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ABSTRACT OF THE DISSERTATION 

 

An Analogical Approach to STEM Education 

 

by 

 

Maureen Gray 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2021 

Professor Keith Holyoak, Chair 

 

STEM education is a persistent problem in the United States. Analogy offers a potential tool for 

improving educational outcomes because analogical comparison increases attention to the 

structural-relational information that characterizes experts’ conceptual representations. The 

current project investigated analogy-inspired instruction in two lab studies using UCLA 

undergraduates and one naturalistic classroom study. In Study 1, UCLA undergraduates learned 

about STEM concepts from lecture videos using analogical principles or control videos, and 

performance was assessed with an immediate posttest. Performance was similar across both 

instructional conditions, which may be attributable to the high-ability sample. In Study 2, UCLA 

undergraduates learned how to solve equation construction problems from videos that 

represented relational information explicitly in a geometric format, in a carefully-matched 

symbolic format, or in an adaptation of the gold standard of instruction for this topic, JUMP 

Math. While all lessons improved performance, the geometric and symbolic lessons were most 
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effective. As in Study 1, the high-ability sample demonstrated an ability to learn from all types of 

instruction. The classroom study investigated the efficacy of analogical instruction in an online 

class environment in the context of cognitive load theory. UCLA students enrolled in Life 

Sciences 30A: Quantitative Concepts for Life Scientists (in Winter quarter 2021) learned topics 

through a structured teacher-directed approach to analogical instruction or a less-structured 

student-directed approach, and exam performance was measured. Students benefitted from the 

teacher-directed approach and the benefit was especially pronounced for low-performing 

students. Implications for designing educational interventions for students with lower abilities, 

and for successful researcher-practitioner collaborations, are discussed.  
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Chapter 1: Introduction 

 Science, technology, engineering, and mathematics (STEM) fields present learning 

challenges for many students, and the United States has typically lagged behind comparable 

developed nations on standardized tests in science and mathematics. For example, American 

high school students placed 38th out of 71 surveyed countries in an international mathematics 

assessment and 24th in science (OECD, 2018). This issue is even more pronounced for students 

with traditionally under-represented minority (URM) backgrounds: achievement gaps between 

white and URM students have persisted for decades (Gonzalez & Kuenzi, 2012).  

 The problem is more severe than poor performance on standardized tests; rather, it stems 

from a lack of conceptual understanding in the fields of math and science (Maloney, O’Kuma, 

Hieggelke, & Van Heuvelen, 2001; Richland, Stigler, & Holyoak, 2012). In a study investigating 

the mathematical knowledge of American community college students, Stigler, Givvin, and 

Thomson (2010) found that these students failed to understand that mathematics is 

fundamentally a system of logically related concepts. Instead, the students believed math to be a 

collection of unrelated procedures that must be memorized and applied in an inflexible manner. 

Undergraduate physics students similarly lack conceptual understanding, instead relying on rote 

application of formulas to solve physics problems (Jonassen, 2003). Given the consistent and 

pervasive weakness of STEM education, it is clearly an important aim to foster greater 

conceptual understanding in STEM fields and to improve STEM education. 

 Work on relational reasoning and analogy, in particular, may help to improve educational 

outcomes in these fields. Many concepts in STEM fields are relational in nature (i.e., defined by 

shared relational structure as opposed to shared features), and mathematics is formally a system 

of relations (Devlin, 2012). Relationally-defined categories are more challenging to learn than 
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their feature-defined counterparts (Gentner & Kurtz, 2005) because they cohere around shared 

structure and do not necessarily share surface features, which makes identifying new instances 

more difficult. Further, much previous work has shown that novices have trouble noticing and 

capitalizing on shared structure of concepts. Instead, novices frequently focus on superficial 

characteristics, which are generally not central for problem solving (e.g., Chi, Feltovich, & 

Glaser, 1981; Rottman, Gentner, & Goldwater, 2012; Stains & Talanquer, 2008). For example, 

physics experts are able to look past superficial dissimilarities and categorize physics problems 

based on common principles (e.g., grouping problems together that can be solved by applying 

Newton’s second law). Novices, on the other hand, do not notice shared principles and instead 

categorize problems based on superficial components of the problem (e.g., grouping together all 

problems containing springs) (Chi et al., 1981). The divergence in classification strategies used 

by novices and experts suggests that novices’ representations of physics problems are not 

strongly linked to relevant physics concepts. This gap in conceptual knowledge is likely to 

manifest itself as difficulty with problem-solving. In addition to indicating a gap in conceptual 

understanding, inattention to relationships is a barrier to success in STEM fields. 

 Furthermore, it has been argued that the “end goal” of education is to foster the 

development of abstract relational schemas that can be applied flexibly and transferred to diverse 

situations (Goldwater & Schalk, 2016). For example, if a student learns how to analyze the 

structure of an argument in a philosophy class, but later does not apply that knowledge to 

political arguments, their education has in an important sense failed. Failure to transfer 

knowledge from the context in which it was learned to a novel context is a disappointingly robust 

finding (Renkl, Mandl, & Gruber, 1996). Novices’ knowledge representations do not 

prominently feature structural-relational information that remains constant across contexts and 
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this weakness in conceptual representation contributes to the inert knowledge problem (Fries, 

Son, Givvin, & Stigler, 2021). 

 The difficulty inherent in learning relational categories is compounded by ineffective 

teaching techniques that often leave the structural nature of STEM concepts and the relations 

between them implicit (Boaler, 2015; Richland et al., 2012; Tekkumru-Kisa, Kisa, & Hiester, 

2020). Compared to K-12 instructors in Japan and Hong Kong, American instructors do not 

effectively highlight the conceptual structure of mathematics and connections between 

mathematics concepts (Richland, Zur, & Holyoak, 2007). When American teachers do present 

problems that encourage students to make connections, they frequently lower the cognitive 

demands of the task (and thus its potential benefit) by focusing on accuracy of procedures rather 

than reasoning processes (Henningsen & Stein, 1997). Further, teachers often provide 

inappropriate scaffolding and effectively do the problem for the students (Stein, Grover, & 

Henningsen, 1996). These practices effectively transform the problem into yet another 

opportunity to practice procedural skills.  

 Science education is similarly problematic; in many K-8 classrooms, science is presented 

as a static body of accumulated knowledge that must be memorized and not as a process of 

reasoning and discovery (Tekkumru-Kisa et al., 2020). One study compared 8th grade science 

lessons from the US and four other higher achieving countries (Japan, the Czech Republic, 

Australia, and the Netherlands) (Roth & Garnier, 2006). In contrast with higher achieving 

countries, scientific content did not play a central role in over 70% of the videotaped American 

lessons. Further, when American teachers did present content, it was frequently “[organized] as a 

collection of discrete facts, definitions, and algorithms rather than as a connected set of ideas” 

(Roth & Garnier, 2006, p. 20).  
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Given the importance of relational knowledge in STEM education, analogical reasoning 

is a plausible domain of research from which techniques to improve STEM education can be 

drawn. Analogical reasoning, which involves a reasoner comparing two structurally (i.e., 

relationally) similar situations that may differ in their surface features, enables the powerful 

capacity to use knowledge about the source domain (typically well understood) to derive 

inferences about a target domain (typically less well understood). In this way, analogy allows a 

reasoner to capitalize on prior knowledge by using a familiar situation to better understand a 

novel or unfamiliar situation (for a review, see Holyoak, 2012). Importantly for the current 

project, analogical comparison necessitates attention to relational structure. 

 The benefits of incorporating analogies and analogical reasoning in STEM education 

have been robustly demonstrated (see Alfieri, Nokes-Malach, & Schunn, 2013 for a review). For 

example, analogical comparison of physics concepts increases far transfer (Nokes-Malach, 

VanLehn, Belenky, Lichtenstein, & Cox, 2013), and several studies have shown that including 

analogies in science texts increases comprehension of the scientific material in question and its 

causal relational structure (Braasch & Goldman, 2010; Clement & Yanowitz, 2003; Jaeger & 

Wiley, 2015). In the domain of mathematics, analogical comparison of worked examples 

illustrating proportionality led to higher performance on test problems and reduced common 

misconceptions (Begolli & Richland, 2016).  

 While the learning outcomes associated with including analogies in learning 

opportunities are typically positive, this approach is not without its potential pitfalls. Students in 

any classroom are not uniform. They do not come to a learning opportunity with the same 

expectations, prior knowledge, or cognitive resources, and this variability in student populations 

undoubtedly affects the efficacy of any proposed educational interventions. It is especially 
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important to keep the impact of individual differences in mind when considering URM students. 

These students are typically less academically prepared to begin college than their peers (Chen, 

2005), and educational interventions designed to benefit disadvantaged children often improve 

educational outcomes for their advantaged peers to an even greater degree (Ceci & Papierno, 

2005). Clearly, concerns regarding efficacy of educational interventions are especially relevant 

for these disadvantaged students.  

 Previous research has implicated executive functions (e.g., working memory, fluid 

intelligence, inhibitory control) in analogical reasoning (Gray & Holyoak, 2020; Hummel & 

Holyoak, 1997, 2003; Kubricht, Lu, & Holyoak, 2017; Tohill & Holyoak, 2000; Waltz, Lau, 

Grewal, & Holyoak, 2000) and in academic achievement (e.g., Campos, Almeida, Ferreira, 

Martinez, & Ramalho, 2013). One consequence of this connection is that students with fewer 

cognitive resources may be less able to benefit from analogies in educational settings. In fact, 

some research suggests that less able students may even be harmed by the presence of analogies 

in educational material (Jaeger & Wiley, 2015; Zook & Maier, 1994). 

 Since executive functions are correlated significantly with academic achievement 

(Campos et al., 2013), students with fewer cognitive resources at their disposal are already at a 

significant disadvantage in most educational settings. The learning capabilities of these students 

should not be discounted, however, as some studies have shown that children who attain low 

scores on figural analogy tests have similar potential for learning as children with higher scores 

(Touw, Vogelaar, Verdel, Bakker, & Resing, 2017). Furthermore, if insufficient executive 

functioning is the root of the problem, educational analogical interventions could be altered to 

lessen the cognitive load on the reasoner (e.g., Begolli & Richland, 2016; Richland & 
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McDonough, 2010; Richland et al., 2007). The ideal method to incorporate analogy into STEM 

education while keeping cognitive load in mind remains unclear. 

 The goal of the current project is to leverage principles from the field of cognitive 

psychology in general and analogical reasoning in particular to improve educational outcomes in 

STEM. More specifically, the aim is to improve students’ conceptual representations and ability 

to transfer their learning to novel contexts. This problem will be investigated in a specific course 

in a specific domain: Life Sciences 30AB: Quantitative Concepts for Life Scientists. 

 The LS 30 series is not a typical math class. It is a math class designed to build 

quantitative skills relevant to modern biology such as modeling, computation, and simulation. 

Thus, topics like single- and multiple-variable calculus, differential equations, and mathematical 

modeling are embedded in a rich, meaningful biological context. Most students in the LS 30 

sequence perform relatively well. Typical students might have difficulty with a few isolated 

concepts in the course, but most often these problems are addressable if the student seeks 

additional help in discussion section or in office hours. For a portion of struggling students, 

however, seeking a second explanation of a difficult concept is not enough. Discussions with 

these students in office hours reveal significant gaps in knowledge of course content and 

virtually no understanding of the interrelated structure of the material. The STEM achievement 

gap is present in this context – this population of struggling students largely consists of URMs. 

 Poorly (or un-) structured conceptual knowledge does not necessarily arise from a lack of 

effort on the students’ parts. It may arise from students focusing on the wrong aspects of 

concepts and failing to notice structural similarities. American K-12 instructors fail to impart the 

existence and importance of structure in mathematics and science (Richland et al., 2007; Roth & 

Garnier, 2006), and as a result many students enter LS 30 classrooms without the expectation 
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that there exists deep underlying structure to be discovered. This weak conceptual knowledge 

may manifest itself as a failure to recognize novel problems as structurally similar to learned 

problems on a test, or as failure to flexibly manipulate known procedures to solve a new kind of 

problem (i.e., transfer failure). Such problems have been informally corroborated by the LS 30 

instructors (Shevtsov, 2019, personal communication). 

An Analogical Approach 

 The suggested interventions (collectively referred to as an analogical approach) are based 

on a set of principles drawn from cognitive psychology and the field of analogical reasoning. The 

principles are summarized in Table 1. The analogical approach provides a theoretically driven 

and empirically supported framework for instructors to devise their own interventions to 

maximize the benefit of analogy in education. The current recommendations build upon previous 

guides to analogical teaching (see, for example Treagust, Harrison, & Venville, 1998; Vendetti, 

Matlen, Richland, & Bunge, 2015). Here I consolidate techniques that service the same general 

instructional goals, propose additional methods to incorporate analogy into classrooms, and 

highlight the importance of considering limitations in students’ cognitive resources. The 

principles described here are not intended to constitute an exhaustive set, but they all serve to 

highlight causal relations that are crucial to learning and transfer, particularly in STEM fields. 

One of the strengths of an analogical approach is its flexibility – it is not a prescription 

for a specific educational intervention or a call for teachers to drastically alter their teaching 

style. Instead, I have compiled a list of principles that instructors can draw upon as they see fit to 

make modest changes to the way in which they present material to their students. Although these 

instructional changes are fairly simple, the potential for benefits to student understanding are 

significant.  
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1. Capitalize on prior knowledge 

 Analogies allow learners to use prior knowledge to better understand an unfamiliar topic, 

and instructors would be well-advised to take advantage of this characteristic of analogy when 

possible. Many instances of analogical reasoning occur in situations in which there is an 

imbalance in knowledge: the reasoner draws on prior knowledge of a source domain to aid in 

understanding an unfamiliar target domain. The positive effect of prior knowledge on learning is 

well documented (Chiesi, Spilich, & Voss, 1979; McNamara & Kintsch, 1996). In general, prior 

knowledge alters the encoding of new knowledge (Boshuizen & Schmidt, 2008; Gobet & Simon, 

1996; Kimball & Holyoak, 2000), and this is no less true in the specific case of analogical 

encoding. Grasping that some new material is analogous to prior knowledge allows the reasoner 

to match corresponding elements of the target material into roles and relations that are already 

stored in memory, thus aiding comprehension (Bean, Searles, Singer, & Cowen, 1990). The 

powerful ability to draw inferences can guide scientific discovery and improve understanding 

(Holyoak & Thagard, 1995; Yanowitz, 2001). Further, using a familiar real-world experience as 

a source analog may increase student motivation, as the analogy provides an example of the 

application and relevance of classroom content (Duit, 1991). 

