
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Energy Efficient Hardware Implementation of Neural Networks Using Emerging Non-
Volatile Memory Devices

Permalink
https://escholarship.org/uc/item/9pv7t482

Author
Oh, Sangheon

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9pv7t482
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Energy Efficient Hardware Implementation of Neural Networks Using Emerging Non-Volatile

Memory Devices

A Dissertation submitted in partial satisfaction of the requirements

for the degree Doctor of Philosophy

in

Electrical Engineering (Applied Physics)

by

Sangheon Oh

Committee in charge:

Professor Duygu Kuzum, Chair

Professor Gert Cauwenberghs

Professor Tse Nga Ng

Professor Ivan K Schuller

Professor Yuan Taur

2023

Copyright

Sangheon Oh, 2023

All rights reserved.

iii

The Dissertation of Sangheon Oh is approved, and it is acceptable in

quality and form for publication on microfilm and electronically.

University of California San Diego

2023

iv

TABLE OF CONTENTS

DISSERTATION APPROVAL PAGE ... iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... ix

LIST OF TABLES .. xiii

ACKNOWLEDGEMENTS ... xv

VITA .. xviii

ABSTRACT OF THE DISSERTATION .. xix

INTRODUCTION .. 1

References .. 3

CHAPTER 1. Drift-Enhanced Unsupervised Learning of Handwritten Digits in Spiking

Neural Network With PCM Synapses .. 5

1. Introduction .. 5

2. PCM Synapse and Drift Model .. 6

A. Device Structure and Characteristics ... 6

B. Resistance Drift Model .. 7

3. Neural Network Architecture ... 8

4. Device-Network Mapping for Simulation .. 9

5. Resistance Drift During On-Line Training ... 9

A. Estimation of Wait Time During Training .. 9

B. Simulation Results ... 10

6. Conclusions .. 12

7. References .. 19

v

8. Acknowledgements .. 21

CHAPTER 2. The Impact of Resistance Drift of Phase Change Memory (PCM) Synaptic

Devices on Artificial Neural Network Performance .. 22

1. Introduction .. 22

2. Resistance Drift of PCM .. 24

3. Neural Networks with PCM Devices ... 25

4. Variations on Resistance Drift .. 27

5. Conclusion .. 29

6. References .. 35

7. Acknowledgements .. 39

CHAPTER 3. Neuroinspired unsupervised learning and pruning with subquantum CBRAM

arrays .. 40

1. Introduction .. 40

2. Subquantum synaptic device characteristics. ... 43

3. Neural network algorithm for unsupervised learning. 46

4. Pruning during the training. .. 49

5. Hardware demonstration of pruning during training. 51

6. Discussion ... 53

7. Methods .. 55

A. Neural network algorithm. ... 55

B. Hardware Implementation. .. 58

8. Supplementary Notes .. 85

A. Supplementary Note 1 ... 85

B. Supplementary Note 2 ... 85

C. Supplementary Note 3 ... 86

9. References .. 87

vi

10. Acknowledgements .. 93

CHAPTER 4. Integration of Ag-CBRAM Crossbars and Mott-Relu Neurons For Efficient

Implementation of Deep Neural Networks In Hardware ... 94

1. Introduction .. 94

2. Ag-based CBRAM ... 97

3. Mott-ReLU Activation Neuron .. 99

4. Ag-CBRAM and Mott-ReLU Integration for a DNN Application 101

5. Conclusion .. 104

6. References .. 117

7. Acknowledgements .. 118

CHAPTER 5. A Neuromorphic Brain Interface Based on RRAM Crossbar Arrays for High

Throughput Real-Time Spike Sorting .. 119

1. Introduction .. 120

2. CuOx Resistive Crossbars ... 122

3. Template Matching Algorithm ... 124

A. Algorithm Overview .. 124

B. Datasets .. 125

C. Sorting Performance .. 126

4. HW Implementation of Spike Sorting .. 127

A. HW Mapping ... 127

B. HW Demonstration .. 128

C. System-Level Performance Benchmarking 130

5. Conclusions .. 132

6. References .. 146

7. Acknowledgements .. 149

vii

CHAPTER 6. Energy-efficient Mott activation neuron for full-hardware implementation of

neural networks .. 150

1. Introduction .. 150

2. Mott activation neuron ... 152

3. Neural network implementations ... 157

4. System-level performance benchmarking .. 158

5. Integration of Mott ReLU devices with crossbar arrays 159

6. Conclusions .. 161

7. Methods .. 161

A. Mott device fabrication. ... 161

B. Device measurement set-up. .. 162

C. CMOS ReLU implementation. .. 162

D. Neural network configuration .. 163

E. Convolutional filtering with the Mott ReLU device integrated with CBRAM

array. ... 164

8. Supplementary Notes .. 165

A. Supplementary Note 1: Potential Practical Issues of Mott Transition165

B. Supplementary Note 2: The Setup for ReLU Performance Benchmarking

 .. 165

C. Supplementary Note 3: Compact Thermal Model of Mott ReLU Device 166

D. Supplementary Note 4: Network Simulation with Variations 166

E. Supplementary Note 5: MUX Sharing for CMOS ReLU Implementations

 .. 167

F. Supplementary Note 6: SPICE Simulation for Mott ReLU Device with

Synaptic Array .. 167

G. Supplementary Note 7: System-level Benchmarking 168

9. References .. 186

viii

10. Acknowledgements .. 189

CONCLUSION .. 190

References .. 191

ix

LIST OF FIGURES

Figure 1.1: (a) A cross-section TEM image of an electronic synapse made of GST. (b) and (c)

are the gradual switching characteristics of the device in high G and low G regimes,

respectively. .. 13

Figure 1.2: (a) Resistance drift characteristics of GST PCM. The initial resistance is 2 MΩ

and it gets drift to higher resistance as wait time increases. The slope of the curve is the drift

coefficient v = 0.1. (b) The drift coefficients for different initial resistances. Line represents

the model described in eq. (1.2) and circle symbols represent experimental results. 14

Figure 1.3: (a) Algorithm to compute wait time of each synapse. We estimate wait time first

and then calculate resistance drift using eq. (1.1) and (1.2). (b) Visualization of wait time of

each output neuron. When one of output neurons generates a spike, the neuron’s

corresponding weights are updated. ... 15

Figure 1.4: (a) Weight and (b) resistance distribution after training for no-drift and drifted

cases. Weight distribution shows that the number of cells with –1 weight is increased due to

drift. Resistance distribution shows high resistance synapses are drifted to MΩ range during

the training. ... 16

Figure 1.5: (a) MNIST classification accuracy of our SNN with ideal weights (64-bit and 8-bit

precision) and device data (See Fig. 1.2(b) and (c)). (b) Classification accuracy for different

additional wait time after training. (c) Resistance drift variation results. Our SNN exhibits

great tolerance against D2D variations. .. 17

Figure 1.6: The weight distribution after training (a) without variation, (b) with 50 % of D2D

variation, and (c) with 50 % of C2C variation. The inset images are the visualization of

weights of 10 output neurons as representative examples. With 50 % of D2D variation, the

weight distribution is well-maintained. .. 18

Figure 2.1: (a) Conductance response of our PCM device shows gradual switching behavior.

(b) The resistance of PCM is measured after various wait time. It shows that resistance

increases as wait time increases. The slope of the plot is the drift coefficient(v). (c) The

dependency of v on resistance. ... 30

Figure 2.2: The schematics of two ANNs used for PCM drift simulations: (a) MLP and (b)

CNN. (c) The illustration shows how the wait time of PCM cells is estimated during training.

The wait time (twait,n) is estimated as a time interval between the initial drift time (tinit) and the

current read time(tR,n+1). ... 31

Figure 2.3: (a) The classification accuracy of MLP (left three bars) and CNN (right three bars)

with ideal software weights and PCM device data without and with drift. (b) The accuracy of

MLP and CNN with different drift coefficient v at R0. .. 32

x

Figure 2.4: The classification accuracy of (a) MLP and (b) CNN with resistance drift

variations (C2C and D2D) on drift coefficients (i.e., v and k). For both networks, the accuracy

degradation due to C2C or variation on k is severer than that due to D2D or variation on v.

 .. 33

Figure 2.5: The weight distribution of (a) MLP (HO layer) and (b) CNN (FC2-Output layer)

without resistance drift. With 20 % of D2D variation on v, most of the weights in −1 to −0.5

are drifted to −1 while the distribution of weights larger than −0.5 is well preserved for both

(c) MLP and (d) CNN. .. 34

Figure 3.1: Subquantum CBRAM characteristics. a Semiconductor or semimetal filaments

can yield lower conductance than metal filaments of comparable width. b Subquantum

conductive bridging RAM (CBRAM) cell fabricated in a standard 130 nm logic process.

Photograph shows 512 kbit subquantum CBRAM chip ... 60

Figure 3.2: Gradual switching. a Gradual switching in a subquantum conductive bridging

RAM (CBRAM) synapse using stepwise voltage pulses applied to the wordline (WL) (left).

Callout window (right) shows one cycle of long-term potentiation (LTP) and long-term

depression (LTD).. .. 61

Figure 3.3: Neural Network for unsupervised learning. a Each input digit contains

28 × 28 = 784 pixels and has been cropped and reduced to 397 pixels. The neural network has

397 input neurons with a bias term and 500 output neurons. Input spike trains of input

neurons are generated according to pixel density (from 0 to 1) 62

Figure 3.4: Network pruning during training. a Schematics compare no pruning, soft-pruning

and pruning cases. Top two row shows weight histograms of a representative output neuron.

For no pruning, the spike-timing-dependent plasticity (STDP) rule results in weights ranging

from −1 to 1 at the end of training. ... 63

Figure 3.5: Hardware implementation of unsupervised learning and pruning. a, Recognition

accuracy vs. bit precision. The bit precision levels include 1 bit for representing the sign. 64

corresponds to 64-bit floating point. The accuracy drops below 90% after 8 bits. Test dataset

has 10k images. ... 65

Figure 3.S1: CBRAM Write/Erase Speed. a, Bitline (BL) and wordline (WL) during a 3V

program operation. The anode voltage is fixed at the 3V BL voltage. After the WL is enabled,

the cell programs in <10ns. b, Bitline (BL) and wordline (WL) during an erase operation.

After the WL is enabled, the cell erases in ~10ns .. 69

Figure 3.S2: CBRAM Retention Characteristic. Excellent retention is achieved by the

subquantum cells for 10 min annealing at high temperature with the ON-state conductance a

few times greater than GTe are targeted2. .. 70

Figure 3.S3: STDP. a, Symmetric spike-timing-dependent plasticity (STDP) and b,

Asymmetric STDP learning rules modeled using the gradual programming data of 1T1R

subquantum CBRAM cells in Fig 2a. ... 71

xi

Figure 3.S4: STDP Fitting. The measured data from Fig 3.2b is fitted into the neural network

weight updating rule (Fig. 3.3c). .. 72

Figure 3.S5: Unsupervised Learning Algorithm. Unsupervised spiking neural network (SNN)

learning algorithm used in software neural network simulation and hardware demonstration.

 .. 73

Figure 3.S6: Consecutive Spikes. The illustration of consecutive output spikes of 10 output

neurons as a representative example. The consecutive output spikes of Neuron 8 are boxed in

red. The consecutive spikes can be measured using integrate-and-fire neuron circuits . 74

Figure 3.S7: Pruning Algorithm. Soft-pruning during the training algorithm for hardware

implementation. .. 75

Figure 3.S8: Pruning Overheads. a, Energy and b, Latency without and with overheads

estimation for soft-pruning from 10% to 80% with a step of 10% using SNN+NeuroSim.

Overheads include hardware flag and setting pruned weights to -1. Without overheads (W/O

overheads) results mean that flagging mechanism is implemented in software 76

Figure 3.S9: Classification and Pruning Visualization. Weights visualization of all 500 output

neurons for a, no pruning, b, 50% soft-pruning and c, pruning after training. 77

Figure 3.S10: Device Switching Cycles during Training. a, b, Empirical cumulative

distribution of the switching cycles of each bit in the weight matrix during training (a) no

pruning and (b) with 50% soft-pruning. We use one bit for the sign. Bit 1 is MSB and bit 7 is

LSB. LSB updates more frequently than MSB in both cases. .. 78

Figure 6.1: The Mott ReLU device for the hardware implementation of a neural network. a,b,

An illustration shows a neural network (a) and hardware implementation (b) of the neural

network with synaptic and activation (or neuron) devices. Σ represents a weighted sum while f

represents the activation function. .. 169

Figure 6.2: Switching mechanisms of VO2 gap. a–c, Schematics show a VO2 gap with no bias

(a), filamentary switching (b) and thermal-driven switching (c). d, As compared to thermal-

driven domain-wise switching, electrical filamentary switching shows an abrupt change in

resistance. ... 170

Figure 6.3: Electrical characteristics of the Mott ReLU device. a, Resistance of the VO2 gap

when a current pulse is applied to the heater. The resistance stays at a low resistance state

only when the bias is applied. b, Cycle-to-cycle (or intra-device) variation of each resistance

state of the Mott ReLU device. ... 171

Figure 6.4: Network-level implementations. a,b, A schematic of MLP (a) and LeNet-5 (b)

networks used for simulations with the Mott ReLU. MLP consists of an input layer (X), a

hidden layer (Z) and an output layer (Y) with bias (B) for the input and hidden layers. MLP

has one ReLU layer and LeNet-5 has four ReLU layers .. 172

xii

Figure 6.5: System-level benchmarking results. a–c, An illustration of a synaptic core and

neuron peripheral circuits implemented with conventional digital circuits (a), Mott ReLU

circuits (b) and analogue CMOS ReLU circuits (c). The Mott ReLU device can replace the

ADCs, adder, shift register and neuron peripheral circuits. ... 173

Figure 6.6: Hardware demonstration of the integration of Mott ReLU devices and a synaptic

array. a, An optical image (scale bar, 150 μm) of a CBRAM crossbar array (32 × 32) and the

scanning electron microscope image of a 16 × 16 CBRAM array (scale bar, 200 μm). We use

a 16 × 16 array for the following hardware implementation. 175

Figure 6.S1: a A schematic illustrates the compact thermal model used for the Mott ReLU

device. The model consists of (1) the thermal model for the heater which addresses Joule-

heating of the heater, (2) thermal coupling between the heater and VO2, and (3) thermal model

of VO2. b Parameters used for the SPICE model. .. 179

Figure 6.S2: a Heater current required to set the resistance of the VO2 gap to 1 k with

various thermal resistance of the nanowire heater. As the thermal resistance of the heater is

increased by 10, the required heater current to achieve the same resistance is reduced by

3.4. b Latency of the Mott ReLU device with various parasitic capacitance. 180

Figure 6.S3: a A picture, b schematic (1T1R architecture), c TEM image, and d gradual

switching behaviour of a CBRAM cell. CBRAM cells can provide gradual weight tuning for

both programming and erasing over many cycles. ... 181

Figure 6.S4: The accuracy of a MLP and b LeNet-5 for the whole MNIST set for each epoch

(60k images) with device-to-device (or inter-device) variations. The resistance is shifted by

R (= N (0,) Rmin) which is determined for each device at the beginning of the simulation

and fixed during the rest of the training. .. 182

Figure 6.S5: a A schematic of the circuit used for SPICE simulations of a Mott ReLU device

in the MLP shown in Fig. 6.4a. A Mott ReLU device gets a weighted sum current from 785

synaptic devices on the input-to-hidden layer and drives 10 synaptic devices on the hidden-to-

output layer. b Output voltage of Mott ReLU. ... 183

Figure 6.S6: a Lateral and b Vertical edge detection filters used for convolutional filtering

operation are shown in Fig. 6.6g and h in the main text. c The filters are mapped to the

CBRAM crossbar array using a differential pair scheme30-32. The devices at low resistance

state are programmed to ~300 184

xiii

LIST OF TABLES

Table 3.1. Network Accuracy ... 67

Table 3.2. Circuit-level Benchmark Results ... 68

Table 3.S1: Device Energy Profile. Energy consumption in subquantum conductive bridging

RAM (CBRAM), metal filament-based CBRAM cells and floating gate flash5. Subquantum

CBRAM is 10× more energy efficient than metal filament CBRAM and 100× more energy

efficient than floating gate flash, even for the maximum energy consumption cases. ... 79

Table 3.S2: Pruning Overheads Estimation. Area, energy and latency estimation of no

pruning, 80% soft-pruning without and with overheads. Without overheads (W/O overheads)

results mean that flagging mechanism is implemented in software and overhead associated

with setting pruned weights to -1 is not taken into account. .. 80

Table 3.S3: State-of-the-Art Unsupervised Learning Demonstration with Synaptic Devices on

MNIST. The table compares the overall performance of this work with the state-of-the-art

unsupervised learning demonstration with synaptic device on MNIST dataset. All the

references report recognition performance ... 81

Table 3.S4: State-of-the-Art Software Demonstration of Unsupervised Learning

Demonstration on MNIST. The table compares the performance (recognition accuracy) of this

work with the state-of-the-art software demonstrations of unsupervised learning on MNIST

dataset. .. 82

Table 3.S5: State-of-the-Art Pruning Techniques. This table summarizes pruning methods.

The first four can only be applied after training as reported by the references. The method

described in this work is the first to be implemented in hardware and also can be applied

either during or after training. .. 83

Table 3.S6: Simulation Parameters. All the parameters used for the simulations are listed

above. .. 84

Table 4.1: Performance Comparison of Activation Device/Circuit 116

Table 5.1: F1 Score for SW and HW Implementations. ... 144

Table 5.2: Benchmarking Our Results Against Previous Works15,31 in Terms of HW Type,

Recording Data Used in The Studies, Channel Count, Area/Channel, Power/Channel, Sorting

Latency, and Energy/Channel. The Accuracy Obtained on Neuronexus-32 and NeuroFITM

Data from SW and HW Experiments. .. 145

Table 6.1: The performance of the activation device or circuit. Comparison of Mott ReLU,

analogue CMOS ReLU14, and digital ADC with reconfigurable function mapping15 at single

xiv

ReLU level. The energy, latency, and leakage power are evaluated from the experimental

measurement results shown in Fig. 6.S2a and b. ... 177

Table 6.2: Network simulation result. The accuracy results of MLP and LeNet-5 for ideal

software (64 bit), 64-bit weights with Mott ReLU (~6 bit) and CBRAM (~5-bit weights) with

Mott ReLU (~6 bit). The results show that the Mott ReLU can achieve accuracy comparable

to the ideal software ReLU. .. 178

Table 6.6.S1: System-level Benchmarking Results. The system-level benchmarking results

computed by NeuroSim with the Mott ReLU devices, analogue CMOS ReLU circuits, and

digital CMOS peripherals for offline classification of MLP and LeNet-5. The synaptic arrays

are implemented with 130 nm technology node.. ... 185

xv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation to my advisor

Professor Duygu Kuzum for her invaluable guidance and support throughout my whole phD

study. I am also deeply indebted to Professor Ivan K Schuller and Professor Gert

Cauwenberghs for their irreplaceable support for our collaborative projects. Additionally, I

would like to extend my sincere thanks to Professor Tse Nga (Tina) Ng and Professor Yuan

Taur for their valuable feedback and suggestions as committee members for my dissertation.

I am also extremely grateful to Yuhan Shi for her help on all my research projects.

Special thanks to Yucheng Zhou and Dr. Jaeseoung Park for always being a company for

tiresome cleanroom fabrications. I also would like to mention that I had the pleasure of

working with my colleagues, Yichen Lu, Xin Liu, Zhisheng Huang, Jeonghoon Kim, Madison

Wilson, Mehrdad Ramezani, Dr. Akshay Ananthakrishnan, Shawn Fisher, and Dr. Ashwani

Kumar. I am deeply indebted to Dr. Javier del Valle, Dr. Pavel Salev, and Dr. Yoav

Kalcheim. They generously provided their knowledge and expertise to expedite the progress

of our collaborative work. Many thanks to Soumil Jain and Gopabandhu Hota. The

collaborative project with them could have not been advanced without them.

I would be remiss in not mentioning my family. Without their unwavering supports

and encouragement, I could not go through challenging times during my PhD study. My

spouse Minah Yoo’s selfless support has been truly invaluable and made me unswerving in

taking journey thus far. My mother and my little brother always provided unconditional

support all through my studies even during their sadness time. Lastly, my endless gratitude to

my father for his unwavering guidance and support. I always feel your presence even though

you’re gone.

xvi

Chapter 1, in full, is a reprint of the material as it appears in IEEE Electron Device

Letters. Oh, Sangheon; Shi, Yuhan; Liu, Xin; Song, Jungwoo; Kuzum, Duygu, Drift-

Enhanced Unsupervised Learning of Handwritten Digits in Spiking Neural Network with

PCM Synapses, 2018. The dissertation author was the primary author of this paper.

Chapter 2, in full, is a reprint of the material as it appears in IEEE Electron Device

Letters. Oh, Sangheon; Huang, Zhisheng; Shi, Yuhan; Kuzum, Duygu, The Impact of

Resistance Drift of Phase Change Memory (PCM) Synaptic Devices on Artificial Neural

Network Performance, 2019. The dissertation author was the primary researcher and author of

this paper.

Chapter 3, in full, is a reprint of the material as it appears in Nature Communications.

Shi, Yuhan; Nguyen, Leon; Oh, Sangheon; Liu, Xin; Koushan, Foroozan; Jameson, John, R.;

Kuzum, Duygu, Neuroinspired unsupervised learning and pruning with subquantum CBRAM

arrays, 2019. The dissertation author was a co-author of this paper.

Chapter 4, in full, has been submitted for publication of the material as it may appear

in IOP Neuromorphic Computing, Shi, Yuhan; Oh, Sangheon; Valle, Javier del; Salev, Pavel;

Schuller, Ivan K; Kuzum, Duygu, Integration of Ag-CBRAM Crossbars and Mott-Relu

Neurons for Efficient Implementation of Deep Neural Networks in Hardware, 2023. The

dissertation author was a co-author of this paper.

Chapter 5, in full, is a reprint of the material as it appears in IEEE Transactions on

Electron Devices, Shi, Yuhan; Ananthakrishnan, Akshay, Oh, Sangheon; Liu, Xin; Hota,

Gopabandhu; Cauwenberghs, Gert; Kuzum, Duygu, A Neuromorphic Brain Interface Based

on RRAM Crossbar Arrays for High Throughput Real-Time Spike Sorting, 2021. The

dissertation author was a co-author of this paper.

xvii

Chapter 6, in full, is a reprint of the material as it appears in Nature Nanotechnology,

Oh, Sangheon; Shi, Yuhan; Valle, Javier Del; Salev, Pavel; Lu, Yichen; Huang, Zhisheng;

Kalcheim; Yoav; Schuller; Ivan K; Kuzum, Duygu, Energy-efficient Mott activation neuron

for full-hardware implementation of neural networks, 2021. The dissertation author was the

primary author of this paper.

xviii

VITA

2015 Bachelor of Science in Electrical and Computer Engineering, University of Seoul

2018 Master of Science in Electrical and Computer Engineering, University of Seoul

2023 Doctor of Philosophy in Electrical Engineering (Applied Physics), University of

California San Diego

xix

ABSTRACT OF THE DISSERTATION

Energy Efficient Hardware Implementation of Neural Networks Using Emerging Non-

Volatile Memory Devices

by

Sangheon Oh

Doctor of Philosophy in Electrical Engineering (Applied Physics)

University of California San Diego, 2023

Professor Duygu Kuzum, Chair

Deep learning based on neural networks emerged as a robust solution to various

complex problems such as speech recognition and visual recognition. Deep learning relies on

a great amount of iterative computation on a huge dataset. As we need to transfer a large

amount of data and program between the CPU and the memory unit, the data transfer rate

xx

through a bus becomes a limiting factor for computing speed, which is known as Von

Neumann bottleneck. Moreover, the data transfer between memory and computation spends a

large amount of energy and cause significant delay. To overcome the limitation of Von

Neumann bottleneck, neuromorphic computing with emerging nonvolatile memory (eNVM)

devices has been proposed to perform iterative calculations in memory without transferring

data to a processor. This dissertation presents energy efficient hardware implementation of

neuromorphic computing applications using phase change memory (PCM), subquantum

conductive bridge random access memory (CBRAM), Ag-based CBRAM, and CuOx-based

resistive random access memory (RRAM).

Although substantial progress has been made towards in-memory computing with

synaptic devices, compact nanodevices implementing non-linear activation functions for

efficient full-hardware implementation of deep neural networks is still missing. Since DNNs

need to have a very large number of activations to achieve high accuracy, it is critical to

develop energy and area efficient implementations of activation functions, which can be

integrated on the periphery of the synaptic arrays. In this dissertation, we demonstrate a Mott

activation neuron that implements the rectified linear unit function in the analogue domain.

The integration of Mott activation neurons with a CBRAM crossbar array is also

demonstrated in this dissertation.

1

INTRODUCTION

Neural networks have become a popular tool for machine learning and artificial

intelligence, due to their capability to learn complex patterns from excessively large dataset and

make predictions or decisions1-5. However, their widespread adoption is hindered by the high

energy consumption and latency of the hardware when they are implemented on conventional

Von Neumann architecture. The conventional computing architecture has excessive delay and

energy consumption arise from data transfer between memory and processor, so-called Von

Neumann bottleneck (i.e., the energy consumption for data transfer is 170 times larger than that

for the computation of the same data)6,7. Due to this Von Neumann bottleneck, integrating data-

intensive neural networks with the conventional computer architecture leads to extremely large

energy consumption and delay on the hardware.

One promising solution to this problem is the use of in-memory computing architecture

with emerging non-volatile memory (eNVM) devices7,8, such as phase-change memory (PCM)9-

12, resistive random access memory (ReRAM)13, conductive bridge random access memory

(CBRAM)14,15, and metal oxide based resistive random access memory (RRAM)16,17. The in-

memory computing architecture uses the large and high-speed memory to store and process data

in-place, without the need to transfer data between memory and storage18,19. Data is stored in

arrays of eNVM devices and the computations (e.g. weighted sum) are performed using

Kirchhoff’s current law20. Since the slow and energy consuming data transfer can be minimized

in the in-memory computing architecture, neural networks on the in-memory computing

architecture can achieve high energy efficiency with low latency21.

2

In this dissertation, we explore the potential of using eNVM devices for the hardware

implementation of neural networks. We evaluate our approach using both simulation and

hardware experiments and show that it can significantly reduce the energy consumption and

latency of neural network hardware while maintaining high performance.

In Chapter 1, we investigate the impact of resistance drift and the variations in resistance

drift parameters during unsupervised online learning of a spiking neural network (SNN). We use

the resistance drift characteristics measured from experiments and incorporate them into the

SNN for MNIST handwritten digits classification.

In Chapter 2, we employ experimentally measured resistance drift characteristics into the

artificial neural network models, multilayer perceptron (MLP) and convolutional neural network

(CNN), to accurately model weight updates represented by PCM synaptic devices.

In chapter 3, using a subquantum conductive bridge random access memory (CBRAM)

array, we experimentally demonstrate high recognition accuracy on the MNIST dataset for

digital implementation of unsupervised learning.

In Chapter 4, we present integration of Ag-based CBRAM crossbar arrays with Mott-

ReLU activation neurons for scalable, energy and area efficient hardware implementation of

deep neural networks.

In Chapter 5, we present a high-density CuOx resistive crossbars to implement real-time,

low latency spike sorting processor that utilizes in-memory computations in a massively parallel

manner.

In Chapter 6, we present an energy-efficient and compact Mott activation neuron based

on vanadium dioxide (VO2) and its integration with a CBRAM array in hardware.

3

References

1 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. nature 521, 436 (2015).

2 Krizhevsky, A., Sutskever, I. & Hinton, G. E. in Advances in neural information

processing systems. 1097-1105.

3 Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A. & Bernstein, M. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision 115, 211-252 (2015).

4 Collobert, R. & Weston, J. in Proceedings of the 25th international conference on

Machine learning. 160-167 (ACM).

5 Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A.,

Vanhoucke, V., Nguyen, P. & Sainath, T. N. Deep neural networks for acoustic modeling

in speech recognition: The shared views of four research groups. IEEE Signal Processing

Magazine 29, 82-97 (2012).

6 Wong, H. S. P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S., Lee, B., Chen, F. T.

& Tsai, M.-J. Metal–Oxide RRAM. Proceedings of the IEEE 100, 1951-1970,

doi:10.1109/jproc.2012.2190369 (2012).

7 Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive

systems. Nature Electronics 1, 22-29, doi:10.1038/s41928-017-0006-8 (2018).

8 Yu, S. Neuro-Inspired Computing With Emerging Nonvolatile Memorys. Proceedings of

the IEEE 106, 260-285, doi:10.1109/jproc.2018.2790840 (2018).

9 Wong, H. S. P., Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajendran, B., Asheghi,

M. & Goodson, K. E. Phase Change Memory. Proceedings of the IEEE 98, 2201-2227,

doi:10.1109/JPROC.2010.2070050 (2010).

10 Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H. S. Nanoelectronic programmable

synapses based on phase change materials for brain-inspired computing. Nano Lett 12,

2179-2186, doi:10.1021/nl201040y (2012).

11 Bichler, O., Suri, M., Querlioz, D., Vuillaume, D., DeSalvo, B. & Gamrat, C. Visual

Pattern Extraction Using Energy-Efficient “2-PCM Synapse” Neuromorphic

Architecture. IEEE Transactions on Electron Devices 59, 2206-2214,

doi:10.1109/TED.2012.2197951 (2012).

12 Eryilmaz, S. B., Kuzum, D., Jeyasingh, R. G. D., Kim, S., BrightSky, M., Lam, C. &

Wong, H. S. P. in 2013 IEEE International Electron Devices Meeting. 25.25.21-

25.25.24.

13 Chen, Y. ReRAM: History, Status, and Future. IEEE Transactions on Electron Devices

67, 1420-1433, doi:10.1109/ted.2019.2961505 (2020).

4

14 Shi, Y., Nguyen, L., Oh, S., Liu, X., Koushan, F., Jameson, J. R. & Kuzum, D.

Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays.

Nature Communications 9, 5312, doi:10.1038/s41467-018-07682-0 (2018).

15 Suri, M., Querlioz, D., Bichler, O., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C. &

DeSalvo, B. Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses. IEEE

Transactions on Electron Devices 60, 2402-2409, doi:10.1109/ted.2013.2263000 (2013).

16 Grenouillet, L., Castellani, N., Persico, A., Meli, V., Martin, S., Billoint, O., Segaud, R.,

Bernasconi, S., Pellissier, C., Jahan, C., Charpin-Nicolle, C., Dezest, P., Carabasse, C.,

Besombes, P., Ricavy, S., Tran, N. P., Magalhaes-Lucas, A., Roman, A., Boixaderas, C.,

Magis, T., Bedjaoui, M., Tessaire, M., Seignard, A., Mazen, F., Landis, S., Vianello, E.,

Molas, G., Gaillard, F., Arcamone, J. & Nowak, E. in 2021 IEEE International Memory

Workshop (IMW) 1-4 (2021).

17 Yuhan Shi, A. A., Sangheon Oh, Xin Liu, Gopabandhu Hota,Gert Cauwenberghs,Duygu

Kuzum. High Throughput Neuromorphic Brain Interface with CuOx Resistive Crossbars

for Real-time Spike Sorting. International Electron Devices Meeting In press (2021).

18 Cai, F., Correll, J. M., Lee, S. H., Lim, Y., Bothra, V., Zhang, Z., Flynn, M. P. & Lu, W.

D. A fully integrated reprogrammable memristor–CMOS system for efficient multiply–

accumulate operations. Nature Electronics 2, 290-299, doi:10.1038/s41928-019-0270-x

(2019).

19 Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices.

Nature electronics 1, 333-343 (2018).

20 Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., di Nolfo, C., Sidler, S.,

Giordano, M., Bodini, M., Farinha, N. C. P., Killeen, B., Cheng, C., Jaoudi, Y. & Burr,

G. W. Equivalent-accuracy accelerated neural-network training using analogue memory.

Nature 558, 60-67, doi:10.1038/s41586-018-0180-5 (2018).

21 Wan, W., Kubendran, R., Gao, B., Josbi, S., Raina, P., Wu, H., Cauwenberghs, G. &

Wong, H. S. P. in 2020 IEEE Symposium on VLSI Technology. 1-2.

5

CHAPTER 1. DRIFT-ENHANCED UNSUPERVISED LEARNING OF HANDWRITTEN

DIGITS IN SPIKING NEURAL NETWORK WITH PCM SYNAPSES

Phase change memory (PCM), one of the most mature emerging non-volatile memories,

has gained considerable attention over the years for use as electronic synapses in biologically

inspired neuromorphic systems. The resistance drift of PCM devices, nonetheless, has long been

identified as one of the biggest challenges toward realizing many areas of applications. Although

this drawback has been extensively studied for memory development and many methods were

proposed to mitigate the drift effect, its impact, if any, on online learning has not been fully

explored yet. In this chapter, we investigate the impact of resistance drift and variations in

resistance drift parameters during unsupervised online learning. We use the resistance drift

characteristics measured from experiments and incorporate them into the spiking neural network

(SNN) for MNIST handwritten digits classification. Our results show that resistance drift,

considered as a non-ideality for PCM devices, can be exploited to boost accuracy for online

learning of handwritten digits in the SNN.

