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Abstract

Exposure to arsenic in contaminated drinking water is an emerging public health problem that 

impacts more than 200 million people worldwide. Accumulating lines of evidence from 

epidemiological studies revealed that chronic exposure to arsenic can result in various human 

diseases including cancer, type 2 diabetes, and neurodegenerative disorders. Arsenic is also 

classified as a Group I human carcinogen. In this review, we survey extensively different modes of 

action for arsenic-induced carcinogenesis, with focus being placed on arsenic-mediated 

impairment of DNA repair pathways. Inorganic arsenic can be bioactivated by methylation, and 

the ensuing products are highly genotoxic. Bioactivation of arsenicals also elicits the production of 

reactive oxygen and nitrogen species (ROS and RNS), which can directly damage DNA and 

modify cysteine residues in proteins. Results from recent studies suggest zinc finger proteins as 

crucial molecular targets for direct binding to As3+ or for modifications by arsenic-induced ROS/

RNS, which may constitute a common mechanism underlying arsenic-induced perturbations of 

DNA repair.
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1. INTRODUCTION

Being the 20th most abundant element in the Earth’s crust, arsenic (As) is widely distributed 

in the environment.1 Arsenic pollution incidents have been documented around the world, 

including the United States, influencing approximately 200 million people in over 70 

countries primarily through contaminated drinking water.2 For instance, the levels of arsenic 

in groundwater in most regions in Bangladesh exceed the level set by the U.S. EPA (i.e., 10 

ppb).3,4 Arsenic has been one of the most widely studied metals/metalloids in the last 20 

years, and it has been placed on the top of the hazardous substance priority list by the U.S. 

Agency for Toxic Substances and Disease Registry (ATSDR) for over 15 years.

Aquatic arsenic is the most significant source of arsenic contamination in groundwater due 

to its solubility.5 Inorganic arsenite (As3+) and arsenate (As5+) are the predominant forms of 

arsenic in water,6 and they also confer higher toxicity and display higher mobility in the 

environment when compared to organic forms of arsenic.7 Naturally occurring inorganic 

arsenic (iAs) is present mainly in its sulfide form within complex minerals containing silver, 

lead, copper, nickel, antimony, cobalt, and iron.1 Arsenic can be mobilized by a variety of 

natural and anthropogenic activities, where natural occurrences, such as volcano eruptions 

and weathering of rocks and soils, are only secondary mobilizers in comparison to 

anthropogenic activities.1 Mining, smelting of nonferrous metals, burning of fossil fuels, and 

agricultural irrigation using contaminated groundwater are the primary routes through which 

arsenic species are released into the environment, though historically the application of 

arsenic-containing pesticides also released a significant amount of arsenic to agricultural 

soil.1

Arsenic is classified as a Group I human carcinogen by the International Agency for 

Research on Cancer.1,8 Over the last few decades, an increasing body of evidence from 

numerous epidemiological and animal studies has documented a strong association between 

arsenic exposure and tumor progression in skin, lung, bladder, kidney, and liver.1,4,9–16

Carcinogenesis is a multistep process encompassing cancer initiation, promotion, and 

malignant progression.17,18 Cancer can arise after accumulation of mutations in cellular 

DNA, which could emanate from impaired capacity in DNA repair. Metabolic and other 

endogenous cellular processes constantly generate ROS and reactive metabolites, which can 

result in DNA damage.19 The ensuing DNA adducts need to be efficiently removed by the 

DNA repair machinery; otherwise, they may elicit nucleotide misincorporation during DNA 

replication, thereby inducing mutations in DNA.20 A mutated proto-oncogene could be 

activated, whereas a mutated tumor suppressor gene may not function properly, both 

scenarios favoring carcinogenesis.

There are a number of proposed mechanisms for arsenic-elicited carcinogenesis, including, 

but not limited to, elevated oxidative stress, diminished DNA repair, dysregulated cell 

proliferation and apoptosis, and aberrant DNA methylation and histone post-translational 

modifications.21 In the following sections, we review briefly the biotransformation of 

arsenic species and discuss these different modes of action of arsenic carcinogenesis, with 
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the focus being placed on the molecular mechanisms through which arsenic exposure leads 

to compromised DNA repair.

2. BIOTRANSFORMATION OF INORGANIC ARSENIC

Toxicity of inorganic arsenic (As3+ and As5+) in humans depends largely on their 

metabolism. Approximately 90% of ingested inorganic arsenic (As3+ or As5+) is absorbed 

by the gastrointestinal tract.22 Inorganic As5+ subsequently undergoes a sequential process, 

that is, glutathione (GSH)-mediated two-electron reduction to As3+, and oxidative 

methylation of As3+ by arsenite methyltransferase (As3MT) to pentavalent organic arsenic 

species (e.g., MMAV and DMAV) in the liver (Figure 1).21,23 DMAV was previously shown 

to be a teratogen, a nephrotoxin, a tumor promoter, and a complete carcinogen in mammals.
24–27 In this biotransformation process, iAs can also be methylated to yield trivalent arsenic 

compounds such as MMAIII and DMAIII (Figure 1), which exhibit higher potency in being 

cytotoxic/genotoxic agents and enzyme inhibitors over iAs3+.23 Therefore, it is important to 

consider both inorganic arsenic and their trivalent methylated arsenic species when 

discussing arsenic toxicity.28–30

3. ARSENIC EXPOSURE AND OXIDATIVE STRESS

Arsenic-induced oxidative stress has been widely studied and may constitute a major factor 

contributing to arsenic carcinogenesis (Figure 2). Inorganic and methylated trivalent arsenic 

species have been shown to induce the generation of reactive oxygen species (ROS) and 

oxidative stress in mammalian cells.31–33

Apart from direct generation of ROS from arsenic and its metabolites, arsenic exposure can 

result in antioxidant imbalance, mitochondrial dysfunction, and impairment of ROS-

scavenging enzymes, which together result in arsenic-induced oxidative stress, as noted 

previously.34 Because glutathione (GSH) serves as an electron donor in arsenic metabolism,
21,23 the intracellular GSH pool is heavily depleted upon chronic arsenic exposure and 

becomes unavailable for scavenging ROS as a cellular defense mechanism against oxidative 

stress. In addition, arsenic-mediated disruption of the mitochondrial electron transport chain 

exacerbates oxidative stress, because mitochondrion constitutes a major source of 

intracellular ROS.35–37 Moreover, arsenic-induced oxidative stress emanates from impaired 

activities of ROS-scavenging enzymes such as superoxide dismutase, catalase, glutathione 

peroxidase, glutathione S-transferase, and glutathione reductase.34,38

Arsenic carcinogenesis may arise, in part, from the genotoxicity of ROS and RNS. Along 

this line, increasing lines of evidence demonstrated that iAs and its methylated metabolites 

damage DNA indirectly through the induction of free radicals.33,39–42 For instance, hydroxyl 

radicals generated from arsenite exposure are believed to react with nucleobases in DNA to 

yield DNA lesions, for example, 8-oxo-7,8-dihydroguanine, 5-hydroxycytosine, and 5-

hydroxyuracil.43 In addition, arsenite-induced ROS and RNS can elicit cross-links between 