 An important type of situation in which prior knowledge may be particularly helpful in 

understanding novel material arises for concepts that cannot be directly perceived – either 

because they are too small (like submicroscopic particles), too large (like plate tectonics), or too 

abstract (like the human mind). A well-conceived analogy has the ability to bring such rather un-

imageable constructs into a tangible, imageable realm. In so doing, an analogy makes these 

constructs easier to understand and reason about. 
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 Reviews of science textbooks show that many textbook authors are sensitive to this 

characteristic of analogy – approximately 90% of analogies found in a collection of college-level 

biochemistry textbooks related concrete source analogs to abstract target concepts (Orgill & 

Bodner, 2006). There are also several examples of studies in which analogies were used to 

improve comprehension of a difficult-to-visualize concept (Baker & Lawson, 2001; Braasch & 

Goldman, 2010; Jaeger, Taylor, & Wiley, 2016). One study investigated the use of analogy to aid 

understanding of El Niño weather systems (Jaeger et al., 2016). Participants with low spatial 

reasoning abilities (i.e., those who would likely have the most trouble visualizing the large-scale, 

hard-to-visualize weather system) showed significant improvement in comprehension when they 

received a text with an analogy to a small-scale, more easily imageable situation (letting the air 

out of a balloon) (Jaeger et al., 2016). This benefit of analogy has also been demonstrated in 

classroom settings. College-level genetics students showed increased comprehension of abstract 

genetics concepts after receiving instructional analogies to help teach the concepts when 

compared to students in the same course who did not receive instructional analogies (Baker & 

Lawson, 2001). 

Although analogy can be helpful in many circumstances, a student must possess the 

requisite prior knowledge in order to capitalize upon it. Educators should not assume that all 

students have sufficient prior knowledge to benefit from an analogy discussed in class. Several 

studies have demonstrated that analogies are particularly helpful for individuals with a high level 

of prior knowledge (Braasch & Goldman, 2010; Jee et al., 2013; Rittle-Johnson, Star, & Durkin, 

2009). Second, instructors should not assume that students know how to effectively utilize 

analogies, even if they have been identified by an instructor (Venville, Bryer, & Treagust, 1994). 

Simply stating a cell is analogous to a factory may leave some students uncertain about which 
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aspects of the factory are like the cell and which aspects are not, so educators should take care to 

explain the source analog and its correspondence to the target concept fully. Finally, in nearly all 

cases the analogy will not be perfect. Some aspects of the source analog may not have 

corresponding elements in the target concept, and thus should not be carried over to the target 

concept. In order to prevent inappropriate prior knowledge from producing misconceptions, 

instructors should explicitly map the relevant correspondences and point out the limits of the 

analogy—that is, which aspects of the source analog are irrelevant. When possible, the 

description of the source may be selectively tailored to optimize the analogical match with the 

target. 

2. Highlight shared structure 

 Several methods to increase attention to shared structure have been proposed, and 

instructors can use these techniques to guide students to attend to the most important aspects of 

to-be-learned material. Aligning and comparing analogous examples focuses attention on shared 

relational structure, which emphasizes the critical characteristics of relationally-defined STEM 

concepts. Substantial work has demonstrated that analogical comparison increases attention to 

relations (Catrambone & Holyoak, 1989; Gentner & Markman, 1997; Gick & Holyoak, 1983; 

Goldwater & Gentner, 2015; Kotovsky & Gentner, 1996), and that alignment and analogical 

comparison of exemplars improves learning outcomes in STEM fields (Alfieri et al., 2013; 

Begolli & Richland, 2016; Gentner et al., 2016; Klein, Piacente-Cimini, & Williams, 2007; 

Nokes-Malach et al., 2013; Richland & McDonough, 2010). 

 Educators with extensive domain knowledge may believe that similarities between 

analogous cases are obvious, but research has consistently demonstrated that this is not true for 

novices (Chi et al., 1981; Gick & Holyoak, 1980, 1983; Stains & Talanquer, 2008). Further, 
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significant work has shown that analogical reasoning is a resource-intensive process. Analogical 

processing relies on several constructs that comprise cognitive capacity, including working 

memory, fluid intelligence, inhibitory control, and spatial abilities (e.g., Krawczyk et al., 2008; 

Viskontas, Morrison, Holyoak, Hummel, & Knowlton, 2004; Waltz et al., 2000). Individuals 

with weaker executive functioning capabilities will have a harder time carrying out analogical 

reasoning and are less likely to benefit from it in educational settings (Jaeger & Wiley, 2015; 

Richland & McDonough, 2010). These sources of individual variability must be taken into 

account when using analogy to highlight the shared structure among examples of a STEM 

concept. When analogical comparisons are introduced, they should be labeled as such to obviate 

the challenging process of noticing analogical similarity. 

 Comparing examples highlights shared structure, but the presentation of the examples 

should facilitate comparison without overloading limited capacity resources. For example, shared 

structure can be communicated through visuo-spatial cues in the form of static visual support 

(Begolli & Richland, 2016; Matlen, Vosniadou, Jee, & Ptouchkina, 2011; Rittle-Johnson & Star, 

2007). Simultaneous static presentation of exemplars frees up cognitive resources to devote to 

the comparison process and attend to the target material, obviating the need to hold both analogs 

in working memory at the same time. In addition to keeping all analogs visible during 

comparison, analogical processing can be facilitated through the specific presentation style of the 

visual representations. Displaying visual representations such that corresponding elements are 

spatially aligned can support greater learning (Matlen et al., 2011; Richland et al., 2007). Color 

coding can also be used to emphasize the entities in different exemplars that play analogous roles 

(see Figure 1.1). Simultaneous presentation of the analogs and of the layout of the entities being 

compared improves the facility of the comparison process. 
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 Visuo-spatial methods of emphasizing shared structure, while effective, are largely 

implicit. To maximize attention to this crucial aspect of the to-be-learned material, the 

correspondences between analogs should be described explicitly. This can be accomplished 

through verbal descriptions of the correspondences in which the instructor explicitly points out 

that two entities play the same role in analogous situations. In addition, students can be prompted 

to attend to this shared structure through the use of guided compare-and-contrast prompts. 

General prompts to compare two situations don’t reliably focus attention on the most relevant 

dimensions of comparison, but directed compare-and-contrast instructions (e.g., to compare 

instances and identify their similarities) lead students to notice shared structure (Catrambone & 

Holyoak, 1989; Gick & Holyoak, 1983). 

3. Align and connect semantic, mathematical, and graphical representations 

 In complex domains, many concepts can be represented in multiple formats. For 

example, a negative feedback loop can be represented verbally, visually in a diagram or graph, or 

symbolically as a set of differential equations. Exposure to multiple representations of the same 

concept has the potential to improve STEM learning (Cheng, 2000; Nistal et al., 2009) and 

practicing making connections between representations can improve statistics education (Fries et 

al., 2021). However, students must see and understand the connections between representations 

in order to benefit from them. Correspondences that seem intuitive for domain experts are less 

obvious to novice learners. Analogy offers suggestions for guiding students’ attention to these 

correspondences and for increasing their ability to map between representations. 

 For example, Bassok and colleagues (1998) introduced the construct of semantic 

alignment, which refers to the tendency to maintain systematic correspondence between the 

semantic relations that exist between pairs of real-world objects and mathematical relations 
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between arguments of arithmetic operations. The alignment between real-world and 

mathematical knowledge guides the application of abstract mathematical knowledge by both 

students and textbook writers, not only in the United States (DeWolf, Bassok, & Holyoak, 2015; 

Rapp, Bassok, DeWolf, & Holyoak, 2015) but also in South Korea (Lee, DeWolf, Bassok, & 

Holyoak, 2016) and Russia (Tyumeneva et al., 2018). Semantic alignment is a case of connecting 

verbal semantic representations with formal symbolic representations. Importantly, the alignment 

itself and its influence on problem solving procedures likely remains implicit in the mind of the 

problem solver and is not taught explicitly in schools. While previous research has not 

investigated the effects of making semantic alignment more explicit, previous work showing 

benefits resulting from highlighting shared structure (e.g., Begolli & Richland, 2016; Richland & 

McDonough, 2010) leads to the prediction that emphasizing the alignment between a model of a 

situation and its corresponding mathematical model should facilitate understanding of the shared 

structure and improve students’ abilities to translate verbal models into mathematical ones. 

 The original conception of semantic alignment is fairly limited in scope, referring to the 

use of intuitive real-world knowledge in guiding mathematical reasoning. However, its potential 

applications in LS 30 and other classrooms calls for a broader interpretation of the construct: 

students should be explicitly instructed in the meaning of various mathematical operations and 

the mapping between the various representations (semantic, mathematical, and graphical). 

 Solid conceptual understanding of the meaning of mathematical operations is crucial for 

mathematical modeling, which is one of the central topics of the LS 30 series. One commonly 

misunderstood operation is multiplication: many students conceive of multiplication as repeated 

addition, but it is better understood as scaling by some multiplicative factor. In the very first 

week of class, students learn how to translate a set of verbal assumptions that describe a dynamic 
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biological system into a series of differential equations that model the system. A student may be 

tasked with writing a mathematical expression to represent a population of rabbits, R, that grows 

at a rate b proportional to the population size. The conceptualization of “multiplication as 

repeated addition” does not support reasoning in this situation. However, if the conceptual 

meaning of multiplication is addressed, it is clear that the growth of the population should be 

represented by its current size scaled by the growth rate, and that this relationship can be 

expressed mathematically as multiplication, yielding b * R. 

 Whenever possible, instructors should explicitly discuss the conceptual meaning of 

mathematical operations, and in so doing explain their reasoning for selecting a particular 

mathematical representation to model a situation. In addition to explaining the conceptual 

meaning of mathematical operations, these abstract concepts should be connected explicitly to 

real-world referents in the word problems from which they were generated. To summarize, the 

recommendation is to highlight the conceptual meaning of mathematical operations, and to make 

explicit the alignment between various representations of a situation. Explicit acknowledgement 

of and instruction on the reasoning behind alignment may lead to improved performance on 

mathematical modeling and related problems that require connecting various representations.  

4. Consider cognitive load 

 All learning imposes some cognitive load on learners (Sweller, 2011). Some load is due 

to the inherent difficulty of the material being learned, termed intrinsic cognitive load. 

Extraneous cognitive load is due to the particular manner in which the material is presented to 

learners and is not inherent to the complexity of the material. Germane cognitive load refers to 

processing demands related to creation of abstract schemas. While it is clear that instruction 

should not overload a student’s processing capacity, the ideal balance of the sources of cognitive 
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load is not clear. Increasing extraneous cognitive load leaves fewer resources to devote to the 

target material and generally harms learning (Richland & McDonough, 2010). Increasing 

germane cognitive load, however, may facilitate students’ acquisition of the relational structure 

of target concepts (e.g., Paas & Van Merrienboer, 1994). The relation between the three sources 

of cognitive load was traditionally considered to be additive (Sweller, 2005), though more recent 

conceptualizations have characterized germane cognitive load as the proportion of working 

memory resources that are devoted to the intrinsic load of the target information (Sweller, 2010). 

In both conceptualizations, cognitive load theory emphasizes that educators must consider the 

load placed on the learner and maximize processing related to the target material. 

 In the context of cognitive load theory, analogical processing may increase both 

extraneous and germane cognitive load. Since analogical comparison is a resource-intensive 

process, instructors should present content in a manner that facilitates comparison and thus 

reduces the extraneous load placed on the learner. As noted in the section on highlighting 

structure, the extraneous cognitive load incurred by analogical comparison of exemplars can be 

minimized through small changes to the instructional delivery. First, the exemplars that are the 

focus of the alignment should be represented visually and presented simultaneously whenever 

possible. Corresponding elements of the exemplars should be aligned spatially, and may be 

written in corresponding colors to further highlight that they play analogous roles in their 

respective situations. In addition to these visuo-spatial methods, extraneous load may be reduced 

through the use of external scaffolding. Instructors can explicitly guide analogical comparisons 

and point out correspondences. Instructional materials (e.g., worksheets) can be written to 

structure the learning experience for the students. 
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 Analogy also offers an opportunity to increase germane cognitive load. Novices often do 

not engage in cognitive processes that facilitate schema formation without prompting (e.g., 

Catrambone & Holyoak, 1989) and many instances of transfer failure can be explained through 

novices’ incomplete schemas. For example, the most coherent way to sort physics problems is to 

use schemas for underlying physics principles. Physics novices, when left to their own devices, 

sort problems based on surface similarities (Chi et al., 1981). Redirecting the learner’s attention 

to structural/relational information through use of analogical comparison may aid in schema 

construction. As long as these modifications to increase germane cognitive load do not overload 

the capacity limitations of the learner, they stand to improve learning outcomes. External 

supports, like instructors or worksheets, may guide students through analogical processing to 

reduce germane cognitive load if necessary.  