1. Introduction

Neural Networks (NNs) have provided the best solutions in various tasks such as image

classification and speech recognition. As training NNs require iterative updates of a massive

number of parameters, it is inefficient to use the traditional von Neumann architecture in which

data continuously transfer between processor and main memory via bus. To overcome the

limitation of the conventional architecture, crossbar array of resistive synaptic devices1,2 have

been developed as a promising alternative to implement NNs in an energy-efficient manner.

6

Among the resistive synaptic devices, phase change memory (PCM), which stores the

information using gradual switching between amorphous (high resistivity) and polycrystalline

(low resistivity) states of phase change material3, has been extensively studied at both device4

and array5,6 levels. However, PCM has a so-called low-field resistance drift phenomenon, which

refers to the increase of the resistance in amorphous state over time due to structural relaxation7-

9. Although this drawback has been extensively investigated for memory applications and there

are attempts to overcome it via clever device-level ideas9 or drift resilient architectures10, its

impact on on-line learning has not been fully explored yet. In this chapter, we study how PCM

drift affects on-line learning using an unsupervised spiking neural network (SNN). We

characterize and model device drift behavior from experimental data and incorporate it in the

SNN training on MNIST dataset. We demonstrate that resistance drift in PCM is not necessarily

detrimental but can be utilized to assist weight evolution during unsupervised learning to

enhance the classification accuracy.

2. PCM Synapse and Drift Model

A. Device Structure and Characteristics

In this chapter, we use Ge2Sb2Te5 (GST), a phase change material, to implement PCM

devices as electrical synapses. GST (200 nm thick) is deposited between a bottom electrode

(TiN) with a small contact area (75 nm diameter) and a top electrode (TiN) (See Fig. 1.1(a)).

Figure 1.1(b) and (c) show that PCM exhibits gradual conductance responses through a few

thousand cycles in both of high and low conductance (G) regime. In high G regime (See Fig.

1.1(b)), gradual set (increasing conductance) programming of the PCM devices is achieved by

using staircase pulses (i.e. 20 pulses per each voltage step of 0.1 V starting from 0.5 V to 0.9 V).

7

Gradual reset (decreasing conductance) is achieved using pulses with increasing amplitude from

2 V to 4 V with 20 mV voltage steps. In low G regime (See Fig. 1.1(c)), gradual set is performed

by stair-case pulses with an increasing step of 50 mV in the range of 1 V to 1.7 V (four pulses for

each step). Gradual reset is performed by pulses with increasing amplitude in the 5.7 V − 7.3 V

voltage range with 25 mV voltage steps.

B. Resistance Drift Model

After the PCM is programmed to high-resistance amorphous state (Reset), the resistance

of the PCM tends to gradually increase with time7-9 due to the resistance drift. The resistance

gradually increases with time to a higher value following the power-law8,

 𝑅(𝑡) = 𝑅0(𝑡/𝑡0)𝑣, (1)

where R0 and t0 are initial resistance and time, t is wait time, and ν is the drift coefficient. Figure

1.2(a) presents the relationship of resistance drift and wait time measured from the devices (ν =

0.1, R0 = 2 M, and t0 = 10−3 s)11. Another important aspect of the resistance drift is that the drift

is more evident in high resistance state than in low resistance state12. In order to accurately

characterize this property, we use a model which describes the dependency of drift coefficient on

resistance [12],

 𝑣(𝑅2) − 𝑣(𝑅1) = 𝑘 ∙ 𝑙𝑜𝑔(𝑅2/𝑅1), (2)

where k represents the dependency of drift coefficient. In this work, we use k = 0.2 based on the

experimental data11 (see Fig. 1.2(b)).

8

3. Neural Network Architecture

To investigate the impact of resistance drift of PCM on unsupervised learning, we

implement a SNN for MNIST digit classification. We utilize a network consists of 398 input

neurons (397 for image pixels + 1 for bias), 500 output neurons, and 199,000 synapses to classify

MNIST handwritten digits (Fig. 1.2(c)). We retain 397 of the original 784 pixels of MNIST

images by removing background pixels to reduce the complexity of the SNN. We use the

unsupervised learning algorithm from13. The input images are converted to Poisson pre-spike

trains based on the pixel intensity. Then, the output neurons integrate all the input spikes to

generate output spike trains based on probabilistic winner-take-all mechanism. The synaptic

weights (W) are updated via a simplified spiking time dependent plasticity (STDP) rule. If the

time difference between the post-spike and pre-spike (t) is within a 10 ms window, the synaptic

weight is updated via the long-term potentiation (LTP) rule,

 ∆𝑊𝐿𝑇𝑃 = 𝛼 ∙ exp(−𝛽(𝑊 + 1)), (3)

where α and β are parameters that control the scale of the exponential and W is the current

weight value. If t is not within the 10 ms window, it is updated via the long-term depression

(LTD) rule,

 ∆𝑊𝐿𝑇𝑃 = −𝛾. (4)

The parameters used in our simulations are α = 0.05, β = 0.5, and γ = 0.15 and the

synaptic weights of the SNN are limited in the range [−1, 1]. After training the NN with the

MNIST dataset (10 classes, 60,000 images), we fix the trained weights and present the training

images again for labeling. We assign labels to each output neuron based on the highest average

firing rate over all the training images. After the labeling, we perform inference (i.e.

classification) with the MNIST test set of 10,000 images. In these simulations, we assume that

9

the peripheral programming circuit can apply proper programming pulses (i.e. the number of

pulse and its amplitude) based on device’s conductance and the weight update rules.

4. Device-Network Mapping for Simulation

In order to properly incorporate device characteristics into the SNN model, we map

synaptic weights of the SNN to the PCM conductance values. Since the network has W ranging

from −1 to 1 while the PCM device conductance data ranges from 10 to 230 μS under the high G

regime (0.4 ∼ 5.5 μS under low G regime operation), we use linear transformation to map the

device conductance to the range of W (i.e. [−1, 1]) as follows: GNORM = G − (Gmax + Gmin)/2

(Gmax − Gmin)/2 (5) where GNORM is the normalized conductance (= W), G is device

conductance, and Gmax (Gmin) is the maximum (minimum) conductance of device data. For

each GNORM (= W), we calculate the ideal W using eq. (3) and (4) and find the GNORM for each

GNORM which is closest to the ideal W corresponding to the GNORM.

5. Resistance Drift During On-Line Training

A. Estimation of Wait Time During Training

To analyze the impact of resistance drift on online learning with the SNN, we need to

properly estimate the wait time of each PCM synapse during the training. To this end, we

propose an algorithm (see Fig. 1.3(a)) which keeps track of the wait time for each synapse

between weight updates during the training. Then, based on the estimated wait time, we calculate

the resistance drift using eq. (1) and (2). Next, we update the weight based on the drifted

resistance and the learning rule described in Section 3. During the training, synaptic devices are

updated only when the corresponding output neuron generates an output spike. Therefore,

10

devices in the array remain idle and wait until the connected output neuron spikes. Thus, as

shown in Fig. 3(b), the wait time of synaptic devices of each output neuron can be estimated by

measuring the time interval between two consecutive output spikes (See Fig. 1.3(c)). Please note

that we reset resistance drift of the devices (i.e. set t = t0) after the devices are programmed. This

resistance drift recovery phenomenon is reported by A. Pirovano et al14.

B. Simulation Results

Figure 1.4 shows the resistance and weight distributions of the SNN consisted of low G

PCMs after training for both of no-drift and drifted case. The distribution of the trained weights

can be divided into two distinct parts, namely the foreground (FG) pixels (blue) and background

(BG) pixels (green, yellow, and red) of the resistance map shown in Fig. 1.4(c). The BG (FG)

pixels are negative (positive) weights in Fig. 1.4(a). High resistance PCM synapses representing

the BG pixels of the digits drift toward the negative weight range. The weight distribution

histogram shows that the number of cells with weight −1 is increased due to drift, as indicated by

the red rectangular in Fig. 1.4(a). Fig. 1.4(b) shows the effect of drift on resistance distribution at

the end of the training. As shown in Fig. 1.4(b), most of resistance are below ∼2 M with no drift.

However, drift shifts high resistance weights into 2∼6 M resistance ranges. The effect of drift

can be also understood by comparing the color of the BG pixels in the representative weight

visualizations shown in Fig. 4(c). It means that the contrast between FG and BG pixels is

enhanced due to the drift.

The inference results of our SNN are summarized in Fig. 1.5(a). Our ideal SNN can

achieve 94.05 % and 92.02 % accuracy with 64-bit and 8-bit precision weights, respectively.

SNN based on PCM device data achieves 89.38 % with high G data and 85.12 % with low G

data in no-drift case. This is mainly because the weights represented by device data have limited

11

number of levels15-17 (i.e. High G: ∼106; Low G: ∼55). The low G result has lower accuracy

than the high G result because it has fewer number of levels. However, the low G regime (Gmax

∼5.5 μS) is more desirable than the high G regime (Gmax ∼230 μS) to minimize IR drop due to

the finite resistance of word line and bit line particularly for large scale crossbar array

applications (i.e. Gmax < 100 μS to prevent accuracy drop due to IR drop)15,18.

Since the resistance drift in high G regime is negligible, the accuracy remains unchanged.

For low G case, the classification accuracy is improved by 1.63 % as a result of the drift (Fig.

1.5(a) drifted case). The accuracy boost for the drift case can be understood from two

perspectives: First, the resistance drift does not distort the weight distribution of FG pixels

because most of these pixels lie in no-drift region (i.e. below ∼0.5 M). Since the shape of the FG

weight distribution is essentially preserved, the resistance drift does not show detrimental effects

on NN learning. Second, the more the BG pixels are programmed to −1 weight state, the more

effectively the membrane potential of an output neuron is decreased. This improves the weight

representation of the learned digit by enhancing the degree of contrast between the FG and the

BG pixels. As a result, false positive spiking for non-matching classes can be prevented, thereby

leading to an improvement in the classification accuracy. Figure 1.5(b) shows that additional

wait time between training and testing does not affect accuracy. Since all the devices get drifted

enough during the training (i.e. all BG pixels drifted to W = −1), the contrast between FG and

BG pixels is not enhanced further by the additional wait time. Hence, the additional wait time

after training does not affect accuracy.

The impact of variation, stochasticity, linearity and asymmetry of PCM conductance

change have been extensively studied in the literature19. Here we specifically focus on variations

in drift parameters and investigate their impact on classification accuracy. The impact of cycle-

12

to-cycle (C2C) and deviceto-device (D2D) variations in drift parameters (v and k) on our SNN is

shown in Fig. 1.5(c). For D2D variation, drift parameters of each device are fixed during the

training. D2D variation only drifts a limited number of FG pixels, which have high drift

coefficients. SNN can easily adapt and compensate the variation in drift characteristics during

the training. As a result, the weight distribution of FG pixels is well-maintained (See Fig. 1.6(a)

and (b)) and the accuracy does not get affected. In contrast, if there is C2C variation in drift

parameters, some of the FG pixels with relatively high resistance end up having different drift

coefficients after every update. This random change in drift behavior of the FG pixels results in

distortion of the weight distribution (See Fig. 1.6(c)) and information loss leading to the accuracy

decrease beyond 30-40% C2C variation.

6. Conclusions

In this chapter, we investigate the impact of PCM resistance drift and variations in

resistance drift parameters on unsupervised learning of MNIST handwritten digits in spiking

neural network for on-line learning applications. We model the device drift characteristics from

the experimental data and incorporate it into our neural network simulation. We demonstrate that

PCM drift does not degrade network performance. Instead, it can act as a mechanism boosting

the classification accuracy by improving the weight representations of the learned digits.

13

Figure 1.1: (a) A cross-section TEM image of an electronic synapse made of GST. (b) and (c) are the

gradual switching characteristics of the device in high G and low G regimes, respectively. For both high

G and low G regimes, we use pulses with 10 ns of pulse width, 5 ns of rise time, and 5 ns of fall time for

gradual set and 20 ns of pulse width, 5 ns of rise time, and 5 ns of fall time for gradual reset.

14

Figure 1.2: (a) Resistance drift characteristics of GST PCM. The initial resistance is 2 MΩ and it gets drift

to higher resistance as wait time increases. The slope of the curve is the drift coefficient v = 0.1. (b) The

drift coefficients for different initial resistances. Line represents the model described in eq. (1.2) and

circle symbols represent experimental results. (c) NN architecture with 398 input neurons and 500 output

neurons with fully connected structure. Each pixel of a MNIST image is corresponding to one of the input

neurons.

15

Figure 1.3: (a) Algorithm to compute wait time of each synapse. We estimate wait time first and then

calculate resistance drift using eq. (1.1) and (1.2). (b) Visualization of wait time of each output neuron.

When one of output neurons generates a spike, the neuron’s corresponding weights are updated. After

weight update, the updated devices remain idle until output spike is generated again.(c) A representative

distribution of the estimated wait time of synapses connected to Neuron 1 (N1) during the training.

16

Figure 1.4: (a) Weight and (b) resistance distribution after training for no-drift and drifted cases. Weight

distribution shows that the number of cells with –1 weight is increased due to drift. Resistance

distribution shows high resistance synapses are drifted to MΩ range during the training. The red vertical

line is a reference for eye to show the drift in high resistance ranges. (c) Resistance map of a

representative output neuron for no-drift and drifted cases. With drift, the resistance values of BG pixels

are increased.

17

Figure 1.5: (a) MNIST classification accuracy of our SNN with ideal weights (64-bit and 8-bit precision)

and device data (See Fig. 1.2(b) and (c)). (b) Classification accuracy for different additional wait time

after training. (c) Resistance drift variation results. Our SNN exhibits great tolerance against D2D

variations. The accuracy drops when C2C variation is greater than 30-40%.

18

Figure 1.6: The weight distribution after training (a) without variation, (b) with 50 % of D2D variation,

and (c) with 50 % of C2C variation. The inset images are the visualization of weights of 10 output

neurons as representative examples. With 50 % of D2D variation, the weight distribution is well-

maintained. However, 50 % of C2C variation drifts almost all of FG pixels to the minimum value (red

box outline in (c)) and totally distorts weight distribution. The inset histogram in (c) shows few weights

larger than the minimum.

19

7. References

1 Yu, S. Neuro-Inspired Computing With Emerging Nonvolatile Memorys. Proceedings of

the IEEE 106, 260-285, doi:10.1109/jproc.2018.2790840 (2018).

2 Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive

systems. Nature Electronics 1, 22-29, doi:10.1038/s41928-017-0006-8 (2018).

3 Wong, H. S. P., Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajendran, B., Asheghi,

M. & Goodson, K. E. Phase Change Memory. Proceedings of the IEEE 98, 2201-2227,

doi:10.1109/JPROC.2010.2070050 (2010).

4 Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H. S. Nanoelectronic programmable

synapses based on phase change materials for brain-inspired computing. Nano Lett 12,

2179-2186, doi:10.1021/nl201040y (2012).

5 Bichler, O., Suri, M., Querlioz, D., Vuillaume, D., DeSalvo, B. & Gamrat, C. Visual

Pattern Extraction Using Energy-Efficient “2-PCM Synapse” Neuromorphic

Architecture. IEEE Transactions on Electron Devices 59, 2206-2214,

doi:10.1109/TED.2012.2197951 (2012).

6 Eryilmaz, S. B., Kuzum, D., Jeyasingh, R. G. D., Kim, S., BrightSky, M., Lam, C. &

Wong, H. S. P. in 2013 IEEE International Electron Devices Meeting. 25.25.21-

25.25.24.

7 Ielmini, D., Lavizzari, S., Sharma, D. & Lacaita, A. L. in 2007 IEEE International

Electron Devices Meeting. 939-942.

8 Boniardi, M. & Ielmini, D. Physical origin of the resistance drift exponent in amorphous

phase change materials. Applied Physics Letters 98, doi:10.1063/1.3599559 (2011).

9 Koelmans, W. W., Sebastian, A., Jonnalagadda, V. P., Krebs, D., Dellmann, L. &

Eleftheriou, E. Projected phase-change memory devices. Nature Communications 6,

8181, doi:10.1038/ncomms9181 (2015).

10 Zhang, W. & Li, T. in 2011 IEEE/IFIP 41st International Conference on Dependable

Systems & Networks (DSN). 197-208.

11 Kim, S., Lee, B., Asheghi, M., Hurkx, F., Reifenberg, J. P., Goodson, K. E. & Wong, H.

S. P. Resistance and Threshold Switching Voltage Drift Behavior in Phase-Change

Memory and Their Temperature Dependence at Microsecond Time Scales Studied Using

a Micro-Thermal Stage. IEEE Transactions on Electron Devices 58, 584-592,

doi:10.1109/ted.2010.2095502 (2011).

12 Braga, S., Cabrini, A. & Torelli, G. Dependence of resistance drift on the amorphous cap

size in phase change memory arrays. Applied Physics Letters 94, doi:10.1063/1.3088859

(2009).

20

13 Nessler, B., Pfeiffer, M. & Maass, W. STDP enables spiking neurons to detect hidden

causes of their inputs. Vol. 22 (Curran Associates, Inc., 2009).

14 Pirovano, A., Lacaita, A. L., Pellizzer, F., Kostylev, S. A., Benvenuti, A. & Bez, R. Low-

field amorphous state resistance and threshold voltage drift in chalcogenide materials.

IEEE Transactions on Electron Devices 51, 714-719, doi:10.1109/ted.2004.825805

(2004).

15 Chen, P.-Y., Peng, X. & Yu, S. NeuroSim: A Circuit-Level Macro Model for

Benchmarking Neuro-Inspired Architectures in Online Learning. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 37, 3067-3080,

doi:10.1109/tcad.2018.2789723 (2018).

16 Mallik, A., Garbin, D., Fantini, A., Rodopoulos, D., Degraeve, R., Stuijt, J., Das, A. K.,

Schaafsma, S., Debacker, P., Donadio, G., Hody, H., Goux, L., Kar, G. S., Furnemont,

A., Mocuta, A. & Raghavan, P. in 2017 Symposium on VLSI Technology. T178-T179.

17 Yu, S., Li, Z., Chen, P. Y., Wu, H., Gao, B., Wang, D., Wu, W. & Qian, H. in 2016 IEEE

International Electron Devices Meeting (IEDM). 16.12.11-16.12.14.

18 Liu, B., Li, H., Chen, Y., Li, X., Huang, T., Wu, Q. & Barnell, M. in 2014 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD). 63-70.

19 Burr, G. W., Shelby, R. M., Sidler, S., di Nolfo, C., Jang, J., Boybat, I., Shenoy, R. S.,

Narayanan, P., Virwani, K., Giacometti, E. U., Kurdi, B. N. & Hwang, H. Experimental

Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses)

Using Phase-Change Memory as the Synaptic Weight Element. IEEE Transactions on

Electron Devices 62, 3498-3507, doi:10.1109/ted.2015.2439635 (2015).

21

8. Acknowledgements

We acknowledge Office of Naval Research (N000141612531) and National Science

Foundation (ECCS-1752241, ECCS-1734940) for funding. We acknowledge Prof. H.-S. Philip

Wong for insightful discussions.

Chapter 1, in full, is a reprint of the material as it appears in IEEE Electron Device

Letters. Oh, Sangheon; Shi, Yuhan; Liu, Xin; Song, Jungwoo; Kuzum, Duygu, Drift-Enhanced

Unsupervised Learning of Handwritten Digits in Spiking Neural Network with PCM Synapses,

2018. The dissertation author was the primary author of this paper.

22

CHAPTER 2. THE IMPACT OF RESISTANCE DRIFT OF PHASE CHANGE MEMORY

(PCM) SYNAPTIC DEVICES ON ARTIFICIAL NEURAL NETWORK PERFORMANCE

Phase change memory (PCM) has been considered as one of the most promising

emerging non-volatile memories for in-memory computing of neural networks. In this chapter,

we investigate the impact of resistance drift and its statistical variations on two widely-used

artificial neural network (ANN) models, multi-layer perceptron (MLP), and convolutional neural

network (CNN). We employ experimentally measured resistance drift characteristics into the

ANN models to accurately model weight updates represented by PCM synaptic devices. Our

results suggest that the resistance drift in PCM causes minor accuracy degradation (only ∼1%)

for both MLP and CNN models. However, classification accuracy can be significantly reduced if

the PCM drift characteristics exhibit high device-to-device and cycle-to-cycle variations in the

drift coefficients.

1. Introduction

Advancements in artificial neural networks (ANNs) have enabled huge performance

improvements for a wide range of applications including image recognition1,2 and speech

processing3,4. However, the limitations due to Von Neumann architecture, known as Von

Neumann bottleneck, have started to impede the development of more advanced models5. To

circumvent this challenge, non-Von Neumann approaches such as in-memory computing

systems based on emerging non-volatile memory (eNVM) devices have been proposed6-12. By

performing data processing in memory, in-memory computing systems minimize the need for

data transfer between the processor and the off-chip memory, and accelerate matrix

23

multiplication13, which is a very energy and latency-intensive process14 and the culprit of Von

Neumann bottleneck. Among various eNVM devices, which are considered for in-memory

computing systems, phase change memory (PCM) has been one of the promising candidates15,16

due to its fast and gradual switching, energy efficiency, and scalability17,18.

Although PCM devices have desirable switching characteristics for in-memory

computing of ANNs, they still suffer from a non-ideal device behavior called resistance drift,

which increases the resistance under amorphous (high resistivity) phase over time19-21. As a

result, the data stored in PCM devices can change over time even though the devices remain idle.

Many researchers have proposed ideas to mitigate the effects of the resistance drift for digital

memory applications22,23 and neuromorphic architectures24. In our previous work25, we

investigated the effect of resistance drift on the classification accuracy of unsupervised learning

in spiking neural networks trained by biologically inspired spike timing dependent plasticity.

However, most of the deep neural network models are supervised and trained using

backpropagation. Understanding the impact of drift on the training of ANNs using

backpropagation is critical for designing in-memory computing platforms based on PCM arrays.

Therefore, in this chapter, we present a thorough study on how the resistance drift impacts

training of commonly used ANN models. We model resistance drift and statistical variations in

the drift parameters and investigate how the evolution of weights is impacted for two neural

network models, multi-layer perceptron (MLP)26 and convolutional neural network (CNN)2. Our

simulation results demonstrate that MLP and CNN can tolerate resistance drift unless the drift

parameters exhibit severe statistical variations.

24

2. Resistance Drift of PCM

To implement neural network weight updates using PCM device data, we used PCM

devices with Ge2Sb2Te5 (GST) phase change material25. The PCM devices have a 200 nm thick

GST layer which is sandwiched by the TiN top and bottom electrodes. Gradual conductance

changes are shown in Fig. 2.1(a), which are achieved with a non-identical pulse scheme: Gradual

set is achieved by stair-case pulses with an increasing amplitude (50 mV step) from 1 V to 1.7 V

(4 pulses/step), and gradual reset is demonstrated by pulses with increasing amplitude from 5.7 V

to 7.3 V with 25 mV voltage steps.

The resistance drift characteristics of the PCM device are shown in Fig. 2.1(b) and (c).

Figure 2.1(b) shows that the resistance of PCM at high-resistive amorphous state (~2 M)

gradually increases over time. The drift coefficients (v) for various resistance values shown in

Fig. 2.1 (c) indicate that resistance drift becomes more severe as the resistance increases. The

resistance drift behaviors can be characterized with two models: The first model20, shown in

(2.1), represents how much the resistance is increased for a given wait time of a PCM device

(See Fig. 2.1(b)). In the model, drift coefficient (v) controls how fast the resistance is increased

from the initial resistance (R0), which is measured after initial read time (t0) from a write

operation, as wait time (t) increases.

 𝑅 = 𝑅0(𝑡/𝑡0)𝑣 (2.1)

The second model21, presented in (2.2), describes the dependency of drift coefficient (v) on the

resistance of a PCM device (See Fig. 2.1(c)). The parameter k controls the dependency of drift

coefficient on resistance. If k is larger, the drift coefficient increases faster as the resistance

increases until it reaches its maximum value.

 𝑣(𝑅) − 𝑣0 = 𝑘 ∙ log(𝑅/𝑅0) (2.2)

25

In this chapter, we use v0 = 0.1, R0 = 2 M, t0 = 1 ms, and k = 0.2 which are extracted from the

device data25 shown in Fig. 2.1. Note that the maximum value of v is set to 0.1 as shown in Fig.

2.1(c).

3. Neural Networks with PCM Devices

We constructed MLP and CNN for supervised online learning of MNIST handwritten

digit dataset (2828 grayscale images)2 using PyTorch. The MLP model has 784 input neurons,

128 neurons in the hidden layer, and 10 output neurons as shown in Fig. 2.2(a). Both the input

layer and hidden layer have bias term (i.e., one additional neuron per each layer whose input is

always 1). The other network, CNN (See Fig. 2.2(b)), has two 2D convolutional layers (55

kernel) and each of them is followed by a max polling layer (22 kernel). It also has one fully

connected (FC) layer with 120 neurons, another FC layer with 84 neurons, and an output layer

with 10 output neurons. We also added batch normalization layers27 in-between FC layers to

allow the use of larger learning rate and improve the accuracy of the network. For both MLP and

CNN, the weights are quantized based on our PCM device data (~55 levels), and stochastic

gradient descent optimizer (learning rate = 1 for MLP and 0.05 (with momentum = 0.9) for

CNN) with cross-entropy loss and ReLU activation function are used for training.

In our previous work25, we mapped network weights onto the device conductance using equation

(2.3) and applied the two resistance drift models to the conductance values (i.e. (2.1) and (2.2)).

 𝑊 = 𝑊𝑚𝑎𝑥 +
𝑊𝑚𝑎𝑥−𝑊𝑚𝑖𝑛

𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛
(𝐺 − 𝐺𝑚𝑎𝑥) (2.3)

However, this method is not appropriate for directly using in neural network simulators, since all

the calculations are done in the weight domain. Therefore, we converted the two resistance drift

26

models, which are in the resistance domain, into models in weight domain using the mapping

equation (2.3) as follows:

 𝑊 = 𝑊𝑖 (
𝑡

𝑡0
)

−𝑣

+ (𝐺𝑚𝑎𝑥
𝑊𝑚𝑎𝑥−𝑊𝑚𝑖𝑛

𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛
− 𝑊𝑚𝑎𝑥) {(

𝑡

𝑡0
)

−𝑣

− 1} (2.4)

 𝑣(𝑊𝑖) = 𝑣(𝑊0) + 𝑘 ∙ log (
𝐺0/𝐺𝑚𝑎𝑥

𝑊𝑖−𝑊𝑚𝑎𝑥
𝑊𝑚𝑎𝑥−𝑊𝑚𝑖𝑛

(1 −
𝐺𝑚𝑖𝑛
𝐺𝑚𝑎𝑥

)+1
) (2.5)

where Gmax (Gmin) is the maximum(minimum) resistance that devices can achieve (our PCM

devices exhibit Gmax = 4.762 S and Gmin = 0.554 S), Wmax (Wmin) is the maximum(minimum)

weight of networks (we used Wmax = 1 and Wmin = -1), Wi is weight without drift, G0 is initial

conductance (G0 = 1/R0 = 0.5 S), and W0 is weight corresponding to G0.

To implement resistance drift in network simulations, we need to develop a scheme to

estimate the wait time of PCM devices during the network simulations. If we store weights and

biases of networks using PCM devices, we will read the devices in feedforward step and write

weights to the devices in the backpropagation step. The main contribution to the wait time comes

from the calculation of weight updates. Therefore, we can assume that the delay between

weighted sum read (tRF,n) and individual weight read (tRB,n) is negligible for the wait time

estimation. Then, we can use the time interval between the current read time (tRF,ntRB,n) and the

initial drift time (tinit), the time when the drift is started, as the wait time (twait,n) of PCM device as

shown in Fig. 2.2(c). Our wait time estimation scheme also addresses the resistance drift

recovery phenomenon28 which resets the resistance drift of devices when they are programmed

(i.e. tinit = tW,n when Wn+1 Wn).

By using the resistance drift models with experimentally derived device parameters and

the wait time estimation scheme, we performed network simulations for MLP and CNN (See

Fig. 2.3(a)). For each network, we simulated the network with ideal software weights and PCM

27

device data with and without resistance drift. The results show that MLP can achieve 97.53 %

accuracy for ideal (64-bit, floating point) software simulation. However, when weights are

implemented with PCM device data, the accuracy is reduced by 5.93 % due to low bit precision

as a result of quantization into the limited number of conductance levels (~55 levels) of PCM

devices (shown as PCM w/o Drift) and it is further decreased by 1.18 % when the resistance drift

is included (PCM w/ Drift). Meanwhile, CNN with ideal 64-bit precision achieves 98.96 %

accuracy while the accuracy with PCM device data is decreased by 2.40 % due to quantization

and 0.79% as a result of drift. The simulation results show that the accuracy degradation due to

resistance drift is not significant compared to the accuracy drop because of low-precision of

PCM devices (Note that the accuracy can be severely degraded if v > 0.15 (See Fig. 2.3(b)),

however PCM with v > 0.15 will not reflect empirical results because most of PCM devices

have v ~ 0.1 or less29). The slight accuracy degradation due to resistance drift indicates that the

neural network models can successfully adapt to the resistance drift if the devices exhibit

deterministic drift characteristics. Our results are consistent with prior works, which

demonstrated that ANNs could adapt to the drift30 and the drift can be mitigated by using proper

synaptic array architectures24. It is noteworthy that the accuracy degradation due to quantization

can be minimized with advanced quantization techniques31-33.

4. Variations on Resistance Drift

While neural network models can adapt to deterministic weight changes due to drift, it is

crucial to explore how variations in drift characteristics affect neural network performance. The

variations in drift characteristics (e.g., device-to-device (D2D) and cycle-to-cycle (C2C)

variation) have been experimentally investigated by many researchers34-37 (e.g., J. L. M.

Oosthoek et al.34 reported ~16 % of C2C and M. Boniardi et al.35 reported ~25% of D2D). We

28

simulated both D2D and C2C on both resistance drift parameters (v and k) for MLP and CNN as

shown in Fig. 2.4(a). The variations are characterized as Gaussian variation whose standard

deviation is a given percentage of its mean. The results demonstrate that the classification

accuracy of MLP with resistance drift is not degraded until D2D on v or k is larger than 20 %,

C2C on v is larger than 15 %, or C2C on k is greater than 5 %. Similarly, CNN with resistance

drift (See Fig. 2.4 (b)) shows high accuracy when D2D on v or k is less than 20 %, C2C on v is

smaller than 10 %, or C2C on k is less than 5 %. We also show simulation results with

experimental measurement results35-37, in good agreement with our simulations. It is noteworthy

that C2C variations are more detrimental for the accuracy of both MLP and CNN.

To explain the difference between C2C and D2D, we chose 20% of C2C and D2D for

plotting the distribution of weights (Hidden-to-Output (HO) layer for MLP and FC2-Output layer

for CNN as representative examples) in Fig. 5, where the distortion is severe with C2C while it

is not severe yet with D2D. The main difference between C2C and D2D is that the cells

exhibiting very high v are fixed in D2D while it keeps changing for C2C in every cycle. If the

weights exhibiting high v are fixed, the distortion is minimal and the network can compensate it

over the training. As a result, only a small number of weights are drifted and stuck at −1 over the

training with D2D (Compare Fig. 2.5 (a) and (b) vs. Fig. 2.5 (c) and (d)). However, if the

weights exhibiting high v are changed for every cycle, the variation can affect the whole array

over the training and the network cannot compensate for the variation. Hence, much larger

number of the weights are drifted and stuck at −1 over the training with C2C as shown in Fig. 5

(e) and (f). The distortion of weights due to resistance drift (i.e. weights get stuck at −1)

represents that the weight change during training is dominated by not the weight update (W)

but the resistance drift. It means that the weights were not changed in the direction of error

29

minimization of the network. Since the number of weights affected by the resistance drift with

variation is larger with C2C than D2D, the accuracy degradation due to the C2C is more severe.

As a result, accuracy degradation starts around 15% variation for C2C, while it starts around

20% for D2D (Fig. 2.4).

5. Conclusion

We demonstrated that resistance drift does not cause severe accuracy degradation for

MLP and CNN. This implies that the ANNs can adapt to the weight changes due to resistance

drift. We also explored resistance drift variation effects and found out that the networks cannot

tolerate high statistical device-to-device and cycle-to-cycle variations in resistance drift

characteristics. Our findings suggest that improving device uniformity and reducing cycle-to-

cycle variations in drift characteristics are important to achieve high accuracy.

30

Figure 2.1: (a) Conductance response of our PCM device shows gradual switching behavior. (b) The

resistance of PCM is measured after various wait time. It shows that resistance increases as wait time

increases. The slope of the plot is the drift coefficient(v). (c) The dependency of v on resistance. The

model shown in (2) (solid line) is fitted to measurement results (red circle symbols).

31

Figure 2.2: The schematics of two ANNs used for PCM drift simulations: (a) MLP and (b) CNN. (c) The

illustration shows how the wait time of PCM cells is estimated during training. The wait time (twait,n) is

estimated as a time interval between the initial drift time (tinit) and the current read time(tR,n+1) (Individual

weights are read once at the beginning of the backpropagation step).