DNA and proteins or other molecules in cells.44 Moreover, in vitro studies with cultured 

human cells indicated that arsenite-induced oxidative stress causes persistent telomere 
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attrition, DNA strand breaks, chromosomal aberrations, and sister chromatid exchanges.
45–48

Aside from oxidative DNA damage, arsenite-induced ROS may perturb the cellular 

functions of ROS as secondary messengers.33,34 Last but not least, ROS/RNS generated 

from arsenite exposure can directly impair important cysteine-containing proteins involved 

in DNA repair and DNA damage response (DDR) signaling. For example, inhibition of 

PARP1 by peroxynitrite through S-nitrosylation of its zinc finger cysteines was shown to 

compromise DNA repair.49,50

4. INHIBITION OF DNA REPAIR

Arsenite alone is a weak mutagenic agent, but it is known to enhance the mutagenicity of 

other carcinogens. For instance, arsenite was found to enhance the mutagenicity of X-rays, 

UV light, methylmethanesulfonate (MMS), and diepoxybutane in mammalian cells.51–53 

Arsenic’s role in augmenting the mutagenicity of other carcinogens perhaps can be 

attributed to its ability in inhibiting the repair of DNA lesions induced by these carcinogens. 

In this section, we review the previous work regarding the perturbation of various cellular 

DNA repair and DDR pathways after exposure to iAs (Figure 3).

4.1. Excision Repair.

A number of studies revealed that arsenite can target several key molecular players in base 

excision repair (BER) and nucleotide excision repair (NER) pathways through perturbing 

the expression levels of DNA repair genes or catalytic activities of DNA repair proteins.

4.1.1. BER.—BER is a crucial DNA repair pathway mainly responsible for the removal 

of oxidatively generated and alkylated nucleobase lesions, apurinic/apyrimidinic (AP) sites, 

and strand breaks.54 For instance, 8-oxoG is one of the most abundant oxidatively generated 

DNA lesions,55–57 and 8-oxoguanine DNA glycosylase-1 (OGG1) is the main glycosylase 

responsible for the excision of 8-oxoG from DNA in mammals.57–59 A previous study 

revealed a dose-dependent decline in mRNA level and enzymatic activity of OGG1 in A549 

human lung epithelial cells after exposure to micromolar concentrations of arsenite and its 

metabolites.60

Aside from OGG1, AP endonuclease 1 (APE1), the major endonuclease responsible for the 

excision of apurinic/apyrimidinic (AP) sites in eukaryotic cells, was shown to be diminished 

at the mRNA and protein levels after exposure to As3+.61 Additionally, DNA polymerase β, 

an important enzyme for DNA repair synthesis during BER,62 exhibited decreased 

expression at both the mRNA and protein levels after exposure to As3+ at concentrations that 

are ≥5 μM.61 Moreover, Osmond et al.63 observed a dose-dependent decrease in mRNA 

levels of APE1, DNA ligase I (LIGI), OGG1, PARP1, and DNA polymerase β (DNA Polβ) 

in 24-week old mice subchronically (2 weeks) exposed to arsenite-contaminated drinking 

water, further substantiating that arsenic exposure can impair the BER pathway.

4.1.2. NER.—NER is a critical and versatile DNA repair pathway for the removal of 

bulky DNA adducts and helix-distorting lesions induced by environmental carcinogens (e.g., 
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UV-induced dimeric DNA photoproducts and adducts generated from metabolites of 

polycyclic aromatic hydro-carbons).64

A number of prior studies revealed that arsenic mainly interferes with NER by disrupting the 

gene expression levels and activities of crucial NER players. For instance, exposure to 

arsenic in drinking water was found to be correlated with reductions in mRNA levels of 

ERCC1, XPB, and XPF genes in lymphocytes,65 and the mRNA and protein expression 

levels of ERCC1 were also shown to be diminished upon arsenic exposure in a follow-up 

study.66 Additionally, a dose-dependent decline in mRNA levels of ERCC1 gene was 

observed in human cardiomyocytes following a 72-h exposure to arsenite.67

An earlier large-scale microarray analysis revealed that the mRNA expression levels of a 

number of DNA repair genes, encompassing XPC, DDB2, and TP53, were significantly 

down-regulated in human epidermal keratinocytes after exposure to submicromolar 

concentrations of arsenite.68 Another microarray study showed that the mRNA expression 

levels of XPD, PCNA, APE1, RFC, XPC, and DNA ligase I were reduced by at least 1.5-

fold following a 4-h exposure to 5 μM arsenite.69 Moreover, treatment of human skin 

fibroblast cells with arsenite and MMAIII lowered, in a dose-dependent manner, the mRNA 

levels of XPC and DDB2 as well as the protein level of XPC.70 Furthermore, treatment of 

IMR-90 human lung fibroblasts with arsenite reduced the protein level of XPC, partially 

through proteasomal degradation, as well as reducing the mRNA levels of several NER 

genes, including XPA, XPC, and DDB2.71 A recent Bru-seq study showed that a 1-h acute 

exposure to 5 μM arsenite led to diminished transcription of RAD23B and DDB2 genes.72 

Impairment of NER by arsenic was also observed for DNA lesions induced by cisplatin, a 

clinically used chemotherapeutic agent for treating human cancers through the generation of 

Pt-d(GpG) intrastrand cross-link lesions in DNA.73 In particular, exposure to arsenite 

prevented the induction of XPC after treatment of mice with cisplatin.74

Interestingly, arsenic exposure has been shown not to affect the protein level of XPA,71 

which is essential for recognition of damaged DNA and subsequent recruitment of other 

NER components, especially RPA70 and TFIIH.75,76 The XPA protein contains a Cys4 (C4)-

type zinc finger that is involved in binding with damaged DNA and RPA70. Biochemical 

studies indicated that mutations in any of the four zinc-coordinating cysteines result in an 

unfolded protein.77 Arsenite has been demonstrated to interact with zinc finger proteins by 

substituting for the zinc ion,78,79 and several zinc finger proteins involved in DNA repair, for 

example, XPA and poly(ADP-ribose) polymerase 1 (PARP-1), have been shown to be direct 

molecular targets for binding with iAs3+ and MMAIII.80–83

Lastly, arsenite exposure has been proposed to interfere with and inhibit NER activity 

through NO-mediated nitrosylation of DNA repair proteins.49,50,84,85 All the above studies 

together support that arsenite and its trivalent metabolites may perturb NER by perturbing 

the central NER players at both transcript and protein levels.