5. Encourage generation of inferences 

 Generating information leads to better retention than passive study (for a review, see 

Bertsch, Pesta, Wiscott, & McDaniel, 2007), and the so-called generation effect has been 

demonstrated in educational settings (Metcalfe & Kornell, 2007). The effect of generating the 

correspondences between analogs has not been explicitly investigated, but some recent work 

suggests it may be similarly beneficial. Vendetti, Wu, and Holyoak (2014) compared the effects 

of generating solutions to semantically distant four-term analogies to passively viewing and 

evaluating completed analogies. Effects on memory were not examined, but generating solutions 

led to the induction of a relational mindset that biased attention to relational information in a 

subsequent unrelated task. These findings suggest that attention to relational information is 

malleable and, further, that generating relational information may push participants toward 

attending to it.  
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 When students are first introduced to a concept using analogous examples, tasking them 

with generating the mappings between corresponding elements of the examples would likely 

impose too great a cognitive load. However, this technique may be introduced later on in a 

lesson, when students have some familiarity with the concept. Low-knowledge learners typically 

need significant scaffolding (see principles 2 and 4), but these techniques may lose their efficacy 

for high-knowledge learners. This transition in effective instructional techniques for low- to 

high-knowledge learners has been termed the expertise reversal effect (Kalyuga, 2007), and the 

analogical approach fits within this framework. Early on, instructors should provide explicit 

guidance on analogical comparison to prevent the comparison from overwhelming limited 

cognitive resources. As learners gain expertise, however, their need for instructor guidance is 

reduced. Generating mappings among analogs and drawing appropriate inferences directs 

attention to relational structure, which gives proficient students the opportunity to practice 

attending to the important relational information without direction from an instructor. This 

reflects testing and real-world contexts in which instructor guidance is conspicuously absent. 

Further, previous research suggests that generating the underlying structure will lead to greater 

retention of that structure (Bertsch et al., 2007). 

An Analogical Approach at Work: Examples Using LS 30A Concepts 

 The principles may be applied in tandem to improve multiple aspects of instruction. I will 

now review some concrete examples of how an analogical approach can be applied to LS 30A 

concepts.  

Model writing 

 One of the foundational ideas in LS 30A is that the state of a dynamic biological system 

can be represented by values of relevant variables at specific time points. Early on in the course, 
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students learn how to translate a set of verbal assumptions that describe a biological system into 

a series of differential equations that model how the system changes. Figure 1.2 shows an 

example of four assumptions and the differential equations that can be constructed from them.  

 The analogical approach to teaching model writing emphasizes two things. First, 

mapping between the verbal assumptions and the mathematical operations that they correspond 

to should be highlighted. One way to accomplish this is to use corresponding colors, as shown in 

Figure 1.2. For example, the first assumption, colored in blue, corresponds to the blue term in the 

model below. Second, the instructor should explain the significance of each of the mathematical 

relations at work in the mathematical model representation and connect them to their real-world 

interpretations. 

  In the model shown in Figure 1.2, there are three different mathematical concepts at 

work that bear mentioning and should be explained by an instructor. The first mathematical 

concept at work is addition. Mathematically, adding a positive term to a quantity increases the 

magnitude of that quantity. In this context, the population is the thing to which we are adding a 

positive term. A positive term conceptually represents something that makes a population grow 

in size, such as the birth of new animals. The second mathematical concept at work is 

subtraction. Mathematically, subtracting is the inverse of addition: subtracting a positive term 

from a quantity decreases the magnitude of the quantity. In this context, subtracting a positive 

term conceptually represents something that makes a population decrease in size, such as death 

of animals by predation or old age. Finally, multiplication is also relevant. Mathematically, 

multiplication scales a quantity by some factor. In this context, several quantities are being 

scaled. For example, hares, H, are born at a constant per-capita rate, 0.1. In other words, we 

expect each existing hare to increase the population of hares by a factor of 0.1. Multiplying the 
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current population of hares by the per-capita birth rate yields a growth term that is scaled by the 

birth rate. 

 Instructors should not expect that these interpretations will come naturally to students, as 

many students lack conceptual understanding of even basic mathematical operations (Stigler et 

al., 2010). Connecting verbal descriptions with their formal counterparts and explicating that 

correspondence will enhance students’ conceptual understanding of mathematics and help them 

link abstract mathematical operations with real-world meaning. An analogical approach can 

increase understanding of the structure of mathematics and of the reasons for selecting particular 

mathematical models to represent real-world situations. 

Feedback loops 

 Feedback loops occur when a change in one variable causes a later change in that same 

variable. Feedback loops may be negative or positive, but I will restrict my discussion to 

negative feedback loops, as the analogical approach to teaching both of these concepts is similar. 

It is helpful to start with an example that is likely familiar to students, like the relationship 

between temperature and air conditioner activity. When temperature increases, this causes the air 

conditioner to turn on. When AC activity increases, this causes temperature to decrease. The 

temperature-AC activity example is an example of a negative feedback loop, which occurs when 

an increase in a quantity (temperature) causes a later decrease in that same quantity, or when a 

decrease in a quantity causes a later increase in that same quantity. The top panel of Figure 1.1 

shows a diagram of the temperature-AC activity example, which should be drawn on the board to 

reduce extraneous cognitive load. 

 After introducing the concept of negative feedback loops with a familiar example to 

capitalize on prior knowledge, instructors may then describe and diagram a second example, 
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such as the relationship between glucose and insulin. When a person eats, glucose levels in the 

bloodstream rise. This causes the pancreas to secrete insulin, which lowers the level of glucose 

by helping the body to metabolize glucose. When diagramming this example, instructors should 

apply the analogical approach to highlight the shared structure that defines negative feedback 

loops. Specifically, instructors should draw the diagrams so elements that correspond to one 

another are spatially aligned, and use color to further emphasize elements of each example that 

play the same role (see Figure 1.1). The correspondences can be explicitly pointed out (e.g., 

temperature corresponds to glucose because each of these things causes something else to 

increase). Each of these modifications to instruction serves to highlight shared structure and to 

reduce extraneous cognitive load. Visually aligning the exemplars and writing corresponding 

components in the same color invites comparison of the exemplars and correspondingly 

increases the germane load of the instruction. 

 Next, students may be given a third example to solidify their understanding: the 

relationship between a population of sharks and a population of tuna. When the tuna population 

increases, that causes the shark population to increase because they have more prey available. 

When the shark population increases, this causes a decrease in the tuna population. Students may 

then diagram and align the example with the previous. Here, students are generating the shared 

structure that defines negative feedback loops. Students may also be prompted to compare and 

contrast the examples and identify similarities, which further focuses attention on shared 

structure and increases germane load. 

Equilibrium points 

 Equilibrium is an important concept in the LS 30 series. An equilibrium point denotes a 

point in time at which a biological system does not change. For example, in a simple population 
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model, the birth rate of rabbits may be completely cancelled out by an equivalent death rate so 

that the population overall remains steady. Two kinds of equilibrium points exist: those that are 

stable and those that are unstable. To teach this concept to students, LS 30 instructors use a 

concrete source analog that grounds the abstract concept of equilibrium in something familiar 

and visualizable. Stable equilibrium points and their behavior are analogous to a ball in a cup 

(Figure 1.3, left panel): if a ball at the bottom of a cup is pushed slightly, it will return to its 

resting place at the bottom of the cup. Similarly, if a biological system is perturbed away from a 

stable equilibrium point, the system will return to the equilibrium point. Unstable equilibrium 

points and their behavior are analogous to a ball balanced on top of a hill (Figure 1.3, right 

panel): if the ball is pushed slightly, it will roll away from its point of stability and never return. 

Similarly, if a biological system is perturbed away from an unstable equilibrium point, the 

system will move to a different equilibrium point or on a trajectory of infinite growth.  

 The analogical approach to teaching equilibrium points makes use of students’ prior 

knowledge. To ensure that students use their prior knowledge effectively, instructors should be 

sure to fully explain the source analog and the correspondence of the target concept to the source 

(e.g., that the ball corresponds to the state of the system at a time point). In addition, instructors 

should describe the limits of the analogy and note which aspects of the source analog do not map 

onto the target concept. Explaining the limits of the analogy should keep students from drawing 

incorrect inferences about the target concept from the source domain. 

The Current Project 

 The current project aimed to investigate the efficacy of an analogical approach to STEM 

education. The goal of Study 1 was to explore the effectiveness of the analogical approach in an 

online lab setting. In this study, undergraduate participants recruited from the UCLA subject 
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pool watched lecture videos on topics drawn from LS 30A. Lecture videos that are designed 

using the analogical approach were compared to control videos that removed the key elements of 

the analogical approach. Learning from each of these videos was assessed with an immediate 

posttest.  

 Study 2 investigated one of the proposed mechanisms thought to underlie an analogical 

approach: increased attention to relational information. In this study, participants recruited from 

the UCLA subject pool learned how to translate verbal statements into mathematical expressions 

from lecture videos designed using an analogical approach, a carefully matched symbolic 

control, or the gold standard instruction for this topic. Of these three methods, the analogical 

approach is unique in that it explicitly represents the relational information that is crucial for 

problem solving. Learning and transfer were assessed on an immediate posttest. 

 Study 3 examined the analogical approach in a classroom setting. Two instructors 

teaching two different sections of LS 30A in Winter 2021 were recruited and their students 

participated in this study. The study compared the efficacy of analogical instruction that 

maximized germane cognitive load to analogical instruction that reduced the germane cognitive 

load associated with analogical processing through external scaffolds (instructor guidance and 

structured student worksheets). To minimize the variability due to student and instructor 

differences, Study 3 utilized a within-subjects crossover design in which students in both classes  

received both types of instruction throughout the quarter. The efficacy of the instructional 

materials for students at the low end of the course grade distribution were of particular interest in 

this study. 

 The classroom study was designed to assess the implementation of analogical instruction 

in an analogy-heavy course, but the implementation of the study deviated slightly from the 
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original vision. The Covid-19 pandemic and ensuing changes to the structure of the course 

necessitated changes to the materials and procedure, which will be explained further in the 

Method section. 

Chapter 2: Study 1. The potential benefit of an analogical approach to STEM 

learning in an online lab setting 

 The goal of Study 1 was to explore the possible benefit of an analogical approach to 

instruction in an online research setting. Participants watched video lessons on one of two topics 

drawn from LS 30A (feedback loops and functions). Learning from videos containing 

instructional techniques from analogical reasoning literature was compared with carefully 

matched control videos. 

Method 

Participants 

 Participants were 311 undergraduate students (Mage = 21.0, 236 female, 50 male, 3 

nonbinary, 22 did not respond) recruited from the UCLA psychology subject pool. Participants 

received course credit in exchange for their participation. 

Design and Procedure 

 Instructional style (analogical vs control) was manipulated between subjects. Participants 

were randomly assigned to view analogical (N = 166) or control materials (N = 145) for one of 

two topics, feedback loops (N = 162) or functions (N = 149). Participants first took a pretest 

followed by video lessons that contained embedded questions. Participants were instructed to 

treat the video lessons as they would a recorded lecture in an online class because they would 

answer some questions about the lessons at the end of the study. Participants were able to pause, 

rewind, and speed up the video lessons. After the lessons concluded, participants took a posttest 



 

 
 

24 

and filled out a demographic questionnaire and an end-of-study survey. The study was conducted 

via Qualtrics Research Platform and it took approximately 30-45 minutes to complete. 

Materials 

Functions 

 Instructional materials 

 Instructional materials for each of the four conditions consisted of a series of lecture 

videos and embedded practice problems. Lecture videos were recorded using the iOS screen 

recording feature. An image of the instructor was superimposed over the screen (see Figure 2.1). 

Participants were able to see the instructor and the screen while the instructor wrote on an iPad. 

An experienced LS 30A instructor provided learning objectives that students should be 

able to meet after learning about functions. Students should be able to (1) define and identify a 

function; (2) define and identify a function’s domain and codomain; and (3) define and identify 

an instance of function composition. Based on these objectives, video lessons were recorded for 

each instructional style. 

The lessons were comparable in length: the analogical lesson lasted 17:30 minutes and 

the control lesson lasted 14:22 minutes. Each lesson was broken into six segments separated by 

embedded practice questions. The embedded questions were designed as attention checks to 

ensure that participants were paying attention to the lessons. The embedded questions required 

straightforward recognition of the concepts in a new real-world example, and feedback was 

provided after each question. Four of the six embedded questions were the same in each 

condition. The two questions unique to the analogical instructional condition asked participants 

to identify corresponding elements of a function across different examples, and the 
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corresponding questions in the control condition asked participants to identify elements of a 

function within a single example.  

Each video lesson followed the same base script and the major topics were delivered in 

the same order. The lessons began with a real-world example of a function, before giving the 

definition and explaining how the example fit the definition of the concept. Then, the instructor 

explained a very common analogy used to teach functions: that of a machine that takes inputs 

and assigns each one to an output. The instructor then defined a function’s domain and codomain 

and identified these concepts in the real-world example. Next, the instructor presented additional 

examples that were symbolic and graphical in nature. The lessons ended with a definition and 

two examples of function composition.  

In the analogical instruction condition, the script was adapted to emphasize analogical 

learning techniques. Throughout the lesson, the instructor highlighted shared structure using 

color coding, spatial alignment, and comparing/contrasting. The instructor used a consistent 

color coding scheme to denote the correspondence between elements of the various examples 

(e.g., all inputs were written in red and all outputs were written in blue). In addition, 

corresponding examples were aligned spatially when possible. The instructor also explicitly 

compared and contrasted the examples and pointed out similarities throughout. After explaining 

the machine analogy, the instructor pointed out the limits of the analogy (aiming to keep 

participants from developing misconceptions). Finally, examples were presented simultaneously 

to reduce the cognitive load imposed by the comparison process.  

The control instruction condition used the same examples as the analogical condition, but 

the instructor did not use color coding, spatial alignment, or explicit comparing/contrasting. The 
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instructor did not explain the limit of the machine analogy, and each example was discussed and 

presented sequentially.  

Assessment 

To assess participants’ knowledge of functions, a set of seven questions were selected 

from the Function Concept Inventory (FCI; O’Shea, Breen, & Jaworski, 2016). The FCI is 

designed to assess students’ understanding of several key properties of the function concept (e.g., 

understanding the difference between functions and equations, recognizing and relating different 

representations of functions). These questions were supplemented with five questions written by 

an experienced LS 30A instructor to assess the learning objectives identified as important at the 

outset of the study. Two versions of each question were created and randomly assigned to set A 

or set B. Assignment of question set to pretest and posttest was counterbalanced across 

participants. The experienced instructor ranked the questions according to how well they 

assessed the learning objectives and questions were weighted accordingly in scoring. Partial 

credit was possible on some questions. Scores on each question were summed and standardized 

to yield a total proportion correct. After completing the posttest, participants completed a transfer 

test in which they generated a novel example of a function that they did not see in the lesson and 

provided its domain and codomain. Scores on this question ranged from 0-3.  