32

Figure 2.3: (a) The classification accuracy of MLP (left three bars) and CNN (right three bars) with ideal

software weights and PCM device data without and with drift. (b) The accuracy of MLP and CNN with

different drift coefficient v at R0.

33

Figure 2.4: The classification accuracy of (a) MLP and (b) CNN with resistance drift variations (C2C and

D2D) on drift coefficients (i.e., v and k). For both networks, the accuracy degradation due to C2C or

variation on k is severer than that due to D2D or variation on v. Star symbols (D2D) and a diamond

symbol (C2C) represent the results with the device data34-36.

34

Figure 2.5: The weight distribution of (a) MLP (HO layer) and (b) CNN (FC2-Output layer) without

resistance drift. With 20 % of D2D variation on v, most of the weights in −1 to −0.5 are drifted to −1

while the distribution of weights larger than −0.5 is well preserved for both (c) MLP and (d) CNN.

However, with 20 % of C2C variation on v, almost all of weights are drifted to −1 for both of (e) MLP

and (f) CNN.

35

6. References

1 He, K., Zhang, X., Ren, S. & Sun, J. in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) 770-778 (2016).

2 LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to

document recognition. Proceedings of the IEEE 86, 2278-2324 (1998).

3 Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. r., Jaitly, N., Senior, A.,

Vanhoucke, V., Nguyen, P., Sainath, T. N. & Kingsbury, B. Deep Neural Networks for

Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups.

IEEE Signal Processing Magazine 29, 82-97, doi:10.1109/MSP.2012.2205597 (2012).

4 Graves, A., Mohamed, A. r. & Hinton, G. in 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing. 6645-6649.

5 Backus, J. Can programming be liberated from the von Neumann style?: a functional

style and its algebra of programs. (ACM, 2007).

6 Sun, J., Oh, S., Choi, Y., Seo, S., Oh, M. J., Lee, M., Lee, W. B., Yoo, P. J., Cho, J. H. &

Park, J.-H. Optoelectronic Synapse Based on IGZO-Alkylated Graphene Oxide Hybrid

Structure. Advanced Functional Materials 28, 1804397,

doi:https://doi.org/10.1002/adfm.201804397 (2018).

7 Shukla, A. & Ganguly, U. An On-Chip Trainable and the Clock-Less Spiking Neural

Network With 1R Memristive Synapses. IEEE Transactions on Biomedical Circuits and

Systems 12, 884-893, doi:10.1109/TBCAS.2018.2831618 (2018).

8 Eryilmaz, S. B., Joshi, S., Neftci, E., Wan, W., Cauwenberghs, G. & Wong, H. S. P. in

2016 17th International Symposium on Quality Electronic Design (ISQED). 118-123.

9 Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P. & Lu, W. Nanoscale

Memristor Device as Synapse in Neuromorphic Systems. Nano Letters 10, 1297-1301,

doi:10.1021/nl904092h (2010).

10 Sun, X., Liu, R., Peng, X. & Yu, S. in 2018 14th IEEE International Conference on Solid-

State and Integrated Circuit Technology (ICSICT). 1-4.

11 Shi, Y., Nguyen, L., Oh, S., Liu, X., Koushan, F., Jameson, J. R. & Kuzum, D.

Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays.

Nature Communications 9, 5312, doi:10.1038/s41467-018-07682-0 (2018).

12 Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H. S. Nanoelectronic programmable

synapses based on phase change materials for brain-inspired computing. Nano Lett 12,

2179-2186, doi:10.1021/nl201040y (2012).

https://doi.org/10.1002/adfm.201804397

36

13 Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu, M.,

Williams, R. S. & Srikumar, V. in 2016 ACM/IEEE 43rd Annual International

Symposium on Computer Architecture (ISCA). 14-26.

14 Hameed, R., Qadeer, W., Wachs, M., Azizi, O., Solomatnikov, A., Lee, B. C.,

Richardson, S., Kozyrakis, C. & Horowitz, M. Understanding sources of inefficiency in

general-purpose chips. SIGARCH Comput. Archit. News 38, 37–47,

doi:10.1145/1816038.1815968 (2010).

15 Boybat, I., Le Gallo, M., Nandakumar, S. R., Moraitis, T., Parnell, T., Tuma, T.,

Rajendran, B., Leblebici, Y., Sebastian, A. & Eleftheriou, E. Neuromorphic computing

with multi-memristive synapses. Nat Commun 9, 2514, doi:10.1038/s41467-018-04933-y

(2018).

16 Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., di Nolfo, C., Sidler, S.,

Giordano, M., Bodini, M., Farinha, N. C. P., Killeen, B., Cheng, C., Jaoudi, Y. & Burr,

G. W. Equivalent-accuracy accelerated neural-network training using analogue memory.

Nature 558, 60-67, doi:10.1038/s41586-018-0180-5 (2018).

17 Kuzum, D., Jeyasingh, R. G. D. & Wong, H. S. P. in 2011 International Electron Devices

Meeting. 30.33.31-30.33.34.

18 Lee, B. C., Ipek, E., Mutlu, O. & Burger, D. Phase change memory architecture and the

quest for scalability. Communications of the ACM 53, doi:10.1145/1785414.1785441

(2010).

19 Ielmini, D., Lavizzari, S., Sharma, D. & Lacaita, A. L. in 2007 IEEE International

Electron Devices Meeting. 939-942.

20 Boniardi, M. & Ielmini, D. Physical origin of the resistance drift exponent in amorphous

phase change materials. Applied Physics Letters 98, doi:10.1063/1.3599559 (2011).

21 Braga, S., Cabrini, A. & Torelli, G. Dependence of resistance drift on the amorphous cap

size in phase change memory arrays. Applied Physics Letters 94, doi:10.1063/1.3088859

(2009).

22 Koelmans, W. W., Sebastian, A., Jonnalagadda, V. P., Krebs, D., Dellmann, L. &

Eleftheriou, E. Projected phase-change memory devices. Nature Communications 6,

8181, doi:10.1038/ncomms9181 (2015).

23 Zhang, W. & Li, T. in 2011 IEEE/IFIP 41st International Conference on Dependable

Systems & Networks (DSN). 197-208.

24 Suri, M., Garbin, D., Bichler, O., Querlioz, D., Vuillaume, D., Gamrat, C. & DeSalvo, B.

in 2013 IEEE/ACM International Symposium on Nanoscale Architectures

(NANOARCH). 140-145.

37

25 Oh, S., Shi, Y., Liu, X., Song, J. & Kuzum, D. Drift-Enhanced Unsupervised Learning of

Handwritten Digits in Spiking Neural Network With PCM Synapses. IEEE Electron

Device Letters 39, 1768-1771, doi:10.1109/led.2018.2872434 (2018).

26 Jain, A. K., Jianchang, M. & Mohiuddin, K. M. Artificial neural networks: a tutorial.

Computer 29, 31-44, doi:10.1109/2.485891 (1996).

27 Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift. arXiv e-prints (2015).

28 Pirovano, A., Lacaita, A. L., Pellizzer, F., Kostylev, S. A., Benvenuti, A. & Bez, R. Low-

field amorphous state resistance and threshold voltage drift in chalcogenide materials.

IEEE Transactions on Electron Devices 51, 714-719, doi:10.1109/ted.2004.825805

(2004).

29 Wimmer, M., Kaes, M., Dellen, C. & Salinga, M. Role of activation energy in resistance

drift of amorphous phase change materials. Frontiers in Physics 2,

doi:10.3389/fphy.2014.00075 (2014).

30 Chen, P. Y. & Yu, S. in 2018 IEEE International Reliability Physics Symposium (IRPS).

5C.4-1-5C.4-4.

31 Shi, Y., Huang, Z., Oh, S., Kaslan, N., Song, J. & Kuzum, D. Adaptive Quantization as a

Device-Algorithm Co-Design Approach to Improve the Performance of In-Memory

Unsupervised Learning With SNNs. IEEE Transactions on Electron Devices 66, 1722-

1728, doi:10.1109/TED.2019.2898402 (2019).

32 Louizos, C., Reisser, M., Blankevoort, T., Gavves, E. & Welling, M. Relaxed

Quantization for Discretized Neural Networks. arXiv e-prints (2018).

33 Kwon, D., Lim, S., Bae, J.-H., Lee, S.-T., Kim, H., Kim, C.-H., Park, B.-G. & Lee, J.-H.

Adaptive Weight Quantization Method for Nonlinear Synaptic Devices. IEEE

Transactions on Electron Devices 66, 395-401, doi:10.1109/ted.2018.2879821 (2019).

34 Oosthoek, J. L. M., Attenborough, K., Hurkx, G. A. M., Jedema, F. J., Gravesteijn, D. J.

& Kooi, B. J. Evolution of cell resistance, threshold voltage and crystallization

temperature during cycling of line-cell phase-change random access memory. Journal of

Applied Physics 110, doi:10.1063/1.3603025 (2011).

35 Boniardi, M., Ielmini, D., Lavizzari, S., Lacaita, A. L., Redael, A. & Pirovano, A.

Statistics of Resistance Drift Due to Structural Relaxation in Phase-Change Memory

Arrays. IEEE Transactions on Electron Devices 57, 2690-2696,

doi:10.1109/ted.2010.2058771 (2010).

36 Ielmini, D., Sharma, D., Lavizzari, S. & Lacaita, A. L. Reliability Impact of

Chalcogenide-Structure Relaxation in Phase-Change Memory (PCM) Cells—Part I:

Experimental Study. IEEE Transactions on Electron Devices 56, 1070-1077,

doi:10.1109/ted.2009.2016397 (2009).

38

37 Betti Beneventi, G., Ferro, M., Calderoni, A. & Fantini, P. Physics-Based Statistical

Modeling of PCM Current Drift Including Negative-Drift-Coefficients. IEEE Electron

Device Letters 34, 879-881, doi:10.1109/led.2013.2261892 (2013).

39

7. Acknowledgements

This work was supported in part by the National Science Foundation under Grant ECCS-

1752241 and Grant ECCS-1734940, in part by Samsung Electronics, and in part by Qualcomm

FMA Fellowship.

Chapter 2, in full, is a reprint of the material as it appears in IEEE Electron Device

Letters. Oh, Sangheon; Huang, Zhisheng; Shi, Yuhan; Kuzum, Duygu, The Impact of Resistance

Drift of Phase Change Memory (PCM) Synaptic Devices on Artificial Neural Network

Performance, 2019. The dissertation author was the primary researcher and author of this paper.

40

CHAPTER 3. NEUROINSPIRED UNSUPERVISED LEARNING AND PRUNING WITH

SUBQUANTUM CBRAM ARRAYS

Resistive RAM crossbar arrays offer an attractive solution to minimize off-chip data

transfer and parallelize on-chip computations for neural networks. Here, we report a hardware/

software co-design approach based on low energy subquantum conductive bridging RAM

(CBRAM®) devices and a network pruning technique to reduce network level energy

consumption. First, we demonstrate low energy subquantum CBRAM devices exhibiting gradual

switching characteristics important for implementing weight updates in hardware during

unsupervised learning. Then we develop a network pruning algorithm that can be employed

during training, different from previous network pruning approaches applied for inference only.

Using a 512 kbit subquantum CBRAM array, we experimentally demonstrate high recognition

accuracy on the MNIST dataset for digital implementation of unsupervised learning. Our

hardware/software co-design approach can pave the way towards resistive memory based neuro-

inspired systems that can autonomously learn and process information in power-limited settings.

1. Introduction

Inspired by the biological neural networks giving rise to human intelligence, artificial

neural networks1 have revolutionized numerous computer vision2,3 and speech recognition4,5

tasks. Their near-human performance has been widely leveraged in various applications,

including automated systems6, aerospace and defense7, health care8, and home assistance

devices9. However, training of neural networks requires substantial computing power and time

due to the iterative updates of massive number of network parameters. For example, today's

41

advanced neural network algorithms require training times ranging from days to weeks and use

carefully organized datasets consisting of millions of images to recognize objects such as

animals or vehicles10-12, while it only takes a few repetitions for a two-year-old toddler to

identify these accurately and effortlessly13. Another example is AlphaGo, an advanced neural

network trained for playing the board game Go against world champions, requiring 1920 CPUs

and 280 GPUs and consuming hundreds of kilowatts per game14. The human brain, which can

perform the exact same task, is 30,000 times more efficient, only consuming power on the order

of 10W13,15. High energy consumption and extensive training time have been the major

limitations for widespread adoption of neural networks at every scale – from mobile devices to

data centers. The need for back and forth data transfer between the memory and processor in

conventional computing systems based on von Neumann architecture is one of the major causes

of high energy consumption during neural network computations. To address this major

architectural drawback, on-chip memory storage and in-memory computing solutions using

resistive switching memory arrays have been proposed to perform storage and computing at the

same location. Non-volatile memory-based synaptic devices such as phase change synapses

(PCM)16,17, Ag-based conductive bridging synapses (CBRAM)18, and resistive RAM synapses

(RRAM)19-21 have been investigated for implementing synaptic weight updates during neural

network operation. The synaptic arrays using memristors have also been widely used in energy

efficient implementation of unsupervised learning22-25 and MNIST classification26-34 in the past.

On a separate front, the pruning algorithm35,36 inspired from neuroscience37 has been

suggested towards reducing network level energy consumption and time by settings the low valued

weights to zero. However, these methods were mostly applied on the trained networks35,36.

Pruning during training by backpropagation was previously employed in literature to prevent

42

overfittings38,39. Yet, there is no systematic study showing how pruning can address the energy

consumption and excessive training time problems during the training in hardware.

In order to overcome the energy consumption challenge, incremental improvements in devices or

algorithms alone will not be sufficient. Therefore, in this work, we focus on a hardware/software

co-design approach that combines the advances in low-power device technologies with

algorithmic methods to reduce the energy consumption during neural network training. First, we

experimentally investigate and characterize the gradual conductance change characteristics of

subquantum CBRAM devices, targeting implementation of neural network training in hardware.

We show that the subquantum CBRAM devices can achieve gradual switching using stepwise

programming and they can be directly programmed into any arbitrary level by controlling

wordline (WL) voltage. Then we develop a spiking neural network (SNN) model for

unsupervised learning and evaluate its performance by simulations for both analog and digital

hardware implementations. In order to improve network level efficiency, we introduce a pruning

algorithm carried out during the training and investigate its limits and performance through

software simulations. Different from previous algorithmic approaches employing pruning on

already trained networks35,36, our neuro-inspired pruning method is applied during the network

training to minimize the energy consumption and training time. Combining the energy-efficient

subquantum CBRAM devices and the pruning technique, we experimentally demonstrate highly

energy efficient unsupervised learning using a large-scale (512kbit) subquantum CBRAM array.

The hardware/software codesign approach presented in this work can open up new avenues for

applications of unsupervised learning on low-power and memory-limited hardware platforms.

43

2. Subquantum synaptic device characteristics.

In this section, we investigate device characteristics of subquantum CBRAM relevant to

the general context of neural network operation. We explore gradual switching capability of

subquantum CBRAM for implementation of different biological or non-biological weight update

rules. For CBRAM devices, the 1-atom conductance (G1atom), which corresponds to the

conductance (G) of a filament just one atom "wide" at its thinnest point, is a critical parameter

affecting energy consumption and filament stability (retention)40. G1atom is on the order of the

fundamental conductance G0 = 2e2/h ≈ 80μS for CBRAM cells based on filament metals such as

Ag and Cu, so typical programming voltages of about 1-3V yield a minimum programming

current (i.e., to form a filament just 1 atom “wide”) of Iprog ≈ G0 (1V – 3V) = 80-240µA,

resulting in high energy consumption in the range from about 1pJ to 100pJ for commonly used

programming pulse durations (10ns to 100ns) (Table 3.S1). Subquantum CBRAM cells reduce

programming energy and improve filament stability (Fig. 3.1a) by utilizing filaments comprising

a semiconductor or semimetal (at least at their thinnest spot, which dominates the resistance)40. A

subquantum CBRAM memory cell utilizing tellurium (Te), an elemental semiconductor with a

band gap of 0.3eV41, which has a 1-atom conductance deduced40 to be G1atom = 0.03G0, is shown

in Fig. 1b. With a much lower G1atom than Ag or Cu and with write/erase speeds as low as about

10ns (Figure 3.S1), such subquantum CBRAM cells can consume as little as about 0.2pJ (Iprog ≈

0.03G0 × (1V – 3V) ≈ 2.4-7µA and E = Iprog × Vprog × pulse duration = 7µA × 3V × 10ns = 0.2pJ)

when programmed to their 1-atom limit. This is an order of magnitude lower than for metal

filament-based devices programmed to their corresponding 1-atom limit Table 3.S1). The

retention of the subquantum CBRAM device is shown in Figure 3.S2 and is discussed in

Supplementary Note 1.

44

Figure 3.1b shows a cross-section TEM of a subquantum CBRAM cell, fabricated using

Ta as the cathode material, sputtered amorphous Al2O3 as the insulating layer, and sputtered

amorphous ZrTe as the anode material. The array (Fig. 3.1b) containing the subquantum

CBRAM device has one-transistor one-resistor (1T1R) structure, which provides access to

individual cells. I-V characteristics of subquantum CBRAM cells measured by a typical double

DC sweep exhibit bipolar characteristics (Fig. 3.1c). In the positive regime, a voltage bias is

applied to the anode and swept from 0V to +3V with step size 5mV. The resistance of the cell

was switched from a high resistance state to a low resistance ON-state. This process is

suggested40 as inducing an electrochemical replacement reaction wherein Te is liberated from the

anode by O from the oxide layer. In the negative regime, reversing the polarity of the voltage

will break the filament and switch the cell back to a high resistance OFF-state. The resistance

can be read without disturbing the state of the cell by applying a small voltage (~100mV) of

either polarity. These two distinct states are utilized in memory applications to store binary

information. On the other hand, a gradual, analog-like conductance change has been suggested as

a requirement for implementation of synaptic plasticity and learning42. Gradually increasing and

decreasing device conductance is equivalent to long-term potentiation (LTP) and long-term

depression (LTD) of synapses in the brain, which are two major forms of synaptic plasticity.

LTP and LTD allow for fine synaptic weight updates during network training. Subquantum

CBRAM cells can potentially provide more gradual changes in conductance than metal filament-

based cells since during programming G tends to increase in increments of ~G1atom, which for Te

is an order of magnitude smaller than for metals.

We investigate general gradual programming characteristics of subquantum CBRAM

cells using two different methods. Controlling WL voltage allows to change programming

45

current values to program the CBRAM devices to different conductance levels, as this property

of resistive memories has been studied before. Fig. 3.2a shows gradual switching of a

subquantum CBRAM cell by application of stepwise voltage pulses applied to the WL with an

increasing step of 10mV for conductance increase and 4mV for conductance decrease over many

cycles. Subquantum CBRAM cells can provide linear weight tuning for both LTP and LTD (Fig.

2a, as shown by linear trend lines). The linearity of the weight tuning was previously reported to

be important for implementation of various operations and achieving high accuracy in artificial

neural network implementations with resistive memory devices43,44. Stepwise gradual

programming of subquantum CBRAM synapses (Fig. 3.2a) can be used to implement various

forms of learning and plasticity. As representative examples, Supplementary Figure 3 shows

two different forms of biological spike-timing-dependent plasticity (STDP)16,42,45 implemented

with subquantum CBRAM synapses. Symmetric plasticity Supplementary Figure 3a can be

employed for associative learning and recall16, and asymmetric plasticity (Figure 3.S3b) can be

used to transform temporal information into spatial information for sequence learning16. The

STDP implementation is discussed in Supplementary Note 2.

Alternative to stepwise programming, the subquantum CBRAM cells can also be directly

programmed into an arbitrary conductance state by controlling the WL voltage without being

bound to a particular sequence of states. Fig. 3.2b shows a sequence of programming operations

in which the WL voltage increases with step size 20mV followed each time by an erase

operation. This offers flexibility for implementing weight update rules of greater complexity.

Figure 3.4 shows that the nonlinear weight update rule we used can be greatly represented by the

device conductance change using this WL voltage modulation.

In order to implement neural network training with 1T1R resistive memory arrays,

46

synaptic weights can be represented in either binary (digital) or analog manners46. For digital

implementation, N binary 1T1R cells are grouped to represent one synaptic weight (Fig. 3.2c)

and each cell is programmed to high or low conductance states, providing N-bit weight precision

in a binary format. For analog implementation, the cells can be arranged into a pseudo-crossbar

array and synaptic weights are stored in the form of multi-level conductances (Fig. 3.2d)46. As

shown in the measurement results presented in this section, the subquantum CBRAM devices are

capable of both digital and analog implementations. The tradeoff between analog and digital

implementations in terms of energy consumption, latency and area will be further discussed in

the context of our neural network model in the Methods section.

3. Neural network algorithm for unsupervised learning.

Here, we investigate neuro-inspired spiking neural network (SNN) configurations and

implement unsupervised learning on 1T1R CBRAM synaptic arrays to classify MNIST

handwritten digits, which consists of 60,000 training samples and 10,000 test samples. Different

from other neural networks trained using back propagation, neuro-inspired SNNs use event-

based and data-driven updates to reduce redundant information processing to gain efficiency and

minimize energy consumption, making them ideal for hardware implementations47-49.

Neuromorphic hardware platforms based on SNNs have already been demonstrated and

employed in various applications of neural networks48-50. To reduce the network size, we crop

some black background pixels from the full image of 784 (28 × 28) pixels. Therefore, our

network contains 397 input neurons with a bias term and 500 output neurons, resulting in

199,000 synaptic weights (Fig. 3.3a). SNNs encode information between input and output

neurons using spike trains. The firing frequency of the Poisson spike trains generated by the

47

input neurons scales linearly with respect to the pixel intensity (0 Hz for intensity value of 0 and

200 Hz for intensity value of 1). The output neurons integrate all the inputs to generate output

spike trains based on a probabilistic winner-take-all (WTA) mechanism (See Methods section

for more details)51,52. The synaptic weights of the firing output neuron are updated by a

simplified STDP rule shown in Fig. 3.3b during training. STDP rule that modulates weights

based on the timing of input and output spikes: if the time difference between the post-spike and

pre-spike is less than 10ms, the synaptic weight is updated via the LTP rule, otherwise, it is

updated via the LTD rule. Here, the LTD update is a constant weight decrease and the LTP

update depends on the current weight state of the synapse with an exponentially decaying

function shown in Fig. 3.3c. Exponential LTP updates will guarantee that the weights converge

to the upper bound of 1. For LTD updates, the lower bound of the weight is clipped to -1.

Overall, these rules result in weight values that are in the range of -1 to 1, allowing for a feasible

and practical hardware implementation. During the training, the weights are adjusted

incrementally based on the STDP rule so that output neurons fire selectively for a certain class in

the dataset. Before training, output neurons exhibit random spiking response to the presented

digits (Fig. 3.3a). However, after training, output neurons fire selectively during the presentation

of specific samples learned during the training (Fig. 3.3a). Figure 3.3d and e show MNIST digit

classification accuracy as a function of training epoch and neuron number. Training more than 3

epochs (Fig. 3.3d) or increasing the output neuron number beyond 500 (Fig. 3.3e) do not result

in noticeable increase in accuracy, similar to what has been reported for single layer spiking

neural networks in literature53. Therefore, we choose to use 500 neurons and 3 epochs for the

training in our analysis. The algorithm we used for unsupervised learning is summarized in

Figure 3.S5. After training is complete, the training dataset is presented again to assign neuron

48

labels to the output neurons by determining which digits provoked the highest average firing rate

for each of the output neurons53. We predict the labels from the test set, which consists of 10,000

new samples from the MNIST test set, based on the same framework used during training to find

the output neuron with the highest average firing rate for each sample (See Methods section for

more details). We simulate our network for the ideal software (64-bit), and our proposed digital

(Fig. 3.2c) and analog implementations (Fig. 3.2d). Table 3.1 summarizes classification

accuracy for all three cases. For the ideal software implementation, it is important to point out

that ~94% accuracy is already very high for unsupervised learning with SNN53. Increasing the

accuracy further to the levels of deep neural networks will definitely require introducing

supervision to the SNN54-56. For digital implementation, we use 8-bit digital synapses and the

weights are quantized to 256 levels distributed evenly between [-1, 1-2/256]. For analog

implementation, we directly use conductance values (Fig. 3.2a) from device characteristic in our

simulation to perform weight update during training. Neural network weights in the range of [-1,

1] can be mapped to device conductance using a linear transformation, as explained in the

Methods section. Our results suggest that 8-bit digital implementation achieves comparable

recognition accuracies with ideal software case and analog implementation has slightly lower

accuracy due to the limited conductance states exhibited by each CBRAM synapse.

In order to compare the digital (Fig. 3.2c) and analog synaptic core (Fig. 3.2d), we

develop a SNN platform for NeuroSim46 (SNN+NeuroSim). NeuroSim is a C++ based simulator

with hierarchical organization starting from experimental device data and extending to array

architectures with peripheral circuit modules and algorithm-level neural network models46. We

use SNN+NeuroSim to perform circuit-level simulations (Table 3.2) to estimate the energy,

latency and area for the digital and analog implementations using the experimental data

49

measured from subquantum CBRAM devices (Fig. 3.2). The left two columns of Table 3.2 show

benchmarking results for analog synaptic core and 6-bit digital synaptic core. 6-bit precision is

chosen to match the number of levels that can be achieved by gradual programing of subquantum

CBRAM devices for the analog implementation. However, in order to achieve a recognition

accuracy above 90%, 8-bit precision is required. Therefore, we include the third column,

showing the results for 8-bit digital case, which is also used in the hardware demonstration

(Methods section). The best performing metrics are highlighted in yellow. As shown in the

table, the 6-bit digital scheme has better accuracy, shorter latency and lower energy

consumption. On the other hand, the analog scheme occupies smaller chip area. Therefore, the

benchmarking results suggest that digital implementation could be more advantageous in terms

of energy consumption and latency for hardware implementation of on-line learning using

subquantum CBRAM array.

4. Pruning during the training.

Neural network pruning algorithms have been very effective to reduce the time and

energy consumption during inference by removing unimportant weights. Conventional pruning

methods35,36, which we also refer to as pruning in this work, set the low valued weights to zero.

However, these methods are not suitable to be directly applied to the network learning

algorithms that can produce non-zero centered weight distributions. In such situations, zero-

valued weights are also important so that arbitrarily setting pruned weights to zero may affect

accuracy. Additionally, conventional pruning mostly targets the networks which have already

been trained. Therefore, the issues of excessive time and energy consumption during training

remain unaddressed. To address both of these, we develop a method as an extension of pruning,

50

which we refer to as soft-pruning57. Instead of completely removing the weights from network

by setting them to zero, soft-pruning sets the values of pruned weights to a constant non-zero

value and prevents them from being updated during the rest of the training while allowing them

to still participate in the inference step after the training. Therefore, pruning weights during

training helps to significantly reduce the number of weight updates, minimizing computation and

energy consumption. To decide when to prune weights during the training, we determine if the

output neurons are trained enough to recognize a class from the dataset. We quantify this by

counting the occurrences of consecutive output spikes (Figure 3.S6) from a single output

neuron. The corresponding time interval between consecutive output spikes follows a Poisson

distribution. Once an output neuron sees p occurrences of consecutive spikes during the training,

a certain percentage of its weights are pruned to their lowest possible value (in our case, Wmin = -

1). The pruning algorithm is summarized in Figure 3.S7. Potential hardware implementations of

this pruning algorithm are discussed in Supplementary Note 3 and associated overheads

estimation in area, energy and latency via simulation (SNN+NeuroSim) are shown in Figure

3.S8 and Table 3.2. We investigate the distribution of weights in the SNN before and after soft-

pruning along with a baseline control case, where pruning is not employed (no pruning) (Fig.

3.4a). Simulation of recognition accuracy for different p values in Fig. 3.4b suggests that p = 10

provides the highest accuracy even for very large pruning percentages (up to 80%). Visualization

of weights from ten representative output neurons (bottom row of Fig. 3.4a) shows that

foreground pixels (the digits) correspond to higher weight values on the distributions, and

background pixels (background of the digits) correspond to lower weight values for no pruning

case (weights visualization for all output neurons can be found in Figure 3.s9). Before pruning,

the distributions indicate that the weight updates have been the same for both cases. Fig. 3.4c

51

compares recognition accuracy for as a function of pruning percentage for soft-pruning and

pruning during the training, in comparison to pruning at the end of training for both cases. The

recognition accuracy for pruning falls below ~90% for ~40% pruning percentage. In contrast,

soft-pruning maintains high classification accuracy (~90%) even up to ~75% pruning percentage

(Fig. 3.4c) The accuracy improvement achieved by the soft-pruning algorithm can be understood

from the following two perspectives. First, since the pruned weights are set to -1 instead of being

completely removed from the network, they still participate in the inference. Pruning the

unimportant weight to -1 effectively decreases the membrane potential of output neurons, which

helps to prevent false positive spikes. Second, the soft-pruning algorithm preserves the original

weight distribution. As shown in Fig. 3.4a, the final distribution of learned weights clearly

consists of two distinct parts which correspond to the foreground and background pixels of the

image. The weights concentrated at -1 are associated with the background pixels, while the

remaining weights centered around zero accounts for the foreground pixels. Soft-pruning sets

pruned weights to -1, grouping them with the background pixels. On the contrary, pruning sets

pruned weights to 0, which is in the range of weights that are associated with foreground pixels;

this significantly changes the shape of foreground weight distributions, which leads to the

accuracy degradation. Our soft-pruning method achieves high recognition accuracy for

extensively pruned networks, offering superior energy efficiency during training for hardware

implementations of unsupervised learning.

5. Hardware demonstration of pruning during training.

In order to implement unsupervised learning and pruning during the training on the

hardware, we used a 512kbit subquantum CBRAM chip fabricated in a 130nm Cu back end of

52

line (BEOL) process (Fig. 3.1b). The array has a 1T1R architecture, which provides access to

individual cells. Although each individual cell in our array has gradual conductance switching

capabilities as demonstrated in Fig. 3.2 a and b, the digital implementation offers smaller energy

consumption and shorter latency which is important for online learning as shown in Table 3.2.

Furthermore, analog approach with varying amplitude pulses requires peripheral neuron circuits

to produce non-identical pulses with fine grained duration58,59. Therefore, we choose to use

digital implementation for hardware demonstration. We uniformly quantize the weights and map

them onto the CBRAM array using an 8-bit digital representation between Wmin = -1 and Wmax =

1 (Details are explained in the Methods section), as our simulations have shown high

recognition accuracy for 8-bit representation. Each weight is approximated to its closest

quantized level when updating. Using our proposed network size to implement 10-digits MNIST

classification requires at least 199,000 8 = 1.5 Mbit array. Given our array size limitation of

512kbit, we reduce the network size to 395 input and 10 output neurons to classify three classes

(“0”, “3”, and “4”) from MNIST. Fig. 3.5a shows recognition accuracy as a function of bit

precision in the range of 5 to 12 bits, corresponding to quantization to 25 and 212 discrete levels.

The recognition accuracy stays relatively constant down to 8 bits but shows a steep decrease for

bit precisions less than 7 bits. For hardware implementation of online unsupervised learning, the

weights are updated on the subquantum CBRAM array at run-time. Fig. 3.5b shows

experimentally obtained weight maps from the subquantum CBRAM array for the 10 output

neurons for the no pruning and 50% soft-pruning cases after unsupervised online training with

1,000 MNIST samples. Weight update history during the online training process is investigated.

Figures 3.S10a and b show the number of switching cycles of every bit in CBRAM cells for no

pruning and 50% soft-pruning, respectively. Least significant bits (LSB) update more frequently

53

than the most significant bits (MSB) in both cases. For the no pruning case, all bits are constantly

updated throughout training, causing extensive energy consumption through programming and

erasing of the subquantum CBRAM devices. In contrast, pruning reduces the number of

switching cycles for all of the individual bits and the number of cumulative switching cycles as

shown in Figure 3.S10b and Figure 3.S10c, respectively. Fig. 3.5c shows the accuracy for the

pruning and no pruning cases for the experimental results obtained with the subquantum

CBRAM array as a function of training set size. This hardware implementation achieves 93.19%

accuracy, which is very close to the accuracy for no pruning (93.68%) and the 8-bit and 64-bit

ideal software implementations. Fig. 3.5d shows the number of bit updates by device updates vs.

training set size, where the data for the first 1,000 samples are obtained from the hardware

implementation, and the rest is computed using software simulations. The number of bit updates

for both cases is identical until pruning starts. After all output neurons are pruned, the 50%

pruned network has around twofold reduction in the number of bit updates compared to the no

pruning case. Although our hardware demonstration focuses on 50% pruning, our simulations

suggest that pruning percentages up to 80% can be implemented to further increase energy

savings.

6. Discussion

The performance of our hardware implementation for unsupervised learning is far

superior to the previous state-of-the-art unsupervised learning of MNIST dataset with synaptic

devices in terms of recognition accuracy, energy consumption per programming, number of

weight updates in training, and network size (Table 3.S3). For energy consumption per

programming event, subquantum CBRAM is two to three orders of magnitude more efficient

54

than transistor-based devices (Table 3.S1) and shows the lowest energy consumption among

RRAM based synaptic devices (Table 3.S3). Our pruning algorithm can reduce the number of

parameter updates significantly and lead to ~20 less number of parameter updates compared to

previous reports (Table 3.S3). Combining device level energy savings provided by subquantum

CBRAM with network level energy savings by pruning may lead up to two orders of magnitude

reduction in total energy consumption for hardware implementation of weight updates during

unsupervised learning.