4.2. DNA Ligation.

DNA ligases assume important roles in various DNA metabolic processes including DNA 

replication, repair, and recombination, and arsenite has been shown to inhibit the DNA 
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ligation process. It was reported that the levels of mRNA, protein and enzymatic activities of 

DNA ligase I and DNA ligase III are significantly diminished in mammalian cells after 

exposure to iAs3+ and MMAIII.61,86 It was also shown that arsenite inhibits DNA ligation by 

interacting with the vicinal cysteines in DNA ligase III, thereby retarding DNA break 

rejoining in MMS-treated hamster cells.87 In addition, XRCC1 plays an indispensable role 

in recruiting and stabilizing ligase IIIα in the DNA ligation step of excision repair by acting 

as a scaffolding protein,88–91 where down-regulation of the XRCC1 protein by iAs exposure 

also contributes to the impairment of the DNA ligation step of the excision repair pathways.
92 Because the inhibition of DNA ligation by arsenic exposure prevents the completion of 

DNA repair, it may lead to accumulation of damaged intermediates including single- and 

double-strand breaks, ultimately contributing to genome instability.

4.3. Fanconi Anemia (FA)/BRCA Pathway for DNA Interstrand Cross-Link and DNA–
Protein Cross-Link Repair.

DNA interstrand cross-links (ICLs) can arise from endogenous metabolism or from exposure 

to therapeutic cross-linking agents such as mitomycin C (MMC).93 ICLs are extremely 

cytotoxic because covalent linkage of the two complementary strands of DNA blocks 

essential DNA metabolic processes including replication and transcription.93 FA/BRCA 

pathway, which encompasses three stages of DNA repair processes, that is, nucleolytic 

incision, translesion synthesis (TLS) and homologous recombination (HR), is indispensable 

for the repair of DNA ICLs.93,94 As3+ was shown to disrupt the FA/BRCA pathway-

mediated repair of DNA ICLs.95

In the FA/BRCA pathway, monoubiquitination of FANCD2 is essential for the recruitment 

of SLX4/FANCP, an endonuclease protein complex required for unhooking the DNA cross-

link and for the downstream TLS and HR steps of the ICL repair pathway, to DNA damage 

sites.93,96 Monoubiquitination of FANCD2, catalyzed by the E3 ubiquitin ligase FANCL,
97,98 is also necessary for the relocalization of the Fanconi-associated nuclease 1 into nuclear 

DNA repair foci for recovery of stalled replication forks during ICL repair.99 Recently, 

arsenite was shown to inhibit the repair of DNA ICLs induced by MMC through diminishing 

monoubiquitination and compromising the access of FANCD2 to DNA damage sites in 

chromatin in cultured human cells.100 This occurs through inhibition of the E3 ubiquitin 

ligase activity of FANCL via direct binding of arsenite to its RING finger domain.100 We 

reason that, apart from FANCL, arsenite may also bind to RING finger-containing SUMO 

E3 ligases PIAS1 and RNF4, which may inhibit the SUMOylation, polyubiquitination, and 

degradation of FANCA, thereby perturbing FA/BRCA pathway.101

Unhooking of an ICL by XPF-ERCC1 is necessary for the stable localization of FANCD2 

onto chromatin and its subsequent HR-mediated repair of DNA DSBs, as manifested by the 

failure to repair ICL-induced DSBs in XPF-ERCC1-deficient human cells.102–104 Decreases 

in the mRNA levels of XPF and ERCC1,65 and in the protein level of ERCC1,66 in 

individuals exposed to arsenite in drinking water suggest that arsenite may impair ICL repair 

through suppressing mRNA and protein expression and disrupting the proper functions of 

the XPF-ERCC1 complex.
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BRCA1 has been proposed to be crucial for homologous recombination-independent repair 

of DNA ICLs by promoting the recruitment of FANCD2 to DNA damage sites.105,106 In 

particular, BRCA1 was shown to antagonize the inhibitory effect of the Ku70-Ku80 

heterodimer on FANCD2 foci formation105 and promote the unloading of the CMG helicase 

from stalled replication forks during ICL repair.107 Additionally, BRCA1 is believed to 

amplify the FA/BRCA pathway by regulating FANCD2’s interaction with other proteins.108 

It has been hypothesized that BRCA1 is involved in homology-based DNA repair through its 

E3 ubiquitin ligase activity; the RING domain of the ligase is indispensable for its 

interaction with BRCA1-associated RING domain (BARD1) protein, forming a 

heterodimeric complex to modulate the stability and enzymatic activity of BRCA1.107,109 

Exposure to arsenite was recently found to diminish the recruitment of BRCA1 to DNA 

DSB sites,110 suggesting that arsenite might also interfere with ICL repair through binding 

and inhibiting the E3 ubiquitin ligase activity of the BRCA1-BARD1 complex.

4.4. DNA Double-Strand Break Repair.

Double-strand breaks (DSBs) are among the most deleterious types of DNA lesions, which 

can lead to mutations, loss of heterozygosity, and chromosomal rearrangement; if not 

properly repaired, they can lead to cell death and cancer.111,112 In mammalian cells, DSB 

repair proceeds through two different pathways, namely HR and nonhomologous end-

joining (NHEJ).113 Exposure to arsenic was shown to induce DSBs and ultimately lead to 

chromosomal aberrations and sister chromatid exchanges.114,115 Exposure to arsenic was 

also found to inhibit DNA DSB repair and influence the DNA DSB repair pathway choice 

by favoring error-prone NHEJ repair while inhibiting the error-free HR pathway, leading to 

mis-repair of DSBs and genome instability.116

Since DSB repair occurs on DNA substrates that are localized in chromatin, the efficiency in 

DSB repair depends mainly on how accessible the site of damage is, which is largely 

determined by the compactness of the local chromatin.117 Generation of open chromatin 

involves the actions of multisubunit chromatin-remodeling complexes and post-translational 

modifications of core histone proteins. In the latter regard, acetylation of lysine 16 in histone 

H4 (H4K16Ac) and monoubiquitination of lysine 120 in histone H2B (H2BK120ub) 

represent those histone epigenetic marks that promote the formation of biochemically 

accessible chromatin at or near DNA DSB sites.110,118,119 Recently, it was reported that 

arsenite inhibits H4K16Ac by binding to the zinc finger motif of two MYST family histone 

acetyltransferases TIP60 and hMOF,120,121 and arsenite was also shown to inhibit 

H2BK120ub catalyzed by RNF20-RNF40 histone E3 ubiquitin ligase in a similar fashion, 

thereby diminishing the recruitment of BRCA1 and RAD51 to DSB sites for repair.110 

Therefore, arsenite could disrupt DSB repair by inhibiting histone epigenetic modifications, 

which leads to compact chromatin structures unfavorable for DNA DSB repair.