Feedback loops 

 Instructional materials 

An experienced LS 30A instructor provided learning objectives that students should be 

able to meet after learning about feedback loops. Students should be able to (1) define and 

identify positive and negative feedback loops; (2) modify a feedback loop so that it is the other 
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type of loop. Based on these objectives, video lessons were recorded for each instructional 

condition. 

The lessons for each condition were comparable in length: the analogical lesson lasted 

17:52 minutes and the control lesson lasted 14:36 minutes. Similarly to the function topic, the 

lessons were broken into seven segments separated by embedded practice questions to ensure 

that participants were attending to the lessons. In the analogical condition, the questions required 

alignment of different examples. In the control condition, the questions required recognition of 

the concepts within a single example. Feedback was provided after each question. 

Each video lesson was created from a single base script and covered the same topics. 

Both lessons contained two examples of negative feedback loops, two examples of positive 

feedback loops, and abstract representations of each type. The examples came from the domains 

of everyday experience or ecology. In order to emphasize analogy, the topics were rearranged in 

the analogical condition.  

The analogical condition began with a real-world example of a negative feedback loop 

and provided a definition. The instructor diagrammed the example (see Figure 1.1 and Figure 

2.1) and explained how it fit the definition of a negative feedback loop. Then, the instructor 

presented a second example in the same manner. Next, the instructor explicitly pointed out the 

corresponding elements of the examples before presenting an abstract representation of a 

negative feedback loop, diagramming it, and mapping it to both examples. The instruction for 

positive feedback loops followed the same pattern (i.e., example-example-abstraction). 

Similarly to the functions topic, the analogical instruction condition highlighted shared 

structure using color coding, spatial alignment, and explicit comparing/contrasting. Examples 

from each topic were displayed simultaneously to reduce the load of the comparison process. 
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In contrast, the control condition began with the definition of a negative feedback loop 

and the abstract causal diagram. Then, the instructor sequentially presented two real-world 

examples, diagrammed them, and explained how each fit the definition. The instruction for 

positive feedback loops followed the same pattern (i.e., abstraction-example-example). The 

instructor did not use color coding and examples were presented sequentially without explicit 

prompts to compare.  

Assessment 

The assessment consisted of 20 short scenarios describing phenomena in one of four 

domains (everyday experience, ecology, physiology, and economics). For each of the four 

domains, the short scenarios exemplified one of five different causal-relational categories 

(positive feedback, negative feedback, causal chain, common cause, common effect). Twelve of 

the scenarios were drawn from the Ambiguous Sorting Task (Rottman, Gentner, & Goldwater, 

2012) and the remaining eight were written by the experimenter. For each scenario, participants 

were tasked with selecting a causal-relational diagram that best depicted the scenario (see Figure 

2.2).  

 The examples that participants saw in the lessons were drawn from the domains of 

everyday experience and ecology, while physiology and economics were not used in the lessons 

and were thus untrained domains for the participants. Pretests and posttests were created for each 

participant by randomly assigning one familiar domain and one unfamiliar domain to the pretest 

and the remaining domains to the posttest. Scores on the positive and negative feedback loop 

questions were coded as correct or incorrect and summed. Scores ranged from 0-4. 

 The transfer test required participants to extend knowledge of two-variable feedback 

loops they had been seen in the lessons to more complex feedback loops involving three 
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variables. Four three-variable scenarios were written, one of each type for each familiar domain. 

Participants read each scenario and selected which causal-relational diagram best fit the scenario. 

Performance was coded as correct or incorrect. Participants were also asked to generate an 

example of each type of feedback loop that they did not see in the lesson. These responses were 

coded by independent coders on a scale from 0-3.  

Demographic Survey and End of Study Questions 

 Participants entered their age, gender identity, race, major, and college GPA. They also 

reported the highest level of mathematics that they had taken in high school and math grades 

received, and whether or not they had taken AP Biology and AP Environmental Science in high 

school. 

 A supplemental goal of this study was to investigate how participants engaged with the 

study materials in an online setting. Participants in the analogical instructional conditions were 

informed that the video lessons contained some strategies designed to help them learn. Then, the 

strategies were listed (color coding, explicit compare/contrast, simultaneous presentation of 

examples). The participants were asked whether or not they found the strategies helpful and to 

explain why or why not. All participants then reported how they engaged with the lecture videos, 

indicating whether or not they paused/rewound the videos, the speed they watched the videos at, 

and use of scratch paper. Finally, participants reported if they took the study seriously or if they 

had difficulty paying attention. 

Data Analysis 

 Coding 

 Two trained coders coded participants’ responses to the open-ended questions. All 

disagreements were resolved by discussion among the coders. The two generation questions for 
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the feedback loops topic were coded similarly. Two points were awarded if participants’ 

examples illustrated a full loop in which the second quantity clearly affected the first quantity, 

and one additional point for generating the right kind of feedback loop.  

 Reliability was assessed using weighted Cohen’s Kappa, a variant of Cohen’s Kappa 

designed for use with ordinal variables where closeness of agreement or disagreement should be 

taken into consideration. Inter-rater reliability for the three feedback loop questions (generating a 

positive feedback loop, generating a negative feedback loop, and altering a feedback loop) was 

moderately high, indicating good agreement beyond chance (all Cohen’s k between 0.60-0.81).  

 For the function topic, coders awarded one point for a clear description of the function’s 

domain, one point for a clear description of the function’s codomain, and one point for a clear 

description of the mapping from domain to codomain. Inter-rater reliability for the components 

of the functions question was lower but still indicated acceptable agreement beyond chance (all 

Cohen’s k between 0.52-0.60).  

Results 

Demographic information and video engagement 

Demographic information and video engagement was similar across topics. Generally, 

the sample was high-achieving academically; the average self-reported GPA was 3.71. In 

addition, pre-exposure to the topics covered in this study was high. Across both topics, 75% of 

the sample were identified as STEM majors. Further, the curriculum of AP Biology and AP 

Environmental Science covers feedback loops and nearly half of the sample in the feedback 

loops conditions (46%) had taken one or both of these classes in high school. Among participants 

in the functions conditions, 70% of the participants had taken calculus in high school and 72% 

reported getting mostly A’s in their high school math classes. 
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 Across both topics, approximately half of the participants watched the video lessons at 

normal speed (47%) and a quarter watched the lessons at maximum speed, which was twice the 

normal speed. Only 8% of the participants took notes on the lessons and 35% of participants 

reported pausing or rewinding the videos. Participant engagement was moderate and 75% of 

participants reported that they took the study seriously and were able to pay attention.  

Perception of instructional strategies 

Overall, participants reported that the strategies were helpful. Only 3% of participants 

across both analogical conditions reported that they were not helpful. Color coding was endorsed 

as helpful by the largest number of participants (77%) followed by leaving past examples on the 

board (65%). About half (48%) of the participants stated that explicitly identifying 

correspondences between the examples was helpful. 

Feedback Loops 

 Of the 162 participants assigned to the feedback loop topic, 160 completed the pretest. 

The two participants that did not complete the pretest were dropped from the analysis. In general, 

participants performed well on the feedback loop pretest. Almost one third of the participants (n 

= 51) scored perfectly on the pretest, and the median score was 75%.  

 Selecting a measure to capture change from pretest to posttest involves weighing costs 

and benefits of various approaches. In the current project, normalized change scores were 

calculated for each participant using the pretest and posttest scores (Marx & Cummings, 2007). It 

is often subjectively more difficult to make progress at a high level of performance and 

normalized change scores reflect this reality. While not a perfect measure, normalized change 

scores allow the detection of change at this high level while avoiding a low pretest score bias. All 

scores are normalized and range from -1 to +1, regardless of performance on the pretest. As a 
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result, normalized change scores are easier to interpret than other measures of learning gain. 

Normalized change scores (c) are calculated following Equation 1. 

 If the participant performs better on the posttest than the pretest, c is calculated as a gain 

score and represents the participant’s actual improvement relative to the maximum possible 

improvement (Hake, 1998). If the participant scores perfectly on the pretest and posttest or if the 

participant receives 0 points on the pretest and posttest, they are dropped from the analysis. In 

these cases, the participant’s performance is beyond the scope of the assessment. If the 

participant performs the same on the pretest and posttest, c = 0. Finally, if the participant 

performs better on the pretest than the posttest, c captures the participant’s actual loss relative to 

the maximum possible loss. 

 After dropping participants according to the rules above and those that did not finish the 

experiment, there were 134 participants remaining for the normalized change analysis. Figure 2.3 

shows the distribution of normalized change scores in each condition, which are markedly non-

normal. Accordingly, nonparametric methods were used to test statistical significance. 

Bootstrapping procedures rely on the single assumption that the sample is representative of the 

population and do not make any assumptions about the underlying population. The sample is 

treated as a population and many “pseudo-samples” are repeatedly drawn from the original 

sample (Calmettes, Drummond, & Vowler, 2012). Then, observed sample statistics can be 

compared to the distribution of statistics computed from the pseudo-samples. 

 In both conditions the scores formed two clusters around 0 and 1.0. To investigate the 

subpopulations apparent in the dataset, the data were split based on normalized change scores. 

Participants were categorized based on whether or not they improved over the course of the 

study (i.e., whether c > 0). A Chi-Square test of independence was performed to assess the 
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relationship between conditions and improvement over the course of the study. There was 

relationship between the variables, X2(1, N = 134) < .01, p = .99. As a result, following 

comparisons were calculated after collapsing across conditions. 

Across both conditions, 34% of participants (N = 45) achieved maximum possible 

improvement (i.e., c = 1.0). The second most common score was 0 (17.2%, N = 23), which 

indicates no change. Finally, 22 participants (16.4%) attained a score of -0.25, which indicates 

that these participants scored perfectly on the pretest and answered one question incorrectly on 

the posttest. Visual and numerical comparisons of these groups showed that they did not differ 

on self-reported GPA (median 3.80 vs 3.82), prior experience with the material in high school, 

time spent on the experiment, or performance on the transfer test. 

Although the distributions were bimodal, they were similar in shape so the median was 

used to summarize the data. The median for each condition was 0. The observed difference in 

performance was calculated by subtracting median performance in the analogical condition from 

median performance in the control condition. Bootstrap/resampling methods were used to test 

the null hypothesis that there is no difference between the median of the analogical and control 

groups. Briefly, I conjoined the two data sets into a single set, and resampled (with replacement) 

“control” and “analogical” groups from this set. This was repeated 10,000 times, and the p-value 

of the result was calculated as the number of simulations producing results as extreme or more 

than the observed result, divided by 10,000. The observed difference between conditions was 0.0 

with a 95% confidence interval (-0.50, 0.50). The bootstrap analysis showed that the conditions 

were not significantly different (p = .56).  

 A total of 155 participants completed both the pretest and transfer test and thus were 

subject to analysis. Figure 2.4 shows transfer scores for participants in each condition. Again, the 
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scores are non-normal and as a result nonparametric methods were used to test statistical 

significance. In both conditions the median score was 11 out of 12 points possible.  

 The observed difference in performance was calculated by subtracting median 

performance in the control condition from median performance in the analogical condition, 

yielding an observed difference of 0. A similar bootstrap procedure was used to test the null 

hypothesis that there is no difference in transfer performance between the analogical and control 

groups. The observed difference between conditions was 0 with a 95% confidence interval (-1.0, 

1.5). The bootstrap analysis showed that the conditions were not significantly different (p = .36).  

Functions 

 Compared to the feedback loops topic, performance on the functions pretest was lower 

and had greater variability. Performance is reported as proportion correct. The median score was 

.49 and the inter-quartile range was .32. Of the 149 participants, 10 did not complete the posttest 

and so were dropped from the analysis. As in the feedback loops conditions, a normalized 

change score was calculated for each participant. 

 Figure 2.5 shows the distribution of normalized change scores in each condition.  The 

distribution of scores in each condition appeared comparable and the median scores did not differ 

greatly (0.18 for participants in the analogical condition compared to 0.22 in the control 

condition). 

 The observed difference in performance was calculated by subtracting median 

performance in the control condition from median performance in the analogical condition. A 

similar bootstrap procedure was used to test the null hypothesis that there is no difference in 

transfer performance between the analogical and control conditions. The observed difference 
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between conditions was -0.04 with a 95% confidence interval (-0.07, 0.19). The analysis showed 

no significant difference in average performance (p = .27). 

 Next, scores on the function generation question were analyzed. Fourteen participants did 

not complete the function generation question and were dropped from the analysis. Figure 2.6 

shows that performance on the generation question was very good and 67% of participants 

scored perfectly. The observed difference between condition medians was 0.0 with negligible 

variability, resulting in a 95% confidence interval (0, 0). The analysis showed no significant 

difference in average performance (p = .99). 

Study 1 Discussion 

 The aim of this study was to investigate the potential benefit of an analogical approach to 

STEM education in an online research setting. Instruction designed using principles from 

analogical reasoning was compared to control instruction. Specifically, the experimental videos 

used color coding, spatial alignment, and explicit comparing/contrasting to highlight shared 

structure. In addition, old examples remained on screen to lessen the cognitive load of 

comparison. These elements were removed from the control videos. Performance was assessed 

on an immediate posttest followed by a transfer test. 

 Across both topics covered by the study, learning outcomes were remarkably similar 

across instructional conditions. No difference in posttest performance was observed in 

performance or in transfer performance. While data on attention and motivation was not 

analyzed systematically, a significant proportion of participants reported low engagement with 

the lessons and this may dampen the efficacy of any instruction. In fact, a significant proportion 

of the sample showed no improvement at all or a slight decrease in performance. While these 
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participants did not differ in any way detectable by the current study, it is possible that fatigue or 

carelessness may account for whether or not participants improved in the study. 