Compared to other software simulations in the literature (Table 3.S4), our network

achieves a high classification accuracy on MNIST dataset using the lowest number of neurons and

synapses and a low-complexity one-layer architecture that can be easily mapped onto 1T1R or

crossbar arrays. Table 3.S5 compares hardware demonstration of our pruning method with other

software approaches of pruning in terms of energy savings and accuracy loss. Our method provides

comparable energy savings with minimal accuracy loss, while being the only method, which can

be applied during the training. Last but not least, our work presents the demonstration of mapping

of pruning onto a hardware platform.

We demonstrate unsupervised learning using an energy efficient subquantum CBRAM

array. Synaptic pruning is implemented during the training and mapped onto hardware to reduce

energy consumption while maintaining a classification accuracy close to ideal software

simulations. We show that subquantum CBRAM cells are capable of gradual and linear

conductance changes desirable for implementing online training in hardware and can be directly

programmable into different conductance states indicating their potential for implementing a

broad range of weight update rules for neuromorphic applications. Following a

software/hardware co-design approach, we develop a neuro-inspired synaptic pruning method to

55

significantly reduce the number of parameter updates during neural network training. Low-

energy subquantum CBRAM devices combined with the network-level energy savings achieved

by pruning can provide a promising path towards realizing AI hardware based on spiking neural

networks that can autonomously learn and handle large volumes of data. Our hardware/software

co-design approach can also be adapted to other network models to reduce the energy cost in

implementing network training in low-power mobile applications.

7. Methods

A. Neural network algorithm.

Here we describe the network architecture of the SNN including the input and output

layers. Then, we explain our training, labeling, and classification procedure for the MNIST

dataset. Table 3.S6 summarizes the parameters used in simulations.

(A) Network architecture: Our SNN is a one-layer network defined by the number of

inputs neurons m, the number of outputs neurons n, and an m by n weight matrix. Each output

neuron is fully-connected to every input neuron. Our SNN has 398 input and 500 output neurons.

Our output neurons do not have refractory periods and there is no lateral inhibition between

them.

(B) Input layer: We crop each training sample by removing pixels that represent the

background in at least 95% of the training samples. Because the pixels have intensity values in

the range [0, 1], those with a value of 0 correspond to the background and are thus candidates for

removal. After this step, we have 397 input neurons in total by including an additional bias term,

which has an input value of 1. The weights associated with this bias input neuron are learned via

the same learning rule as the other weights. Each input neuron generates a Poisson spike train Xi

56

whose mean firing rate is determined linearly by the pixel intensity, where a pixel of value 0

corresponds to 0 Hz and a pixel of value 1 leads to 200 Hz. The timing of each spike that is

generated by the Poisson process is rounded toward the nearest millisecond, which is the time

step of the simulation.

(C) Output layer: The SNN fires an output spike from any given output neuron according

to a Poisson process with the specified frequency. The output neuron that fires is chosen from a

softmax distribution of the output neurons’ membrane potentials as (3.1):

 𝑃(𝑢𝑘) =
𝑒𝑢𝑘

∑ 𝑒𝑢𝑘𝑁
𝑘=1

 (3.1)

, where 𝑃(𝑢𝑘) is the softmax probability distribution of the membrane potentials 𝑢𝑘 (k = 1, …,

N). N is the number of output neurons. We calculate membrane potentials 𝑢𝑘 using (3.2)

 𝑢𝑘 = ∑ 𝑊𝑘𝑖𝑋𝑖 + 𝑏𝑘𝑖 (3.2)

𝑊𝑘𝑖 is the weight between input neuron i and output neuron k. Xi is the spike train generated by

input neuron i and 𝑏𝑘 is the weight of the bias term.

(D) Training: The SNN displays each input sample for the first 40 ms of a 50 ms

presentation period, and thus the input spikes for a given sample only occurs in this 40 ms

window. Fig. 3a shows an example of the input spiking activity for the duration of four training

samples. We use the whole training set, which contains 60,000 samples, and train for three

epochs. It is important to note that 50 ms is a virtual simulation parameter along with the firing

frequency chosen for generating input spikes. In the real hardware implementation, the

presentation time of one image can be much shorter than 50 ms as long as enough number of

input spikes are generated. The weights are updated via STDP rule shown in Fig. 3.3b. The LTP

and LTD rules are detailed in (3.3) and (3.4) respectively,

 ΔW𝐿𝑇𝑃 = 𝑎 × 𝑒−𝑏 (𝑊+1) (3.3)

57

, where a and b are parameters that control the scale of the exponential, and W is the current

weight value. The result ΔW is the amount of weight update of LTP and it is dependent on

current W. LTD is a constant depression in terms of 𝑐 in (3.4),

 ΔW𝐿𝑇𝐷 = −𝑐 (3.4)

(E) Labeling: After training is done, we fix the trained weights and assign a class to each

neuron by the following steps: First, we present the whole training set to the SNN and record the

cumulative number of output spikes Nij, where i = 1, ... , N (N is number of output neurons) and j

= 1, … ,M (M is number of classes). Then, for each output neuron i, we calculate its response

probability Zij to each class j using (3.5). Finally, each neuron i is assigned to the class that gives

the highest response probability Zij.

 𝑍𝑖𝑗 =
𝑁𝑖𝑗

∑ 𝑁𝑖𝑗
𝑀
𝑗=1

 (3.5)

(F) Classification: We use the standard test set which contains 10,000 images. We use

equation (3.6) to predict the class of each sample, where 𝑆𝑗𝑘 is the number of spikes for the kth

output neuron that are labeled as class j and 𝑁𝑗 is the number of output neurons labeled as class

j53.

 𝐽 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗

∑ 𝑆𝑗𝑘

𝑁𝑗
𝑘=1

𝑁𝑗
 (3.6)

(G) Weight mapping for analog synapse implementation: The network weights (W)

ranging from -1 to 1 are mapped to the device conductance data range from ~1µS to 200 µS, we

map the device conductance to the weight range [-1, 1] by using below linear transformation

(3.7),

58

 𝐺𝑁𝑂𝑅𝑀 =
𝐺−

𝐺𝑚𝑎𝑥+𝐺𝑚𝑖𝑛

2
𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛

2

 (3.7)

In Eq. (3.7), we denote this normalized conductance as 𝐺𝑁𝑂𝑅𝑀. G, Gmax and Gmin are extracted

from experimental data (Fig.3.2).

B. Hardware Implementation.

For the hardware demonstration of unsupervised learning and pruning shown in Fig. 3.5

CBRAM devices are employed as binary synapses. The network contains 395 input neurons

(crop using the same method explained in B. Input Layer) and 10 output neurons to classify

three classes from MNIST. In 3-digits classification, out of the ~20,000 samples that represent

the digits “0”, “3”, or “4” in the entire MNIST dataset, we randomly sample 5,000 to create our

training set. We present this training set for one epoch to train our SNN. We form the test set by

drawing 10,000 samples from the remaining 15,000 samples. Neurons are implemented using a

custom software to program the digital peripheral circuitry of the chip. Weight summation is

performed by this program to implement the integrate-and-fire neuron. Weight update values are

converted into programming pulses by the peripheral circuitry to update binary weights in the

digital implementation. Fixed wordline voltages are used for binary programming of CBRAM

devices. We use 8 bits to represent a synaptic weight in the network, where 1 bit is used to

represent the sign of the weight value and the other 7 bits stores the absolute weight value. Bit 1

is MSB and bit 7 is LSB. The weight range [-1,1] is first uniformly divided into 256 (28) discrete

intervals [−1 +
𝑖

128
, −1 +

𝑖+1

128
), where i = 0, …, 255. Then we map the weight whose value lies

in the ith interval to the ith discrete values. For example, the weights between [-1, -0.9921875)

are mapped to 00000000, whereas the weights between [-0.9921875, -0.984375) are mapped to

00000001, etc. For the boundary case where the weight takes the value of 1, we map it to

59

11111111. The weights are updated on the hardware at run-time. We track the weight update

history during the online training process (Figure 3.S10).

60

Figure 3.1: Subquantum CBRAM characteristics. a Semiconductor or semimetal filaments can yield

lower conductance than metal filaments of comparable width. b Subquantum conductive bridging RAM

(CBRAM) cell fabricated in a standard 130 nm logic process. Photograph shows 512 kbit subquantum

CBRAM chip with one-transistor one-resistor (1T1R) array architecture. Cell cross-section shows

amorphous Te alloy as anode, metal as cathode and oxide as switching layer. c Example of bipolar

current-voltage characteristic of a subquantum CBRAM cell. Directionality of switching is shown in

arrows

61

Figure 3.2: Gradual switching. a Gradual switching in a subquantum conductive bridging RAM

(CBRAM) synapse using stepwise voltage pulses applied to the wordline (WL) (left). Callout window

(right) shows one cycle of long-term potentiation (LTP) and long-term depression (LTD). Red lines are

added to emphasize linearity of the conductance change. For LTP, anode (AN) = 3 V, bitline (BL) = 0,

and WL stepped from 0.8 V in increments of 10 mV. For LTD, AN = 0, BL = WL, and WL stepped from

1.6 V in increments of 4 mV. b Gradual switching in a subquantum CBRAM synapse by WL voltage

modulation. The subquantum CBRAM cells are directly programmed into the conductance state by

controlling the WL voltage. The figure (left) shows a sequence of programming operations in which the

WL voltage increases with step size 20 mV followed each time by an erase operation. Callout window

(right) shows conductance versus pulse number and WL voltage for a representative cycle. c Digital

synaptic core design groups multiple binary one-transistor one-resistor (1T1R) cells along the row as one

synapse to represent a synaptic weight with higher precision. WL decoder is used to activate the WL in a

row-by-row fashion. Column decoder can select a group of synapses to perform the weight update. The

weighted sum is implemented using mux and neuron circuit. The mux is used to share the read periphery

circuitry60. The neuron circuit which contains sense amplifier, adder and shift register can be used to read

out the memory array and accumulate partial weight sum to get the final weighted sum. d Analog synaptic

core uses a single cell with multi-level conductance states to represent one synaptic weight. The crossbar

WL decoder can activate all WLs, BL read out the weighted sum results and neuron circuit contains

analog-to-digital (ADC) converters convert current to digital outputs. Source line (SL) can be used to

perform weight update60.

62

Figure 3.3: Neural Network for unsupervised learning. a Each input digit contains 28 × 28 = 784 pixels

and has been cropped and reduced to 397 pixels. The neural network has 397 input neurons with a bias

term and 500 output neurons. Input spike trains of input neurons are generated according to pixel density

(from 0 to 1) and then fed to the neural network. Synaptic devices represent weights in the network. Top

(before training): Random spike activity from representative 10 out of 500 output neurons before

learning. Bottom (after training): Output spike trains after learning show coordinated selective firing

activity as a result of unsupervised learning of digits. b Spike-timing-dependent plasticity (STDP) rule

showing the 10 ms window for an post-pre spike time difference (tpost − tpre) that determines whether a

long-term potentiation (LTP) or a long-term depression (LTD) update is performed. If the firing time of

an output neuron (tpost) is within 10 ms of the firing time of an input neuron (tpre), the weight (synapse)

between this input–output neuron pair is updated via LTP. Otherwise, the weight is updated via

LTD. c The LTP update is an exponentially decaying function that depends on the current weight, and the

LTD update is a constant. The exponential LTP update depending on the current weight keeps the weight

values within the range [−1, 1]. d Recognition accuracy vs. number of training epochs. Three epochs are

used in our network training. e Recognition accuracy vs. neuron number. Recognition accuracy does not

have noticeable increase when number of output neurons is larger than 500. Therefore, 500 output

neurons are used in our network model

63

Figure 3.4: Network pruning during training. a Schematics compare no pruning, soft-pruning and pruning

cases. Top two row shows weight histograms of a representative output neuron. For no pruning, the spike-

timing-dependent plasticity (STDP) rule results in weights ranging from −1 to 1 at the end of training. For

50% soft-pruning, it prunes weights smaller than the dashed line (weights on the left of the dashed line) to

the lowest value −1. 50% Pruning prunes the weights between the two dashed lines, which represent the

50% of the weights that are centered around 0 and sets their values to 0 (red bar). Only unpruned weights

continue to be updated until end of training. Bottom row shows weight visualization of all representative

10 out of 500 output neurons for no pruning, 50% soft-pruning and pruning. Soft-pruning allows for the

weights to still learn the foreground and background pattern of the input samples while reducing weight

update computations during training. Pruning causes the pruned weights to overwhelm the learned

weights and results in inaccuracy. b Recognition accuracy vs. prune parameter (p) for varying pruning

percentages. Prune parameter is the criterion to decide when to prune for each neuron during

training. c Recognition accuracy vs. pruning percentage for soft-pruning and pruning performed during

training. Soft-pruning during the training performs significantly better than pruning especially for high

pruning percentages. The baseline accuracy (no pruning) is 94.05%. The data points are taken in steps of

10%. The parameters used in the simulation are specified in Table 3.S6.

64

65

Figure 3.5: Hardware implementation of unsupervised learning and pruning. a, Recognition accuracy vs.

bit precision. The bit precision levels include 1 bit for representing the sign. 64 corresponds to 64-bit

floating point. The accuracy drops below 90% after 8 bits. Test dataset has 10k images. b Experimentally

measured binary weights from subquantum conductive bridging RAM (CBRAM) synaptic array as a

result of training with 1k MNIST digits. Binary weight 1 corresponds to black pixel, which is high

resistance state (~1 MΩ). Binary weight 0 corresponds to white pixel, which is low resistance state

(~10 kΩ). The bit precision per weight is 8 bits with one bit used for the sign (+/−). During the training,

there is a total of 8,959 weight updating events for output neurons. For no pruning (top), there were

833,889-bit updates. For training with soft-pruning at a 50% pruning rate (bottom), there were 481,921-

bit updates. During the training, weights of different neurons are pruned at different times based on their

learning level. At the end of training, all 10 neurons’ weights have been pruned. Bits corresponding to

pruned weights are marked in blue. c Recognition accuracy vs. training digits for 50% soft-pruning and

no pruning calculated using experimental data from hardware implementation of unsupervised learning

with subquantum CBRAM array. The accuracy for pruning is comparable to no pruning. Test dataset has

10k images. d Number of bit updates by device updates vs. training digits/timesteps with a 50% pruning

rate (blue) and without pruning (red). First 1k samples are from hardware implementation of spiking

neural network (SNN) using CBRAM array

66

67

Table 3.1. Network Accuracy

Precision Accuracy

64-bit 94.05 %

CBRAM (Analog) 82 %

8-bit 92.02 %

The table summarizes the recognition accuracy of 64-bit ideal software simulation, 8-bit digital

implementation and analog CBRAM synapses implementation evaluated using our network.

68

Table 3.2. Circuit-level Benchmark Results

 Analog Digital (6-bit) Digital (8-bit)

Conductance Levels 57 levels (~6 bit) 64 levels 256 levels

LTP Pulse 0.8-1.32 V/10mV/1s 2V/1us 2V/1s

LTD Pulse 1.6-1.84 V/4mV/10s 2V/1us 2V/1s

Accuracya 82% 85.87%b 92.02%

Area (m2) 12,277.05b 35,397.34 47,233.8

Latencya (s) 516 129.72b 401.1

Energya (mJ) 149.4097 62.911b 151.977

Leakage Power (W) 53.78 54.14 58.99
a For 60,000 training images
b Best performing metrics The table summarizes circuit-level benchmark results using SNN+NeuroSim

for analog synaptic core and digital synaptic core with 6-bit and 8-bit. The simulations are performed for

14 nm technology node

69

Figure 3.S1: CBRAM Write/Erase Speed. a, Bitline (BL) and wordline (WL) during a 3V program

operation. The anode voltage is fixed at the 3V BL voltage. After the WL is enabled, the cell programs in

<10ns. b, Bitline (BL) and wordline (WL) during an erase operation. After the WL is enabled, the cell

erases in ~10ns1. For programming, the voltage to be applied to the cell is established when the BL

discharges (red curve). After that, the WL (blue curve) is enabled. When the cell programs, the BL

voltage increases towards the anode voltage (which is high). The programming time is the offset between

the time when the WL is enabled and the time when the BL voltage is seen to increase, which is shown to

be <10 ns in (a). The situation is similar for erase operation, where only the polarity is reversed (BL is

high). The erase time is the offset between the time when WL is enabled and the time when the BL pulls

down towards the anode (which is low). Erase time is measured as ~10ns as seen in (b).

70

Figure 3.S2: CBRAM Retention Characteristic. Excellent retention is achieved by the subquantum cells

for 10 min annealing at high temperature with the ON-state conductance a few times greater than GTe are

targeted2.

71

Figure 3.S3: STDP. a, Symmetric spike-timing-dependent plasticity (STDP) and b, Asymmetric STDP

learning rules modeled using the gradual programming data of 1T1R subquantum CBRAM cells in Fig

2a.

72

Figure 3.S4: STDP Fitting. The measured data from Fig 3.2b is fitted into the neural network weight

updating rule (Fig. 3.3c).

73

Figure 3.S5: Unsupervised Learning Algorithm. Unsupervised spiking neural network (SNN) learning

algorithm used in software neural network simulation and hardware demonstration.

74

Figure 3.S6: Consecutive Spikes. The illustration of consecutive output spikes of 10 output neurons as a

representative example. The consecutive output spikes of Neuron 8 are boxed in red. The consecutive

spikes can be measured using integrate-and-fire neuron circuits which contain capacitors3 or memristor4

to store the information about how many spikes they received within a time interval representing using

charge or resistance.

75

Figure 3.S7: Pruning Algorithm. Soft-pruning during the training algorithm for hardware implementation.

76

Figure 3.S8: Pruning Overheads. a, Energy and b, Latency without and with overheads estimation for

soft-pruning from 10% to 80% with a step of 10% using SNN+NeuroSim. Overheads include hardware

flag and setting pruned weights to -1. Without overheads (W/O overheads) results mean that flagging

mechanism is implemented in software and overhead associated5 with setting pruned weights to -1 is not

considered. With overheads (W/ overheads) results mean that flagging mechanism is implemented in

hardware and overhead associated with setting pruned weights to -1 is considered.

77

Figure 3.S9: Classification and Pruning Visualization. Weights visualization of all 500 output neurons for

a, no pruning, b, 50% soft-pruning and c, pruning after training.

78

Figure 3.S10: Device Switching Cycles during Training. a, b, Empirical cumulative distribution of the

switching cycles of each bit in the weight matrix during training (a) no pruning and (b) with 50% soft-

pruning. We use one bit for the sign. Bit 1 is MSB and bit 7 is LSB. LSB updates more frequently than

MSB in both cases. 50% pruning method effectively reduces the weight updates in every bit. c,

Cumulative distribution of the switching cycles of all bits. Pruning significantly reduces the number of

switching cycles for all the bits during training.

79

Table 3.S1: Device Energy Profile. Energy consumption in subquantum conductive bridging RAM

(CBRAM), metal filament-based CBRAM cells and floating gate flash5. Subquantum CBRAM is 10× more

energy efficient than metal filament CBRAM and 100× more energy efficient than floating gate flash, even

for the maximum energy consumption cases.

 Subquantum CBRAM

Synapses

Metal Filament

CBRAM Synapses
Floating Gate Flash

G1atom 0.03 G0 1 G0 -

Read voltage 1V (for WL) 1V (for WL) 3-5V (for WL)

Program voltage 1-3 V 1-3 V |6|-|9|V

Program time 0.01-0.1 s/cell 0.01-0.1 s/cell 1-10 s/cell

Program energy 0.1-10 pJ/cell 1-100 pJ/cell 1000 pJ/cell

Erase voltage 1-3 V 1-3 V |6|-|9| V

Erase time 0.01-0.1 s/cell 0.01-0.1 s/cell 1 ms/cell

Erase energy 0.1-10 pJ/cell 1-100 pJ/cell 1000 pJ/cell

80

Table 3.S2: Pruning Overheads Estimation. Area, energy and latency estimation of no pruning, 80% soft-

pruning without and with overheads. Without overheads (W/O overheads) results mean that flagging

mechanism is implemented in software and overhead associated with setting pruned weights to -1 is not

taken into account. With overheads (W/ overheads) results mean that flagging mechanism is implemented

in hardware and overhead associated with setting pruned weights to -1 is taken into account. The numbers

inside of the parentheses show the energy and latency increase due to overheads associated with a hardware

flag and b setting pruned weights to -1, respectively.

Accuracy (%) No pruning (8-bit)
80% soft-pruning w/o

overheads (8-bit)

80% soft-pruning w/

overheads* (8-bit + 1-

bit flag)

Area (m2) 47233.8 47233.8 53218.5

Energy (mJ) 151.9 69.5 71.3 (+1.09a, +0.68b)

Latency (s) 401.1 75.6 (+0.42a, +0.50b)
*Overheads include ahardware flag and bsetting pruned weights to -1.

81

Table 3.S3: State-of-the-Art Unsupervised Learning Demonstration with Synaptic Devices on MNIST. The

table compares the overall performance of this work with the state-of-the-art unsupervised learning

demonstration with synaptic device on MNIST dataset. All the references report recognition performance

simulated using single device data, while this work reports recognition accuracy for hardware

implementation. The synaptic device energy consumption per programming is calculated by multiplying

the pulse amplitude with the current flowing across the device and the programming pulse width. The

number of updates is calculated by multiplying number of iterations in training with number of weights

needed to be updated per iterations. The numbers of neurons are counted by summing up input and output

neurons. If the first cell of a row contains multiple citations, subsequent values may have been taken from

any one of the cited works, which are written or cited by the same authors.

Architect

ure

Preprocess

ing

Learning

-rule

Neurons/#

Plastic

synapses

Performa

nce

Hardware

Type

Energy

Consumpt

ion

of

updat

es

(104)

Two layer

network61

-63

None
Exponent

ial STDP

1,184/313,

600
91.6%

HfOx based

RRAM

(simulation)

~0.85-24

pJ
~141

One layer

network64

,65

None
Exponent

ial STDP

1,084/235,

200
87.4%

STT-MRAM

(simulation)

~0.09-96.9

pJ
~47

One layer

network66

,67

None

Probabili

stic

prespike

rule

834/39,200 84%

WOx based

RRAM

(simulation)

~1.68 nJ ~47

One layer

network68
None

Exponent

ial STDP
846/62,720 70%

CNT

synaptic

transistor

(simulation)

~40-800 nJ ~47

One layer

network69
None

Exponent

ial STDP
794/7,840 60%

CNT

synaptic

transistor

(simulation)

~50 nJ ~47

One layer

network70
Yes

Exponent

ial STDP
206/~1,980 59.8%

TiOx based

RRAM

(simulation)

~25-750 nJ ~8.8

This

work
Yes

Exponent

ial STDP
405/3,950 93.19%

Subquantum

CBRAM

(Hardware

Implementat

ion)

~0.1-10 pJ

No

prune:

~4.2

50%

prune:

~2

82

Table 3.S4: State-of-the-Art Software Demonstration of Unsupervised Learning Demonstration on MNIST.

The table compares the performance (recognition accuracy) of this work with the state-of-the-art software

demonstrations of unsupervised learning on MNIST dataset. The numbers of neurons are counted by

summing up input and output neurons.

Architecture Preprocessing
Learning-

rule

Neurons/#

Plastic

synapses

Performance
Hardware

Type

Spiking Deep

neural

network71

None
Simplified

STDP
N/A 98.4% No

Two layer

network63
None

Exponential

STDP
7,184/5,017,600 95% No

Two layer

network72
Yes

Exponential

STDP
~600/~50,000 80.14% No

This work yes
Exponential

STDP
~898/~199,000 94.05%

Subquantum

CBRAM

83

Table 3.S5: State-of-the-Art Pruning Techniques. This table summarizes pruning methods. The first four

can only be applied after training as reported by the references. The method described in this work is the

first to be implemented in hardware and also can be applied either during or after training. Energy savings

are relative to the result with no pruning. Energy savings for this work is obtained from Supplementary

Table 2. Accuracy loss is based on the result with 50% pruning.

Pruning

Method

Machine

Learnin

g Tasks

Networ

k

Structu

re

Durin

g

Traini

ng

After

Traini

ng

Hardware

Implementat

ion of

Pruning

Simulati

on

System

Energ

y

Savin

gs

Accura

cy Loss

(50%

prunin

g)

Deep

Compressi

on73

ImageNe

t pattern

Recogniti

on

AlexNet No Yes No
EIE

(SRAM)
53%

~ -0.1%

- +

0.1%

SIMD-

Aware

Pruning74

ImageNe

t pattern

Recogniti

on

AlexNet No Yes No
CPU,GP

U
~53%

~ -1%-

+1%

Energy-

Aware

Pruning75

ImageNe

t pattern

Recogniti

on

AlexNet No Yes No CPU 73% <1%

Structural

Pruning76

CIFAR-

10

Pattern

Recogniti

on

CNN No Yes No CPU N/A
~-1%-

+2%

This work

MNIST

Pattern

recogniti

on

Fully

Connect

ed

Yes Yes Yes

CBRAM

synaptic

array

54.2%

During:

+0.9%

After: -

0.5%

84

Table 3.S6: Simulation Parameters. All the parameters used for the simulations are listed above.

Parameters
10-Digits

Training Labeling Testing

of Neuron
Input 398

Output 500

Firing Rate (Hz)
Input 200 200 200

Output 200 200 600

Image presenting Time (ms) 50 50 200

Pruning

Threshold

Prune Parameter

(p)

10 - -

Spike Count 8 - -

STDP

a = 0.0667

b = 2.5

c = 0.0167

- -

85

8. Supplementary Notes

A. Supplementary Note 1

Supplementary Figure 2 shows an experimentally quantified stability (retention) as a

function of conductance. It can be seen that the subquantum CBRAM has robust thermal

stability. In this figure, the x-axis is the target cell conductance during a program operation. Note

that the x-axis is normalized so that the value 1 corresponds to the conductance of a filament

with a 1-atom constriction. The y-axis is the actual conductance measured after annealing at

temperatures ranging from room temperature to 250 °C. The plot shows that stability (retention)

is poor if the targeted conductance level is lower than the conductance of an incomplete filament

whose thinnest spot is less than 1 atom thick. However, once the target conductance is above the

value of the 1-atom thick filament, the post-anneal conductance quickly approaches the targeted

value. Therefore, the filament is increasingly stable as it becomes thicker. Note that filaments

can be stable even at the highest temperature used in the study (250 °C).

B. Supplementary Note 2

Asymmetric and symmetric STDP are implemented using the same spike scheme described

by Kuzum. et al.77. Pre and post spikes are implemented to the word line and bit line of the 1T1R

array. Time overlap of the pre and post spikes allows programming of the CBRAM synapse. The

spike timing differences between the pre and post spikes are translated to the amplitude of voltage

pulses applied to the word line. Integrate-and-fire neurons are implemented using a computer

program and pulse generators, and the pulses are applied to the WL and BL of the device to

modulate the conductance change.

86

C. Supplementary Note 3

The overhead costs of the pruning algorithm can be estimated using our SNN platform for

NeuroSim. The first overhead is that the pruned weights need to be flagged to prevent them from

further updating. This can be implemented by adding an additional bit with an initial value of 0 to

serve as a hardware flag for pruning. We update the pruning flags of an output neuron’s weights

to ‘1’ when they have been pruned during the training. Note that since the weights are only pruned

once during the entire training, each hardware flag is just written once. Before weight update, we

read the hardware flag of the winner neuron’s weights and the weight will not be updated if its flag

is ‘1’. Another overhead is setting the pruned weights to -1. We take these two overheads into

account in our simulation for pruning using digital hardware implementation (Fig.3.2c). In Table

3.S2, both overhead costs are estimated in terms of area, energy and latency based on the peripheral

programming circuitry shown in Fig. 3.2c for no pruning, 80% soft-pruning without (W/O

overheads) and with overheads (W/ overheads). As can be seen from this table, the area is increased

by ~12.7% because the flag only takes up one extra bit for each synapse. The hardware flag

increases energy and latency by ~1.6% (1.09mJ) and ~0.6% (0.42s), respectively. Setting pruned

weights to -1 increases energy and latency by ~0.98% (0.68mJ) and ~0.66% (0.5s), respectively.

In summary, total energy and latency are increased by ~2.5% (~1.7mJ) and ~1.2% (~0.92s) due to

the overheads of pruning implementation. This is significantly smaller and hence negligible

compared to the energy and latency gains from pruning.

87

9. References

1 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. nature 521, 436 (2015).

2 Krizhevsky, A., Sutskever, I. & Hinton, G. E. in Advances in neural information

processing systems. 1097-1105.

3 Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A. & Bernstein, M. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision 115, 211-252 (2015).

4 Collobert, R. & Weston, J. in Proceedings of the 25th international conference on

Machine learning. 160-167 (ACM).

5 Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A.,

Vanhoucke, V., Nguyen, P. & Sainath, T. N. Deep neural networks for acoustic modeling

in speech recognition: The shared views of four research groups. IEEE Signal Processing

Magazine 29, 82-97 (2012).

6 Chen, C., Seff, A., Kornhauser, A. & Xiao, J. in Proceedings of the IEEE International

Conference on Computer Vision. 2722-2730.

7 Vishwakarma, S. & Agrawal, A. A survey on activity recognition and behavior

understanding in video surveillance. The Visual Computer 29, 983-1009 (2013).

8 Cireşan, D. C., Giusti, A., Gambardella, L. M. & Schmidhuber, J. in International

Conference on Medical Image Computing and Computer-assisted Intervention. 411-418

(Springer).

9 Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C. & Kawsar, F. in Proceedings of

the 2015 International Workshop on Internet of Things towards Applications. 7-12

(ACM).

10 Krizhevsky, A. & Hinton, G. Learning multiple layers of features from tiny images.

Technical report, University of Toronto 1, 7 (2009).

11 Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Fei-Fei, L. in Computer Vision and

Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 248-255 (IEEE).

12 Asuncion, A. & Newman, D. UCI machine learning repository. (2007).

13 Salelanonda, G. Learning how to learn: Toddlers vs. neural networks,

<https://www.eetimes.com/author.asp?section_id=36&doc_id=1330538> (2016).

14 Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V. & Lanctot, M. Mastering the game

of Go with deep neural networks and tree search. Nature 529, 484-489 (2016).

https://www.eetimes.com/author.asp?section_id=36&doc_id=1330538

88

15 Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A. & Hudspeth, A. J.

Principles of neural science. Vol. 4 (McGraw-hill New York, 2000).

16 Kuzum, D., Jeyasingh, R. G. & Wong, H.-S. P. in Electron Devices Meeting (IEDM),

2011 IEEE International. 30.33. 31-30.33. 34 (IEEE).

17 Eryilmaz, S. B., Kuzum, D., Jeyasingh, R. G., Kim, S., BrightSky, M., Lam, C. & Wong,

H.-S. P. in Electron Devices Meeting (IEDM), 2013 IEEE International. 25.25. 21-

25.25. 24 (IEEE).

18 Mahalanabis, D., Sivaraj, M., Chen, W., Shah, S., Barnaby, H. J., Kozicki, M. N.,

Christen, J. B. & Vrudhula, S. in Circuits and Systems (ISCAS), 2016 IEEE International

Symposium on. 2314-2317 (IEEE).

19 Yu, S., Li, Z., Chen, P.-Y., Wu, H., Gao, B., Wang, D., Wu, W. & Qian, H. in Electron

Devices Meeting (IEDM), 2016 IEEE International. 16.12. 11-16.12. 14 (IEEE).

20 Milo, V., Pedretti, G., Carboni, R., Calderoni, A., Ramaswamy, N., Ambrogio, S. &

Ielmini, D. in Electron Devices Meeting (IEDM), 2016 IEEE International. 16.18. 11-

16.18. 14 (IEEE).

21 Park, S., Kim, H., Choo, M., Noh, J., Sheri, A., Jung, S., Seo, K., Park, J., Kim, S., Lee,

W., Shin, J., Lee, D., CHoi, G., Woo, J., Cha, E., Jang, J., Park, C., Jeon, M., Lee, B.,

Lee, B. H. & Hwang, H. in Electron Devices Meeting (IEDM), 2012 IEEE International.

10.12. 11-10.12. 14 (IEEE).

22 Serb, A., Bill, J., Khiat, A., Berdan, R., Legenstein, R. & Prodromakis, T. Unsupervised

learning in probabilistic neural networks with multi-state metal-oxide memristive

synapses. Nature communications 7, 12611 (2016).

23 Choi, S., Sheridan, P. & Lu, W. D. Data clustering using memristor networks. Scientific

reports 5, 10492 (2015).

24 Wang, Z., Joshi, S., Savel’ev, S., Song, W., Midya, R., Li, Y., Rao, M., Yan, P., Asapu,

S., Zhuo, Y., Jiang, H., Lin, P., Li, C., Yoon, J. H., Upadhyay, N. K., Zhang, J., Hu, M.,

Strachan, P. J., Barnell, M., Wu, Q., Wu, H., Williams, R. S., Xia, Q. & Yang, J. J. Fully

memristive neural networks for pattern classification with unsupervised learning. Nature

Electronics 1, 137 (2018).