In addition to the aforementioned histone modifications that regulate the accessibility of 

DNA lesions in chromatin, a myriad of zinc finger proteins are involved in post-translational 

modifications (PTMs) of proteins that control DDR and transcription of DNA repair genes. 

For instance, the RING finger E3 ubiquitin ligases RNF8 and RNF168 are essential for DDR 

in response to DSB formation through ubiquitination of H2A/H2AX surrounding DNA DSB 
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sites,122 where RNF168 interacts with PALB2-containing protein complex to DSB-induced 

H2A ubiquitination, thereby promoting DSB repair.123 In addition, DNA DSB repair 

pathway choice is modulated by deubiquitinating enzymes (DUBs) and other E3 ubiquitin 

ligases (e.g., RNF169 and RNF126).124–127 In this vein, being a negative regulator of the 

ubiquitin-dependent DDR signaling, RNF169 directly recognizes RNF168-mediated 

ubiquitination near DNA DSB sites and competes with other ligases for nonproteolytic 

ubiquitination at DSB sites to limit the deposition of 53BP1 and RAP80, thereby fine-tuning 

the DSB repair pathway choice.125,126,128 Moreover, after being recruited to DSB sites in a 

RNF8-dependent manner, RNF126 directly interacts with and ubiquitinates RNF168 to 

negatively regulate the RNF168-mediated H2AX ubiquitination and favor the HR-mediated 

repair of DSBs.127

Within seconds after DSB induction, poly(ADP-ribose) polymerases, including PARP-1, 

sense, recognize, and bind to DSBs to catalyze global protein poly(ADP-ribosyl)ation 

(PARylation).129–131 Global PARylation around DSB sites serves as a docking platform for 

rapid recruitment of various DNA repair factors including MRE11, NBS1, BARD1, CHFR, 

and RNF146 to chromatin.130,132 Meanwhile, PARP-1 can PARylate different proteins 

globally, including BRCA1, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), 

and core histones, to promote DNA DSB repair.132–134 In addition, arsenite was shown to 

interfere with DNA damage-elicited global PARylation in human cells by inhibiting PARP1 

activity through displacement of zinc ions from its zinc finger motifs.80,135–137

PARP1 perhaps can be viewed as a typical paradigm among DNA repair proteins, many of 

which contain redox-sensitive cysteine residues within zinc finger domains.34,138,139 Given 

that arsenic exposure can stimulate the generation of ROS/RNS,33,49,140 arsenite-induced 

oxidative stress can result in modification of thiol groups on the cysteine residues in zinc 

finger motifs of these DNA repair proteins, leading to the loss of their enzymatic functions.
82,85,141,142 This has been demonstrated for PARP1, which could be inhibited by 

peroxynitrite-mediated S-nitrosation of its zinc finger cysteine(s).49,50,80 Global PARylation, 

a PTM predominantly mediated by PARP1 and critical for immediate initiation of DDR to 

maintain genomic stability, was shown to be markedly inhibited upon an 18-h exposure to 

0.01 μM arsenite.143 Therefore, apart from direct As3+ binding, arsenic-induced oxidative 

stress also contributes, in part, to diminished DNA repair arising from arsenic exposure 

(Figure 4).84,144

Recently, CTCF, a versatile 11-zinc finger transcription regulator with well-established roles 

in three-dimensional genome organization and transcriptional regulation, was found to 

facilitate DNA DSB repair by enhancing HR.145,146 CTCF is recruited to DSB sites through 

its zinc finger domains independently of PARylation.145 Therefore, substitution of zinc ions 

within those 11 zinc finger domains of CTCF by iAs3+ can diminish its DNA binding 

capability. Additionally, a recent study demonstrated that CTCF binds to MRE11 and CtIP 

through its zinc finger domains, which enables robust CtIP recruitment for 5′-end DNA 

resection, thereby promoting HR while suppressing NHEJ pathway of DNA DSB repair.147 

Hence, the binding of iAs3+ with CTCF might explain, in part, how arsenite disrupts the 

outcome of this DSB repair pathway.
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4.5. Disruption of DNA Damage Response Signaling.

Arsenite exposure has been shown to impair DDR signaling, especially through 

dysregulation of protein PARylation, ubiquitination, and SUMOylation,148,149 as reviewed 

recently.72 DDR is a tightly regulated temporal- and spatial-sensitive chromatin-associated 

process important for sensing DNA damage, recruiting DNA repair machinery to damage 

sites, and intertwining DNA repair with other DNA-transacting activities.150 For example, 

H2AX phosphorylation, PARylation, and histone acetylation mediated by ATM, PARP1, and 

TIP60, respectively, are among the earliest events in DNA damage response; they are 

activated by DNA damage and involve early and rapid detection of DNA lesions and 

chromatin decompaction, thereby providing better accessibility for DNA repair machinery to 

DNA damage sites.150 Reversible ubiquitination and SUMOylation of DDR proteins are 

crucial for effective DDR signaling and repair of DNA DSBs,151 where zinc finger-

containing ubiquitin ligases and SUMO-conjugating enzymes can be disrupted by arsenic 

exposure, with examples of RAD18, MORC2, RNF4, and RNF111 being briefly discussed 

below.72

During replication stress, the E3 ubiquitin ligase RAD18 induces monoubiquitination of 

PCNA, which is in turn recognized and bound by Spartan for its subsequent recruitment of 

Pol η (i.e., a TLS polymerase important for bypassing UV-induced DNA lesions).152–154 

The monoubiquitinated PCNA also promotes efficient monoubiquitination and chromatin 

localization of FANCD2,155,156 and this ubiquitination is indispensable for recruiting 

SNM1A to DNA repair complexes assembled at MMC- and UV-induced DNA lesions to 

promote ICL repair.157

PARylation is also important in DDR. To achieve DNA damage-induced PARylation and 

PAR-dependent recruitment of DNA repair proteins to DNA damage sites, PARP1 recruits 

chromatin remodeling enzyme MORC2 to DNA damage sites and catalyzes PARylation of 

its CW-type zinc finger domain, thereby activating its ATPase and chromatin remodeling 

activities. Meanwhile, PARylated MORC2 stabilizes PARP1 through enhancing the NAT10-

mediated acetylation of lysine 949 in PARP1, which is no longer subjected to CHFR 

ubiquitination and the subsequent proteasomal degradation.132,158 This illustrates that the 

crosstalk between different DNA repair enzymes is important for the dynamic PARylation in 

DDR.