 In general, the sample was high-performing academically and had high levels of prior 

experience with the topics covered in the study. Previous research suggests that instructional 

interventions have reduced (and sometimes no) impact on students with high cognitive ability 

(e.g., Nesbit & Adesope, 2006) and intelligence and prior academic achievement are significant 

predictors of achievement in higher education. For example, one meta-analysis ranked 105 

predictors by effect size and found that High School GPA  and previous academic achievement 

as measured by admissions tests both ranked in the top ten, over variables like a teacher’s 

enthusiasm for the subject and teaching (ranked 21) and instructional tasks that are designed to 

increase students’ conceptual understanding (ranked 30; Schneider & Preckel, 2017).  Given the 

overall high academic achievement of UCLA students, the present study is in line with these 

findings. 

 A great majority of participants reported that color coding and leaving the old examples 

visible aided their learning, while only half of participants reported that the explicit comparison 

was helpful. Previous research shows that students’ beliefs about effective learning techniques 

are not always accurate (Bjork, Dunlosky, & Kornell, 2013). Further, effectiveness of 

instructional style does not solely determine efficacy. Students are not passive receivers of 

instruction; their perception of the instructional style and teacher behaviors mediate instructional 

efficacy (Weinstein, 1983). 

 Although Study 1 did not find significant effects of instructional method, conclusions 

about efficacy are limited by the time frame of the learning and assessment. Many researchers 

have drawn a distinction between immediate performance and long-term learning (Soderstrom & 
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Bjork, 2015). Future work should investigate whether or not these instructional manipulations 

confer differential longer-term benefits. 

Chapter 3: Study 2. The potential benefit of an analogical approach to solving 

equation construction problems in an online lab setting 

 The goal of Study 2 was to investigate whether increased attention to relational 

information improves instruction on a specific topic in mathematics. Participants learned to 

translate verbal descriptions of proportional relationships into mathematical expressions. For 

example, the statement, “There are six times as many students as professors at this university” 

can be translated into the symbolic expression S = 6P (Martin & Bassok, 2005; Simon & Hayes, 

1976). These problems are notoriously difficult, with error rates ranging between 20% and 60%, 

even for students with considerable experience in mathematics (Christianson, Mestre, & Luke, 

2012). Translating a verbal description of a situation into a mathematical representation is a key 

topic in LS 30A, and many weaker students have difficulty with this topic on the final exam 

despite the fact that it is initially introduced during the first week of instruction. The most 

common error on equation construction problems is to reverse the relationship between the 

quantities in the problem (i.e., 6S = P), and success requires students to accurately represent and 

reason about the relation between the two quantities. Visual representations likely facilitate 

problem solving because they allow students to see relationships contained in symbolic or verbal 

forms represented explicitly (Larkin & Simon, 1987). 

 In this study, participants watched one of three lecture videos aimed at teaching strategies 

to solve equation construction problems. One video highlighted relations among quantities in the 

word problem using a geometric representation. Learning from this video was compared to a 

carefully-matched purely symbolic lesson that contained the same procedural steps as the 
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experimental condition, but without explicit reference to relations, and a third condition that 

constitutes the current gold standard instructional method for this topic. 

Method 

Participants 

 Participants were 399 undergraduate students (Mage = 20.4, 264 female, 108 male, 3 

nonbinary, and 24 did not respond) recruited from the UCLA subject pool. All participants 

received course credit in exchange for their participation. 

Design and Procedure 

 The experiment was conducted entirely online using the Qualtrics survey platform. 

Participants completed the study on their own time and it took approximately 30 minutes to 

complete. In order to be included in the study, some prior knowledge of basic mathematical 

concepts was necessary. A five-question multiple choice test assessed knowledge of graphing 

points in a cartesian system, slope, and equations of lines. Each question was presented on its 

own page and participants were not permitted to go backward to questions they had already 

answered. Participants that answered three or fewer questions correctly (N = 51) were excluded 

from the study.  

 Participants who met the inclusionary criteria moved on to take a pretest consisting of 

five equation-construction problems, and were then randomly assigned to one of three 

instructional conditions (geometric, symbolic control, JUMP Math control). No feedback was 

provided on the pretest. The experimental condition highlighted the relationship between 

quantities in equation-construction problems using an explicit geometric referent. The first 

comparison condition replicated the procedural steps of the geometric condition but was purely 

symbolic in nature. The final comparison condition adapted lessons on equation construction 
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from JUMP Math, which is considered by many mathematics educators to be a gold standard in 

mathematics instruction (e.g., Solomon et al., 2019).  

 In order to increase the similarity of the experiment to conditions of online learning, 

participants were allowed to watch the video lessons at their own pace. Participants were free to 

pause, rewind, and speed up the videos as they were watching. Each video lesson was cut into 

eight segments, with each segment presented on its own page of the survey. Once participants 

advanced past a segment, they were not permitted to go back and review the segment. Each 

lesson also contained a set of embedded questions to ensure participants were following along 

with the videos and two full practice problems. All questions embedded in the video included 

feedback. 

 After the video lessons, participants took a posttest with both equation construction 

problems and transfer problems, filled out the demographic questionnaire, and answered some 

debriefing questions about how they engaged with the experimental materials. Participants 

reported whether or not they paused or rewound the videos, note-taking behavior, and the speed 

at which they watched the videos. Finally, participants reported whether or not they used the 

strategy they learned in the videos.  

Materials 

Instructional materials 

 Instructional materials for each condition consisted of a lecture video, embedded 

questions, and practice problems. In each video, an instructor taught participants how to solve 

equation construction problems. Participants watched as the instructor wrote on a white board 

and solved two example problems. The same example problems were solved in each lesson. In 

the geometric and symbolic lessons, the instructor began with an easy example problem, then 
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generalized the procedure, and prompted participants to solve a similar practice problem. After 

participants received feedback on the practice problem, the video lessons resumed and the 

instructor solved a more difficult example problem. Participants then solved a more difficult 

practice problem. The JUMP Math lessons began with a discussion of ratios before the instructor 

solved the easy example problem. Participants were then prompted to solve an easy practice 

problem before moving on to watch the instructor solve a more difficult example problem. 

Participants then solved the difficult practice problem. All lessons concluded with an explanation 

of the concept of proportionality. The geometric lesson videos totaled 18.25 minutes and the 

symbolic comparison was comparable at 16 minutes. The JUMP Math lesson videos were 13.5 

minutes long. 

 Geometric lesson 

 The geometric lessons taught participants a strategy to represent the relationship between 

two quantities explicitly as the equation of a line. The strategy consists of four basic steps. The 

first step is to draw a set of axes to represent the quantities in the problem. For example, one 

problem reads, “For every banana, there are three apples. Write an equation for the number of 

apples.” Since the problem asks for the number of apples in terms of bananas, “number of 

apples” goes on the vertical axis and “number of bananas” goes on the horizontal axis (see 

Figure 3.1a). Second, participants are instructed to plot points on the axes that correspond to the 

number of bananas and apples. According to the problem text, when there is one banana, there 

are three apples and this corresponds to the point (1, 3) on the banana-apple axes (see Figure 

3.1b). In order to draw a line capturing the relationship, one more point is necessary. The 

problem establishes a proportional relationship, so when there are 0 bananas there will also be 0 

apples. This corresponds to the point (0, 0). After plotting the points, the next step is to connect 
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the points with a line and find its slope. The line visually captures the relation between the 

number of bananas and the number of apples, which draws attention to the relational information 

that is crucial to solving these problems. The slope of the line is the proportionality constant that 

captures specifically how the number of apples varies as the number of bananas increases. Since 

the line goes through the origin, the line must be of the form 𝑦 = 𝑘 ∗ 𝑥. Finally, participants are 

taught how to calculate the slope of the line (k) (see Figure 3.1c). Putting everything together, the 

equation for the line mathematically representing the relationship between the number of apples 

and the number of bananas is: number of apples = 3 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 of	bananas . The geometric 

representation used to find the equation for the line focuses attention on the critical relational 

information: the rate of change between bananas and apples. 

 In sum, this approach uses a physical geometric representation to reify the relation 

between the quantities in the problem. This lesson highlights the relations that participants must 

see and use to guide the translation of words into symbols. Representing the relationship visually 

also reduces the extraneous cognitive load imposed on the learner, as the quantities and their 

relationship do not need to be held in mind and manipulated. 

 Symbolic control lesson 

 The first comparison condition consisted of the same exact steps as those used in the 

geometric lesson, but without the explicit representation of relational information. This lesson 

taught a strategy with procedural steps that mirrored the geometric lesson: participants learned to 

set up an equation to find a quotient (q) that captures the number of apples per one banana. Then, 

participants learned how to use q to find the final expression (see Figure 3.2).  
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JUMP Math lesson 

 JUMP Math is a non-profit organization that prepares resources for teachers covering 

grades 1 to 8. Their lessons follow an evidence-based “guided discovery” approach that 

encourages students to work through challenges on their own with feedback and scaffolding 

from the instructor when necessary (“Research Supporting JUMP Math | JUMP Math,” n.d.). 

JUMP Math outperformed classic instruction styles in a series of randomized controlled trials, 

improving students’ math performance and attitudes (Solomon et al., 2019), and distinguished 

mathematics instructors consider this program to be the current gold standard in mathematics 

instruction (“Research Supporting JUMP Math | JUMP Math,” n.d.). 

 The lesson was adapted from JUMP Math’s Teacher Resource guide on equations, ratio 

problems, and the constant of proportionality (“Teacher Resource for Grade 8 - New US Edition 

| JUMP Math,” n.d.). The lesson first taught participants how to use ratio tables to express ratios 

between two quantities (see Figure 3.3a), and then walked participants through the process of 

writing an equation from a ratio table in an example problem (see Figure 3.3b). Notably, the ratio 

table contains the same information (i.e., ordered pairs) captured by the line in the geometric 

lesson, but the relationship is not explicitly represented.  

Pretest and posttest 

 Equation-construction problems require the translation of verbal information describing a 

multiplicative (i.e., proportional) relationship into a symbolic mathematical expression. 

Proportional problems describe scenarios in which two quantities scale with one another by a 

constant rate. Ten equation-construction problems were written for use in the study and 

randomly divided into two sets for use in the pretest and posttest. Assignment of problems to 

pretest and posttest was counterbalanced across participants. Each problem was scored as correct 
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or incorrect to and scores were summed to yield a total out of 5. Reversal errors, in which 

participants reverse the quantities in the expression, were also counted. 

 In addition to the five-equation construction problems, participants completed a transfer 

test that consisted of six problems that assessed understanding of proportionality. Each problem 

was scored as correct or incorrect and scores were summed to yield a total out of 6.  

Results 

Demographic information and video engagement 

 As in Study 1, the sample was high-achieving academically; the average self-reported 

GPA was 3.65, 68% of participants reported taking calculus in high school and 68% reported 

getting mostly A’s in their high school math classes. 

 Slightly over one-third of the participants (37%) reported watching the videos at normal 

speed and 31% watched the lessons at maximum speed, which was twice the normal speed. 22% 

of the participants took notes on the lessons and 26% of participants reported pausing or 

rewinding the videos. 

 Across the three instructional conditions, participants reported using the instructional 

strategies at seemingly varying rates (see Table 2). A Chi-Square test of independence was 

performed to assess the relationship between self-reported strategy use and instructional 

condition revealed a significant relationship between the variables, X2(4, N = 333) = 19.53, p < 

.001.  

Analyses 

In general, participants performed well on the pretest (34.8% of participants scored four 

or higher and 21.9% received a perfect score). As in Study 1, a normalized change score was 
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calculated for each participant to assess the effect of each instructional method on improving 

performance on equation construction problems (Marx & Cummings, 2007). 

 Figure 3.4 shows that participants in the geometric and symbolic conditions (median = 

0.75 and 0.80 change scores, respectively) performed better than the participants in the JUMP 

condition (median = 0.33). In addition to the difference in average performance, the distribution 

of normalized change scores in the JUMP condition appears bimodal: participants are clustered 

around scores of 0 and 1.0.  

 To compare normalized change scores between conditions, an F-like statistic was 

computed. Roughly, to capture within-group variation, I computed the difference between each 

observation and its respective condition median and compared this to the difference between 

each observation and the overall grand median. Bootstrap/resampling methods were used to test 

the null hypothesis that there is no difference between the medians of three conditions. Briefly, I 

conjoined the three conditions into a single set, and resampled (with replacement) “geometric”, 

“symbolic control” and “JUMP Math” groups from this set. From each of these pseudosamples, I 

computed resampled condition medians and an overall resampled grand median. I then computed 

a resampled F-like statistic. This procedure was repeated 10,000 times, and the p-value of the 

result was calculated as the number of simulations producing results as extreme or more than the 

observed result, divided by 10,000. The observed F-like statistic was 0.50 and the bootstrap 

analysis showed that the conditions were significantly different (p = .002). 

 To investigate which conditions were significantly different from one another, individual 

condition medians were compared using resampling methods. The Holm-Bonferroni method was 

used to control family-wise error rate (Holm, 1979). The analyses showed that the observed 

difference between the geometric and symbolic control conditions was not statistically different 
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from 0 (observed difference = -0.05, p = .72). However, the geometric condition showed greater 

improvement than the JUMP Math condition (observed difference = 0.42, p = .04), as did the 

symbolic control compared to the JUMP Math condition (observed difference = 0.47, p = .05). In 

sum, the JUMP Math condition led to less improvement in performance on equation construction 

problems than did the other two conditions. 

 Next, transfer performance was examined in the full dataset (i.e., including participants 

who scored perfectly on the pretest and posttest and participants who scored 0 on the pretest and 

posttest). Figure 3.5 shows transfer performance for each condition. To compare transfer 

performance among conditions, an F-like statistic was computed from the dataset. A similar 

bootstrap method was used to test the null hypothesis that there is no difference between the 

mean of the three conditions. The observed F-like statistic was 0.01  and the bootstrap analysis 

showed that the conditions were not significantly different (p = .26).  