25 Jeong, Y., Lee, J., Moon, J., Shin, J. H. & Lu, W. D. K-means data clustering with

memristor networks. Nano letters (2018).

26 Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., Jiang, H., Montgomery, E., Lin, P.,

Wang, Z., Song, W., Strachan, J. P., Barnell, M., Wu Qing, Williams, R. S., Yang, J. J. &

Xia, Q. Efficient and self-adaptive in-situ learning in multilayer memristor neural

networks. Nature Communications 9, 2385 (2018).

89

27 Hu, M., Graves, C. E., Li, C., Li, Y., Ge, N., Montgomery, E., Davila, N., Jiang, H.,

Williams, R. S., Yang, J. J., Xia, Q. & Strachan, J. P. Memristor‐Based Analog

Computation and Neural Network Classification with a Dot Product Engine. Advanced

Materials 30, 1705914 (2018).

28 Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., Nolfo, C., Sidler, S.,

Giordano, M., Bodini, M., Farinha, N. C., Killeen, B., Cheng, C., Jaoudi, Y. & Burr, G.

W. Equivalent-accuracy accelerated neural-network training using analogue memory.

Nature 558, 60 (2018).

29 Kataeva, I., Merrikh-Bayat, F., Zamanidoost, E. & Strukov, D. in Neural Networks

(IJCNN), 2015 International Joint Conference on. 1-8 (IEEE).

30 Bayat, F. M., Prezioso, M., Chakrabarti, B., Nili, H., Kataeva, I. & Strukov, D.

Implementation of multilayer perceptron network with highly uniform passive

memristive crossbar circuits. Nature communications 9, 2331 (2018).

31 Du, C., Cai, F., Zidan, M. A., Ma, W., Lee, S. H. & Lu, W. D. Reservoir computing using

dynamic memristors for temporal information processing. Nature communications 8,

2204 (2017).

32 Boybat, I., Le Gallo, M., Nandakumar, S., Moraitis, T., Parnell, T., Tuma, T., Rajendran,

B., Leblebici, Y., Sebastian, A. & Eleftheriou, E. Neuromorphic computing with multi-

memristive synapses. Nature communications 9, 2514 (2018).

33 Nandakumar, S., Le Gallo, M., Boybat, I., Rajendran, B., Sebastian, A. & Eleftheriou, E.

in Circuits and Systems (ISCAS), 2018 IEEE International Symposium on. 1-5 (IEEE).

34 Liu, C., Yang, Q., Yan, B., Yang, J., Du, X., Zhu, W., Jiang, H., Wu, Q., Barnell, M. &

Li, H. in VLSI (ISVLSI), 2016 IEEE Computer Society Annual Symposium on. 110-115

(IEEE).

35 Han, S., Mao, H. & Dally, W. J. Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149

(2015).

36 Yang, T.-J., Chen, Y.-H. & Sze, V. Designing energy-efficient convolutional neural

networks using energy-aware pruning. arXiv preprint arXiv:1611.05128 (2016).

37 Graham, J. Children and brain development: What we know about how children learn.

Cooperative Extension Publication (2011).

38 Reed, R. Pruning algorithms-a survey. IEEE transactions on Neural Networks 4, 740-747

(1993).

39 Goh, Y.-S. & Tan, E.-C. in TENCON'94. IEEE Region 10's Ninth Annual International

Conference. Theme: Frontiers of Computer Technology. Proceedings of 1994. 805-808

(IEEE).

90

40 Jameson, J. R. & Kamalanathan, D. Subquantum conductive-bridge memory. Applied

Physics Letters 108, 053505 (2016).

41 Vis, V. A. Photoconductivity in Single‐Crystal Tellurium. Journal of Applied Physics 35,

360-364 (1964).

42 Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H.-S. P. Nanoelectronic programmable

synapses based on phase change materials for brain-inspired computing. Nano letters 12,

2179-2186 (2011).

43 Yu, S., Chen, P.-Y., Cao, Y., Xia, L., Wang, Y. & Wu, H. in Electron Devices Meeting

(IEDM), 2015 IEEE International. 17.13. 11-17.13. 14 (IEEE).

44 Chen, P.-Y. & Yu, S. Impact of Nonideal Resistive Synaptic Device Behaviors on

Implementation of Sparse Coding Algorithm. (Springer, 2017).

45 Kuzum, D., Jeyasingh, R. G. D., Yu, S. & Wong, H.-S. P. Low-energy robust

neuromorphic computation using synaptic devices. IEEE Transactions on Electron

Devices 59, 3489-3494 (2012).

46 Chen, P.-Y., Peng, X. & Yu, S. NeuroSim: A Circuit-Level Macro Model for

Benchmarking Neuro-Inspired Architectures in Online Learning. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (2018).

47 Lee, J. H., Delbruck, T. & Pfeiffer, M. Training deep spiking neural networks using

backpropagation. Frontiers in neuroscience 10 (2016).

48 Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K. & Cauwenberghs, G. Event-driven

contrastive divergence for spiking neuromorphic systems. Frontiers in neuroscience 7,

272 (2014).

49 Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F.,

Jackson, B. L., Imam, N., Guo, C. & Nakamura, Y. A million spiking-neuron integrated

circuit with a scalable communication network and interface. Science 345, 668-673

(2014).

50 Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-Cummings,

R., Delbruck, T., Liu, S.-C., Dudek, P., Häfliger, P. & Renaud, S. Neuromorphic silicon

neuron circuits. Frontiers in neuroscience 5 (2011).

51 Nessler, B., Pfeiffer, M., Buesing, L. & Maass, W. Bayesian computation emerges in

generic cortical microcircuits through spike-timing-dependent plasticity. PLoS

computational biology 9, e1003037 (2013).

52 Nessler, B., Pfeiffer, M. & Maass, W. in Advances in neural information processing

systems. 1357-1365.

91

53 Diehl, P. U. & Cook, M. Unsupervised learning of digit recognition using spike-timing-

dependent plasticity. Frontiers in computational neuroscience 9, 99 (2015).

54 Kulkarni, S. R. & Rajendran, B. Spiking neural networks for handwritten digit

recognition—Supervised learning and network optimization. Neural Networks 103, 118-

127 (2018).

55 Lee, J. H., Delbruck, T. & Pfeiffer, M. Training deep spiking neural networks using

backpropagation. Frontiers in neuroscience 10, 508 (2016).

56 Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C. & Pfeiffer, M. in Neural Networks

(IJCNN), 2015 International Joint Conference on. 1-8 (IEEE).

57 Kijsirikul, B. & Chongkasemwongse, K. in Proceedings of IEEE Int. Conf. on Neural

Networks. 1876-1880.

58 Chen, P.-Y., Lin, B., Wang, I., Hou, T.-H., Ye, J., Vrudhula, S., Seo, J.-s., Cao, Y. & Yu,

S. in Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design. 194-199 (IEEE Press).

59 Zhang, J., Wang, Z. & Verma, N. In-Memory Computation of a Machine-Learning

Classifier in a Standard 6T SRAM Array. J. Solid-State Circuits 52, 915-924 (2017).

60 Chen, P.-Y., Peng, X. & Yu, S. NeuroSim: A Circuit-Level Macro Model for

Benchmarking Neuro-Inspired Architectures in Online Learning. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 37, 3067-3080,

doi:10.1109/tcad.2018.2789723 (2018).

61 Tosson, A. M. S., Yu, S., Anis, M. H. & Wei, L. A Study of the Effect of RRAM

Reliability Soft Errors on the Performance of RRAM-Based Neuromorphic Systems.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 3125-3137,

doi:10.1109/tvlsi.2017.2734819 (2017).

62 Kuzum, D., Yu, S. & Wong, H. S. Synaptic electronics: materials, devices and

applications. Nanotechnology 24, 382001, doi:10.1088/0957-4484/24/38/382001 (2013).

63 Diehl, P. U. & Cook, M. Unsupervised learning of digit recognition using spike-timing-

dependent plasticity. Front Comput Neurosci 9, 99, doi:10.3389/fncom.2015.00099

(2015).

64 Zhang, D., Zeng, L., Zhang, Y., Zhao, W. & Klein, J. O. in 2016 IEEE/ACM

International Symposium on Nanoscale Architectures (NANOARCH). 173-178.

65 Vincent, A. F., Larroque, J., Locatelli, N., Ben Romdhane, N., Bichler, O., Gamrat, C.,

Zhao, W. S., Klein, J. O., Galdin-Retailleau, S. & Querlioz, D. Spin-transfer torque

magnetic memory as a stochastic memristive synapse for neuromorphic systems. IEEE

Trans Biomed Circuits Syst 9, 166-174, doi:10.1109/TBCAS.2015.2414423 (2015).

92

66 Sheridan, P., Ma, W. & Lu, W. in 2014 IEEE International Symposium on Circuits and

Systems (ISCAS). 1078-1081.

67 Chang, T., Jo, S.-H., Kim, K.-H., Sheridan, P., Gaba, S. & Lu, W. Synaptic behaviors and

modeling of a metal oxide memristive device. Applied Physics A 102, 857-863,

doi:10.1007/s00339-011-6296-1 (2011).

68 Kim, S., Choi, B., Lim, M., Yoon, J., Lee, J., Kim, H. D. & Choi, S. J. Pattern

Recognition Using Carbon Nanotube Synaptic Transistors with an Adjustable Weight

Update Protocol. ACS Nano 11, 2814-2822, doi:10.1021/acsnano.6b07894 (2017).

69 Kim, S., Yoon, J., Kim, H.-D. & Choi, S.-J. Carbon Nanotube Synaptic Transistor

Network for Pattern Recognition. ACS Applied Materials & Interfaces 7, 25479-25486,

doi:10.1021/acsami.5b08541 (2015).

70 Zahari, F., Hansen, M., Mussenbrock, T., Ziegler, M. & Kohlstedt, H. Pattern recognition

with TiO x-based memristive devices. AIMS Materials Science 2, 203-216 (2015).

71 Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J. & Masquelier, T. STDP-based spiking

deep convolutional neural networks for object recognition. Neural Netw 99, 56-67,

doi:10.1016/j.neunet.2017.12.005 (2018).

72 Nessler, B., Pfeiffer, M., Buesing, L. & Maass, W. Bayesian computation emerges in

generic cortical microcircuits through spike-timing-dependent plasticity. PLoS Comput

Biol 9, e1003037, doi:10.1371/journal.pcbi.1003037 (2013).

73 Han, S., Pool, J., Tran, J. & Dally, W. Learning both weights and connections for

efficient neural network. Advances in neural information processing systems 28 (2015).

74 Yu, J., Lukefahr, A., Palframan, D., Dasika, G., Das, R. & Mahlke, S. in 2017

ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

548-560.

75 Yang, T.-J., Chen, Y.-H. & Sze, V. 5687-5695.

76 Anwar, S., Hwang, K. & Sung, W. Structured pruning of deep convolutional neural

networks. ACM Journal on Emerging Technologies in Computing Systems (JETC) 13, 1-

18 (2017).

77 Kuzum, D., Jeyasingh, R. G. D., Yu, S. & Wong, H. S. P. Low-Energy Robust

Neuromorphic Computation Using Synaptic Devices. IEEE Transactions on Electron

Devices 59, 3489-3494, doi:10.1109/ted.2012.2217146 (2012).

93

10. Acknowledgements

The authors acknowledge support from the Office of Naval Research Young Investigator

Award (N00014161253), National Science Foundation (ECCS-1752241, ECCS-1734940) and

the UC San Diego Frontiers of Innovation Scholars Program for funding this research. Adesto

and CBRAM are Trademarks of Adesto Technologies Corp.

Chapter 3, in full, is a reprint of the material as it appears in Nature Communications.

Shi, Yuhan; Nguyen, Leon; Oh, Sangheon; Liu, Xin; Koushan, Foroozan; Jameson, John, R.;

Kuzum, Duygu, Neuroinspired unsupervised learning and pruning with subquantum CBRAM

arrays, 2019. The dissertation author was a co-author of this paper.

94

CHAPTER 4. INTEGRATION OF AG-CBRAM CROSSBARS AND MOTT-RELU

NEURONS FOR EFFICIENT IMPLEMENTATION OF DEEP NEURAL NETWORKS IN

HARDWARE

In-memory computing with emerging non-volatile memory devices (eNVMs) has shown

promising results in accelerating matrix-vector multiplications (MVMs). However, activation

function calculations are still being implemented with general processors or large and complex

neuron peripheral circuits. Here, we present integration of Ag-based conductive bridge random

access memory (Ag-CBRAM) crossbar arrays with Mott-ReLU activation neurons for scalable,

energy and area efficient hardware implementation of deep neural networks (DNNs). We

develop Ag-CBRAM devices that can achieve high ON/OFF ratio and multi-level

programmability. Compact and energy efficient Mott-ReLU neuron devices implementing

rectified linear unit (ReLU) activation function are directly connected to the columns of Ag-

CBRAM crossbars to compute the output from the weighted sum current. We implement

convolution filters and activations for VGG-16 using our integrated hardware and demonstrate

successful generation of feature maps for CIFAR-10 images in hardware. Our approach paves a

new way towards building highly compact and energy efficient eNVMs based in-memory

computing system.

1. Introduction

Deep neural networks (DNNs) have been widely successful in solving difficult problems

in computer vision, speech recognition, machine translation, playing board and video games and

95

medical diagnosis. DNNs have been constantly making breakthroughs in improving the state-of-

the-art computational accuracy1. Large-scale DNNs require a very large number of matrix vector

multiplication (MVM) operations in each layer followed by non-linear neuron activations

between the layers (Fig.4.1a). By introducing non-linear transformation to the input, activation

function plays an important role in solving vanishing gradient problem and making the network

capable to learn and perform more complex tasks2. Although in-memory computing with

emerging non-volatile memory arrays (eNVMs) considerably accelerate computation of

MVMs3,4, current approaches still require external processors or complex peripheral circuits to

implement neuron activations. Analogue-to-digital converters (ADC) is typically used in

computing activation function and propagate data through eNVM layers. However, it has been

shown that the power of 9-bit SAR-ADCs is roughly 1W compared to 0.3W dissipated on a 4096

× 4096 eNVM array for MVM operations5. The energy and latency overheads associated with

separate implementation of the weights and activations significantly increase the energy

consumption and constitute a major bottleneck for scalability of the hardware with ever evolving

neural network architectures. Recent advances have explored using analogue CMOS circuits6 or

an ADC with reconfigurable function mapping7 to implement activation functions in hardware.

Although these approaches improve processing speed, they are difficult to be directly integrated

as part of the eNVM array due to area mismatch compared to the compact array8. To overcome

this limitation, we have previously developed a Mott activation neuron that implements the

rectified linear unit function in the analogue domain8. Integration of resistive memory synaptic

arrays with Mott-ReLU neurons could enable full hardware implementation of DNNs through

direct combination of MVM operations with activation functions. To that end, in this work, we

experimentally investigate integration of Ag-CBRAM synaptic crossbars for MVMs and

96

compact Mott neuron devices for activation functions to implement a VGG-16 inference task.

Our hardware demonstration concentrates on convolutional and activation layers, which are main

building blocks of VGG-16. Our Ag-CBRAM device exhibits high ON/OFF ratio (~1010) and 4-

bit multi-level switching, which are suitable for performing large scale MVMs in DNNs. Mott

activation neurons integrated with CBRAM arrays emulate characteristics of ReLU activation

function, which is the most frequently used activation functions in DNNs9. As shown in Fig.1b, a

crossbar comprises Ag-CBRAM devices implementing synaptic layer accept inputs in the

wordlines (WLs) and generates weighted sum current in the bitlines (BLs). Each column of Ag-

CBRAM crossbars is connected to a nano-scale Mott neuron device for direct computation of

ReLU activation using the weighted sum. The outputs of Mott ReLU devices can be directly fed

to the WLs of the following Ag-CBRAM layers (Fig.4.1c). The rest of the chapter is organized

as follows. First, we present characterization of Ag-CBRAM devices including DC switching

behavior, variation, retention, endurance, and multi-level switching. Then, we share our results

on the volatile four-terminal Mott activation neuron device based on vanadium dioxide (VO2)

and experimentally measured input-output characteristics for implementation of ReLU activation

function. Transient response of the device is also measured to validate its low energy

consumption. Lastly, we demonstrate hardware implementation of a CIFAR-10 image

classification task using VGG-16 by integrating Ag-CBRAM crossbars and Mott-ReLU neurons

using a custom PCB board. Our results based on integration of Ag-CBRAM crossbars and Mott-

ReLU neurons suggest that the small size and energy efficiency of the Mott activation neuron

can replace power-hungry CMOS circuits for ReLU activation and allow direct stacking of

multiple synaptic layers.

97

2. Ag-based CBRAM

The simplicity of fabrication makes lateral eNVM devices desirable for direct integration

on the back end of line (BEOL) CMOS circuitry. For implementing synaptic layers, we first

developed a lateral Ag-based CBRAM crossbar that can be fabricated at the wafer scale as

shown in Fig.4.2a. The 4-inch wafer contains 16×16 and 32×32 crossbar arrays as well as single

devices for electrical characterization (Fig.4.2b). For crossbar fabrication, we started with

300nm SiO2/Si wafer and deposited 50nm-thick Ag layer via DC sputtering. Then a 5 µm × 20

µm Ag channels along with its BL were patterned via photolithography and wet-etching. Next,

250 nm SiO2 was deposited as an insulating layer with PECVD method. After patterning SiO2 to

open via holes, 200nm Cr/Au was deposited and patterned for WLs as well as defining contact

pads for BLs and WLs. Single test devices were fabricated in a similar way. The Ag-CBRAM

devices (Fig. 4.2c) exhibit an initial low resistance as fabricated and need to undergo an

oxidation step whereby the device is transformed from its highly conductive “pristine” state

(Fig.4.2c) to an oxidized high-resistance state (HRS) to initialize the subsequent switching

(Fig.4.2d and e) using a low amplitude voltage sweep. Figure.3a demonstrates this forming

process. The forming process here is different from the conventional forming process involving

formation of a conductive filament in metal oxide based RRAM devices. Instead, here the

forming step transforms the conductive metal layer into an oxidized state which exhibits resistive

switching. As the voltage input was swept from 0V to 1V, the device current increased nearly

proportionately up to ~45 mA. However, when the input bias reached ~0.8V, the resistance of

the Ag channel suddenly increased from its Rinitial = 14.4 Ω to Rformed = ~1012Ω. By comparing

the optical images of the pre-formed (Fig.4.2c) and post-formed (Fig.4.2d) device, we noticed

that the left part of the Ag channel became visibly darker shown in Fig.4.2e, likely due to the

98

formation of resistive silver oxide. This observation explains the forming-induced transition to

HRS.

Thereafter, the device operates as a resistive switching memory. Fig. 4.3b shows the

bipolar I-V characteristics of the Ag-CBRAM as measured from a DC double sweep cycle. Here,

the applied voltage was increased in 5mV steps for the positive (0V to 2V) and negative (0V to -

1V) voltage ramps while enforcing compliance currents of 500µA and 10mA to achieve SET and

RESET respectively. To investigate the consistency of switching operations, we characterized

the statistical distribution of switching voltages and device resistances by performing 50 DC

switching experiments (Fig. 3c). The average switching voltage for the SET was ~1.77V whereas

that for RESET was ~ -0.35V. Figure 3d records the average low resistance state (LRS) and

HRS resistances of ~340 Ω and ~3×1013 Ω with good uniformity. These values translate to an

ultra-high ~1010 ON/OFF ratio of the device which distinctly favors its flexibility in mapping a

wide range of neural network weights10. It is noteworthy that the low resistance of the Ag-

CBRAM promises low latency operation whereas the high HRS can help lower the static power

consumption of the device by suppressing leakage currents.

Device reliability is essential for implementing network training and inference that

requires frequent switching and long-term storage of the weights10. Figure 4.4 shows that our

device can retain the HRS and LRS states for more than 104 s at room temperature. In addition to

being non-volatile with long retention, our Ag-CBRAM devices exhibit high endurance. Figure

4b shows that the device can be switched between LRS (~104Ω) and HRS (~1012Ω) for at least

104 cycles without any observable degradation. The HRS and LRS over 104 cycle switching is

presented in Fig.4.4c, which indicates our device maintains low variations in both states. These

99

results confirm the capability of Ag-CBRAM for achieving reliable crossbar operation with long-

term stability.

While we demonstrated conventional memory application for Ag-CBRAM device,

gradual resistance switching is a key to achieve higher storage density by mapping multi-bit

weights to a single device. By controlling the current compliance levels from 100pA to 1mA, the

device can reliably switch between 16 states spanning 7 orders of magnitude in resistance as

shown in Fig.4.5a. Moreover, we characterized the mean (Fig.4.5b) and standard deviation

(Fig.5c) of each distinct resistance level versus compliance current. Our results validate that the

Ag-CBRAM device has multi-level programmability with minimal overlap between different

levels.

3. Mott-ReLU Activation Neuron

We have previously developed array of Mott-ReLU neuron devices to implement

activation function layer8. Each Mott ReLU neuron device has four terminals that allow

exploiting of a thermal driven Mott transition of VO2, which emulates ReLU activation function

in a single device (Fig. 4.6a). Mott ReLU devices were fabricated by depositing 70nm VO2 film

via reactive sputtering. Then device switching area was defined by two Ti (20 nm)/Au (30 nm)

electrodes with 50 nm gap using e-beam lithography and evaporation. Then, 70 nm Al2O3 was

deposited as the electrical insulation layer. Lastly, a local heater was defined by patterning Ti (20

nm)/Au (30 nm) nanowire on the VO2 gap using e-beam lithography and evaporation. A SEM

image of a fabricated device is shown in Fig.4.6b. Figure.4.6c explains the operation of the

device. The resistance of the heater is ~30 Ω and the initial resistance the VO2 gap is ~10kΩ.

ReLU activation function can be emulated by applying current bias to the nanowire that induce

100

thermal gradual resistivity switching on the VO2 gap. The VO2 gap formed a voltage divider

circuit with a load resistor to generate voltage output (VOUT) that can be directly fed as an input

to the synaptic layer. By flowing current through the heater, the temperature of the VO2 gap is

precisely modulated to induce thermal-driven gradual resistive switching. As a result, the

resistance change of the VO2 gap modulates Vout through Vload and successfully emulates

ReLU function as shown in Fig. 4.6c. The device shows precision higher than 4-bit. As shown in

Fig. 4.6d, Mott-ReLU neurons show low latency of ~61.4 ns, while consuming 199.5pJ per

operation.

To further understand how to achieve the optimal energy efficiency for our device, we

developed an empirical thermal model in SPICE to project energy consumption of the device.

This compact thermal model consists of Joule-heating model of the heater, thermal model of

VO2 and coupling model between heater and VO2 gap (Fig.4.7a). Figure.4.7b lists model

parameters and equations (4.1) and (4.2) govern the heater current and latency estimation in the

model. By varying heater thermal resistance, our model indicates that heater current can be

reduced by 3.4× when the thermal resistance of the nanowire heater increased by 10× (Fig.4.7c).

Therefore, replacing the heater material with a higher thermal resistance material such as Ti can

significantly improve thermal coupling and allow generated heat to be more confined within the

VO2 gap. In addition, the latency can be further reduced to ~3.8ns by minimizing the parasitic

capacitance of the Mott ReLU below 10-11 F as shown in Fig.4.7d. As a result, our model

estimates the energy consumption of Mott-ReLU neurons can be minimized down to ~0.638pJ at

single device level by careful engineering the heater material to enhance the thermal coupling

and reduce parasitic capacitance.

 𝐶𝑡ℎ_𝐻
𝑑𝑇𝐻(𝑡)

𝑑𝑡
=

(𝑇(𝑡)−𝑇𝐻(𝑡))

𝑅𝑜𝑥
+ 𝐼𝐼𝑁

2𝑅𝐻 −
(𝑇𝐻(𝑡)−𝑇0)

𝑅𝑡ℎ_𝐻
 (4.1)

101

 𝐶𝑡ℎ_𝑉𝑂2
𝑑𝑇(𝑡)

𝑑𝑡
=

(𝑇𝐻(𝑡)−𝑇(𝑡))

𝑅𝑜𝑥
+ 𝑉𝑉𝑂2𝐼𝑉𝑂2 −

(𝑇(𝑡)−𝑇0)

𝑅𝑡ℎ_𝑉𝑂2
 (4.2)

Table1 summarizes the energy, latency, area and leakage performance of Mott ReLU

activation devices against other activation devices or circuits at single ReLU level. Our Mott

ReLU device can already achieve ~17× energy reduction compared with Analogue CMOS

circuits 6. With optimized thermal coupling, the device is projected to achieve ~30× energy

reduction compared with digital ADC implementation7. The device can also provide 450-1500×

improvement in area and 1.5-3× improvement in latency. These substantial performance gains of

activation layers motivate our integration with Ag-CBRAM array that can achieve more efficient

DNN implementation in hardware.

4. Ag-CBRAM and Mott-ReLU Integration for a DNN Application

To demonstrate core operations of DNN inference with our hardware, we focused on

VGG-16 for CIFAR10 image classification task in a hardware. First, we designed a custom PCB

to integrate the Ag-CBRAM crossbar arrays with Mott-ReLU arrays (Fig.4.8a). The board is

capable of monitoring two arrays simultaneously and verifying weighted sum and activation

results. We used 1616 Ag-CBRAM crossbar for this demonstration (Fig. 4.8b). The callout

window of Fig. 8b shows a representative device in the crossbar. Figure. 4.8c shows an array

that contains 44 Mott-ReLU devices that can be individually connected to the BLs of the

crossbar via PCB.

Then we investigated how to efficiently map VGG-16 to our hardware. VGG-16 is a

convolutional neural network that is 16 layers deep, which was widely used for computer vision

applications. Figure4.9a shows the representative CIFAR-10 images from 10 classes and

network architecture. In VGG-16, there are 13 convolutional layers in which each layer is

102

followed by ReLU activation layers, 5 max pooling layers, and 3 fully connected layers in order.

For the hardware demonstration, we focused on convolutional layers. Max pooling layers and

fully connected layers were implemented in software.

Before we map full-precision (64-bit) weights in VGG-16 into hardware, we performed

post-training uniform quantization of both weights and activation function with various precision

and investigated its impact on inference accuracy. Figure. 4.9b shows that 5-bit weights

precision and 4-bit activation precision are the minimal bit precision allowed to ensure there is

no significant accuracy degradation. Although each Ag-CBRAM cell in our crossbar array has

gradual resistive switching capabilities as shown in Fig. 4.5a, analogue approach requires

custom peripheral neuron circuits to precisely vary current compliance and realize fine control of

resistance levels. Therefore, we chose to use digital implementation for this array level

demonstration to ensure better controllability of the resistance states.

Figure 4.9c explains the mapping of the network to the Ag-CBRAM crossbar arrays

using binary weights (HRS~1012 , LRS~20 k). In this illustration, N of 33 convolutional

filters are unrolled to N of 91 vectors and mapped to columns of the crossbar. We quantized the

filter weights into 5-bit binary representation to minimize memory size while maintaining high

accuracy. As a result, five columns are used to represent MSB to LSB of the weights. As the

filter slides across the input image, the part of the input (WW) overlaps with the filter is also

unrolled to a 91 vector and feed into the WLs of the crossbar. The crossbar performs MVM and

the weighted sum current is accumulated at the end of each column. Activation layers are

implemented by connecting a Mott-ReLU to each column. Mott-ReLU neurons rectify weighted

sum and produce final pixel values in output feature maps (OFM).

103

Before implementing CIFAR-10 classification task in our hardware, we first tested

whether Ag-CBRAM crossbars can drive Mott-ReLU neurons (Fig. 4.10a). We varied the input

voltage (Vin) to a column of the CBRAM array by sweeping it from –250 mV to 250 mV when

~2/3 of devices on a column of the CBRAM array are set to a LRS while the others are set to

HRS (Fig. 4.10b). Moreover, we varied the number of LRS in the column of Ag-CBRAM array

from 0%-100% (Fig. 4.10c). For both cases, 1.1 V is applied as VDD to the VO2 gap of Mott-

ReLU with a 3.3-kΩ-load resistor connected in series, and 7 mA of offset current is applied to

the heater. As can be seen in Fig. 4.10b and c, the Mott-ReLU neuron shows ReLU inputoutput

characteristics.

After verifying Mott-ReLU neuron can be driven by Ag CBRAM crossbar, we then

converted CIFAR10 images into 8-bit pulse trains and fed into the crossbar to generate weighted

sum current, Isum, which is a result of application of convolution filters to the images. Mott-

ReLUs rectify Isum and generate ReLU output (Vout). Figure 4.11 shows representative

experimental results from network operations performed for first (layer1) and last (layer13)

convolution layer of VGG-16 on a 3232 input image from the dog class. For each layer, we

presented both software (SW) simulated result and measured result in hardware (HW) side by

side for comparisons. Figure 4.11a and g shows 33 quantized convolution filters. After

mapping these filters using the approach described previously to the Ag-CBRAM array, Isum is

measured at the end of each BLs. Figure 4.11b and h show measured Isum in real time for 4

representative patches (each patch contains 55 pixels) highlighted as red boxes in Fig. 4.11c

and i. Slide number represents the position of the filter as it slides across each patch. Isum from

each BLs drives individual Mott activation neurons in the PCB and output voltage of the neuron

device is shown in Fig. 4.11d and j. These results indicate that our hardware implementation of

104

convolution filters and activations can reliably generate OFMs and ReLU output without

additional driver circuits and achieve close to ideal software results (Fig. 4.11e, f, k, and l). The

learned OFMs represent abstract features of the dog class in layer 1 and 13. Based on the

measured results in hardware, the estimated classification accuracy for the entire CIFAR-10

dataset using our hardware is 93.04%, approaching ideal software accuracy (~94%). Energy

efficiency is estimated as 25.7 TOPS/W.

5. Conclusion

In this work, a direct integration of Ag-CBRAM array with Mott-ReLU activation

neurons are successfully demonstrated in hardware. Our Ag-CBRAM device shows ultra-high

ON/OFF ratio, low variation, reliable endurance and retention. In addition, Ag-CBRAM has

multi-level switching capability with 16 states, making it an ideal synaptic device for neural

network operation. The simplicity of fabrication for lateral Ag-CBRAM array makes it easy to

be integrated with the back end of the line (BEOL) of CMOS chips. The four-terminal Mott-

ReLU device embodies ReLU characteristics and can be directly driven by weighted sum

currents generated in Ag CBRAM array. The small footprint of the device allows stacking in

between synaptic layers for scalable in-memory computing system. The hardware demonstration

shows that Ag CBRAM arrays integrated with Mott ReLU devices offer a compact and scalable

solution for accelerating DNNs with close to software accuracy. Our approach opens new

avenues in implementing deeper and more complex network architecture with higher area and

energy efficiency using eNVM based synaptic arrays and Mott-ReLU activation devices.

105

Figure 4.1: (a) Representative DNN consisting of convolutional layers and ReLU activations. ReLU

activations are applied after each convolutional layer. (b) Convolutional layers are implemented with Ag-

CBRAM crossbar arrays. Ag-CBRAM devices are arranged in a crossbar fashion with inputs feed into the

WLs and weighted sum current accumulated in BLs. (c) ReLU activation layers are implemented with

Mott-ReLU devices. The weighted sum current in BLs drive inputs of Mott devices and outputs of the

devices are fed to the subsequent Ag-CBRAM layers.

106

Figure 4.2: (a) Wafer-scale image of Ag-CBRAM crossbar arrays (1616 and 3232) and (b) single

devices with 5μm20μm channel. Microscope images of (c) Pristine and (d) Oxidized Ag channel. The

lateral Ag-CBRAM devices have BL and WL pads defined with the narrow channel. (e) SEM for

oxidized channel which shows darker color compared with unoxidized part.

107

Figure 4.3: (a) Device initialization by applying a voltage sweep to oxidized pristine Ag-channel. (b)

Bipolar I-V switching characteristic measured by a typical DC double sweep. Binary states are obtained.

The cycle to cycle (C2C) variation of (c) switching voltages and (d) resistance represented using

cumulative distribution function (CDF). C2C variations are obtained by applying 50 DC double sweeps to

a Ag-CBRAM device.

108

Figure 4.4: (a) Retention behavior of Ag-CBRAMs. The device is first SET to LRS. A sampling

measurement that lasts 104 s is performed to constantly monitor the device resistance. The device is then

switched to HRS and same measurement is performed. (b) Endurance of Ag-CBRAMs. 104 cycles are

achieved by alternatively applying SET and RESET pulses to the device while monitoring the device

resistance. During the test, the RESET and SET transitions were achieved using - 4V/100µs and 3V/5ms

voltage pulses, respectively. (c) CDF of resistance in pulse programming, which is extracted from the

endurance measurements in (b).

109

Figure 4.5: (a) Multi-level switching characteristics using different SET current compliance from 100pA

to 1mA. The SET sweep is applied from 0V to 2V with 100mV steps for all compliance current

conditions. (b) mean and (c) standard deviation of 16 (4-bit) resistance states as a function of compliance

current.