SUMOylation and ubiquitination are also necessary for robust DDR. To favor DDR with 

coordinated SUMOylation and ubiquitination, the SUMO E3 ligases PIAS1 and PIAS4 are 

recruited to DSB sites and lead to accumulation of SUMO1/2/3 at DSB sites, which leads to 

the recruitment of RNF4 to DNA damage sites.159,160 RNF4 subsequently ubiquitinates and 

facilitates the degradation of polySUMOylated MDC1 and RPA, thus promoting efficient 

DSB repair.148,161–164

Similar to RNF4, RNF111 promotes nonproteolytic ubiquitination of SUMOylated XPC, 

which is in turn recruited to UV-damaged DNA.165 Given the extensive involvement of zinc 

finger-harboring ubiquitin and SUMO E3 ligases in DDR signaling (e.g., RAD18, RNF4), 

arsenite exposure may hamper ubiquitination or SUMOylation through direct binding or 
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inducing oxidative modifications of cysteine residues in their zinc finger motifs, thereby 

disrupting DDR.

5. DISRUPTION OF CELL CYCLE CHECKPOINTS, PROMOTION OF CELL 

PROLIFERATION, AND SUPPRESSION OF APOPTOSIS

In arsenic-induced carcinogenesis, iAs has been shown to interfere with cell cycle 

regulation, promote cell proliferation, and suppress apoptosis, which indirectly inhibit DNA 

repair (i.e., by not providing enough time) and allow cells with DNA damage to 

propagate166–168

Cell cycle checkpoints, including DNA damage checkpoints at the G1/S and G2/M 

boundaries as well as in the S phase, tightly regulate cell cycle progression by accurately 

assessing mitogenic signals and properly repairing DNA damage while avoiding further 

propagation of damaged genomes through promoting apoptosis of the severely damaged 

cells.169–172 This regulation is executed by checkpoint proteins, which comprise cyclins, cell 

cycle-dependent kinases, and phosphatases.170,171

A recent study demonstrated that a 48-h exposure of acute promyelocytic leukemia (APL) 

cells to 2 μM iAs3+ increased the mRNA expression of several cell cycle-associated genes, 

including CCND1 (encodes for cyclin D1 protein), CCNE1 (cyclin E1 protein), and 

GADD45A, but reduced those of CCNF (cyclin F) and CDKN1A (p21), resulting in a 

transition of cell populations from G1/S phases to G2/M phases and arresting cell cycle 

progression. This result suggests that acute exposure to iAs3+ disturbs cell cycle 

checkpoints, leading to uncontrolled cell cycle progression and proliferation of APL cells.
168 Notably, the DNA damage checkpoint at the G1/S boundary was bypassed by iAs3+-

mediated alterations in expression of checkpoint proteins, especially cyclin D1.173–175

Another recent study demonstrated that a 1-month exposure of human BEAS-2B cells and 

keratinocytes to 0.5 μM arsenite delayed the transition from mitosis by compromising 

mitotic checkpoint through the attenuation of anaphase promoting complex-mediated cyclin 

B1 degradation.167 In this vein, long-term arsenite exposure up-regulates Polo-like kinase 1 

via acting on Akt in the PI3K/Akt pathway, thereby potentiating mitotic catastrophe and 

genetic instability.167,176

Arsenite-elicited up-regulation of p53 protein expression and abrogation of p53-dependent 

increase in p21 expression together unleash the checkpoint restraints at the G1/S and G2/M 

boundaries as well as in the S phase.174,177,178 Chronic low-dose (e.g., 14 days, 0.1 μM) and 

acute noncytotoxic-level (e.g., 24 h, 1 μM) of arsenite exposure, as well as acute low-level 

(e.g., 24 h, 1 μM) of MMAIII exposure, were found to induce p53 protein expression in 

normal human fibroblast cells.70,174,177 In addition, arsenite-elicited up-regulation of Hdm2 

and the ensuing ubiquitination of p53 promote nuclear export of p53, thereby disrupting its 

ability to transcriptionally activate its target genes, including p21 and NER genes.179–181 

These may give rise to unimpeded cell cycle progression and accrual of mutations from 

unrepaired DNA lesions.178,181
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Arsenite has been reported to promote the proliferation of human cells.33,68,182–187 Arsenite 

is thought to achieve this through stimulating pathways for cell proliferation and survival 

(e.g., Erk, EGFR, MAPK pathways) while inhibiting pathways involved in cell death (e.g., 

JNK signaling) via modulation of a myriad of transcription factors (e.g., AP-1 and NF-κB).
187 Exposure to 5 μM arsenite was found to increase the proliferation of SH-SY5Y human 

neuroblastoma cells via activation of ERK in VEGF signaling, which might favor tumor 

progression.184 Arsenite-induced cell proliferation was shown to arise from elevated levels 

of epidermal growth factor receptor (EGFR) ligand, heparin-binding EGF, and its 

subsequent activation of EGFR phosphorylation that induces pERK and cyclin D1 

expression in human cells.188 Arsenite-elicited ERK signaling is required for arsenic-

induced transactivation of NF-κB,189 which might be mediated by arsenic-stimulated 

oxidative stress.190–192 Additionally, low-dose arsenite treatment has been documented to 

activate ERK, as well as transcription factors E2F1 and Activating Protein 1 (AP-1), enhance 

the DNA binding activities of AP-1 and NF-κB, and elevate the expression of a number of 

positive cell growth-related genes including FOS, JUN, MYC, and EGR-1.185,190,193–197

The major cell growth and ROS-mediated pathways are regulated by protein tyrosine 

phosphorylation, which itself is controlled by tyrosine kinases and protein tyrosine 

phosphatases. Therefore, arsenite exposure is believed to inactivate protein tyrosine 

phosphatases by ROS/RNS-induced modifications of redox-sensitive cysteines at their active 

sites, thereby augmenting the total cellular tyrosine phosphorylation.34,198–203 Combined, 

arsenite and arsenite-induced ROS/RNS can stimulate a phosphorylated state of EGFR, and 

activate ERK, transcription factor AP-1 complex, and its downstream target genes JUN, 

FOS, and MYC, thereby increasing cyclin D1 expression.190,204 Together with arsenite-

activated E2F transcription factors and their modulation of cyclin E levels, arsenite exposure 

elicits unchecked cell cycle progression and uncontrolled cell proliferation.194,204–206

Chronic exposure to arsenic has been shown to increase cell survival and elevate levels of 

DNA damage in cultured human cells.42 PARP1 inhibition by low concentrations of arsenic 

has been proposed to enhance the survival of cells with unrepaired DNA lesions including a 

population of “initiated carcinogenic cells” that represents the first step of the multistage 

carcinogenesis process.18 Chronic arsenic exposure was also shown to decrease p53 at the 

post-translational level via arsenic-induced PARylation as well as the mRNA expression 

level of Bax.42 This arsenite-elicited inhibition of apoptotic mediators was also found to 

impair the XPC-mediated global-genome NER, resulting in mutation accrual and neoplastic 

transformation of DNA damage-containing cells.42

Together, arsenite-induced positive cell proliferation and suppression of apoptosis confer 

insufficient time for efficient DNA repair before replication of damaged DNA and/or allow 

cells with damaged DNA to propagate, which may give rise to mutations and genome 

instability.
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6. EPIGENETIC DYSREGULATION ASSOCIATED WITH ARSENIC-INDUCED 

CARCINOGENESIS

Arsenic-elicited carcinogenesis is believed to stem, in part, from its disruption of epigenetic 

signaling by alterations of histone PTMs and DNA methylation patterns (Figure 5). Histone 

PTMs and DNA methylation tightly regulate the chromatin dynamics to modulate the 

inheritable expression patterns of different genes.207 Therefore, arsenic can induce 

carcinogenesis by epigenetic silencing of tumor suppressor genes or activation of oncogenes. 