 Finally, error patterns were examined. Reversal errors occur when participants reverse 

the relationship between the quantities in their response. Reversal scores were computed for each 

participant on the pretest and posttest by subtracting the number of reversal errors from 5 (the 

maximum score on the pretest and posttest and thus the maximum number of reversal errors 

possible). This measure captures how many reversal errors a participant makes, and does not 

include other types of errors. Higher scores correspond to fewer reversal errors. A reversal 

change score was computed similarly to the normalized change score. The reversal change score 

is a measure of actual improvement in reversal errors relative to possible improvement. 

Numerically, the symbolic control condition (median = 1.00) performed better than both the 

geometric (median = .667) and JUMP Math condition (median = .333).  
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 To compare performance among conditions, an F-like statistic was computed. A similar 

bootstrap method was used to test the null hypothesis that there is no difference between the 

median of the three conditions. The observed F-like statistic was 0.65  and the bootstrap analysis 

showed that the conditions were significantly different (p = .006). 

 Individual conditions were again compared using resampling methods and the Holm-

Bonferroni method to control family-wise error rate (Holm, 1979). Although the omnibus test 

indicated a difference among conditions, none of the pairwise comparisons reached significance 

after correcting for multiple comparisons. The observed difference between the geometric and 

symbolic control conditions was not statistically different from 0 (observed difference = -0.333, 

p = .72). The observed difference between the geometric and JUMP Math conditions was not 

statistically significant (observed difference = 0.333, p =.43), and neither was the difference 

between the symbolic control and the JUMP Math condition (observed difference = .667, p = 

.11).  

Study 2 Discussion 

 The aim of this study was to investigate the potential role of attention to relational 

information in mathematics. Participants watched one of three lecture videos that taught 

strategies to solve equation construction problems. Lessons using a relational geometric 

representation were compared to a carefully-matched symbolic control lesson and a lesson 

adapted from high-quality standard instruction for this topic. Both the geometric lesson and the 

symbolic control lesson outperformed standard instruction. An omnibus test revealed that lessons 

also differed in the effectiveness of reducing reversal errors, although none of the pairwise 

comparisons reached significance after correcting for multiple comparisons. No difference was 
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observed in transfer performance. In addition, a Chi-square analysis suggested that use of 

strategies differed among conditions. 

 Gains in performance on equation construction problems were observed most 

prominently in the geometric and symbolic conditions. These instructional methods represent 

novel strategies to improve performance on equation construction problems. Previous attempts to 

improve performance have investigated the impact of changing word order to facilitate problem 

solving (Cohen & Kanim, 2005; MacGregor & Stacey, 1993) or training students to construct 

accurate situation models (Reed, 1987; Weaver & Kintsch, 1992). One study found that repeated 

practice alone improved performance for non-math majors (Christianson et al., 2012), but the 

intervention was highly procedural in nature and it is unclear the extent to which such instruction 

improved conceptual understanding of equations and proportionality. 

 Overall accuracy and improvement in reversal errors was indistinguishable between the 

geometric and symbolic instruction, and both appeared to be more effective than JUMP Math 

instruction. Although previous research suggests that visual referents may be particularly helpful 

for improving problem solving in mathematics (Larkin & Simon, 1989), it appears that the 

addition of a visual representation of the relational information in word problems did not aid 

students in the present study any more than a purely symbolic procedure. 

 One possible explanation for the efficacy of the purely symbolic procedural approach is 

that this approach to solving problems likely mirrors much of the mathematics instruction that 

students have already received. K-12 mathematics instruction in the US is highly procedural in 

nature (Richland, Stigler, & Holyoak, 2012). The Chi-square analysis suggests that more 

participants reported using the symbolic than the geometric and JUMP Math strategies, so it is 

possible that the familiarity of the strategy made it easier for participants to learn and use. 
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Further, students’ beliefs about the efficacy of instruction mediate their learning from it 

(Weinstein, 1983). If students expect mathematics to be a series of procedural steps (as many 

students do; Stigler, Givvin, & Thomson, 2010) and the lesson matches their expectations, they 

may be more willing to engage in the lesson and thus to benefit from it. Students are less willing 

to engage in strategies that they perceive as effortful (Biwer, de Bruin, Schreurs, & oude 

Egbrink, 2020); to the extent that a strategy was perceived as effortful, it is less likely that 

students would try to adopt it. 

Despite the prior research support it has received (e.g., Solomon et al., 2019), the JUMP 

Math condition reliably produced less improvement than the other conditions. One possibility is 

that this approach is less amenable to adaptation to an asynchronous online learning 

environment. JUMP Math lessons are built around considerable cooperation with fellow students 

and feedback from an instructor. These elements were absent from the current study, which may 

have damaged the fidelity of the JUMP Math instruction. That online instruction is different than 

face-to-face instruction is a truism, and efficacious instruction looks different across these 

different mediums. While JUMP Math has been shown to be efficacious in live classroom 

settings, it is possible that such strategies are less suitable for adaptation to asynchronous lecture 

videos. 

The lack of difference in transfer performance is consistent with previous findings 

indicating that transfer performance is difficult to elicit (Renkl, Mandl, & Gruber, 1996). While 

each instructional condition contained a brief description of the concept of proportionality, the 

bulk of each lesson was devoted to explicit instruction in solving equation construction 

problems. Transfer performance is more likely to be improved by lessons that present several 

different problems that all embody the proportionality concept (Richland et al., 2012). 
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Study 2 suffered similar limitations as those noted in Study 1. Specifically, the study may 

have underestimated the efficacy of these instructional strategies because instructional 

interventions often have less impact on students with high prior achievement (Schneider & 

Preckel, 2017). The relational information that was explicitly represented in the geometric 

instruction was contained in each of the other conditions, though it was less obvious. It is 

possible that sufficiently high-performing students do not need the extra representational support 

to aid them in problem solving. 

Chapter 4: Investigating an analogical approach in a classroom setting 

 The goal of Study 3 was to investigate how to implement analogical instruction in a 

naturalistic classroom setting, and specifically, how analogical processing may be utilized to 

increase germane cognitive load. There are two general strategies for adopting analogical 

instruction, which vary in the amount of germane cognitive load imposed on the learner. Student-

centered interventions use strategies that ask students to take charge of their own learning to 

focus on relevant information (e.g., Wright, 2011). In these interventions, the onus is on the 

learner to direct their attention to the aspects of the target material that is identified by the 

instructor as important. For example, students might be tasked with identifying similarities 

among analogous examples of a negative feedback loop. These strategies are likely to increase 

germane cognitive load to a great extent, but may overload the limited capacity of novice 

learners. 

In contrast, teacher-directed interventions change the very structure of the student 

experience to restrict students from engaging in processing that is irrelevant to the target 

material. External scaffolds (e.g., teachers, worksheets) play a larger role in these interventions. 

For example, a teacher may guide students through a comparison of analogous examples of a 
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negative feedback loop. These strategies are likely to increase germane cognitive load to a lesser 

extent than the student-centered strategies because students receive explicit guidance on the 

target material. However, these strategies are less likely to overload limited working memory 

capacity. The goal of this study was to contrast the effects of these two methods to incorporate 

analogical processing into a classroom environment and examine their effects on course 

performance. Unexpected methodological difficulties were encountered due to the Covid-19 

pandemic. These will be detailed further in the method section. 

 The study took place in two sections of LS 30A taught by two different instructors during 

Winter 2021 at UCLA. LS 30A is an introductory-level five-credit-hour course with lecture and 

discussion section components. The class was run using a flipped-classroom design: each week, 

students in each section watched lecture videos recorded by one of the instructors before they 

met for synchronous live sessions. Live sessions were devoted to emphasis of particularly 

important or difficult concepts and short group activities. The class met for two 75-minute live 

lectures and one 110-minute live discussion section. Professors led the class-wide lectures and 

teaching assistants (TAs) led the discussion sections. All class meetings were conducted live via 

zoom. During discussion sections, TAs spent approximately 40 minutes reviewing and 

reinforcing lecture content. The instructional intervention was delivered via worksheets that 

students completed during the content review portion of discussion section. In the remaining 

discussion section time, TAs assisted students with the programming components of the course, 

which were not covered in lecture and were not subject to the instructional intervention. 
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Method 

Participants 

 Participants were 214 undergraduate students enrolled across two sections of LS 30A in 

Winter 2021. Lecture 1, taught by Professor A, had 83 students and Lecture 2, taught by 

Professor B, had 131 students. 

 Students in each lecture section also enrolled in one discussion section. Enrollment for all 

six of the discussion sections associated with Lecture 1 ranged from 7-14 students. Five of the 

seven Lecture 2 discussion sections had 19 or more students (the two smaller sections had 12 and 

15 students). Across both lectures, 2 TAs taught two sections each and the lead TA, who also 

contributed to curriculum development, taught one section. At the start of the quarter, students in 

each discussion section were randomly divided into Learning Teams that contained 3-4 students. 

For the entirety of the quarter, students worked with their Learning Teams on worksheets in 

discussion sections and collaborative portions of the exams. 

Design and Procedure  

 The material covered in LS 30A is divided into topics, which roughly correspond to the 

first two chapters of the textbook. The material covered in Chapter 1 is largely independent of 

Chapter 2, so topics can be taught using different instructional methodologies without substantial 

contamination. The instructional manipulation was delivered using a crossover design. In a 

crossover design, course topics are divided into two sets. One of the lecture sections received 

student-centered (SC) instruction on topics assessed on the Midterm (all Chapter 1 material and 

early Chapter 2 material) and teacher-centered (TC) instruction for the topics assessed uniquely 

on the Final exam (later Chapter 2 material). The other lecture section received the reverse: TC 

instruction for Midterm topics and SC for Final exam topics. Use of a crossover design 
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minimizes inter-instructor and inter-classroom variability, as each student will serve as their own 

control (Jones & Kenword, 1989). In this design, each student received both methods of 

instruction, though for a different set of topics. 

 The Midterm was administered during Week 6 of the 10-week quarter and the Final exam 

was administered during Finals Week. Discussion sections for Lecture 1 received TC instruction 

for the material learned before the Midterm and SC instruction for the material learned after the 

Midterm. Discussion sections for Lecture 2 received the reverse order (SC instruction for the 

material learned prior to the Midterm and TC instruction for material learned after the Midterm). 

Assignment of instructional condition to lecture section was randomized at the start of the 

quarter. 

Materials 

Development of materials 

 During discussion sections, TAs were instructed to spend the first 40 minutes reviewing 

lecture content and the remaining time working on programming. The instructional interventions 

were designed to reinforce lecture content and were delivered during discussion sections in the 

form of worksheets. For each week of material, one set of worksheets was created by the primary 

researcher to utilize analogy to increase germane cognitive load. These worksheets were then 

adapted by an experienced LS 30 instructor to increase external scaffolding and moderate the 

germane cognitive load imposed by the introduction of analogy. 

 Worksheets consisted of a series of problems and activities that students completed either 

individually, in Learning Teams, or as a class (i.e., led by the TA). Instructional materials were 

developed in a three-stage process by the primary researcher (a domain expert in analogy), the 

lead TA, and an additional domain expert. Both the lead TA and the domain expert have several 
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years of training in biology, mathematical modeling, and are experienced educators. First, the 

lead TA provided me with a series of sample problems and activities administered in discussion 

sections during previous offerings of LS 30A. Using these problems as a starting point, I adapted 

the problems to emphasize the application of analogy to create the student-centered analogical 

worksheet. Then, the SC worksheet was reviewed by the lead TA and the domain expert and the 

problems were refined based on their recommendations. Finally, the domain expert adapted the 

SC worksheet to moderate the germane cognitive load imposed by analogy and increase 

scaffolding to create the TC worksheet. 

  In general, the SC worksheets were created following five principles of analogical 

instruction (Gray & Holyoak, 2021; see Table 1). Several strategies were used to increase 

attention to the structure of course concepts and the relationships between concepts (principle 2). 

For example, color coding schemes were developed to emphasize correspondences between 

different examples of the same concept (see Figure 1.1 and Figure 4.1) or across different 

representations of the same concept (see Figure 1.3). In addition, some activities utilized 

comparing and contrasting. In some cases, students were tasked with explicitly identifying 

similarities and differences among examples of the same concept. This served to focus attention 

on shared structure among isomorphic examples. In other cases, students compared and 

contrasted two different concepts following specific prompts that focused on the important 

dimensions of comparison. Many of these compare/contrast exercises were organized in the form 

of tables (see Figure 4.2). In these comparison exercises, students went row-by-row down the 

table, comparing and contrasting each element of the target concepts. In order to connect 

mathematical and verbal models (principle 3), some activities explicitly directed students to 

generate explanations for the use of a particular mathematical term (see Figure 4.3). Finally, to 
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encourage the generation of inferences (principle 5) students were tasked with either coming up 

with their own examples of course concepts or aligning previously given examples. Importantly, 

each of these activities was student-directed. For example, students were tasked with applying 

color coding schemes to highlight role-based similarity in Learning Teams or individually. 

 There is a limit to how much instruction in LS 30A can be “de-analogized” because the 

course is based upon deep structural similarities across varying domains and inherently involves 

connecting representations of the same ideas (verbal descriptions, mathematical models, 

graphical representations). Many of the same analogical principles at work in the SC worksheets 

remained in the TC worksheets. In general, these worksheets used the same problems as the SC 

worksheets, but they were adapted to lessen germane load and increase scaffolding. Although 

these changes sometimes happened at the expense of analogical learning strategies and thus 

reduced potentially helpful germane cognitive load, it is possible that students require this 

additional guidance. 