110

Figure 4.6: (a) Schematic and (b) SEM of Mott-ReLU device. The heater driven by weighted sum current

(Isum) enables the change of VO2 resistance to emulate ReLU characteristics. (c) Measured Mott-ReLU

activation output characteristic. The inset illustrates software ReLU in black in compare with Mott ReLU

in green. (d) Pulse measurement for latency. Output of the Mott device becomes stable after input applied

to heater for ~61.4 ns.

111

Figure 4.7: (a) A schematic shows the compact thermal model for the Mott ReLU device built in SPICE.

The model has three parts: Joule-heating of heater, thermal coupling model for heater and VO2 and

thermal model of VO2. (b) SPICE model parameters. (c) Heater current as heater thermal resistance of

nanowire heater increases while keeping the resistance of the VO2 gap to 1 kΩ. (d) Latency of the Mott

ReLU device as parasitic capacitance increases. ~3.8ns latency can be achieved by reducing parasitic

capacitance < 10-11F.

112

Figure 4.8: (a) Custom PCB integrating Ag-CBRAM crossbar (top) and Mott-ReLU array (bottom). (b)

SEM image of 1616 Ag-CBRAM crossbar array. Call out window shows single Ag-CBRAM device. (c)

Mott-ReLU array including 44 MottReLU neurons. Call out window shows single Mott-ReLU device.

113

Figure 4.9: (a) VGG-16 network architecture for CIFAR-10 used for hardware implementation. (b) Post-

training quantization using trained VGG-16 weights. 5-bit and 4-bit for weights and activation are use in

hardware. (c) The network is mapped to the Ag-CBRAM crossbar by unrolling the filters. The weighted

sum current in each BLs is fed into the Mott-ReLU neurons at the end of each column.

114

Figure 4.10: (a) A column of Ag-CBRAM array with Mott-ReLU neuron connected at the end. Ag-

CBRAM colored in black represented LRS while colored in grey represented HRS. ReLU input-output

characteristics measured using PCB by (b) varying the input to the crossbar from −0.25V to 0.25V or (c)

changing the number of LRS cells while fixing input voltage to 130mV.

115

Figure 4.11: Hardware implementation of convolution and ReLU activation layers of VGG-16 (Fig. 9a)

using Ag-CBRAM array and Mott-ReLU neurons on a CIFAR10 image. Representative results for layer 1

(a-f) and layer 13 (g-l) are shown. (a) and (g) are representative 33 convolutional filters in layer1 and

layer13 respectively. The filter weights are quantized to 5-bit. (b) and (h) are measured weighted sum

current trace from 4 patches shown in (c) and (i). (c) and (i) are OFMs obtained using Ag CBRAM

synaptic array and in compared with OFMs generated in software ((d) and (j)). (e) and (k) are final OFMs

after passing Mott-ReLU activation layers and in compared with ReLU results in software((f) and (l)).

116

Table 4.1: Performance Comparison of Activation Device/Circuit

Parameters Mott Analogue CMOS6 Digital ADC7

Energy

(Exp./Optimal, pJ)

199.5/0.638* 3410 19.4

Latency

(Exp./Optimal, ns)

61.4/3.8* 91.91 207

Area (m2) 0.64 951.06 289**

Leakage (W) 27.0 11060 -
*Shows projected optimal energy and latency when the thermal resistance of the heater is increased by

10× and the parasitic capacitance of a Mott ReLU is < 10−11F.
**The area is only the area per neuron circuit.

117

6. References

1 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. nature 521, 436-444 (2015).

2 Tan, H. H. & Lim, K. H. in 2019 7th international conference on smart computing &

communications (ICSCC). 1-4 (IEEE).

3 Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices.

Nature electronics 1, 333-343 (2018).

4 Xue, C. J., Zhang, Y., Chen, Y., Sun, G., Yang, J. J. & Li, H. in Proceedings of the

seventh IEEE/ACM/IFIP international conference on Hardware/software codesign and

system synthesis. 325-334.

5 Yang, T.-J. & Sze, V. in 2019 IEEE International Electron Devices Meeting (IEDM).

22.21. 21-22.21. 24 (IEEE).

6 Krestinskaya, O., Salama, K. N. & James, A. P. Learning in memristive neural network

architectures using analog backpropagation circuits. IEEE Transactions on Circuits and

Systems I: Regular Papers 66, 719-732 (2018).

7 Giordano, M., Cristiano, G., Ishibashi, K., Ambrogio, S., Tsai, H., Burr, G. W. &

Narayanan, P. Analog-to-digital conversion with reconfigurable function mapping for

neural networks activation function acceleration. IEEE Journal on Emerging and Selected

Topics in Circuits and Systems 9, 367-376 (2019).

8 Oh, S., Shi, Y., Del Valle, J., Salev, P., Lu, Y., Huang, Z., Kalcheim, Y., Schuller, I. K. &

Kuzum, D. Energy-efficient Mott activation neuron for full-hardware implementation of

neural networks. Nature nanotechnology 16, 680-687 (2021).

9 Eckle, K. & Schmidt-Hieber, J. A comparison of deep networks with ReLU activation

function and linear spline-type methods. Neural Networks 110, 232-242 (2019).

10 Zhang, Y., Huang, P., Gao, B., Kang, J. & Wu, H. Oxide-based filamentary RRAM for

deep learning. Journal of Physics D: Applied Physics 54, 083002 (2020).

118

7. Acknowledgements

This work was supported by Office of Naval Research (N000142012405), the National

Science Foundation (ECCS-1752241, ECCS-2024776), and the National Institutes of Health

(DP2 EB030992). The fabrication of the devices was performed at the San Diego

Nanotechnology Infrastructure (SDNI) of the University of California San Diego, supported by

the National Science Foundation (ECCS-1542148).

Chapter 4, in full, has been submitted for publication of the material as it may appear in

IOP Neuromorphic Computing, 2023, Shi, Yuhan; Oh, Sangheon; Valle, Javier del; Salev, Pavel;

Schuller, Ivan K; Kuzum, Duygu, Integration of Ag-CBRAM Crossbars and Mott-Relu Neurons

for Efficient Implementation of Deep Neural Networks in Hardware, 2023. The dissertation

author was a co-author of this paper.

119

CHAPTER 5. A NEUROMORPHIC BRAIN INTERFACE BASED ON RRAM CROSSBAR

ARRAYS FOR HIGH THROUGHPUT REAL-TIME SPIKE SORTING

Real-time spike sorting and processing are crucial for closed-loop brain–machine

interfaces and neural prosthetics. Recent developments in high-density multielectrode arrays

with hundreds of electrodes have enabled simultaneous recordings of spikes from a large number

of neurons. However, the high channel count imposes stringent demands on real-time spike

sorting hardware (HW) regarding data transmission bandwidth and computation complexity.

Thus, it is necessary to develop a specialized real-time HW that can sort neural spikes on the fly

with high throughputs while consuming minimal power. Here, we present a real-time, low

latency spike sorting processor that utilizes high-density CuOx resistive crossbars to implement

in-memory spike sorting in a massively parallel manner. We developed a fabrication process that

is compatible with CMOS back end of line (BEOL) integration. We extensively characterized

switching characteristics and statistical variations of the CuOx memory devices. In order to

implement spike sorting with crossbar arrays, we developed a template matching-based spike

sorting algorithm that can be directly mapped onto resistive random-access memory (RRAM)

crossbars. By using synthetic and in vivo recordings of extracellular spikes, we experimentally

demonstrated energy-efficient spike sorting with high accuracy. Our neuromorphic interface

offers substantial improvements in area (∼1000× less area), power (∼200× less power), and

latency (4.8μs latency for sorting 100 channels) for real-time spike sorting compared to other

HW implementations based on field-programmable gate arrays (FPGAs) and microcontrollers.

120

1. Introduction

Extracellular recordings of neuronal spikes using microelectrode arrays have been widely

used in studying neural circuits involved in sensory 1, motor 2, and navigation 3 functions in the

brain 4. The recorded signals are a mix of activities from multiple neurons and a crucial

processing step, called spike sorting, is required to separate the firing activities and assign the

recorded spikes to individual neurons from the recordings. Spike sorting is an indispensable tool

in neuroscience for studying neural circuit5, connectivity, causality, and decoding brain

activities6,7. It is also fundamental in decoding intentions from neural activity in brain–machine

interfaces (BMIs) 8 and neural prosthetics 9. Conventionally, spike sorting is performed offline

by transmitting raw digitized signals recorded by neural electrodes to a nearby computer.

However, the off-line processing approach becomes impractical for sorting neural recordings

generated from advanced high-density microelectrode arrays (HDMEAs) that comprise hundreds

or thousands of recording sites in a single probe, such as recently developed Neuropixels probe

10. Transmitting vast amounts of neural recording data from HDMEAs to an off-line spike sorter

leads to excessive power dissipation which poses a serious risk of damage for the surrounding

tissues11.. For example, a 100-channel microelectrode array with a 16-bit analog-to-digital

converter (ADC) operating at 30 kHz sampling frequency generates 3 MSamples/s and dissipates

milliwatt-level power to nearby tissues. More importantly, to enable the closed-loop BMIs for

prosthetics with multiple degrees of freedom, hundreds of neurons distributed in multiple cortical

areas need to be monitored in real-time with minimal delay12. An 8-h recording experiment using

a 100-channel microelectrode array would accumulate ∼200 GB of data 13, demanding at least a

few hours to sort the recorded spikes off-line 14. The high latency associated with spike sorting

becomes a limiting factor for closed-loop applications requiring rapid feedback.

121

These drawbacks highlight the need for developing compact, low-power, and high

throughput hardware (HW) that can be integrated with high-density implantable microelectrode

arrays to perform on-chip spike sorting in real-time. Although there have been sustained efforts

to develop real-time spike sorting in field-programmable gate arrays (FPGAs), most

implementations are inefficient in terms of area and power consumption. Want et al.

demonstrated a single channel real-time spike sorting while using >90% FPGA resources15.

Schäffer et al.16 implemented the “Osort” algorithm in FPGA for sorting 128 recording channels,

using hundreds of block RAM and DSP units. However, this approach does not scale well with

channel count16. On the other hand, resistive random-access memory (RRAM) has been

considered as a promising next-generation memory technology due to its low switching energy,

nonvolatility, high switching speed, and small footprint17. In-memory computing based on

RRAM arrays has been widely used in accelerating data-intensive applications such as neural

network inferences, computer vision, and compressed sensing 18. A crossbar array consisting of

thousands of RRAM devices offers large nonvolatile memory storage and facilitates massive

parallelization of matrix-vector multiplications. These advantages make RRAM crossbars

uniquely poised to implement a large number of dot products in real-time with high energy

efficiencies. However, to the best of our knowledge, no studies have yet shown RRAM-based

brain interfaces for real-time spike sorting. In this article, we designed a compact, energy-

efficient, and high throughput neuromorphic brain interface based on CuOx crossbar arrays that

can perform spike sorting for extracellular neural recordings. On the HW front, we developed a

low-temperature fabrication process that is compatible with back end of line (BEOL) CMOS

integration to fabricate high-density CuOx crossbars. We developed a template matching-based

spike sorting algorithm that is HW-friendly and scalable for mapping onto crossbars. In our

122

neuromorphic brain interface, low amplitude neural signals (a few microvolts) from an implanted

neural probe were amplified and digitized using an Intan amplifier. The neural templates were

encoded into device conductances and stored in columns of CuOx crossbars (Fig. 5.1). Template

matching was achieved by feeding neural signals to the wordlines (WLs) and using the crossbar

architecture to compute their dot products with corresponding neural templates in each column.

The sorting results were obtained parallelly by processing the weighted sum currents in the

bitlines (BLs). We experimentally demonstrated the ability of our CuOx crossbar arrays to sort

simulated synthetic spikes as well as extracellular recordings from in vivo animal experiments

with high accuracy, i.e., close to ideal software (SW) implementation. Based on experimental

results, we also performed a system-level simulation and estimated that our approach can sort

100-channel recordings within 4.8 μs with ∼1000× reduction in chip area, ∼200× reduction in

power, and ∼50× less energy per channel compared to the state-of-the-art FPGA and

microcontroller implementations. The rest of this article is organized as follows. Section 2

presents device characterization results for CuOx devices, including DC switching, transient

pulse responses, cycle-to-cycle and device-to-device variations, and retention. Section 3

describes the template matching algorithm and two datasets used in the HW demonstration.

Section 4 explains how the algorithm is mapped to the HW and the spike sorting in the crossbar.

The system-level benchmarking results of our approach in comparison to other HW

implementations are also discussed. Section 5 summarizes this article.

2. CuOx Resistive Crossbars

We developed a wafer-scale process for fabricating 16 × 16 crossbar arrays of Au/CuOx

/Au resistive switching devices [Fig. 5.2(a)]. The SEM image of the crossbar array and the cross

123

section schematic are shown in Fig. 5.2(b) and (d). The fabrication flow is illustrated in Fig.

5.2(c). First, Au with Cr adhesion layer (100 nm) is sputtered and patterned via photolithography

and lift-off for bottom electrodes (or WLs) with 1 μm linewidth and a 2-μm pitch. Then, 70 nm

of CuOx switching layer is deposited and patterned with reactive sputtering of Cu and Ar/O2

(95%/5%) gas. After that, top electrodes are deposited and patterned following the same

fabrication steps as the bottom electrodes. Last, 300 nm of SiO2 layer is deposited and patterned

to passivate the device active region to ensure long-term stability. Since all the processes for the

CuOx crossbars are low-temperature process, it can be built directly on the BEOL of CMOS

circuits. After fabricating Au/CuOx/Au resistive switching devices, we extensively characterized

them (Fig. 5.3 and 5.4). The Au/CuOx/Au devices displayed consistent bipolar switching in

response to 30 dc voltage sweeps [Fig. 3(a)]. They could be set to a low resistance state (LRS) of

∼100 at VSET = ∼ 1.5 V whereas applying VRESET = ∼−0.7 V increased device resistances to

as high as ∼1 G with low cycle-to-cycle variations [Fig. 3(b)]. The high ON-/OFF-ratio (∼107)

of the device resistances [Fig. 5.3(c)] provides a sufficiently large window for implementing the

neuromorphic brain interface. Furthermore, the relatively low SET and RESET voltages [Fig.

5.3(b)] are desirable for future integration with peripheral CMOS circuitry.

Low device-to-device variations are important to ensure accurate mapping templates to

the crossbar. To quantify this, we randomly selected 120 Au/CuOx /Au devices from different

regions of the wafer. Cumulative distribution function (CDF) of switching voltage and resistance

is shown in Fig. 5.4(a) and (b), respectively. The measured SET and RESET latencies are

presented in our previous work19. The RESET transition (∼80 μs) was significantly faster than

the SET process, highlighting the scope for further device optimization. Nonvolatility of LRS

and high resistance state (HRS) was characterized by reading the device (Vread = 0.1 V) at regular

124

time intervals immediately after a successful SET or RESET process. The Au/CuOx/Au devices

could retain their LRS and HRS for >10,000 s, indicating these devices can faithfully store the

neuron templates needed for real-time spike sorting and periodic refresh operations could be

utilized if experiments take longer than this time period [Fig. 5.4(c)].

3. Template Matching Algorithm

A. Algorithm Overview

Spike sorting is a challenging clustering problem and many algorithms have been

developed over the past years such as principal component analysis20, template matching21,

Bayesian statistical frameworks22, and hidden Markov models23. Among these, template

matching is the most efficient approach to sort neural spikes24. It assumes a preexisting database

of neuron templates; the goal is to assign the best-fit templates to the detected spike waveform,

hence, clustering the spikes to specific neuron units. Motivated by this, we developed a template

matching algorithm that can be directly mapped to the crossbars to achieve real-time spike

sorting. Figure 5.5 outlines the algorithm [Fig. 5.5(a)–(d)] by showing a simplified example for

classifying two neurons (n = 2) from three-channel recordings (m = 3). The same methodology

can be used to classify a larger number of neurons recorded across hundreds of channels. Each

neuron had a template matrix Tn = [Tn,1, Tn,2, …, Tn,m], where column Ti, j represented the

template for neuron i corresponding to channel j [Fig. 5.5(a)]. The Ti, j is a vector with S samples

with S = fs × k, where fs is the sampling frequency and k is the user-define window that

determines the duration of templates. In this example, fs = 30 kHz and k = 3 ms. Tn is built by

horizontally concatenating these templates across m electrodes (m = 3). The template matrix Tn

was normalized by its Frobenius Norm (𝑇𝑛/‖𝑇𝑛‖𝐹) to maintain the amplitude of the spikes in the

125

same range [Fig. 5.5(a)]. Similarly, we defined the neural signal V(t) = [V1(t), V2(t)…, Vm(t)],

where Vj(t) is the recorded signal from channel j. Figure 5(b) shows an example of recording in

three channels at 30 kHz. To perform the template matching, we first computed the waveform

similarity Cn,m(t), which is the convolution between signals from channel m and the template of

neuron n on channel m measured at time t. The convolution can be expressed as

Cn,m(t)=Vm(t)∗Tn,m, which is simply a sliding dot product between the signal and template. Then,

the resulting waveform similarities from all m channels were summed up for each neuron [Fig.

5.5(c)] to give Cn(t) = ∑ 𝐶𝑛,𝑚(𝑡)𝑚
1 ,, the overall activation of neuron n at time t. In the final step

[Fig. 5.5(d)], we applied a threshold, which is ∼3 standard deviation of the Cn(t) to identify the

spike times. After that, we assigned the spikes to the neuron having the largest Cn(t). Note that

these templates are typically obtained offline through a semiautomatic algorithm with human

curation to ensure accuracy. The details of mapping templates to the HW are discussed in

Section 4.

B. Datasets

We implemented the aforementioned template matching algorithm on two neural

recordings: 1) synthetic “NeuroNexus-32” data 25 and 2) “real” spikes from in vivo animal

experiments recorded with the NeuroFITM probe6 for validating our spiking sorting HW with

different neural electrode technologies. In the “NeuroNexus-32” dataset, the extracellular spiking

activities with ground truth were generated using MEArec 25. MEArec generated data in two

phases. In the template generation phase, biophysically realistic neuron models were positioned

at different locations of the NeuroNexus-32 probe model to produce extracellular potentials to

form a template library. In the recording generation phase, it convolved the templates selected

from the library with randomly generated spike trains. Additive Gaussian noise was added to the

126

convolution results to obtain the final recording data. Typically, a channel can record activities of

∼1–3 neurons nearby. Our synthetic dataset contains extracellular recordings of 12 neurons from

32 channels sampled at 30 kHz19.. The “real” dataset contains 1 h recordings sampled at 32 kHz

from an in vivo animal experiment recorded with the 32-channel NeuroFITM probe [Fig. 5.6(a)]

6, where spike sorting results from offline Kilosort algorithm14 were considered as the ground

truth. Figure 5.6(b) and (c) shows representative neuron templates and the recordings in Ch4.

Top of Fig. 5.6(c) shows the predicted spike train as square symbols and the clustered neuron

spike waveforms are presented in Fig. 5.6(d). As can be seen, for each neuron, the shape of the

clustered spike waveforms closely matched their respective templates. A similar waveform

example of NeuroNeuxus-32 and the complete template libraries of both probes can be found in

our previous work 19.

C. Sorting Performance

The sorting outcome of our algorithm is determined against the ground truth spikes by

comparing the spike time. To quantify the sorting performance, we employed the commonly

used F1 score (in percentage) given by 2TP/(2TP + FP + FN), where TP, FP, and FN denote the

true-positive, false-positive, and false-negative outcomes. A TP is defined as a spike that has

been classified correctly by the algorithm. An FP is defined as a spike that is classified as spiking

activity but does not exist in ground truth data. An FN is defined as a spike that exists in the

ground truth data but is not detected by our algorithm. The spike predictions from our algorithm

agree with the ground truth well. Eleven out of 12 neurons in the NeuroNexus-32 dataset have

F1 score >90% [Fig. 5.7(a)], whereas all the two neurons in the NeuroFITM “real” dataset have

F1 score >85% [Fig. 5.7(b)]. The F1 score of the “real” dataset is slightly less than the synthetic

dataset due to higher noise and probe drifting26 during the recording, making the classification

127

more difficult. To map the templates to the HW, we investigated how quantization impacts the

F1 score. The template was quantized to 2N discrete levels between the min and max amplitude

range of the normalized template library. After quantization, we followed the same sorting

pipeline to obtain the F1 score. Fig. 5.7(c) shows that the performance could be retained if the

templates are quantized to at least four-bit resolution for NeuroNeuxus-32 dataset, which is also

applied for NeuroFITM dataset.

4. HW Implementation of Spike Sorting

A. HW Mapping

To process hundreds of spikes per second, it would be necessary to adopt a multicore

architecture [Fig. 5.8(a)] where each core consists of a crossbar that stores the templates for a

specific set of neurons [Fig. 5.8(b)]. Figure 5.8(c) illustrates how a set of templates could be

mapped on to a crossbar core. In the illustration, we assume that three channels (m = 3) record

spike activities of two neurons (n = 2), resulting in a total of six templates. The templates from

the same channel are mapped to the adjacent columns in the crossbar. The devices in the crossbar

can store the templates using multilevel for analog implementation or binary (HRS or LRS)

conductance states for digital implementation 27. A column of devices with 16 (4-bit) multilevel

can be used to map a template directly as shown in this example (i.e., templates of N1–Ch1 and

N2–Ch2 are mapped to the first two columns of the crossbar, respectively). Similarly, templates

from other channels are mapped to the rest of the columns to achieve the maximum usage of the

array [Fig. 5.8(c)]. If binary conductance state is used, four columns are required to map a

template from MSB to LSB. Although devices with multilevel states can achieve maximum area

efficiency, it has been shown that these multilevel states may exhibit high device-to-device

128

variations, nonlinearity, and resistance drift due to unstable filament formation18. In contrast,

digital implementation is more robust against variations28, which makes it a better approach to

realize high sorting accuracy for template matching tasks. In addition to conductance states,

differential pair scheme is commonly used to represent both negative and positive values of the

templates29.

After all templates are mapped on a core, the voltage spike inputs on WLs (VWLi) are

convolved with the templates stored as cross point conductances (Gij). The columns of the

crossbar can perform template matching (BL currents IBLj=∑GijVWLi) in parallel. Since a set of

templates from each channel need to convolve with neural signals from the corresponding

channel, recordings from Ch1 to Ch3 are processed in a time-multiplexed manner, the matching

results (IBLn,j) for each channel are collected from the corresponding BLs in parallel (n: neuron; j:

channel number). The final classification result is obtained by adding the BL currents for each

neuron, i.e., I𝑛 = ∑ 𝐼𝐵𝐿𝑛,𝑗
𝑚
1 from all m channels and then assigning the spike to the neuron with

the maximum In. For the sake of illustration, we show all templates mapped to a single crossbar.

For practical applications involving large channel counts, a multicore architecture can be

adopted, where each core is dedicated to a channel and stores all templates belonging to the

assigned channel. As a result, all channels can be processed at the same time to achieve higher

parallelism.

B. HW Demonstration

A custom printed circuit board (PCB) was used to access the WLs and BLs of the wire-

bonded CuOx crossbar [Fig. 5.9(a) and (b)]. Before mapping the templates, array read was

performed to confirm the initial states of the crossbar. To read a single device, the selected WL

was biased to Vread = 0.25 V while all other lines were grounded. The as-fabricated devices had

129

initial resistances greater than 500 k [Fig. 5.9(c)]. As explained in Section IV-A. HW Mapping,

digital implementation was adopted in our demonstration. Neuron templates were quantized,

binarized, and mapped onto crossbar columns using differential pair scheme. To program the

devices to different states, we used Vdd/2 write scheme, where the selected WL and BL were

biased to Vdd/2 and −Vdd/2, and all other unselected lines were grounded to prevent sneak paths

(SET: Vdd = 4 V and RESET: Vdd = 3 V).

Figure 5.9(d)–(f) shows four representative templates (F1–F4) of NeuroFITM

implemented in the crossbar. The templates were quantized to four-bit and then binarized to two

levels (“0”-black or “1”-white) off-line [Fig. 5.9(d)]. “0” was mapped to HRS and “1” was

mapped to LRS of the device, respectively [Fig. 5.9(e)]. Since the crossbar was initially off, only

“1” needs to be programmed accordingly. The patterns of the HW templates match well with SW

templates, indicating precise write operation. To validate the accuracy of crossbar convolutions,

we biased all WLs to high (VWLs = 0.25 V) and measured the BL currents. As shown in Fig.

5.9(f), the weighted-sum BL currents (Isum) increased proportionately with the number of LRS

devices in the columns. Templates from NeuroNexus-32 dataset are mapped in the same way19.

Using the programmed templates, we performed spike sorting on NeuroNexus-32 and

NeuroFITM recordings. Neural data encoded as eight-bit voltage pulse trains were fed into the

WLs and Isum were measured on the BLs. Figure 5.10(a) and 11(a) show the NeuroNexus-32

and NeuroFITM recordings and the HW spike sorting results implemented to sort representative

three neurons (N1–N3) from the NeuroNexus-32 data and two neurons (N1, N2) from the

NeuroFITM data. The neural voltage traces from the recording channels (Ch1–Ch3 in

NeuroNexus-32 and Ch1–Ch4 in NeuroFITM) are shown at the bottom. HW convolution trace

generated by CuOx crossbar represents final current 𝐼𝑛 = ∑ 𝐼𝐵𝐿 𝑛,𝑗
𝑚
𝑗=1 by adding weighted sum

130

currents measured in each IBLn, j for “m” channels and “n” neurons (NeuroNexus-32: m = 3, n =

3; NeuroFITM: m = 4, n = 2). The raster plots on the top of Fig. 5.10(a) and 11(a) show the

spike train predicted in HW compared with the ground truth spikes for Neuronexus-32 and

NeuroFITM dataset, respectively. Figure 5.10(b) and 11(b) show the callouts for the spikes

highlighted in rectangular boxes [Fig. 5.10(a) and 11(a)]. Inside the boxes, the snippet spike

waveform of each neuron is shown in the left. Channels are coded in different colors that match

with the signal traces above. The template matching results in SW and HW are shown as

convolution traces in the middle (SW) and right (HW), respectively. Different colors represent

N1–N3 of NeuroNexus-32 and N1–N2 of NeuroFITM. The SW convolution traces are shown as

arbitrary units while HW traces are shown as measured weighted sum currents. For each spike,

the neuron with the highest peak in the convolution trace was assigned to the spike. The shapes

of convolution traces produced by the CuOx crossbars matched closely with SW, thereby

confirming our HW can reliably sort neural spikes. Note that the off-peak regions of the HW

convolution traces are slightly noisy compared with SW mainly due to variations in the

programmed device conductances across crossbar columns. This issue can be alleviated by

adopting a more robust “program and verify” scheme30.

C. System-Level Performance Benchmarking

Based on the HW spike sorting results obtained over a 100-ms time window (Fig. 5.10

and 11), we evaluated F1 scores on the entire 30 s-wide recordings in both neural data and

compared them with SW predictions. The HW F1 scores were calculated by performing template

matching between neural signals with HW templates that contain measured device resistances.

To evaluate sorting performance across multiple neurons, we averaged F1 score based on neuron

number. Table 5.1 shows neurons could be sorted with high mean accuracy (∼92.5% for

131

NeuroNexus-32, ∼94.6% for NeuroFITM). To project the sorting performance of multicore

architecture [Fig. 5.8(a)] with our crossbar-based spike sorting HW, we performed a system-

level benchmarking to estimate area, power, and latency, and compared it with the state-of-the-

art FPGA and microcontroller implementations. All implementations included in Table 5.2 use

in vivo experimental datasets and template matching based approach for a fair comparison. Our

work and microcontroller implementation31 demonstrated sorting for 32-channel probe while

FPGA15 implemented sorting for a single channel. The area per channel was estimated by the

number of columns used in mapping a neuron template of a channel (i.e., ∼8 columns are used

for a channel template and it occupies 40 μm × 20 μm = 8 × 10−4 mm2). Power per channel was

calculated by averaging power consumption 𝑃𝑎𝑣𝑔 = ∑ 𝐼𝑠𝑢𝑚 × 𝑉𝑟𝑒𝑎𝑑
𝑁
1 across a representative

spike waveform snippet during template matching. Here, N is the number of samples in the spike

waveform (N = 30), Isum is the weighted sum current for processing a sample measured crossbar.

Overall, our crossbar-based spike sorting hardware promises ~1000× smaller

(area/channel) 15 and ~200× reduction in power consumption 31 compared to state-of-the-art

spike sorting HW implementations that rely on FPGAs (Table 5.2). To better understand the

sorting latency in the multicore architecture, we assume one crossbar core can have size up to

256 × 256 and 10 ns read latency. Unlike previous works that rely on sequential processing, each

crossbar core in the multicore architecture can process multiple recording channels in a highly

parallelized manner. We estimated 12 CuOx crossbar (256 × 256) cores can sort 100 channel

recordings within 4.8 μs using the same mapping scheme of our HW demonstration. As a result,

it consumes ∼30–50× less energy (energy = power × latency) 15,31. These performance gains

make real-time spike sorting possible using our crossbars for high throughput BMI applications.

132

5. Conclusions

We presented a high throughput neuromorphic brain interface for real-time spike sorting

based on resistive crossbar arrays. We fabricated CuOx crossbars using a simple low temperature

process enabling easy 3-D BEOL integration with underlying CMOS circuits. In order to realize

real-time spike sorting, we developed an HW compatible template matching algorithm and

developed methods for mapping onto crossbar arrays. We demonstrated that HW implementation

of template matching using CuOx crossbars can accurately classify spikes from individual

neurons recorded in vivo. Our neuromorphic approach offers substantial performance gains in

area, power, latency, and energy for spike sorting HW designed for processing recordings from

neural probes with high channel counts. Our work paves the way toward in-memory computing-

based real-time spike sorting and processing HW for next-generation closed-loop brain

interfaces.

133

Figure 5.1: Proposed neuromorphic brain interface based on CuOx crossbar array for spike sorting. Neural

signals recorded by the multichannel neural probe are amplified and digitized using an Intan amplifier and

ADC, respectively. CuOx crossbar array performs spike sorting in real-time. That can be used as real-time

feedback for a closed-loop neural interface.

134

Figure 5.2: (a) Image of a wafer including fabricated 16 × 16 CuOx crossbar arrays and single devices for

testing. (b) SEM images of 16 × 16 crossbar with 4 µm2 cross point. Scale bar: 10 µm. (c) Fabrication

process for CuOx-based single devices and 16 × 16 crossbar. (d) Device cross section (callout window)

highlighting the 70-nm CuOx resistive switching layer sandwiched between 100 nm Au electrodes. A

300-nm SiO2 passivation layer is deposited on top of the stack.

135

Figure 5.3: (a) DC switching characteristics of single devices for 30 cycles. (b) CDF of SET (1–2.5 V)

and RESET (−1 to −0.2 V) voltages. (c) CDF of HRS (100 MΩ–100 GΩ) and LRS (100 Ω–1 kΩ)

resistances.

136

Figure 5.4: CDF of (a) switching voltages and (b) HRS/LRS resistances were measured across 120

devices randomly selected on the wafer. (c) Retention characteristics. Device resistance was monitored

intermittently using 0.1 V read pulses.

137

Figure 5.5: (a) Normalized templates of N1 and N2. (b) Neural recordings of three channels. (c)

Computing the overall activation of neuron n neural recordings, i.e., voltage traces with normalized

templates N1 and N2. Summing the convolution traces (Cn,m(t)) corresponding to each neuron. (d)

Thresholding and assigning spikes to neurons N1 or N2 based on whether C1(t) > C2(t) (assign to N1) or

C1(t) < C2(t) (assign to N2).

138

Figure 5.6: (a) Image of a 32-channel NeuroFITM probe with four representative channels highlighted as

red. (b) Representative templates for the two neurons in Ch4. (c) Example 500 ms-recordings from Ch4

with predicted spike train marked in colored squares. (d) Clustered spikes for N1 and N2 for Ch4.

139

Figure 5.7: F1 scores (%) for (a) NeuroNexus-32 and (b) NeuroFITM dataset. (c) F1 score (%) as a

function of template precision for 12 neurons in NeuroNexus-32 dataset. Four-bit quantized templates are

used in HW experiments.

140

Figure 5.8: (a) Real-time spike sorting processor with multiple crossbar cores. (b) Representative

templates of two neurons with three channels. (c) Crossbar spike sorting: each crossbar column stores a

neuron term-bit digitized neural signals are provided as voltage inputs and weighted-sum currents from

convolutions are obtained on the BLs. Neuron-wise aggregation of channel currents determines the

sorting result.

141

Figure 5.9: (a) Custom PCB board to access individual WLs and BLs of the CuOx crossbar for the write

and read operations. BLs can be accessed through the connectors shown in the lower left while WLs can

be accessed through the connectors in the top right. (b) 16 × 16 crossbar wire-bonded onto a pin grid

array (PGA) package. (c) Initial resistance map of a 16 × 16 CuOx crossbar. (d) Four representative

binarized (black = 0 and white = 1) filters (F1–F4) from NeuroFITM. (e) Programmed crossbar columns

implementing these filters. (f) Isum measured at VWLs = 0.25 V for four filters.

142

Figure 5.10: (a) NeuroNexus-32: Ch1–Ch3 are used to classify neurons N1–N3. A segment of recordings

from Ch1 to Ch3 and predicted HW convolution (Conv) traces for three neurons. (b) Representative spike

sorting results for N1–N3 showing convolution implemented in HW agrees with the SW implementation.