Here, we review the current evidence about the role of arsenic exposure in modulating the 

epigenetic pathway of gene regulation.

6.1. Alterations of Histone PTMs.

In the nucleus, DNA is packaged into chromatin, where the nucleosome core consists of 

stretches of DNA (~147 bp) wrapping around a histone octamer consisting of two copies 

each of core histones H2A, H2B, H3, and H4.208 Hence, nucleosomes form linear 11 nm 

beads-on-a-string structures that further compact into 30 nm fibers and other higher-order 

chromatin states.209 The N-terminal histone tails extending from nucleosomes are subjected 

to a range of PTMs, including methylation, acetylation, phosphorylation, ubiquitination, 

SUMOylation, ADP ribosylation, deimination, and proline isomerization,210 which in turn 

modify the chromatin compaction and recruitment of nonhistone proteins, including gene 

regulatory factors and DNA repair enzymes, to chromatin. The formation of open, relaxed 

chromatin conformation is required for DNA repair machinery to gain access to the spatially 

confined region surrounding DNA damage sites, as described in the “access-repair-restore” 

model.211,212

Inorganic arsenic and its metabolites have been documented to disrupt histone PTMs, 

including but not limited to H2AX phosphorylation, H2AX ubiquitination, H2B 

ubiquitination, H3 methylation, and H4K16 acetylation,110,120,121,213,214 which were 

reviewed elsewhere.207,215,216 Here, we focus on the effect of arsenic exposure on those 

histone PTMs that are closely associated with DNA repair and genomic stability.

A number of previous in vitro studies have demonstrated that arsenic exposure elicits 

alterations in a variety of global histone PTMs, which include loss of H4K16Ac, 

H3K27me3, and ubiquitination of H2B, as well as gain of H3K4me2, H3K4me3, H3K9me2, 

H3K9Ac, H3K14Ac, and phosphorylation of H3S10 and H2AX (γH2AX).118,217–222 For 

example, the PBMC from the participants of the folic acid and creatine supplementation trial 

(FACT) study exposed to 50–500 μg/L arsenite in drinking water exhibited a decrease in 

H3K9me3 and H3K9ac, and a gain in H3K9me2.217,220 In addition, A549 human lung 

carcinoma cells displayed a global loss of H3K4me1 and a global gain of H3K4me2 and 

H3K4me3 following a 24-h exposure to 1 μM arsenite, where H3K4me3 remained elevated 

even at 1 week after arsenite withdrawal.219 In another study, a 24-h exposure of A549 cells 

to arsenite led to elevated levels of gene-silencing marks, H3K9me2 and H3K27me3, while 

also augmenting the global level of H3K4me3, a gene-activating mark.218
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In contrast to transcriptional activators, elevated levels of H3K9me2 mediated by increased 

mRNA and protein levels of histone methyltransferase G9a are correlated with 

transcriptional repression,218,223 which has been shown to be involved in the silencing of 

tumor suppressor genes in cultured cancer cells.224,225 H3K27me3 is frequently 

accompanied by inactive promoters and gene silencing, and it labels chromatin by polycomb 

repressive complex 1 (PRC1) via H2AK119 ubiquitination to facilitate chromatin 

compaction.226 Exposure of human cells to 0.5 μM arsenic trioxide (ATO) induces the 

expression of components PRC2 protein complex, consisting of SUZ12, EZH2, and BMI1, 

resulting in elevated H3K27me3 and the ensuing diminished expression of tumor 

suppressors p16INK4a and p14ARF.227 Arsenite-induced H3K27me3 in chromatin silences 

tumor suppressor genes, for example, HOXB7 and CDKN2A, which are involved in DNA 

repair.228–230 Therefore, histone H3 PTMs are among the targets of arsenic exposure and aid 

in the subsequent disruption of DNA repair.

As briefly discussed above, histone H2BK120ub and histone H4K16Ac also play a 

significant role in the generation of relaxed chromatin environment that is conducive for the 

access of DNA repair enzymes. Histone H2BK120ub is crucial for decompacting the 30 nm 

chromatin fiber,231 while H4K16Ac also decondenses chromatin,232 thereby facilitating 

DSB repair by increasing the accessibility of chromatin to DNA repair machinery.233–235 

H2BK120ub is mediated by the E3 ubiquitin ligase composed of the RNF20-RNF40 

heterodimer,233 whereas H4K16Ac is modulated by both hMOF and TIP60 MYST-family of 

histone acetyltransferases.236 In UROtsa human bladder epithelial cells, global H4K16Ac 

levels were reduced in a dose- and time-dependent manner upon exposure to As3+ and 

MMAIII.118 Arsenite exposure was also documented to diminish H2BK120ub and 

H4K16Ac by inhibiting the above-mentioned zinc finger-containing proteins.110,120,121 

Moreover, the PARylation of lysine residues of the core histone tails mediated by PARP1, 

including H2AK13, H2BK30, H3K27, H3K37, and H4K16, can result in a rapid 

decondensation of chromatin around DNA damage sites and facilitate DNA repair.133,134,237 

Therefore, arsenic exposure could result in a compact chromatin structure by interfering 

with these histone-modifying enzymes and by diminishing the chromatin-decompacting 

histone PTMs, limiting the access of DNA repair proteins to chromatin.

Finally, phosphorylation of H2AX, which is mediated by ATM and DNA-PKcs following 

DNA damage,238 contributes to the initiation of DNA damage response.214,239 

Phosphorylation of H2AX at different sites triggers distinct downstream cellular processes. 