 The worksheets were adapted by adding structure to the worksheets or explicit guidance 

from the instructor. For some worksheets, the domain expert rearranged the order of the 

problems from the SC worksheet to provide a logical flow so that the TC worksheet started with 

easier problems and moved to more difficult problems. This meant that the worksheet began with 

the basic components of the topic and built up complexity. Second, the expert identified the 

essential aspects of each topic and stripped down the SC worksheet to contain only the 

information most essential to the topic; irrelevant information was withheld completely. Third, 

the expert added more explicit scaffolding to the activities. Sometimes, this extra guidance was 

embedded within the activity itself (e.g., an activity that asked students to generate an entire idea 

or explanation in the SC worksheet was simplified to a fill-in-the-blank activity in the TC 
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worksheet; see Figure 4.3). Other activities were adapted from independent group work to a TA-

led class-wide activity in which the TA provided explicit guidance. In the TC worksheets, 

students were explicitly guided through the activities with the help of the worksheet itself or the 

instructor. To reduce the cognitive load of the compare/contrast exercises, students were guided 

through completing the tables one column at a time (see Figure 4.2). In this fashion, both targets 

of comparison were presented separately in full before any comparison took place. 

TA training and delivery of instructional manipulation 

 While the lead TA was involved in material development and thus had knowledge of the 

study and its hypotheses, the remaining TAs were not informed about the study, the 

manipulation, or the hypotheses. While it is possible that background knowledge on the study’s 

aims and methods could improve TAs’ abilities to deliver the instructional materials, TAs were 

kept blind to the study so as to reduce any potential bias. The TAs were simply informed that 

each class would receive slightly different worksheets. 

 Each week, the lead TA led an hour-long meeting in which TAs received general 

guidance on the week’s worksheets and advice on which activities to focus on in their sections. 

TAs from both classes received guidance on both worksheets during this training meeting and 

had access to both versions of the worksheets throughout the course. However, TAs were 

instructed to only use the worksheet written for their own class. After the TAs received this short 

training, they led their own sections. After leading the section, TAs reported which activities 

from the worksheets they covered in each section and how the activity was completed (i.e., as a 

class, in learning teams, individually).  

 Implementation data was used to assess how the instructional manipulations were 

delivered in the classroom. At the end of the course, activities that fewer than half of the TAs 
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completed with their sections were considered to be “not delivered” to the students for the 

purposes of the study. Of 35 total activities across the 10-week quarter, 13 activities from the SC 

worksheets were not delivered and 10 were not delivered from the TC worksheets. In 

considering the materials that were actually delivered to students and thus reasonable to analyze, 

the conditions contained nearly identical problems that differed only in how they were delivered. 

The student-centered worksheets incorporated a great deal of analogical processing to focus 

attention on the structural information in the target material. These worksheets required students 

to direct their own attention to relevant information and thus increased germane cognitive load to 

a great extent. The teacher-centered worksheets also incorporated a great deal of analogical 

processing, but the activities were externally scaffolded to guide students’ attention to important 

structural information. The TC worksheets involved less germane cognitive load.  

Dependent measure: change scores 

 The primary assessment of student performance were individual exams. In this offering 

of LS 30A, exams were administered in three stages. In the first stage, students worked with their 

Learning Teams to create a study guide following specific guidelines and a rubric from the 

instructors. In the second stage, students took an individual exam on the course learning 

management system. Individual exams were open-book and unproctored but students were not 

allowed to work together. The Midterm lasted two hours and the Final lasted three hours. After 

all students completed the individual exam, students worked together in their learning teams to 

complete a collaborative exam. The key dependent measure of student performance was 

performance on the individual stage of each exam. 

 The instructors and lead TA wrote the exams and the same exams were given to each 

class. The Midterm was administered during Week 6 and the Final exam was administered 
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during Finals Week. In this offering of LS 30A, the Midterm covered all Chapter 1 material and 

some early Chapter 2 material, but all topics on the Midterm were taught using the same 

instructional method within each class. The Final Exam was comprehensive and contained 

problems that assessed content taught before the Midterm (i.e., with one instructional method), 

problems that uniquely assessed content taught after the Midterm (i.e., with the other 

instructional method), and problems that combined content that was taught with both 

instructional methods. As a result, performance on topics taught exclusively after the Midterm 

was used to isolate the impact of the second instructional technique. 

 In order to control for inter-student differences, the key dependent measure was 

computed by subtracting each student’s performance on the Final Exam from their performance 

on the Midterm. This yielded a change score for each student. A positive change score indicates 

that the student performed better on the Midterm than the Final and a negative change score 

indicates that the student performed better on the Final than the Midterm. 

Results 

Descriptive statistics 

 Experienced LS 30A instructors report that exam performance is typically negatively 

skewed and the same pattern was observed in the Winter 2021 offering of the course. Figure 4.4 

shows student performance on each exam broken down by class and Table 3 shows the five 

number summary for each exam broken down by class.  

 Changes in overall performance and in unique, non-overlapping topics were computed 

for each student by subtracting Final Exam scores from Midterm scores. Changes in overall 

performance and topics unique to each instructional condition are plotted in Figure 4.5. In 

general, change scores are expected to be positive because the Final Exam is typically more 
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difficult than the Midterm and scores decrease accordingly (Shevtsov, personal communication). 

Change scores for topics unique to each instructional condition are reported in Table 4. If TC 

instruction is more effective than SC instruction, change scores for Lecture 1 students should be 

larger (i.e., more positive) than change scores for Lecture 2 students because Lecture 1 students 

received TC instruction for the Midterm topics. If, on the other hand, SC instruction is more 

effective, the change scores for Lecture 2 students should be larger because Lecture 2 students 

received SC instruction for the Midterm topics. The median change score in non-overlapping 

topics was greater for Lecture 1 students than Lecture 2 students (6.53% vs 2.00%), suggesting a 

benefit for TC instruction. 

Change score analyses 

 Examination of QQ plots for each class’s change scores show that this measure is not 

normally distributed, so parametric analyses are not appropriate (see Figure 4.6). To assess the 

efficacy of SC and TC instruction, change scores from the two classes were compared. First, the 

observed difference in change scores between the two classes was computed by subtracting the 

median change score for Lecture 1 students from the median change score for Lecture 2 students. 

Since change scores reflect the change in performance from the Midterm to the Final, the 

observed difference value captures the relative performance of the classes. The observed 

difference was -4.5%, which suggests a benefit for TC instruction. 

 Bootstrap/resampling methods were used to test the null hypothesis that there is no 

difference between the median change score of the Lecture 1 and Lecture 2 groups. Briefly, I 

conjoined the two data sets into a single set, and resampled (with replacement) “Lecture 1” and 

“Lecture 2” groups from this set. This was repeated 10,000 times, and the p-value of the result 

was calculated as the number of simulations producing results as extreme or more than the 
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observed result, divided by 10,000. The observed difference of -4.5% had a 95% confidence 

interval (-9.5%, -3.1%). Overall, the results of this analysis show a benefit for TC instruction (p 

= .03). 

Analysis on low-performing students 

 One of the key aims of the current project was to improve learning outcomes for students 

at the low end of the performance distribution. First, low-performing students were defined as 

students that performed at or below the 25th percentile on the Midterm Exam for each class 

(Lecture 1 25th percentile = Lecture 2 25th percentile = 80%, NLecture 1 = 17, NLecture 2 = 33). Figure 

4.7 shows performance for low-performing students on the Midterm and the Final exam. Among 

low-performing students, it appears that Lecture 1 students performed better on the Midterm 

(median = 75%) than Lecture 2 students (median = 73.8%) and that Lecture 1 students 

performed worse on the Final Exam (median = 69.5%) than Lecture 2 students (median = 

72.3%). Once again, a change score in non-overlapping topics was computed for each student.  

 To assess the efficacy of SC and TC instruction among low-performing students, change 

scores from the two classes were compared in a manner similar to the change scores for the 

entire classes. First, the observed difference in change scores between the two classes was 

computed by subtracting the median change score for Lecture 1 students from the median change 

score for Lecture 2 students. The observed difference was -14.1% which suggests a benefit for 

TC instruction. 

 The bootstrapping procedure detailed above was rerun on the sample of low-performing 

students to determine whether the observed difference was large enough to be considered 

statistically significant. Again, the null hypothesis is that there is no difference in the efficacy of 

instructional methodology and, accordingly, no difference in change scores between classes. 
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10,000 pseudo-samples were generated and the difference in change scores between classes were 

stored. The observed difference was -14.1% with a 95% confidence interval of (-26.2%, -5.1%). 

The analysis showed that change scores were significantly different between conditions (p = 

.01), which shows a benefit for TC instruction for low-performing students. 

Classroom Study Discussion 

 Study 3 used the framework of cognitive load theory to investigate the most efficacious 

implementation of analogical instruction in a naturalistic online classroom environment. Students 

enrolled in LS 30A during Winter 2021 learned topics through a more-structured teacher-

directed approach to administering analogical interventions, or else through a less-structured 

student-directed method. Analyses showed that students benefitted from the structured teacher-

centered approach. For low-performing students, the benefit for the teacher-directed approach 

was larger. 

 These findings are in line with the general picture that emerged from the two lab studies: 

among higher-performing individuals, instructional manipulations had a smaller effect on 

performance. Since low-performing students were of particular interest in the classroom study, 

the efficacy of the instructional intervention was examined separately in this subpopulation, and 

a larger benefit was observed. These students in particular benefitted from analogical instruction 

that was more highly structured and guided by an external source (a teacher or a worksheet). 

 A great deal of research supports the hypothesis that weaker students need significant 

guidance, but the present study provides a concrete demonstration of how much guidance is 

necessary. Proponents of learner-centered and constructivist approaches to education place the 

responsibility for learning on the learners themselves. These perspectives imply that students 

should actively work to construct their own knowledge in the classroom (e.g., Wright, 2011). 
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Though the educational literature does not always intersect with theoretical work from cognitive 

psychology, these approaches include activities that are presumably designed to increase 

germane cognitive load (e.g., problem-based learning). The current findings suggest that when 

considering how to best support low-performing students, educators need to be particularly 

aware of the “curse of expertise” and the cognitive load imposed by student-directed learning 

activities, because these students may need more guidance than educators typically assume. 

Selecting relevant information and directing attention is an important skill for students to 

practice; an exam (much less the real world) is not scaffolded to facilitate problem solving. The 

present study suggests that low-performing students in particular need a great deal of support 

before they are able to exercise this skill successfully. Scaffolding aids initial learning for 

learners of various ages, and may be adapted to fit various stages of proficiency during the 

learning process (Vygotsky, 1978). Scaffolding may take many forms, including guiding 

analogical comparison. For example, a series of studies by Kurtz et al. (2001) showed that 

explicitly directing participants to jointly interpret two examples of a scientific concept, and to 

list correspondences between the examples, led to improved performance on an immediate test. 

Although the authors did not frame the materials in terms of cognitive load, the learning 

condition that produced the greatest performance gains imposed significant germane cognitive 

load, while offering a highly structured worksheet to guide the process so as to avoid overloading 

the learner. Other studies introducing varying amounts of structure to facilitate comparison show 

similar results: instruction that increases germane cognitive load through analogical comparison 

leads to better outcomes (e.g., Gentner & Loewenstein, & Thompson, 2003; Richland & 

McDonough, 2010). However, many of these experiments were performed on high-achieving 

undergraduate populations and within limited time frames. It is unclear how well these 
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manipulations would generalize to lower-performing populations, and it is unclear to what extent 

germane cognitive load may need to be moderated by additional scaffolding. 

The need for additional structure for novice learners has been documented by various 

researchers, and several instructional techniques explicitly instantiate this idea. For example, 

concreteness fading recognizes that students need a great deal of practice with concrete, 

visualizable materials before they are able to work successfully with abstract ideas (Fyfe, 

McNeil, Son, & Goldstone, 2014). These strategies progressively strip down concrete 

representations of concepts to their abstract essence. While concreteness fading may not be 

directly applicable to the interventions at issue in the current work, the process of gradually 

removing guidance and cues to direct attention to structure may be adapted to fit the analogical 

interventions tested in this study. The goal is ultimately the same: to build up students’ abilities 

to direct their attention independently. 

The current study suggests that caution is warranted in extending results of instructional 

efficacy to lower-performing students. The present findings may underestimate the extent to 

which instruction should be modified for lower-performing students, because low-performing 

students at UCLA are still high-performing on a nationwide scale. For example, the 25th 

percentile composite SAT score for students at UCLA, which is 1280, is still well above the 

national average of 1059 (College Board, 2020).  

Curriculum changes due to the Covid-19 pandemic offered a unique opportunity to 

investigate the proposed interventions in an online setting. During discussion sections, student 

groups frequently worked on the worksheets while in individual Zoom breakout rooms. Unlike in 

a face-to-face classroom environment, the instructor cannot supervise all groups simultaneously, 

and must check in with each group in a sequential fashion if they choose to do so at all. As a 
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result, it was more difficult for instructors to intervene to supplement instructions on the 

worksheets or offer real-time feedback as students worked in groups. More structure may lead to 

better outcomes in an environment in which immediate clarification and guidance is less 

available. It is unclear whether similar results would be obtained in a face-to-face setting in 

which students can freely interact with the instructor, and future research should investigate this 

question. 

 The present study can also be conceptualized as a case study of a successful researcher-

practitioner relationship. Instructional techniques that are effective over the course of a 60-

minute laboratory session using undergraduate participants with questionable motivation may not 

generalize to complex classroom contexts. Demonstrating efficacy of these techniques in 

naturalistic classroom environments is of utmost importance, and the optimal method to 

disseminate findings to educators is an open question. There is generally a trade-off between 

real-world applicability and fidelity of the empirical recommendations: classrooms are, in brief, 

messy open systems (Bronfenbrenner, 1976), and instructors are often unable to implement 

materials exactly as designed by researchers. For example, after finding compelling evidence that 

comparison aids middle school-age students comprehend algebra across several smaller-scale 

studies (Rittle-Johnson & Star, 2011), a large randomized-controlled trial that recruited 141 

teachers in the US found no benefit, largely because the intervention was not delivered as 

intended (Star et al., 2015). 