143

Figure 5.11: (a) NeuroFITM: Ch1–Ch4 are used to classify neurons N1 and N2. Segments of recordings

from Ch1 to Ch4 and predicted HW Conv traces. (b) Representative spike sorting results for N1 and N2

implemented in HW agrees with the SW implementation.

144

Table 5.1: F1 Score for SW and HW Implementations.

 NeuroNexus-32 F1 Score (%) NeuroFITM F1 Score (%)

SW 92.89 % 96.04 %

HW 92.48 % 94.62 %

145

Table 5.2: Benchmarking Our Results Against Previous Works15,31 in Terms of HW Type, Recording Data

Used in The Studies, Channel Count, Area/Channel, Power/Channel, Sorting Latency, and Energy/Channel.

The Accuracy Obtained on Neuronexus-32 and NeuroFITM Data from SW and HW Experiments.

Reference This Work P. K. Wang et al.15 S. Luan et al.31

Hardware Crossbar FPGA Microcontroller

Recording Data Simulated, in-vivo

experiments

In-vivo experiments In-vivo experiments

No. of Channel 32 1 32

Area/Channel (mm2) 8e-4 > 10 0.78

Power/Channel (mW) 2.15 460 3.11

Sorting Latency (W) 4.8 per 100 channel 0.72 per channel 169 per channel

Energy/Channel (nJ) 10.3 331.2 525.6

146

6. References

1 Nicolelis, M. A., Ghazanfar, A. A., Stambaugh, C. R., Oliveira, L. M., Laubach, M.,

Chapin, J. K., Nelson, R. J. & Kaas, J. H. Simultaneous encoding of tactile information

by three primate cortical areas. Nature neuroscience 1, 621-630 (1998).

2 Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. Neuronal population coding of

movement direction. Science 233, 1416-1419 (1986).

3 Moser, E. I., Kropff, E. & Moser, M.-B. Place cells, grid cells, and the brain's spatial

representation system. Annu. Rev. Neurosci. 31, 69-89 (2008).

4 Quiroga, R. Q. & Panzeri, S. Extracting information from neuronal populations:

information theory and decoding approaches. Nature Reviews Neuroscience 10, 173-185

(2009).

5 Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits: a decade of

progress. Neuron 98, 256-281 (2018).

6 Liu, X., Ren, C., Lu, Y., Liu, Y., Kim, J.-H., Leutgeb, S., Komiyama, T. & Kuzum, D.

Multimodal neural recordings with Neuro-FITM uncover diverse patterns of cortical–

hippocampal interactions. Nature Neuroscience 24, 886-896 (2021).

7 Liu, X., Ren, C., Huang, Z., Wilson, M., Kim, J.-H., Lu, Y., Ramezani, M., Komiyama,

T. & Kuzum, D. Decoding of cortex-wide brain activity from local recordings of neural

potentials. Journal of Neural Engineering (2021).

8 Chaudhary, U., Birbaumer, N. & Ramos-Murguialday, A. Brain–computer interfaces for

communication and rehabilitation. Nature Reviews Neurology 12, 513-525 (2016).

9 Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D.

J., McMorland, A. J., Velliste, M., Boninger, M. L. & Schwartz, A. B. High-performance

neuroprosthetic control by an individual with tetraplegia. The Lancet 381, 557-564

(2013).

10 Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., Beau,

M., Bhagat, J., Böhm, C. & Broux, M. Neuropixels 2.0: A miniaturized high-density

probe for stable, long-term brain recordings. Science 372 (2021).

11 Kim, S., Tathireddy, P., Normann, R. A. & Solzbacher, F. Thermal impact of an active 3-

D microelectrode array implanted in the brain. IEEE Transactions on Neural Systems and

Rehabilitation Engineering 15, 493-501 (2007).

12 Nicolelis, M. A. & Lebedev, M. A. Principles of neural ensemble physiology underlying

the operation of brain–machine interfaces. Nature reviews neuroscience 10, 530-540

(2009).

147

13 Gibson, S., Judy, J. W. & Marković, D. An FPGA-based platform for accelerated offline

spike sorting. Journal of neuroscience methods 215, 1-11 (2013).

14 Pachitariu, M., Steinmetz, N. A., Kadir, S. N., Carandini, M. & Harris, K. D. Fast and

accurate spike sorting of high-channel count probes with KiloSort. Advances in neural

information processing systems 29, 4448-4456 (2016).

15 Wang, P. K., Pun, S. H., Chen, C. H., McCullagh, E. A., Klug, A., Li, A., Vai, M. I.,

Mak, P. U. & Lei, T. C. Low-latency single channel real-time neural spike sorting system

based on template matching. PloS one 14, e0225138 (2019).

16 Schäffer, L., Nagy, Z., Kincses, Z., Fiáth, R. & Ulbert, I. Spatial information based OSort

for real-time spike sorting using FPGA. IEEE Transactions on Biomedical Engineering

68, 99-108 (2020).

17 Yin, S., Kim, Y., Han, X., Barnaby, H., Yu, S., Luo, Y., He, W., Sun, X., Kim, J.-J. &

Seo, J.-s. Monolithically integrated RRAM-and CMOS-based in-memory computing

optimizations for efficient deep learning. IEEE Micro 39, 54-63 (2019).

18 Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices

and applications for in-memory computing. Nature nanotechnology 15, 529-544 (2020).

19 Yuhan Shi, A. A., Sangheon Oh, Xin Liu, Gopabandhu Hota,Gert Cauwenberghs,Duygu

Kuzum. High Throughput Neuromorphic Brain Interface with CuOx Resistive Crossbars

for Real-time Spike Sorting. International Electron Devices Meeting In press (2021).

20 Adamos, D. A., Kosmidis, E. K. & Theophilidis, G. Performance evaluation of PCA-

based spike sorting algorithms. Computer methods and programs in biomedicine 91, 232-

244 (2008).

21 Wouters, J., Kloosterman, F. & Bertrand, A. Towards online spike sorting for high-

density neural probes using discriminative template matching with suppression of

interfering spikes. Journal of neural engineering 15, 056005 (2018).

22 Bar-Hillel, A., Spiro, A. & Stark, E. Spike sorting: Bayesian clustering of non-stationary

data. Journal of neuroscience methods 157, 303-316 (2006).

23 Herbst, J. A., Gammeter, S., Ferrero, D. & Hahnloser, R. H. Spike sorting with hidden

Markov models. Journal of neuroscience methods 174, 126-134 (2008).

24 Rey, H. G., Pedreira, C. & Quiroga, R. Q. Past, present and future of spike sorting

techniques. Brain research bulletin 119, 106-117 (2015).

25 Buccino, A. P. & Einevoll, G. T. Mearec: a fast and customizable testbench simulator for

ground-truth extracellular spiking activity. Neuroinformatics 19, 185-204 (2021).

148

26 Rossant, C., Kadir, S. N., Goodman, D. F., Schulman, J., Hunter, M. L., Saleem, A. B.,

Grosmark, A., Belluscio, M., Denfield, G. H. & Ecker, A. S. Spike sorting for large,

dense electrode arrays. Nature neuroscience 19, 634-641 (2016).

27 Hong, X., Loy, D. J., Dananjaya, P. A., Tan, F., Ng, C. & Lew, W. Oxide-based RRAM

materials for neuromorphic computing. Journal of Materials Science 53, 8720-8746,

doi:10.1007/s10853-018-2134-6 (2018).

28 Yu, S., Li, Z., Chen, P.-Y., Wu, H., Gao, B., Wang, D., Wu, W. & Qian, H. in 2016 IEEE

International Electron Devices Meeting (IEDM). 16.12. 11-16.12. 14 (IEEE).

29 Yao, P., Wu, H., Gao, B., Eryilmaz, S. B., Huang, X., Zhang, W., Zhang, Q., Deng, N.,

Shi, L. & Wong, H.-S. P. Face classification using electronic synapses. Nature

communications 8, 1-8 (2017).

30 Shim, W., Seo, J.-s. & Yu, S. Two-step write–verify scheme and impact of the read noise

in multilevel RRAM-based inference engine. Semiconductor Science and Technology 35,

115026 (2020).

31 Luan, S., Williams, I., Maslik, M., Liu, Y., De Carvalho, F., Jackson, A., Quiroga, R. Q.

& Constandinou, T. G. Compact standalone platform for neural recording with real-time

spike sorting and data logging. Journal of neural engineering 15, 046014 (2018).

149

7. Acknowledgements

This work was supported in part by the Office of Naval Research under Grant

N000142012405, in part by the National Science Foundation under Grant ECCS-1752241 and

Grant ECCS-2024776, in part by the National Institutes of Health under Grant DP2 EB030992,

and in part by the National Science Foundation under Grant ECCS-1542148.

Chapter 5, in full, is a reprint of the material as it appears in IEEE Transactions on

Electron Devices, 2021, Shi, Yuhan; Ananthakrishnan, Akshay, Oh, Sangheon; Liu, Xin; Hota,

Gopabandhu; Cauwenberghs, Gert; Kuzum, Duygu, A Neuromorphic Brain Interface Based on

RRAM Crossbar Arrays for High Throughput Real-Time Spike Sorting, 2021. The dissertation

author was a co-author of this paper.

150

CHAPTER 6. ENERGY-EFFICIENT MOTT ACTIVATION NEURON FOR FULL-

HARDWARE IMPLEMENTATION OF NEURAL NETWORKS

To circumvent the von Neumann bottleneck, substantial progress has been made towards

in-memory computing with synaptic devices. However, compact nanodevices implementing non-

linear activation functions are required for efficient full-hardware implementation of deep neural

networks. Here, we present an energy-efficient and compact Mott activation neuron based on

vanadium dioxide and its successful integration with a conductive bridge random access memory

(CBRAM) crossbar array in hardware. The Mott activation neuron implements the rectified

linear unit function in the analogue domain. The neuron devices consume substantially less

energy and occupy two orders of magnitude smaller area than those of analogue complementary

metal–oxide semiconductor implementations. The LeNet-5 network with Mott activation neurons

achieves 98.38% accuracy on the MNIST dataset, close to the ideal software accuracy. We

perform large-scale image edge detection using the Mott activation neurons integrated with a

CBRAM crossbar array. Our findings provide a solution towards large-scale, highly parallel and

energy-efficient in-memory computing systems for neural networks.

1. Introduction

As the amount of data for computing exponentially increases, data transfer between

memory and processor turns into a major bottleneck dominating the system-level energy

consumption. In-memory computing has been proposed to circumvent this bottleneck arising

from Von Neumann architecture by minimizing or eliminating the energy-consuming data

transfer between memory and processor1,2. In-memory computing with emerging non-volatile

151

memories (eNVMs)3-6 has shown promising results for on-chip storage of weights and

computation of multiply-accumulate (MAC) operations for a single layer7-9. However, modern

deep neural networks (DNNs) consist of hundreds of layers (e.g. ResNet has 152 layers10) that

the outputs of each layer are individually connected to artificial neurons applying non-linear

activation functions on weighted sums. Most in-memory computing approaches using eNVMs

still rely on general processors to compute and propagate activation functions of each layer.

However, activations that move in and out of the memory can dominate energy consumption of

in-memory computing based accelerators 8,11-13. Moreover, computation of one element of

activation using analogue-to-digital converters (ADC) consumes energy comparable to the

energy consumed by a whole synaptic array for a MAC operation13. Since DNNs need to have a

very large number of activations to achieve high accuracy13, it is critical to develop energy and

area efficient implementations of activation functions, which can be integrated on the periphery

of the synaptic arrays. Recent works have investigated analogue CMOS circuits14 and ADCs

with reconfigurable function mapping15 for the implementation of nonlinear activation functions.

However, a compact and energy-efficient nanodevice implementing the nonlinear activation

functions has yet to be demonstrated.

Here we propose a volatile four-terminal Mott activation neuron device based on vanadium

dioxide (VO2) for compact and energy-efficient implementation of activation functions. The Mott

activation neuron consists of a nanowire heater for precise control of the temperature of the VO2

film. First, we experimentally demonstrate that the resistance of the Mott activation neuron can be

switched linearly and gradually to emulate rectified linear unit (ReLU) activation function, which

is the most widely used activation function. The Mott activation neuron can generate an output

voltage, which follows the ReLU activation function for a given weighted sum current. Then, we

152

study the energy efficiency of the Mott activation neuron in comparison to activation function

circuits with analogue CMOS14 or reconfigurable digital ADC15. We investigate the performance

of hardware neural networks implemented with the Mott activation neurons in terms of energy,

latency, peripheral neuron/circuit area, and classification accuracy. Lastly, we fabricate CBRAM

crossbar arrays and Mott activation neuron arrays to demonstrate edge detection using

convolutional neural networks in hardware. Our results show that the small size and energy

efficiency of the Mott activation neuron enable direct stacking of synaptic layers in neural

networks and achieve substantial gains in energy efficiency and area while providing high

accuracy.

2. Mott activation neuron

Neural networks consist of a set of neurons organized in layers, connected with synaptic

weights (Fig. 6.1a). The inputs applied to the networks are multiplied by the corresponding

weights and the multiplication results are accumulated in neurons. Then, the output of a neuron

is calculated by passing the MAC results through a non-linear activation function. In-memory

computing architectures map these neural network operations onto the arrays of eNVM devices.

The weights are stored in arrays of eNVM devices and the weighted sum is calculated using

Kirchhoff’s current law16. While in-memory computing allows the local storage of the weights in

compact and energy-efficient synaptic devices, the activation function calculations are still

implemented with general processors or large and complex neuron peripheral circuits (Fig.

6.1b). It significantly degrades energy and area efficiency at the system-level. The activation

function we target is the ReLU, which is the most widely used activation function. The output of

ReLU activation function (i.e. f(x) = max(0, x)) depends only on current input regardless of

153

previous inputs and resistance states (i.e. non-causal function). In addition, the output of the

ReLU function is linear after the transition point (i.e. x = 0). In order to emulate the ReLU

activation function, the device should exhibit volatile, linear, and gradual resistive switching. We

developed a four-terminal VO2-based activation device (illustrated in the inset of Fig. 6.1b on

the bottom) that exploits a thermal driven Mott transition of VO2 to embody these characteristics

in a single nanodevice. The Mott ReLU device uses a nanowire heater (i.e. Ti (20 nm)/Au (30

nm)) to control the resistive switching of a lateral 50 nm VO2 gap beneath it. The heater and the

VO2 gap are electrically insulated by 70 nm of Al2O3 layer. A scanning electron microscope

(SEM) image of a fabricated device is shown in Fig. 1c and detailed fabrication procedures are

discussed in Methods. The heater generates heat through Joule-heating depending on the

magnitude of the weighted sum current generated by each column of the eNVM array. Then, the

generated heat is transferred to the VO2 film through the electrical insulator (i.e. Al2O3 layer) and

induces the phase transition from the insulating states to the metallic states, which results in a

resistivity drop. The temperature-dependent resistance of the VO2 gap is shown in Fig. 6.1d. To

map the gradual resistivity changes of the VO2 gap onto the output voltage (VOUT), a voltage

divider circuit is implemented as illustrated in the inset of Fig. 6.1e. The supply voltage (VDD) is

divided into the voltage drop across the VO2 gap and the load resistor depending on the

resistance ratio of the VO2 gap and the load resistor. As the resistance of the VO2 gap decreases,

the voltage drop across the VO2 gap decreases which results in the increment of the output

voltage (or the voltage drop across the load resistor). As a result, the resistive switching of the

VO2 gap allows the output voltage to emulate ReLU activation function as illustrated in Fig. 1e.

Since the output of the Mott ReLU device is voltage, it can be directly applied to the next layer

as an input voltage. Therefore, multiple synaptic layers can be directly stacked on each other for

154

driving the next layers by eliminating complex digital circuits and ADCs between the layers.

Moreover, the small size of the Mott ReLU device allows the integration of the device for each

column of the synaptic array, which eliminates the need for time-multiplexing and hence,

enables fully parallel operations.

The main operating principle of the Mott ReLU device is the Mott transition (or

insulator-to-metal transition) of the VO2 gap. The Mott transition of the VO2 gap can be induced

either by electrical filamentary switching or thermal-driven domain-wise switching17,18. When a

voltage bias above the threshold is applied across the VO2 gap, Joule-heating due to the bias

induces filament formation, and the filament is widened as the voltage increases (Fig. 6.2a and

b). Since the filament formation is a cascading avalanche effect, the resistance switching is

abrupt19. In contrast, when the transition is driven by temperature, only the domains whose

critical temperature is below the device temperature transit to the metallic phase (Fig. 6.2a and

c). Since the transition temperature of each domain exhibits variations20, the number of domains

switched to metallic phases gradually increases as the temperature increases. As a result, the

resistance of VO2 gradually decreases as the temperature increases (Fig. 2d). This gradual

switching behaviour of VO2 was confirmed by scanning microwave microscopy (SMM) imaging

of VO2 film previously20. The Mott ReLU device is engineered to exploit this thermal-driven

linear resistive switching for emulating the linear increment of the ReLU activation function, as

shown in Fig. 6.2e. Then, this linear resistive switching of the VO2 gap is projected to the output

voltage. The ratio between VOUT and VDD of the Mott ReLU device with a 1,900 load resistor

is demonstrated in Fig. 6.2f as a representative example. Two potential practical issues

regarding the Mott transition are discussed in Supplementary Note 1.

155

To further assess the compatibility of the Mott ReLU device for implementing the ReLU

activation function, we extensively characterized its switching characteristics. In addition to

gradual switching, the resistive switching should be volatile to implement ReLU function in

synaptic arrays. That is because the output of the ReLU activation function should only depend

on current input regardless of previous inputs and resistance states. The volatile switching of the

Mott ReLU device is experimentally verified in Fig. 6.3a. When 1 ms wide current pulses with

various amplitudes are applied to the heater, the resistance of the device is switched and

maintained only when the current pulse is high. Furthermore, the output voltage for a given input

current should not exhibit a high level of variations, which could degrade neural network

performance. Figure 6.3b demonstrates that each resistance state of the device shows only ~4%

or less variation when the resistance states are iteratively measured. The impact of this small

variation on the neural network performance is studied in Neural Network Implementations

Section. Lastly, the endurance of the device should be high to allow a large number of weighted

sum operations in hardware. For the inference with MNIST dataset21, each Mott ReLU device

should generate its output for 10,000 times per epoch (or whole testing set). Hence, the device

should endure this large number of cycling operations. Figure 6.3c experimentally demonstrates

that the Mott ReLU device shows no sign of ON/OFF ratio degradation up to 5,000 cycles. It has

been shown that endurance larger than 1010 cycles can be easily achieved with VO2 devices22.

Furthermore, we performed pulse measurements to investigate the power consumption and the

latency of the Mott ReLU device. Figure 6.3d shows the total power consumption as a function

of heater current, as well as the power consumed by the heater and the VO2 gap separately. The

total power consumption of the Mott ReLU device is dominated by the heater. The latency of the

Mott ReLU is 61.4 ns, measured as the time difference between the first saturation point of the

156

input and output pulse (Figure 6.3e). The energy consumption of the Mott ReLU is 199.5 pJ for

65 ns pulse width.

The Mott ReLU device can replace complex peripheral circuits for activation function

calculation. Therefore, it is important to compare the performance of the Mott ReLU device

against other implementations of activation functions (i.e. analogue CMOS14 and digital ADC15

circuits discussed in Methods). The performance benchmarking (Supplementary Note 2)

results of the Mott ReLU device against the analogue CMOS circuit14 and the digital ADC

implementation15 are summarized in Table 6.1. The energy consumption of Mott ReLU can be

further reduced by optimizing the device to have more heat confinement on the VO2 gap. As the

heat generated by the heater is more confined to the VO2 gap, the device requires less heater

current to achieve the same temperature on the VO2 gap23. Therefore, by replacing the heater

material with a higher thermal resistance material (e.g. Ti has thermal resistance ~10 higher

than that of Au), the energy consumption of the device can be lowered. To determine the energy

consumption of an optimized device, we developed an empirical thermal model of our device

(Fig. 6.S1a and b) as discussed in Supplementary Note 3, which shows good agreement with

experimental data as shown in Fig. 6.2e and f. The power consumption of Mott ReLU can be

reduced by ~25 down to 128 W by increasing the thermal resistance of the nanowire heater

(Fig. 6.S2a). Moreover, the latency can be reduced to ~3.8 ns (Table 6.1) by minimizing the

parasitic capacitance of the Mott ReLU below 10-11 F (Fig. 6.S2b), which would result in a total

reduction of ~300 in energy consumption down to 0.638 pJ (Table 6.1). Our experimental

results show that the Mott ReLU device achieves 450−1500 improvement in area and 1.5-3

improvement in latency while achieving low energy consumption. Moreover, the optimization of

the Mott ReLU device can further reduce the energy consumption and improve the latency

157

offering substantial gains in area, latency, and energy efficiency as a replacement to the analogue

CMOS14 and digital15 ADC circuits.

3. Neural network implementations

We have demonstrated that the Mott ReLU neurons can provide smaller area and better

energy efficiency as compared to the other circuit implementations. It is also critical to evaluate

the network-level performance using the Mott ReLU devices for hardware implementation of

DNNs. To compute the accuracy of neural network implementations with the Mott ReLU device,

we simulated MLP (Fig. 6.4a) and LeNet-521 (Fig. 6.4b) (The details on the configurations of

the networks are discussed in Methods). The schematic and transmission electron microscopy

(TEM) image of the CBRAM cell (Fig. 6.S3a) are shown in Fig. 6.S3b and c, respectively.

Table 6.2 summarizes the accuracy results of ideal (i.e. software ReLU) and Mott ReLU cases

for both MLP and LeNet-5. We investigated both online learning (i.e. training is done on the

hardware) and offline classification cases (i.e. only inference is done on the hardware). When the

ReLU activation functions of MLP (Fig. 6.4c) or LeNet-5 (Fig. 6.4d) are quantized, the accuracy

degradation is not significant unless the precision is ~6 bit or higher. Since the precision of the

Mott ReLU device is high enough (~6 bit), the accuracy degradation due to the Mott ReLU is

negligible as compared to the accuracy degradation due to the synaptic devices (~10 % for MLP

and ~3 % for LeNet-5). This is mainly because of the limited precision (~5-bit) of the CBRAM

devices24. The neural networks with variations (cycle-to-cycle in Fig. 6.4e and f and device-to-

device Fig. 6.S4 a and b) on Mott ReLU are also investigated and verified that there is no

significant accuracy degradation due to the variations (Supplementary Note 4). Since the Mott

ReLU achieves accuracies close to the ideal software, the accuracy will not be a limiting factor

158

for implementing activation functions using the Mott ReLU device.

4. System-level performance benchmarking

To evaluate the performance of the hardware system for neural networks with the Mott

ReLU device, we performed system-level performance benchmarking for offline classification

using NeuroSim platform25. NeuroSim is a C++-based circuit-level macro-model for neuro-

inspired architectures. We modified NeuroSim to integrate Mott ReLU peripherals with CBRAM

synaptic cores. We compared the synaptic cores with the Mott ReLU peripheral against the ones

with peripheral circuits implemented by analogue14 and digital15 CMOS ReLU circuits. For the

Mott ReLU peripheral, the experimental results on energy and latency (Fig. 6.3d and e) are

integrated into the NeuroSim Platform25. The peripheral circuits of analogue CMOS ReLU

circuits for NeuroSim platform25 is developed based on the SPICE simulations. The dynamic

energy, leakage power, and latency of Mott ReLU and CMOS ReLU activation circuit shown in

Table 6.1 are integrated into the circuit modules.

The architecture of the hardware systems with conventional digital peripheral circuits, the

Mott ReLU device, and analogue CMOS circuits are illustrated in Fig. 6.5a, b, and c,

respectively. In contrast to the conventional analogue one-transistor one-resistor (1T1R)

architecture with digital neuron peripheral (Fig. 6.5a)25, the Mott ReLU device allows a simpler

synaptic core design (Fig. 6.5b) by avoiding MUX sharing (Supplementary Note 5) and

replacing complex circuits and ADCs. Before system-level benchmarking, we first investigated

whether the Mott ReLU device can drive the inputs to the next synaptic array without additional

circuits by performing circuit simulation with SPICE (Supplementary Note 6). This result (Fig.

6.S5a and b) clearly demonstrates that the Mott ReLU device can generate stable output to drive

159

the next synaptic layer without additional circuits. The system-level performance benchmarking

results are summarized in Table 6.S1. The architecture with Mott ReLU (65 ns input pulse)

provides substantial gains over the architectures with analogue CMOS and digital ADC

implementation (Supplementary Note 7). Lastly, we compared the performance of synaptic

cores with Mott ReLU and analogue CMOS circuits considering technology scaling (130 nm to

14 nm) as discussed in Methods. The results in Fig. 6.5d demonstrate that the experimentally

measured Mott ReLU provides ~10 energy gain regardless of the CMOS technology node.

Moreover, the system-level gain in energy can be further improved up to ~100 using the

optimized Mott ReLU in comparison to analogue CMOS ReLU. More importantly, the Mott

ReLU achieves orders of magnitude smaller peripheral circuit area in comparison to both digital

ADC and analogue CMOS implementations of the activation function. The system-level

performance results clearly show that the Mott ReLU device offers a promising approach to

replace power-hungry and large-area activation function circuits in the neuron periphery.

5. Integration of Mott ReLU devices with crossbar arrays

To demonstrate the integration of Mott ReLU devices with synaptic arrays in hardware,

we fabricated CBRAM crossbar arrays (Fig. 6.6a) and a Mott ReLU device array (Fig. 6.6b) as

explained in Methods. We designed a custom printed circuit board (PCB) (Fig. 6.6c) to interface

and integrate the CBRAM and the Mott ReLU chips in hardware. Each column of the crossbar

array is directly connected to Mott ReLU devices (Fig. 6.6d) to investigate how the weighted

sum current generated by the array controls the output voltage of the Mott ReLU devices. First,

we varied the input voltage to the crossbar array (i.e. -250 to 250 mV) while programming the

weights of ~2/3 of synaptic devices on a column to the low resistance state and the rest to the

160

high resistance state. Figure 6.6e shows that output voltage exhibits ReLU characteristics as the

input voltage to the CBRAM devices are increased from –250 mV to 250 mV. Then, we varied

the synaptic weights in the column while the input voltage was fixed to 130 mV. As the ratio of

devices programmed to the low resistance state increases, the output voltage exhibits ReLU

characteristics (Fig. 6.6f). These experimental results demonstrate that the weighted sum current

that depends on the input voltage and the weights (resistance) of the synaptic devices can

successfully drive the Mott ReLU neurons to implement ReLU activation function.

For large-scale hardware demonstration, we implemented a convolutional edge detection

operation26 with filters (Fig. 6.S6a and b) followed by a ReLU operation on a real-world image

with the CBRAM crossbar and the Mott ReLU array using the custom PCB as discussed in

Methods. The weighted sum current resulting from the convolution operation from four

representative 10 10 input patches (Fig. 6.6g) with both the lateral and vertical edge detection

filters (Fig. 6.S6a and b) mapped using differential pair scheme (Supplementary Fig. 6c) are

shown in Fig. 6.6h and i, respectively. The weighted sum current generated during the

convolution operation is fed to the Mott ReLU devices to perform ReLU operation on the

weighted sum. The output voltages of the Mott ReLU devices as a result of weighted sum with

the lateral and vertical filters for the whole input image are shown in Fig. 6.6j and k,

respectively. These results show that lateral and vertical edges of the image are detected by

implementing corresponding filters using the Mott ReLU devices integrated with the CBRAM

crossbar array in hardware. The successful edge detection using the Mott ReLU devices

integrated with the CBRAM crossbar array proves the feasibility of using Mott ReLU neurons as

activation units for in-memory computing systems.

161

6. Conclusions

We introduced a nanoscale, Mott-transition-based device for the ReLU activation

function. The device exhibits volatile, linear and gradual resistive switching of a VO2 film

controlled by the metal nanowire heater on top of it. The Mott ReLU device shows minimal

cycle-to-cycle variation and long endurance, which are important for hardware implementation

of neural networks. We have shown that the Mott ReLU devices generate an output voltage,

which follows the ReLU activation function, with the given input current. This allows the Mott

ReLU device to drive the synaptic devices on the next layer directly. We performed system-level

simulations for a hardware implementation of neural networks with the Mott ReLU devices.

Moreover, we experimentally demonstrated that the Mott ReLU devices can be integrated with

CBRAM crossbar arrays to perform filtering operations of convolutional neural networks. Our

findings suggest that the device with Mott-transition-based activation can achieve substantial

gains in energy, latency and area compared to the digital or analogue circuit implementations of

the activation function, while maintaining high accuracy. The small size and high energy

efficiency of the Mott device provide a solution towards large-scale, highly parallel and energy-

efficient in-memory computing systems for DNNs.

7. Methods

A. Mott device fabrication.

To fabricate the Mott transition based activation devices, 70nm VO2 film is grown by

reactive sputtering on top of an Al2O3 substrate in 4 mTorr Ar/O2 (8% of O2) ambient at 520C.

Then Ti (20 nm)/Au (30 nm) electrodes are patterned using e-beam lithography and e-beam

evaporation to define the 50 nm VO2 gap. 70 nm Al2O3 is deposited as the insulating layer. Ti

162

(20 nm)/Au (30 nm) nanowire heater is patterned on top of the Al2O3 aligning with the VO2 gap

using e-beam lithography and e-beam evaporation. To isolate each device, the VO2 film outside

the active area is etched with reactive ion etching. The resistance of the heater is ~30 while the

resistance of the VO2 gap without bias to the heater is ~10 k.

B. Device measurement set-up.

To measure thermal gradual resistance switching of VO2 while preventing electrical

switching, we applied 1 A current source using Keithley 6221 to the VO2 gap. The current is

small enough not to initiate electrical switching. Then, we measured the voltage across the VO2

gap using Keithley 2182A. The resistive switching of the VO2 gap is solely controlled by the

heat generated by the heater on the top of the VO2 gap. The heat generation is controlled by a

voltage source connected to the heater. We measured the current flow through the heater to

measure the heat generation using an oscilloscope. For variability and endurance measurement,

Keithley 6221 is used to apply a current pulse train to the heater. Then the resistance of the VO2

gap is extracted by measuring the voltage across the VO2 gap using Keithley 2182A while

applying constant 1 A current through the gap using another Keithley 6221. The ambient

temperature is controlled by Lake Shore TTPX Probe station for all the measurements.

C. CMOS ReLU implementation.

The analogue CMOS circuit consists of three operational amplifiers, which amplify the

input current and convert the input current to the output voltage, and an analogue switch that

implements the rectifying function. The digital ADC circuit is implemented using ADC with

reconfigurable function mapping. In order to evaluate the energy and latency of these three

different ReLU implementations as an activation function, we assume that all implementations

163

get an identical weighted sum result as an input to the Mott ReLU device or digital/analogue

CMOS circuits. The area of each implementation is calculated from the layout of the device or

circuits.

D. Neural network configuration

The MLP used for network simulations is composed of 785 input neurons (i.e. 1 input

neuron for bias and the other 784 neurons for MNIST dataset inputs), 128 hidden neurons, and

10 output neurons. Each output neuron represents one of the digits (from ‘0’ to ‘9’). The hidden

neurons have the ReLU activation function while the output neurons have the soft-max

activation function. The LeNet-5 has 6 of 5 5 convolutional filters for 28 28 MNIST input

images. The outputs from the convolutional filters are fed to the ReLU activation function. Then,

the outputs of ReLU activation functions are down sampled using 2 2 max pooling. The second

convolutional layer has 16 of 8 8 convolutional filters with 2 2 max pooling. The outputs

from the last max-pooling layer are fed into the FC layers, which has 120 input neurons, 80

hidden neurons, and 10 output neurons. The input neurons and hidden neurons of the FC layers

have ReLU activation functions while the output neurons have soft-max activation functions.

In the network simulations, the ReLU activation functions on the neuron layers (i.e. the hidden

layer of the MLP and convolutional layers and fully connected (FC) layers of the LeNet-5) are

implemented with the Mott ReLU based on its experimental measurement results. A 1,900

load resistor is connected to the Mott ReLU, and 5 mA of offset current is applied to the Mott

ReLU through an additional row on the synaptic array to shift the transition point to 0 mA. The

weights are mapped onto the arrays of CBRAM devices by using the characteristics of CBRAM

devices. The CBRAM cells used for the simulations exhibit ~40 conductance levels (~5-bit) and

100 ON/OFF ratio. For the network simulation, the weights of the network ranging from −1 to 1

164

are mapped to the minimum (~1 S) and maximum (~100 S) conductance of CBRAM cells.

Similarly, the outputs of the ReLU activations (0 to 785) are also linearly mapped to the output

voltages of Mott ReLU devices (0 to 200 mV).

LeNet-5 requires larger fanout for the FC1 layer. To address this, we incorporated a time

multiplexing approach. By enabling a subset of columns of the synaptic array sequentially with

the switch matrix, the number of devices connected to each Mott ReLU can be controlled. Since

our architecture already has a switch matrix, this approach is directly implemented in

performance benchmarking simulations with NeuroSim. It is important to note that larger-scale

DNN models may require additional peripheral circuit blocks including buffers if they have

many layers with large fanout. These blocks could be integrated with the synaptic arrays in the

future and accounted for the performance benchmarking for different models.

