa +(1−α)pt (14)

where α indicates the relevant importance between audio and
visual features. In this research we set α = 0.56, as indicated
in (Goyal, Kumar, Guha, & Narayanan, 2016).

Afterwards we also compare our results against state-of-
art systems in the MediaEval 2015 challenge. These systems
include: later fusion models with manually selected features
(Yi et al., 2015; Chakraborty et al., 2015), early fusion mod-
els with manually selected features (P. et al., 2015; Trigeorgis
et al., 2015), later fusion models with automatically selected
features (Tiwari et al., 2016), early fusion models with au-
tomatically selected features (Dai et al., 2015; Seddati et al.,
2015).

Experiment Settings
We tested the different feature dimensions and found that the
final result did not change much in the range of 250 to 1000.
We decided to use feature size of 512 for both visual pathway
and audio pathway. Therefore the fusion feature as the final
LSTM model input has 512 dimensions. LSTM model can
handle different video length, the longest video is 18 seconds
that is 18 time steps. The system is trained end-to-end to pre-
dict the videos emotion class at each time step. It is found
that the most significant parameter is the number of LSTM
hidden layers. We compared LSTM networks with 64, 128,
256, and 512 hidden units, separately. Finally, we found that
256 hidden units can be selected to achieve the best results,
as shown in Fig. 2. Afterwards we selected MLP as our clas-
sifier in which rectified linear units were used as nonlinear
functions and stochastic gradient descent with minibatches
was used for parameter updates (Zeiler et al., 2013). Also we
used categorical cross-entropy loss function to get the best
results. The hidden layer uses dropout to prevent overfitting,
and the factor is set 0.5. The number of hidden layer of MLP
and the units’ number can also affect the model results, and
ultimately we chose one hidden layer with 64 hidden units.
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64 128 256 512

Figure 2: Arousal Accuracy with Different Number of Hid-
den Layer Units

Result and Analysis
Table 1 presents the proposed method’s performance using
different feature space and fusion strategy. It is observed
that the performance of all feature fusion strategies are bet-
ter than using only single feature. It is because that video
images are the main cause of people’s emotions, but audio
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can complement the lack of information in video images. It
is further found that our proposed model fusion method is
better than both the simple early fusion and late fusion, af-
firming the effectiveness of multi-modal emotion classifica-
tion. This maybe because early fusion leads to the sparsity of
input vectors and late fusion has little consideration for visual
and audio’s correlation (Williams et al., 2009).

Table 1: Comparison of accuracy by different fusion models
Approaches Arousal Accuracy(%)

Visual features only 55.51
Audio featues only 55.14

Early fusion 55.71
Later fusion 55.70

Modal fusion 55.89

Table 2 is the experimental result of the propose method
against most recently revealed results. The result demon-
strates the feasibility and superiority of end-to-end training
for video emotion classification. It is found that one system’s
result (Yi et al., 2015) is slightly higher (less than 0.1%) than
the proposed one. However, its features are selected manu-
ally, which is time-consuming, not universal and not portable.
What’s worse, their feature dimension is also long. End-to-
end training has better transfer learning properties and the
training process is convenient. Using a well-trained model
for another similar problem only needs a simple refinement.
It is also observed from the table that the method proposed in
(Tiwari et al., 2016) has the similar feature size to ours, while
the proposed model outperforms their final arousal accuracy.
This may because their feature fusion approach is rough and
does not consider the temporal characteristics. This demon-
strates that temporal features could play a role in video emo-
tion analysis to a certain extent. As for the other methods, our
result can outweigh them which shows that modal fusion has
a great advantage compared with simple early fusion and later
fusion. Fusing visual and audio feature in a mid-level is a po-
tential strategy since visual and audio information in video
have a certain interaction. It can also inferred that CNN has
good performance in visual and audio feature extraction.

Conclusion and Future Work
Video emotion recognition is an important challenge as de-
tecting affective attitudes is an important research field in
cognitive science. It is argued that visual and audio informa-
tion are both important in detecting video emotion. There-
fore in this paper we used a deep learning architecture to
fuse visual and audio modalities for video affective classi-
fication. This end-to-end framework has the advantages of
simple training and convenient transplantation and demon-
strates that modal fusion with small size of features can com-
pare against most state-of-art results obtained by participants
of the MediaEval 2015 Affective Impact of Movies task. Fur-
thermore, it would be interesting to study if it is feasible to

include information from other domains/modalities, e.g., ab-
stract words (Siakaluk, Knol, & Pexman, 2014), which de-
serve future study in the future work.
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B., Dellandréa, E., . . . Chen, L. (2015). The mediaeval
2015 affective impact of movies task. In Working Notes
Proceedings of the MediaEval 2015 Workshop.

Soleymani, M., Kierkels, J. J. M., Chanel, G., & Pun, T.
(2009). A bayesian framework for video affective repre-
sentation. In Proceedings of 3rd International Conference
on Affective Computing and Intelligent Interaction.

Tiwari, S. N., Duong, N. Q., Lefebvre, F., Demarty, C.-
H., Huet, B., & Chevallier, L. (2016). Deep features
for multimodal emotion classification. Retrieved from
https://hal.inria.fr/hal-01289191

Trigeorgis, G., Coutinho, E., Ringeval, F., Marchi, E.,
Zafeiriou, S., & Schuller, B. W. (2015). The ICL-TUM-
PASSAU approach for the mediaeval 2015 “affective im-
pact of movies” task. In Working Notes Proceedings of the
MediaEval 2015 Workshop.

Wang, H. L., & Cheong, L. F. (2006). Affective understand-
ing in film. IEEE Transactions on Circuits and Systems for
Video Technology, 16(6), 689–704.

Williams, S., Oliker, L., Vuduc, R. W., Shalf, J., Yelick, K. A.,
& Demmel, J. (2009). Optimization of sparse matrix-vector
multiplication on emerging multicore platforms. Parallel
Computing, 35(3), 178–194.

Xu, M., Chia, L., & Jin, J. S. (2005). Affective content anal-
ysis in comedy and horror videos by audio emotional event
detection. In Proceedings of 2005 IEEE International Con-
ference on Multimedia and Expo (pp. 622–625).

Yi, Y., Wang, H., Zhang, B., & Yu, J. (2015). MIC-TJU in
mediaeval 2015 affective impact of movies task. In Work-
ing Notes Proceedings of the MediaEval 2015 Workshop.

Zaremba, W., & Sutskever, I. (2014). Learning to execute.
CoRR, abs/1410.4615.

Zeiler, M. D., Ranzato, M., Monga, R., Mao, M. Z., Yang,
K., Le, Q. V., . . . Hinton, G. E. (2013). On rectified linear
units for speech processing. In Proceedings of 2013 IEEE
International Conference on Acoustics, Speech and Signal
Processing (pp. 3517–3521).

Zhu, Y., Jiang, Z., Peng, J., & Zhong, S. (2016). Video affec-
tive content analysis based on protagonist via convolutional
neural network. In Proceedings of 17th Pacific-Rim Con-
ference on Multimedia, Part I (pp. 170–180).

3559