The present study offers a possible model for collaborating with practitioners to test an 

intervention initially based on laboratory studies. Specifically, the three-stage process of material 

development also represents a comparison of researcher-written materials to materials designed 

by a researcher and then adapted by an instructor to fit the specific classroom environment. A 
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similar number of activities were delivered to students across conditions, but the teacher-

centered worksheets led to better outcomes. In the context of studying a researcher-practitioner 

relationship, this finding suggests that learners may benefit more from instruction that is adapted 

to the classroom setting by an experienced instructor, even at the expense of some of the 

empirically-supported interventions. Future work should investigate this possibility more 

thoroughly and compare efficacy of researcher-designed to instructor-designed materials across 

multiple classrooms. 

The present study also suffered from some limitations. For example, the dependent 

measure of interest, exam performance, may be a particularly noisy measure of learning and 

memory because the exams were open-note and open-book. Despite the likely dilution of the 

dependent measure, differences were still observed. The magnitude of the difference may be 

different in exams delivered in more traditional circumstances (i.e., closed book and proctored).  

Similarly, another limitation is that the “dose” of the intervention was relatively small. 

Although many students do not follow this model, one credit-hour corresponds to two hours of 

work outside of class (US Department of Education 34 CFR 600.2). For LS 30A, a five credit-

hour course, this corresponds to 15 hours of work each week. Students spent 40 minutes of total 

class time each week on the worksheets, which was only 15% of the live time and only 4% of the 

total time students are supposed to spend on coursework each week. While it would behoove 

students to use the resources they were presented with and to attempt to use the strategies they 

were taught while they were in class, it is not safe to assume that all students did so. Further, 

students often report cramming lots of information in a few study sessions before an exam 

(Hartwig & Dunlosky, 2012). In short, it was not possible (or perhaps even desirable) to control 

student behavior outside the classroom, which may have washed out any differences attributable 
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to the relatively modest intervention. The teacher-centered worksheets generally contained more 

structure and might have been easier for students to use outside of the classroom. Overall, the 

fact that effects were observed despite all these considerations is a positive sign for the efficacy 

of teacher-centered instruction, and future work should attempt to increase the strength of the 

signal in order to examine whether or not the effects prove robust.  

Another limitation involves order effects. This limitation was unavoidable given the 

number of LS 30A sections offered during the data collection period, but measures were taken to 

reduce the impact of order effects where possible. First, the topics on the Midterm and Final 

exam are relatively independent, so any impact of particularly effective instruction at the start of 

the course is less likely to carry over to the latter half of the course. Second, to provide a more 

pure measure, the dependent measure was computed using only Final Exam questions that 

assessed topics taught after the Midterm Exam. Future work might address order effects by 

recruiting a larger number of instructors.  

It is also possible that certain topics are particularly amenable to a particular type of 

instruction. Unfortunately, the data from the current project do not allow for a granular topic-

level analysis, but future work should address this question more thoroughly. In matching 

instructional interventions to topics, collaboration between researchers and educators is 

paramount. In the present work, recruiting a domain expert to create the teacher-centered 

worksheet addressed this issue somewhat. The expert was more sparing in her use of the 

analogical learning principles and removed them for topics that weren’t a good fit. 

In sum, the present findings demonstrate that analogy is an effective addition to STEM 

classrooms if it is used conscientiously. Low-performing students especially seem to benefit 

from more explicit guidance from both teachers and worksheets. In addition, the study suggests 
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that domain experts should be involved in both design and delivery of instructional interventions. 

One key strength of an analogical approach is the flexibility of the principles. Once an instructor 

understands the underlying principles, they should have the freedom to apply them wherever 

they are relevant. 

Chapter 5: General Discussion and Conclusions 

 The aim of the current project was to investigate the efficacy of an analogical approach to 

STEM education in both an online lab and a naturalistic classroom setting. Across three studies, 

the efficacy of the approach was mixed. In two online lab studies using undergraduate 

participants, instruction designed using an analogical approach fared similarly to control 

instruction on immediate tests. In a classroom setting, use of an analogical approach was most 

successful when the instructional materials included considerable scaffolding. The largest benefit 

was observed for low-performing students. 

 Whether due to prior preparation, cognitive resources, or a mix of other factors, high-

ability college students are already at a significant advantage. Prior learning better prepares these 

students for future learning (e.g., McNamara & Kinstch, 1996) and these students can learn from 

a variety of instructional styles (Nesbit & Adesope, 2006). Students that enter college with less 

preparation or fewer cognitive resources require more guidance and more conscientious 

instruction. 

 The present findings show that an analogical approach to STEM education is likewise 

vulnerable to these differential effects on different populations of students: high-ability students 

were able to learn from all instructional conditions, while lower-ability students benefitted most 

from a scaffolded analogical intervention. Principles from analogical reasoning literature have 

the potential to increase conceptual understanding (e.g., Gray & Holyoak, 2021; Vendetti, 
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Matlen, Richland, & Bunge, 2015) but the extent to which these principles improve educational 

outcomes for diverse populations remains unclear.  

 The project also places educational analogical interventions in the context of cognitive 

load theory (Sweller, 2011). While analogical comparison may be a method to increase germane 

cognitive load, educators must take care that students are not overloaded. Future work should 

extend these findings to identify the proper level of support required for analogical interventions. 

Further, this line of work may be combined with the principles behind concreteness fading 

instructional interventions (Fyfe, McNeil, Son, & Goldstone, 2014): novices may begin 

analogical comparisons with guidance that gradually fades away as learners gain expertise. 

 An analogical approach to STEM education shows promise, but educators must employ it 

conscientiously. Classrooms and the students in them are not uniform. Educators know their 

classrooms well and should adapt the principles of analogical instruction to their classrooms as 

they see fit. In the current project, the principles proved fairly easy for an instructor to 

understand and adapt. Granting agency to educators in how they choose to implement the 

approach stands to increase the dissemination of research findings into classrooms, which will 

increase its reach to students and potentially improve educational outcomes.  
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1. Use well-understood source analogs to capitalize on prior knowledge. Explain 
correspondences fully. 

2. Highlight shared causal structure among examples of a structurally-defined category 
using visuospatial, gestural, and verbal supports. 

3. Identify and explain correspondences between various representations. 
4. Use analogical comparison to increase germane load and modify presentation style to 

facilitate comparison and reduce extraneous cognitive load when appropriate.  
5.  Once students have some proficiency with the material, encourage generation of 

inferences. 
Table 1. Summary of principles for analogical approach to teaching 
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 Instructional condition 

Self-report 
strategy use on 

posttest 

 Geometric Symbolic JUMP Math 
No 29 11 20 
Sometimes 45 36 61 
Yes 38 56 37 

Table 2. Relationship between strategy use and instructional condition in Study 2 
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 Class Minimum 25th 

percentile 
Median 75th 

percentile 
Maximum 

Midterm 

Lecture 1 
(TC) 57.5 80.0 90.0 92.5 100.0 

Lecture 2 
(SC) 52.5 80.0 92.5 95.0 100.0 

Final 

Lecture 1 
(SC) 41.3 72.6 84.4 91.2 98.7 

Lecture 2 
(TC) 42.6 78.8 88.1 93.5 98.7 

Table 3. Overall exam performance in the classroom study  
*Note. Scores are reported as percentages. 
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 Class Minimum 25th 
percentile 

Median 75th 
percentile 

Maximum 

Overall 
performance 

Lecture 1 -31.10 -0.01 6.05 12.94 32.98 
Lecture 2 -15.79 -1.59 3.45 6.68 28.49 

Nonoverlapping 
topics 

Lecture 1 -31.80 -2.39 6.53 11.67 35.76 
Lecture 2 -23.16 -2.53 2.00 8.97 31.25 

Table 4. Change scores for each class from the classroom study. 
*Note. Positive change scores indicate better performance on the Midterm than the Final. 
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Equation 1. Normalized change score calculation from Marx & Cummings (2007) 
  

c =

post − pre
100 − pre post > pre

drop post = pre = 100 or 0
0 post = pre
post − pre

pre post < pre
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Figure 1.1. Analogous examples of a negative feedback loop 
A diagram showing analogous examples of negative feedback loops. They are diagrammed to 
visuospatially highlight shared structure. 
  

insulin glucose 

AC activity temperature 
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1. In the absence of predators, hares have a constant per-capita growth rate 0.1. 
2. The rate at which a single lynx catches hares is proportional to the hare 

population size with proportionality constant 0.02. 
3. The lynx birth rate is proportional to the amount of food caught by the 

population with proportionality constant 0.05. 
4. Lynx have a constant per capita death rate, 0.1. 

 

 
 
Figure 1.2. Example of model writing problem in LS 30A 
Example of model writing problem from LS 30A taught using an analogical approach. H’ 
represents how the population of hares changes and L’ represents how the population of lynx 
changes. Color coding is used to highlight correspondences between the verbal/semantic and 
symbolic representation.  
  

𝐻! = 0.1 ∗ 𝐻 − 0.02 ∗ 𝐿𝐻  

𝐿! = 0.05 ∗ .02 ∗ 𝐿𝐻 − 0.1 ∗ 𝐿 
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Figure 1.3. Stable and unstable equilibria 
A diagram of stable (left) and unstable (right) equilibria used in LS 30A. The diagram relates 
equilibrium points in a differential equation to the behavior of a ball at the bottom of a cup (left) 
or on top of a hill (right). This figure appears in the Modeling Life textbook as Figure 3.3. 
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Figure 2.1. Instructional video from Study 1 
Screenshot of an instructional video from Study 1 showing the instructor superimposed over a 
tablet screen. The image shows the analogical-feedback loop condition. 
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Figure 2.2. Causal relational diagrams used in Study 1 assessments 
An image of the causal-relational diagrams used to assess understanding of feedback loops in 
Study 1. Participants clicked the diagram that best fit the description of each scenario.  
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Figure 2.3. Normalized change scores for the feedback topic in Study 1 
Normalized change scores broken down by condition for the feedback topic in Study 1. 
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Figure 2.4. Transfer scores for the feedback topic in Study 1 
Transfer performance broken down by condition for the feedback topic in Study 1. The 
maximum score was 12 points. 
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Figure 2.5. Normalized change scores for the functions topic in Study 1 
Normalized change scores broken down by condition for the functions topic in Study 1. 
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Figure 2.6. Transfer scores for the functions topic in Study 1 
Function generation scores broken down by condition for the functions topic in Study 1. Scores 
are shown as proportion correct. 
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a.  

b.  

c.  

Figure 3.1. Sample board work for the geometric condition in Study 2 
Sample board work from the geometric instructional condition in Study 2.  
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Figure 3.2. Sample board work for the symbolic control condition in Study 2 
Sample board work from the symbolic control instructional condition in Study 2. 
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a.  

b.  

Figure 3.3. Sample board work for the JUMP Math condition in Study 2 
Sample board work from the JUMP Math instructional condition in Study 2. 
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Figure 3.4. Normalized change scores for equation construction in Study 2 
Normalized change scores for equation construction problems in Study 2 broken down by 
condition. The solid blue line indicates the grand median computed from all conditions. 
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Figure 3.5. Transfer scores for equation construction in Study 2 
Transfer for equation construction problems in Study 2 broken down by condition. The 
maximum score was 6. The solid blue line indicates the grand median computed from all 
conditions. 
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Figure 3.6. Reversal change scores for equation construction in Study 2 
Reversal change scores for Study 2 broken down by condition. Solid blue line indicates grand 
median computed across all conditions. 
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Learning Team Activity: Compare/contrast models 

 

 
Figure 4.1. Compare/contrast modeling activity used in Classroom Study 
Example activity from the SC worksheet showing a color coding scheme that highlights 
correspondences between different examples of the same concept (terms in a differential 
equation). In the TC worksheet, students completed the color coding activity in Learning Teams. 
Instead of generating similarities and differences, students were asked to describe how they 
identified each term. 
 
 
  



 

 
 

89 

 
Euler’s Method Riemann Sum 

What’s the purpose 
of the process? 

  

What information do 
you have at the start 
of the process? 

  

What is the result of 
each process? 

  

What happens to 
 from row to 

row? 

  

What happens to t 
from row to row? 

  

What’s the 
relationship between 
rows? 

  

What happens to the 
approximation as 

? 

  

Figure 4.2. Compare/contrast table activity used in Classroom Study 
Example of table used to organize compare/contrast exercises in the classroom study. In the SC 
worksheets, students worked through the table row-by-row, comparing concepts back and forth. 
In the TC worksheets, students were guided through the table column-by-column, completing 
each concept individually before any comparison was attempted.  
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Figure 4.3. Connecting representations activity used in Classroom Study 
Example of generating explanations to connect a mathematical representation to its verbal 
counterpart used in the SC worksheet. In the TC worksheets, the response in the (b) column was 
provided for students with some key phrases left blank. Students filled in the blanks. 
 
 



 

 
 

91 

 
Figure 4.4. Overall Midterm and Final Exam performance in Classroom Study 
Student performance on the Midterm and Final Exams (including all topics). Histograms are 
normalized due to unequal class size. Lecture 1 received TC instruction and Lecture 2 received 
SC instruction for the Midterm Exam. Lecture 1 received SC instruction and Lecture 2 received 
TC instruction for the Final Exam. Exam performance is shown as proportion correct. 
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Figure 4.5. Changes in exam performance in Classroom Study 
Change in performance from the Midterm to the Final Exam (both total performance and 
performance on non-overlapping topics unique to each instructional condition) broken down by 
class. Exam performance is shown as proportion correct. 
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Figure 4.6. Q-Q plots of change scores in Classroom Study 
QQ plots for change scores in non-overlapping topics. The left panel shows Lecture 1 and the 
right panel shows Lecture 2. Change scores are not normally distributed, so parametric analyses 
are not appropriate. 
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Figure 4.7. Exam performance for low-performing students in Classroom Students 
Total score on each exam for students that performed at or below the 25th percentile on the 
Midterm exam. 
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Figure 4.8. Changes in exam performance for low-performing students in Classroom Study 
Changes in Midterm and Final exam performance in non-overlapping topics for students that 
performed at or below the 25th percentile on the Midterm. 
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