E. Convolutional filtering with the Mott ReLU device integrated with CBRAM array.

To implement convolutional filtering using Mott ReLU and CBRAM array for image edge

detection, the PCB is controlled by a semiconductor parameter analyser (Agilent 4155C) and a

switch matrix (HP E5250A). Then, biasing and measurement are done by the semiconductor

parameter analyser (Agilent 4155C). The 4 4 lateral and vertical filters are programmed into

the columns of the crossbar array by unrolling the filters into 16 1 vectors on the CBRAM

array. For each filter, the positive and negative weights are represented using two columns of the

crossbar array to form a differential pair (i.e. G = G+ - G-). The input image (180 270) is

quantized (i.e. 16 levels) and converted into a voltage pulse train of 4 binary pulses (i.e. 250 mV

for ‘1’ and 0 mV for ‘0’). For the column representing negative weights, a negative voltage pulse

train is applied as input to form a differential pair with the column representing positive weights

(i.e. I = I+ - I-). For the convolution operation, a filter slides over the input image and the

165

weighted sum currents from the pair are combined and fed into a Mott ReLU device. For Mott

ReLU devices, 1.1 V is applied to the VO2 Gap, load resistors are set to 3.3 k, and 7 mA of

offset current is applied to the heater.

8. Supplementary Notes

A. Supplementary Note 1: Potential Practical Issues of Mott Transition

Two important practical issues regarding the Mott transition must be taken into account

for eventual hardware implementation. The existence of discrete domains that transit individually

gives rise to discontinuities in the thermal switching behavior (Fig. 6.2e and f). However, the

small jumps are not detrimental to neural network operation considering the ReLU function will

be quantized. Moreover, this could also be solved by using devices larger than the typical

domain size. The application of a very high electric field may lead to the formation of a metallic

filament with a consequent sudden resistance change. This leads to a practical voltage limit that

can be applied between electrodes, which is solvable by increasing the separation between the

electrodes to lower the electric field.

B. Supplementary Note 2: The Setup for ReLU Performance Benchmarking

For performance benchmarking of single ReLU device or circuit, we assume that a multi-

layer perceptron (MLP) network for MNIST dataset generates average weighted sum value

which is 20, while the weighted sum can range from -785 to 785 with weights ranging from -1 to

1. We used this average weighted sum value as an input to all the implementations. For the

analogue CMOS circuit, we implemented a synaptic array which has 785 columns and the

analogue CMOS circuit in SPICE. The number of columns is set to 785 to match the input size

of the MNIST dataset. All the synaptic devices are set to 10 k. Then, 20 out of 785 devices are

166

biased to 450 mV (others to 0 mV), which generates the average weighted sum value for the

MLP network. For the Mott ReLU device, the same amount of input current is applied as the

heater current of a Mott ReLU device. Then, the energy consumption of the Mott ReLU is

experimentally estimated (Dynamic power consumption of Mott ReLU for various input current

is shown in Fig. 6.3d). Lastly, the digital ADC circuit is estimated by Spectre circuit simulations

when the average weighted sum value is applied to the single digital neuron circuit15.

C. Supplementary Note 3: Compact Thermal Model of Mott ReLU Device

To develop a compact thermal27 Model of Mott ReLU device using the thermal switching

of VO2 film, we adopted a Mott transition model. Then, we developed a compact thermal model

for the thermal dynamics of the heater and the VO2 gap. The compact thermal model also

includes the thermal coupling between the heater and the VO2 gap. The equations of the thermal

compact model are as follows:

𝐶𝑡ℎ_𝐻

𝑑𝑇𝐻(𝑡)

𝑑𝑡
=

(𝑇(𝑡) − 𝑇𝐻(𝑡))

𝑅𝑜𝑥
+ 𝐼𝐼𝑁

2𝑅𝐻 −
(𝑇𝐻(𝑡) − 𝑇0)

𝑅𝑡ℎ_𝐻

𝐶𝑡ℎ𝑉𝑂2

𝑑𝑇(𝑡)

𝑑𝑡
=

(𝑇𝐻(𝑡) − 𝑇(𝑡))

𝑅𝑜𝑥
+ 𝑉𝑉𝑂2𝐼𝑉𝑂2 −

(𝑇(𝑡) − 𝑇0)

𝑅𝑡ℎ𝑉𝑂2

D. Supplementary Note 4: Network Simulation with Variations

We performed network simulations to evaluate the impact of variations of the Mott ReLU

device on the online learning accuracy of MLP (Fig. 6.4a) and LeNet-5 (Fig. 6.4b). Unless the

cycle-to-cycle (or intra-device) variation () on the output voltage does not exceed 50%, the

accuracy with the Mott ReLU is not degraded for both MLP (Fig. 6.4e) and LeNet-5 (Fig. 6.4f).

Since the cycle-to-cycle variation of the Mott ReLU device is ~4% or less (Fig.6.3b), the

accuracy degradation due to the cycle-to-cycle variation will be negligible. We also performed

simulations for device-to-device (or inter-device) variation. Similarly, the accuracy of MLP (Fig.

167

6.S4a) and LeNet-5 (Fig. 6.S4b) does not notably degrade up to 50% of the device-to-device

variation (). Our Mott ReLU devices show device-to-device variation less than 50% (i.e. 25.2%

for low resistance state and 40.7% for high resistance state), and hence the device-to-device

variation is not expected to impact classification accuracy.

E. Supplementary Note 5: MUX Sharing for CMOS ReLU Implementations

Analog CMOS circuit14 (Fig. 6.5c) could also replace the ADCs and complex digital

circuits. However, the CMOS circuit would occupy ~39 columns of the synaptic array due to its

large size. Therefore, each circuit would need to be shared by 39 columns using a multiplexer

(MUX) and MUX decoder, leading to longer latency as one memory access splits into 39 stages.

We also considered the digital ADC implementation15 of the activation function circuit for

system-level benchmarking. Similar to the analogue CMOS implementation, each circuit is

shared by 22 columns using a MUX and MUX decoder due to its large size. Moreover, the

digital ADC implementation would require shared external circuits consisting of lookup tables

and digital-to-analogue converters (DACs), occupying an additional area of 0.086 mm2.

F. Supplementary Note 6: SPICE Simulation for Mott ReLU Device with Synaptic Array

We performed circuit simulations in MLP configuration with 785 input neurons and 10

output neurons by incorporating our device model. A weighted sum current from 785 synaptic

devices on the input-to-hidden layer is applied to the Mott ReLU neuron which then drives

synaptic devices on the hidden-to-output layer (Fig. 6.S5a). During neural network operations,

weights can be programmed into various resistance values. Depending on the magnitude of

weighted sum current, the Mott ReLU neuron generates the output voltage which is fed to the

next layer (Fig. 6.S5b). Regardless of the resistance changes on the synaptic devices, the Mott

ReLU should still provide a stable output driving the next layer. Otherwise, additional circuits

168

(i.e. buffers or amplifiers) would be required to stabilize the output of the Mott ReLU device. To

test that, we changed the resistance values of the synaptic devices from 100k to 1M, while

monitoring the output voltage as a function of weighted sum current (Fig. 6.S5b). The output

voltage is varied only by ~6.7 mV or less (Fig. 6.S5b).

G. Supplementary Note 7: System-level Benchmarking

The architecture with Mott ReLU (65 ns input pulse) provides substantial gains over the

architectures with analogue CMOS in energy consumption (~7 for MLP and ~17 for LeNet-

5), latency (~16 for MLP and ~10 for LeNet-5), and peripheral area (~119 for MLP and

~216 for LeNet-5) for offline classification. While the energy consumption for the Mott ReLU

case approaches to the digital ADC implementation, the architecture with Mott ReLU achieves

significantly lower latency (~32 for MLP and ~20 for LeNet-5), and smaller peripheral area

(~885 for MLP and ~907 for LeNet-5) compared to the architecture with the digital ADC

implementation.

169

Figure 6.1: The Mott ReLU device for the hardware implementation of a neural network. a,b, An

illustration shows a neural network (a) and hardware implementation (b) of the neural network with

synaptic and activation (or neuron) devices. Σ represents a weighted sum while f represents the activation

function. In b, the inset on the left shows a schematic of a resistive memory cell. The inset on the right

shows a schematic of the Mott device with a nanowire heater. Mott activation devices allow direct

stacking of multiple eNVM arrays for DNNs. The heater is connected to a column of presynaptic arrays

and gets a weighted sum current. Then, one pad of the VO2 gap is connected to VDD and the other pad is

connected to the next synaptic array. The pad connected to the next synaptic array is also connected to a

load resistor. Weights are stored in eNVM devices, and weighted sum currents from each column are fed

into the Mott ReLU. Then, the output of the Mott ReLU is applied as the input to the next layer. c, A

scanning electron microscope image of the Mott device (scale bar, 1 μm). The inset shows the nanowire

heater on the top of the 50 nm VO2 gap. d, Resistance of the VO2 gap when the temperature is swept from

280 K to 365 K. e, An illustration shows how a Mott device will be used as a ReLU activation function.

The output of the ReLU activation function will be represented by VOUT of the Mott ReLU device while

the weighted sum input to ReLU will be represented by the input current (IIN) to the Mott ReLU device.

170

Figure 6.2: Switching mechanisms of VO2 gap. a–c, Schematics show a VO2 gap with no bias (a),

filamentary switching (b) and thermal-driven switching (c). d, As compared to thermal-driven domain-

wise switching, electrical filamentary switching shows an abrupt change in resistance. e, Resistance of the

VO2 device as a function of heater current showing ~77 levels. It shows gradual and linear resistive

switching when the input current is larger than 5 mA. f, Voltage ratio between the output (VOUT) and the

supply voltage (VDD) of the device as a function of heater current with a 1,900-Ω-load resistor as a

representative example. Symbols are experimental data and lines are SPICE simulation results. The V–I

characteristic is similar to the ReLU function shown in Fig. 6.1e.

171

Figure 6.3: Electrical characteristics of the Mott ReLU device. a, Resistance of the VO2 gap when a

current pulse is applied to the heater. The resistance stays at a low resistance state only when the bias is

applied. b, Cycle-to-cycle (or intra-device) variation of each resistance state of the Mott ReLU device. For

each data point, the heater cools down to set the resistance of the VO2 gap back to the no-bias case before

applying another bias to the heater. The circle symbol represents the mean value while the error bars

represent a 95% critical interval (CI). c, Endurance of the Mott ReLU device. The state of the device is

alternately switched between the highest (red symbols) and lowest resistance states (blue symbols) by

flowing 0 mA and 18 mA current through the heater, respectively. d, Power consumption of each

component of the Mott device (that is, the heater and the VO2 gap) with various heater currents. The

power consumption of the Mott device is dominated by the heater. e, Heater current applied to the device

and the resistance of the VO2 gap as a function of time. 61.4 ns after the input to the Mott device is

stabilized, the output of the Mott device becomes stable, as indicated by the green dashed lines.

172

Figure 6.4: Network-level implementations. a,b, A schematic of MLP (a) and LeNet-5 (b) networks used

for simulations with the Mott ReLU. MLP consists of an input layer (X), a hidden layer (Z) and an output

layer (Y) with bias (B) for the input and hidden layers. MLP has one ReLU layer and LeNet-5 has four

ReLU layers after convolutional (Conv) and fully connected (FC) layers. c,d, Accuracy of MLP (c) and

LeNet-5 (d) with the ReLU activation function for offline classification (blue circle symbol) and online

learning (red square symbol). The ReLU activation function is quantized to have 1- to 8-bit precision.

MLP needs 5-bit precision while LeNet-5 requires 6-bit precision to prevent the accuracy drop. e,f, The

network simulation results for MLP (e) and LeNet-5 (f) for the whole MNIST set for each epoch (60,000

images). Experimental measurement results from Fig. 6.2e and f are used for these simulations. The Mott

ReLU achieves an accuracy comparable to the ideal ReLU implemented in software (blue square symbol)

unless the cycle-to-cycle (or intra-device) variation of the Mott ReLU device (σ) is higher than 50%. Red

triangle, yellow diamond, green triangle and purple triangle symbols represent results for the no variation,

σ= 10%, σ= 30% and σ= 50% cases, respectively.

173

Figure 6.5: System-level benchmarking results. a–c, An illustration of a synaptic core and neuron

peripheral circuits implemented with conventional digital circuits (a), Mott ReLU circuits (b) and

analogue CMOS ReLU circuits (c). The Mott ReLU device can replace the ADCs, adder, shift register

and neuron peripheral circuits. The CBRAM synaptic core has a wordline (WL) decoder (DEC), bitline

(BL) switch matrix and source line (SL) switch matrix. In contrast to the CMOS analogue activation

circuit (ACT), the Mott ReLU device can be integrated for each column due to its small size. d, Peripheral

energy versus peripheral area in different technology nodes for CBRAM synaptic core with CMOS ReLU

peripheral for LeNet-5 implementation. A CBRAM synaptic core with digital ADC peripherals (green

square symbol) and Mott ReLU is also presented as a reference. The parameters for different technology

nodes of CMOS circuits are adopted from the predictive technology model28,29. The Mott ReLU continues

to provide substantial gains in energy and area even though the CMOS is scaled down to a 14 nm node.

The star symbol shows performance results using experimentally measured Mott ReLU characteristics,

while the black square symbol shows projected performance results using an optimized Mott ReLU

device (that is, the thermal resistance of the heater is increased by ×10 and the parasitic capacitance is

below 10–11 F). The system-level energy consumption using the optimized Mott ReLU can be further

reduced by ~50 times.

174

175

Figure 6.6: Hardware demonstration of the integration of Mott ReLU devices and a synaptic array. a, An

optical image (scale bar, 150 μm) of a CBRAM crossbar array (32 × 32) and the scanning electron

microscope image of a 16 × 16 CBRAM array (scale bar, 200 μm). We use a 16 × 16 array for the

following hardware implementation. b, A Mott ReLU device array that contains 44 devices (scale bar,

3 mm). The insets in a and b (scale bars, 20 μm and 30 μm, respectively) show single devices, the

CBRAM and Mott ReLU device, respectively. c, Image of the custom PCB board with the Mott ReLU

and the CBRAM arrays wire bonded onto it to demonstrate neural network operation. d, An illustration

explains how a Mott ReLU device is connected to a column of the CBRAM array with a load resistor

(Load R) in hardware. e, Output voltage of the Mott ReLU device as the input voltage (VIN) to the

CBRAM array is swept from –250 mV to 250 mV when ~2/3 of devices on a column of the CBRAM

array are set to a low resistance state while the others are set to a high resistance state. For the Mott ReLU

device, 1.1 V is applied as VDD to the VO2 gap with a 3.3-kΩ-load resistor connected in series, and 7 mA

of offset current is applied to the heater. f, The measured output voltage of a Mott ReLU device when the

percentage of CBRAM devices at the low resistance state is varied from 0% to 100%. g, A 180 × 270

image used for edge detection. Colour bar represents the pixel intensity of the image. Four representative

10 × 10 patches and a schematic of the convolution operation are shown below. The schematic illustrates

that the convolution operation is done by sliding the 4 × 4 filters on the image patches 49 times. h,i, For a

lateral filter (h) and vertical filter (i), the experimentally measured weighted sum currents of the CBRAM

array during the convolution operations for these four patches are shown. The weighted sum current

produced by the CBRAM array during the convolution operation is fed to the Mott ReLU array to

perform ReLU operation. j,k, Panels j and k show the output voltage of the Mott ReLU devices for the

whole image during the convolution and ReLU operations for the lateral and vertical filters, respectively.

Colour bar represents the output voltage of the Mott ReLU.

176

177

Table 6.1: The performance of the activation device or circuit. Comparison of Mott ReLU, analogue CMOS

ReLU14, and digital ADC with reconfigurable function mapping15 at single ReLU level. The energy,

latency, and leakage power are evaluated from the experimental measurement results shown in Fig. 6.S2a

and b. For the energy estimation, we used a 65 ns pulse for the Mott ReLU case.

 Mott Analogue CMOS14 Digital ADC15

Energy

(Exp./Optimal, pJ)
199.5/0.638a 3410 19.4

Latency

(Exp./Optimal, ns)
61.4/3.8a 91.91 207

Area (m2) 0.64 951.06 289b

Leakage (W) 27.0 11060 -
a Shows projected optimal energy and latency when the thermal resistance of the heater is increased by

×10 and the parasitic capacitance of a Mott ReLU is <10-11F.
b This area is only the area per neuron circuit. The digital ADC implementation needs a shared circuit,

which occupies 0.086 mm2 of area.

178

Table 6.2: Network simulation result. The accuracy results of MLP and LeNet-5 for ideal software (64 bit),

64-bit weights with Mott ReLU (~6 bit) and CBRAM (~5-bit weights) with Mott ReLU (~6 bit). The results

show that the Mott ReLU can achieve accuracy comparable to the ideal software ReLU.

 Online Learning Offline Classification

 MLP LeNET-5 MLP LeNET-5

Software (64 bit) 97.53 % 99.11 % 97.53 % 99.11 %

Mott ReLU (~6

bit)
94.0 % 97.05 % 94.42 % 98.38 %

CBRAM (~5 bit)

with Mott ReLU

(~6 bit)

84.2 % 94.21 % 89.97 % 98.35 %

179

Figure 6.S1: a A schematic illustrates the compact thermal model used for the Mott ReLU device. The

model consists of (1) the thermal model for the heater which addresses Joule-heating of the heater, (2)

thermal coupling between the heater and VO2, and (3) thermal model of VO2. b Parameters used for the

SPICE model (Supplementary Note 2) in our work.

180

Figure 6.S2: a Heater current required to set the resistance of the VO2 gap to 1 k with various thermal

resistance of the nanowire heater. As the thermal resistance of the heater is increased by 10, the required

heater current to achieve the same resistance is reduced by 3.4. b Latency of the Mott ReLU device with

various parasitic capacitance. ~3.8 ns of latency can be achieved when the parasitic capacitance is

minimized <10-11 F.

181

Figure 6.S3: a A picture, b schematic (1T1R architecture), c TEM image, and d gradual switching

behaviour of a CBRAM cell. CBRAM cells can provide gradual weight tuning for both programming and

erasing over many cycles.

182

Figure 6.S4: The accuracy of a MLP and b LeNet-5 for the whole MNIST set for each epoch (60k

images) with device-to-device (or inter-device) variations. The resistance is shifted by R (= N (0,)

Rmin) which is determined for each device at the beginning of the simulation and fixed during the rest of

the training. When the resistance of the device is variated for MLP, the accuracy does not degrade up to

50% of variations. Similarly, LeNet-5 with variations on the device resistance shows no accuracy

degradation up to 50% of variations.

183

Figure 6.S5: a A schematic of the circuit used for SPICE simulations of a Mott ReLU device in the MLP

shown in Fig. 6.4a. A Mott ReLU device gets a weighted sum current from 785 synaptic devices on the

input-to-hidden layer and drives 10 synaptic devices on the hidden-to-output layer. b Output voltage of

Mott ReLU connected to 10 synaptic devices when the input current is ranged from –10 mA to 10 mA

(with 5 mA of offset applied by an additional row with a 3.3 V input and 440 resistor). The input

current is generated by a column with 785 synaptic devices. When the resistance values of the synaptic

devices are changed from 100k to 1M, the output voltage change is ~6.7 mV or less.

184

Figure 6.S6: a Lateral and b Vertical edge detection filters used for convolutional filtering operation are

shown in Fig. 6.6g and h in the main text. c The filters are mapped to the CBRAM crossbar array using a

differential pair scheme30-32. The devices at low resistance state are programmed to ~300 while the

devices at high resistance state are programmed to ~1 G.

185

Table 6.6.S1: System-level Benchmarking Results. The system-level benchmarking results computed by

NeuroSim with the Mott ReLU devices, analogue CMOS ReLU circuits, and digital CMOS peripherals for

offline classification of MLP and LeNet-5. The synaptic arrays are implemented with 130 nm technology

node. The activation functions are implemented based on the energy, area, and leakage power of activation

function circuits in Table 6.1. For a read operation, we used a 65 ns pulse for Mot ReLU. Mott ReLU

achieves significant performance gains over analogue CMOS ReLU and digital ADC peripherals.

Offline Classification

Network MLP LeNet-5

Activation Mott
CMOS14

(Analogue)

CMOS15

(Digital)
Mott

CMOS14

(Analogue)

CMOS15

(Digital)

Energy (J) 249.7 1856 165.07 8347.1 139280 1784.5

Latency (ms) 1.3 20.17 41.55 420 4028 8301

Peripheral Area

(m2)
107.33 12757 94956 113.57 24491 103025

Peripheral Leakage

(mW)
3.75 55.33 - 7.37 143.83 -

186

9. References

1 Wong, H. S. P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S., Lee, B., Chen, F. T.

& Tsai, M.-J. Metal–Oxide RRAM. Proceedings of the IEEE 100, 1951-1970,

doi:10.1109/jproc.2012.2190369 (2012).

2 Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive

systems. Nature Electronics 1, 22-29, doi:10.1038/s41928-017-0006-8 (2018).

3 Kang, D.-H., Kim, J.-H., Oh, S., Park, H.-Y., Dugasani, S. R., Kang, B.-S., Choi, C.,

Choi, R., Lee, S., Park, S. H., Heo, K. & Park, J.-H. A Neuromorphic Device

Implemented on a Salmon-DNA Electrolyte and its Application to Artificial Neural

Networks. Advanced Science 6, 1901265, doi:10.1002/advs.201901265 (2019).

4 Ge, R., Wu, X., Kim, M., Shi, J., Sonde, S., Tao, L., Zhang, Y., Lee, J. C. & Akinwande,

D. Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal

Dichalcogenides. Nano Lett 18, 434-441, doi:10.1021/acs.nanolett.7b04342 (2018).

5 van de Burgt, Y., Lubberman, E., Fuller, E. J., Keene, S. T., Faria, G. C., Agarwal, S.,

Marinella, M. J., Alec Talin, A. & Salleo, A. A non-volatile organic electrochemical

device as a low-voltage artificial synapse for neuromorphic computing. Nature Materials

16, 414, doi:10.1038/nmat4856 (2017).

6 Zhao, X., Liu, S., Niu, J., Liao, L., Liu, Q., Xiao, X., Lv, H., Long, S., Banerjee, W., Li,

W., Si, S. & Liu, M. Confining Cation Injection to Enhance CBRAM Performance by

Nanopore Graphene Layer. Small 13, 1603948, doi:10.1002/smll.201603948 (2017).

7 Chakrabarti, B., Lastras-Montano, M. A., Adam, G., Prezioso, M., Hoskins, B., Payvand,

M., Madhavan, A., Ghofrani, A., Theogarajan, L., Cheng, K. T. & Strukov, D. B. A

multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid

circuit. Sci Rep 7, 42429, doi:10.1038/srep42429 (2017).

8 Kim, S., Choi, B., Yoon, J., Lee, Y., Kim, H. D., Kang, M. H. & Choi, S. J. Binarized

Neural Network with Silicon Nanosheet Synaptic Transistors for Supervised Pattern

Classification. Sci Rep 9, 11705, doi:10.1038/s41598-019-48048-w (2019).

9 Oh, S., Huang, Z., Shi, Y. & Kuzum, D. The Impact of Resistance Drift of Phase Change

Memory (PCM) Synaptic Devices on Artificial Neural Network Performance. IEEE

Electron Device Letters 40, 1325-1328, doi:10.1109/LED.2019.2925832 (2019).

10 He, K., Zhang, X., Ren, S. & Sun, J. in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) 770-778 (2016).

11 Kataeva, I., Ohtsuka, S., Nili, H., Kim, H., Isobe, Y., Yako, K. & Strukov, D. in 2019

IEEE International Symposium on Circuits and Systems (ISCAS). 1-5.

12 Gao, B., Bi, Y., Chen, H.-Y., Liu, R., Huang, P., Chen, B., Liu, L., Liu, X., Yu, S.,

Wong, H. S. P. & Kang, J. Ultra-Low-Energy Three-Dimensional Oxide-Based

187

Electronic Synapses for Implementation of Robust High-Accuracy Neuromorphic

Computation Systems. ACS Nano 8, 6998-7004, doi:10.1021/nn501824r (2014).

13 Yang, T.-J. & Sze, V. in 2019 IEEE International Electron Devices Meeting (IEDM).

22.21.21-22.21.24.

14 Krestinskaya, O., Salama, K. N. & James, A. P. Learning in Memristive Neural Network

Architectures Using Analog Backpropagation Circuits. IEEE Transactions on Circuits

and Systems I: Regular Papers 66, 719-732, doi:10.1109/tcsi.2018.2866510 (2019).

15 Giordano, M., Cristiano, G., Ishibashi, K., Ambrogio, S., Tsai, H., Burr, G. W. &

Narayanan, P. Analog-to-Digital Conversion With Reconfigurable Function Mapping for

Neural Networks Activation Function Acceleration. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems 9, 367-376, doi:10.1109/JETCAS.2019.2911537

(2019).

16 Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., di Nolfo, C., Sidler, S.,

Giordano, M., Bodini, M., Farinha, N. C. P., Killeen, B., Cheng, C., Jaoudi, Y. & Burr,

G. W. Equivalent-accuracy accelerated neural-network training using analogue memory.

Nature 558, 60-67, doi:10.1038/s41586-018-0180-5 (2018).

17 Stefanovich, G., Pergament, A. & Stefanovich, D. Electrical switching and Mott

transition in VO2. Journal of Physics: Condensed Matter 12, 8837 (2000).

18 Qazilbash, M. M., Brehm, M., Chae, B. G., Ho, P. C., Andreev, G. O., Kim, B. J., Yun,

S. J., Balatsky, A. V., Maple, M. B., Keilmann, F., Kim, H. T. & Basov, D. N. Mott

transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318,

1750-1753, doi:10.1126/science.1150124 (2007).

19 Del Valle, J., Salev, P., Tesler, F., Vargas, N. M., Kalcheim, Y., Wang, P., Trastoy, J.,

Lee, M. H., Kassabian, G., Ramirez, J. G., Rozenberg, M. J. & Schuller, I. K.

Subthreshold firing in Mott nanodevices. Nature 569, 388-392, doi:10.1038/s41586-019-

1159-6 (2019).

20 Madan, H., Jerry, M., Pogrebnyakov, A., Mayer, T. & Datta, S. Quantitative Mapping of

Phase Coexistence in Mott-Peierls Insulator during Electronic and Thermally Driven

Phase Transition. ACS Nano 9, 2009-2017, doi:10.1021/nn507048d (2015).

21 LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to

document recognition. Proceedings of the IEEE 86, 2278-2324 (1998).

22 Radu, I. P., Govoreanu, B., Mertens, S., Shi, X., Cantoro, M., Schaekers, M., Jurczak, M.,

De Gendt, S., Stesmans, A., Kittl, J. A., Heyns, M. & Martens, K. Switching mechanism

in two-terminal vanadium dioxide devices. Nanotechnology 26, 165202,

doi:10.1088/0957-4484/26/16/165202 (2015).

23 Del Valle, J., Salev, P., Kalcheim, Y. & Schuller, I. K. A caloritronics-based Mott

neuristor. Sci Rep 10, 4292, doi:10.1038/s41598-020-61176-y (2020).

188

24 Shi, Y., Nguyen, L., Oh, S., Liu, X., Koushan, F., Jameson, J. R. & Kuzum, D.

Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays.

Nature Communications 9, 5312, doi:10.1038/s41467-018-07682-0 (2018).

25 Chen, P.-Y., Peng, X. & Yu, S. NeuroSim: A Circuit-Level Macro Model for

Benchmarking Neuro-Inspired Architectures in Online Learning. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 37, 3067-3080,

doi:10.1109/tcad.2018.2789723 (2018).

26 Shrivakshan, G. & Chandrasekar, C. A comparison of various edge detection techniques

used in image processing. International Journal of Computer Science Issues (IJCSI) 9,

269 (2012).

27 Amer, S., Hasan, M. S., Adnan, M. M. & Rose, G. S. SPICE Modeling of Insulator Metal

Transition: Model of the Critical Temperature. IEEE Journal of the Electron Devices

Society 7, 18-25, doi:10.1109/JEDS.2018.2875627 (2019).

28 Zhao, W. & Cao, Y. Predictive technology model for nano-CMOS design exploration.

ACM Journal on Emerging Technologies in Computing Systems (JETC) 3, 1 (2007).

29 Zhao, W. & Cao, Y. New generation of predictive technology model for sub-45 nm early

design exploration. IEEE Transactions on Electron Devices 53, 2816-2823 (2006).

30 Bayat, F. M., Prezioso, M., Chakrabarti, B., Nili, H., Kataeva, I. & Strukov, D.

Implementation of multilayer perceptron network with highly uniform passive

memristive crossbar circuits. Nat Commun 9, 2331, doi:10.1038/s41467-018-04482-4

(2018).

31 Li, X., Tang, J., Zhang, Q., Gao, B., Yang, J. J., Song, S., Wu, W., Zhang, W., Yao, P.,

Deng, N., Deng, L., Xie, Y., Qian, H. & Wu, H. Power-efficient neural network with

artificial dendrites. Nature Nanotechnology 15, 776-782, doi:10.1038/s41565-020-0722-5

(2020).

32 Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., Yang, J. J. & Qian, H. Fully

hardware-implemented memristor convolutional neural network. Nature 577, 641-646,

doi:10.1038/s41586-020-1942-4 (2020).

189

10. Acknowledgements

This work was supported by Office of Naval Research (N000142012405 and

N00014162531), Samsung Electronics, the National Science Foundation (ECCS-1752241,

ECCS-2024776 and ECCS-1734940), the National Institutes of Health (R21 EY029466, R21

EB026180 and DP2 EB030992) and Qualcomm Fellowship. The experimental aspects of this

work were supported as part of the Quantum Materials for Energy Efficient Neuromorphic

Computing (Q-MEEN-C) Energy Frontier Research Center (EFRC), funded by the US

Department of Energy, Office of Science, Basic Energy Sciences under award #DE-SC0019273.

The fabrication of the devices was performed at the San Diego Nanotechnology Infrastructure

(SDNI) of the University of California San Diego, supported by the National Science Foundation

(ECCS-1542148).

Chapter 6, in full, is a reprint of the material as it appears in Nature Nanotechnology,

2021, Oh, Sangheon; Shi, Yuhan; Valle, Javier Del; Salev, Pavel; Lu, Yichen; Huang, Zhisheng;

Kalcheim; Yoav; Schuller; Ivan K; Kuzum, Duygu, Energy-efficient Mott activation neuron for

full-hardware implementation of neural networks, 2021. The dissertation author was the primary

author of this paper.

190

CONCLUSION

In conclusion, this dissertation presents energy-efficient hardware implementations of

neuromorphic computing using PCM, subquantum CBRAM, Ag-based CBRAM, and CuOx-

based RRAM. Our findings demonstrate that these devices can be used to improve the

performance and energy efficiency of deep learning applications. This dissertation also presents

the Mott activation neuron integrated with eNVM synaptic arrays. Activation function, which

usually implemented with large circuitry blocks or a general processor unit, is implemented with

much smaller size and higher energy efficiency than other conventional approaches. Our

approach opens new avenues in implementing deeper and more complex network architecture

with higher area and energy efficiency using eNVM based synaptic arrays and Mott-ReLU

activation devices.

There are several directions in which this work can be extended in the future. Some

potential areas of further exploration include: (1) Investigating the potential of using other types

of eNVM devices, especially RRAMs based on bulk1 or interfacial switching2 rather than

filamentary switching, in the hardware implementation of neural networks. Deterministic

switching from bulk switching mechanism instead of stochastic switching from filamentary

switching will eliminate the need of repetitive write-and-verify loops1, which is a significant

overhead on RRAM programming. (2) Developing new algorithms and techniques for training

neural networks on non-volatile memory hardware, with the aim of improving their energy

efficiency and performance. There is a recent work on this direction that uses activity-difference-

based training algorithm instead of conventional backpropagation training algorithm3. With a

training algorithm optimized for eNVM characteristics, the performance and energy efficiency

191

can be improved by several orders of magnitude3. Overall, the future work in this area has the

potential to significantly advance the field of neural network hardware implementation, and to

enable the development of more efficient and effective artificial intelligence systems.

References

1 Li, Y., Fuller, E. J., Sugar, J. D., Yoo, S., Ashby, D. S., Bennett, C. H., Horton, R. D.,

Bartsch, M. S., Marinella, M. J., Lu, W. D. & Talin, A. A. Filament-Free Bulk Resistive

Memory Enables Deterministic Analogue Switching. Adv Mater 32, e2003984,

doi:10.1002/adma.202003984 (2020).

2 Li, X., Wu, H., Bin, G., Wu, W., Wu, D., Deng, N., Cai, J. & Qian, H. Electrode-induced

digital-to-analog resistive switching in TaOx-based RRAM devices. Nanotechnology 27,

305201, doi:10.1088/0957-4484/27/30/305201 (2016).

3 Yi, S.-i., Kendall, J. D., Williams, R. S. & Kumar, S. Activity-difference training of deep

neural networks using memristor crossbars. Nature Electronics, doi:10.1038/s41928-022-

00869-w (2022).