For instance, phosphorylation of Tyr142 in H2AX stimulates XPD-dependent apoptosis and 

enhances DDR.240 Recently, it was reported that a 24-h exposure to 4 μM ATO significantly 

stimulated levels of phosphorylated H2AX in mouse embryonic fibroblasts (MEFs), possibly 

via inhibition of de novo dTMP biosynthesis through inducing SUMOylation, 

ubiquitination, and subsequent degradation of MTHFD1.213 Since iAs has been documented 

to elicit ATR and DNA-PKcs in vivo and in vitro,241–243 this increase in H2AX 

phosphorylation is thought to originate from the activation of ATR and DNA-PKcs and 

might also be modulated by TOPK.244

Studies have suggested that arsenic-induced phosphorylation of histone H3 might be 

responsible for the up-regulation of caspase 10, a proto-apoptotic factor,222 and the proto-
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oncogenes FOS and JUN,245 which can lead to transformation of human fibroblast cells and 

the induction of tumors in animals.246 Additionally, since arsenite could induce FOS and 

JUN via activation of JNKs and p38/MAPK2 kinases, and promote H3S10 phosphorylation,
221,247 therefore, the impact of the arsenic-induced H3 phosphorylation on DNA repair may 

be regulated by JNK/MAPK pathway, which was recently shown to be linked to DNA 

damage response.248

6.2. DNA Methylation.

DNA methylation constitutes another important epigenetic mechanism of gene regulation. 

Depending on the type of regulatory elements where the methylation occurs, the effect of 

DNA methylation on gene expression varies. Under normal circumstances, DNA 

methylation events in the promoter and gene body are associated with gene repression and 

activation, respectively.249 Alterations in DNA methylation are known to play roles in 

carcinogenesis partly through inactivation of tumor suppressor genes or activation of 

oncogenes.250

Several potential mechanisms have been proposed to account for the arsenite-induced 

alterations in DNA methylation including SAM deficiency, diminished expression of DNMT 

genes, inhibition of Tet proteins, and aberrant occupancy of CTCF binding on promoters of 

DNMT and TET genes (Figure 6). As noted above, biotransformation of inorganic arsenic 

depletes SAM, which is also utilized in DNA methylation catalyzed by DNA cytosine-5-

methyltransferases (DNMTs).251 In addition, arsenic exposure was found to repress, in a 

dose-dependent manner, the mRNA expression levels and activities of DNA 

methyltransferases DNMT1, DNMT3A, and DNMT3B, thereby resulting in a loss of global 

DNA methylation.251–253 Interestingly, arsenic exposure was shown to reduce CTCF 

expression and inhibit the binding of CTCF to DNA, which diminishes the occupancy of 

CTCF in the promoters of DNMT1, DNMT3A, and DNMT3B genes; this may explain the 

observation of arsenite-induced diminished expressions of DNMT genes.254

Arsenic exposure has been documented to result in global DNA hypomethylation,175,255–257 

which is a hallmark of various human cancers.258–260 It was reported that chronic exposure 

of cultured rat liver cells to a low dose (0.5 μM) of arsenite resulted in global DNA 

hypomethylation.257 DNA hypomethylation was also observed in leukocytes of human 

populations who were exposed to arsenic and developed skin cancers.261 Chronic exposure 

of mice to 45 ppm arsenite for 48 weeks induced hepatic global DNA hypomethylation as 

well as promoter hypomethylation of the ESR1 gene, which encodes for estrogen receptor α.
175 Promoter hypomethylation is believed to stimulate the expression of ESR1 gene, which 

in turn can induce cell cycle-dependent DSBs and contribute to initiation of breast cancer.
262,263 Arsenic-induced promoter hypomethylation of the ESR1 gene is consistent with the 

observation of frequent mutations of DDR and DNA repair proteins in estrogen-dependent 

breast cancers, suggesting that ER signaling converges to inhibit effective DNA repair and 

apoptosis, thereby favoring proliferation.175,263

Although arsenic exposure causes global DNA hypomethylation, it also leads to promoter 

hypermethylation and repression of specific tumor suppressor genes. For instance, the DNA 

repair gene MLH1 displays significant promoter hypermethylation in whole blood obtained 
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from humans chronically exposed to arsenic.264 Additionally, significant promoter 

hypermethylation of NER genes (ERCC2, RPA1, POLD3, POLE2) was observed in human 

hepatocytes exposed to 0.2 μM ATO for 3 months.265 Recently, hypermethylation of NER 

genes ERCC1 and ERCC2, and suppression of their expression in human cells, was also 

correlated with chronic arsenic exposure.266

5-Methylcytosine (5-mC) in DNA can be oxidized by the ten-eleven translocation (Tet) 

family enzymes to 5-hydroxymethylcytosine (5-hmC), which may convey regulatory 

epigenetic functions by binding to specific proteins to confer active gene transcription.
267–270 In addition, diminished levels of 5-hmC in DNA are hallmarks of human cancers.268 

Tet enzymes were found to prevent DNA damage-induced chromosome mis-segregation, 

indicating that 5-hmC was pivotal in promoting DNA repair and maintenance of genome 

integrity.271,272 Arsenite was shown to bind directly with the zinc finger motifs of Tet 

proteins and inhibit the Tet-mediated oxidation of 5-mC to 5-hmC in HEK293T cells with 

ectopic expression of Tet proteins and in mouse embryonic stem cells following an acute 24-

h exposure to 2–5 μM arsenite.267 On the other hand, global hyper-hydroxymethylation of 

cytosine was observed in arsenite-transformed BEAS-2B cells (after a 8-week exposure to 

0.5 μM arsenite),273 which was accompanied by elevated expression of Tet enzymes and was 

attributed to arsenic-elicited selective inhibition of CTCF binding on the proximal, weaker 

CTCF binding sites in the promoters of TET genes.273 The differences in these observations 

are likely attributed to the uses of different cell lines and exposure conditions, where long-

term exposure to arsenite may induce adaptive response in cells. Future studies in laboratory 

animals and human subjects are needed to determine how arsenic exposure affects the levels 

of 5-hmC in vivo.

Combined together, chromatin compaction around damaged DNA and disturbed methylation 

pattern in DNA upon arsenite exposure perturb the sophisticated epigenetic network of DNA 

repair machinery, which may compromise genome stability and result in arsenic-elicited 

carcinogenesis.

7. CONCLUSIONS AND PERSPECTIVES

In this review, distinct modes of action for arsenic-induced impairment of DNA repair 

pathways are extensively discussed. Unlike conventional carcinogens (e.g., alkylating 

agents, UV light), which can damage DNA directly, arsenic’s role in carcinogenesis perhaps 

resides on its ability to compromise the repair of DNA lesions induced by DNA damaging 

agents that are formed from endogenous metabolism or arise from other environmental 

exposure. Multiple mechanisms are likely at play, and they encompass diminished 

expression of DNA repair genes, functional disruption of DNA repair proteins, induction of 

a chromatin environment that is not conducive for DNA repair, and aberrant cell cycle 

regulation. Hence, chronic arsenic exposure can result in a progressive decline in DNA 

repair capacity, which may represent a crucial pathway through which arsenic contributes to 

carcinogenesis. In addition, elevated production of ROS/RNS from arsenic exposure and 

ensuing accumulation of DNA lesions from these species may also contribute, in part, to 

arsenic carcinogenesis.
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The findings cited in this review also suggest that zinc finger proteins, which are encoded by 

genes constituting approximately 10% of the human genome and play significant roles in 

DNA repair as well as epigenetic regulation, constitute important molecular targets for 

arsenic binding (Figure 7).274 iAs exposure induces ROS/RNS, which can target the redox-

active nucleophilic sulfhydryl group on cysteine residues located within the zinc finger 

motifs of these proteins. The resulting modification products, especially S-nitrosylation, 

disturb the native Zn2+ coordination sphere of the zinc finger proteins and alter their 

structure and functions.49,50,275–279 Thus, direct iAs3+ binding, perhaps in conjunction with 

oxidation and nitrosylation of cysteine sulfhydryl groups of zinc finger motifs of proteins 

involved in DNA repair and epigenetic regulation of gene expression, may represent 

important molecular mechanisms underlying the modes of action for the exacerbated DNA 

repair capacity in arsenic-induced carcinogenesis.

It is important to note that, while substantial progress has been made in this area of research, 

much remains to be done to further illustrate the above-mentioned mechanisms. First, most 

of the previously published studies were conducted with the use of cell-based systems. It 

will be important to examine whether the findings made from the cell-based assays can be 

extended to laboratory animals and human subjects exposed to environmentally relevant 

levels of arsenic species.

Second, RING finger proteins make up a large family of E3 ubiquitin ligases,280 and it will 

be important to systematically investigate, at the proteome-wide scale, how exposure to 

arsenite modulates the ubiquitination of proteins, especially those that are involved in DNA 

repair and DNA damage response signaling.

Third, the C3H-type zinc-finger proteins represent the second largest group of RNA-binding 

proteins in mammals.281 It remains unclear how arsenic exposure affects the functions of 

these RNA-binding proteins and influences the metabolisms of RNA (i.e., stability, 

translation efficiency, and alternative splicing of RNA), especially those mRNA species that 

encode DNA repair proteins and epigenetic modifiers or those noncoding RNAs that 

modulate chromatin structure.

Lastly, if diminished DNA repair and elevated oxidative DNA damage constitute the major 

mechanisms of arsenic carcinogenesis, we would expect to observe elevated rates of 

mutations in arsenic-exposed laboratory animals and human subjects. In this vein, Hei et al.
282 demonstrated, by employing AL cell assay, that arsenite could induce, in a dose-

dependent manner, mutations (mostly large deletions) in mammalian cells. They also 

observed that the mutagenicity of arsenite could be diminished markedly by cotreating cells 

with a radical scavenger, dimethyl sulfoxide.282 It will be important to unveil the degree to 

which arsenic exposure leads to mutagenesis. Recent advances in next-generation 

sequencing, especially exome sequencing,283 render it possible to unveil how arsenic 

exposure leads to mutagenesis in laboratory animals or human subjects.
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Figure 1. 
Inorganic arsenic and its metabolism. In liver, absorbed As5+ is reduced to As3+ by GSH as 

an electron donor, and As3+ undergoes sequential methylation and reduction with SAM and 

GSH as the donors of methyl group and electron, respectively, to generate MMAV, MMAIII 

DMAV, and DMAIII.
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Figure 2. 
iAs-elicited oxidative stress enhances carcinogenesis through impairing DNA repair 

pathway to induce mutations in DNA. As3+ can induce the overproduction of ROS and RNS 

through mitochondria dysfunction, cellular antioxidant imbalance, and impairment of ROS-

scavenging enzymes. Hence, iAs-elicited oxidative stress induces oxidative DNA damage, 

disturbs PTMs of DNA repair enzymes, and disrupts protein tyrosine phosphorylation, 

thereby enhancing DNA mutations to promote carcinogenesis.
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Figure 3. 
Major events governing the disruption of DNA repair pathways by iAs and its trivalent 

metabolites. Arsenite and its metabolites induce cell proliferation while inhibiting BER, 

NER, DSB repair, ICL repair, DDR signaling, cell cycle checkpoint regulation, and 

apoptosis of damaged cells. These together diminish the capacity of DNA repair and impair 

genetic integrity.
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Figure 4. 
Modes of action of inorganic arsenic and iAs-induced ROS/RNS in impairing the enzymatic 

activity of zinc finger (ZnF) proteins. iAs and ROS/RNS can target vicinal cysteines within 

the zinc coordination spheres of zinc finger proteins: (i) As3+ directly binds to these 

cysteines more strongly than Zn2+; (ii) ROS oxidizes these cysteines to form a series of 

oxidization products, such as –SOH and –S–S–; (iii) RNS, especially peroxynitrite, can S-

nitrosylate these cysteines. In all these cases, Zn2+ bound within zinc finger motifs is 

released through its displacement by As3+, which alters the conformation of zinc finger 

proteins and hence their enzymatic activities.
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Figure 5. 
Major events through which inorganic arsenite and its trivalent metabolites disrupt 

epigenetic integrity via inhibition of epigenetic regulators and chromatin modifiers. As3+, 

MMAIII, and DMAIII can impair the enzymatic activities of DNA epigenetic regulators (e.g., 

DNMTs, Tet, and CTCF) and chromatin-modifying enzymes (e.g., hMOF, TIP60, and 

PARP1), which subsequently perturb DNA methylation and histone PTMs, respectively, 

thereby disrupting epigenetic integrity.
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Figure 6. 
Arsenite disrupts DNA methylation. Methylation events in promoters repress gene 

expression, whereas those in gene bodies activate gene expression. Metabolism of iAs 

induces SAM deficiency, which results in global DNA hypomethylation. iAs exposure leads 

to decreased expressions of DNMT1, DNMT3A, DNMT3B, thus diminishing global DNA 

methylation. Additionally, iAs selectively inhibits the binding of CTCF to promoters of 

genes (e.g., DNMTs), leading to repression of tumor suppressor genes. Meanwhile, iAs 

inhibits Tet proteins, thus reducing the level of 5-hmC, which can be inhibited by weakened 

occupancy of CTCF in the promoters of TET genes. Combined together, iAs can repress 

tumor suppressors and activate proto-oncogenes, thereby impairing DNA repair and genome 

integrity.
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Figure 7. 
Arsenite and iAs-induced oxidative stress enhance DNA damage through disrupting the 

functions of zinc finger proteins. iAs-induced oxidative stress and As3+ itself can disrupt the 

zinc finger-containing epigenetic regulators and DNA repair enzymes, thereby impairing 

DNA repair. Simultaneously, oxidative stress generates oxidative DNA damage. These 

together may result in tumorigenesis.
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