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Abstract

Quantum phases can be classified by topological invariants, which take on discrete values cap-

turing global information about the quantum state [1–19]. Over the past decades, these invariants

have come to play a central role in describing matter, providing the foundation for understanding

superfluids [6, 7], magnets [8, 9], the quantum Hall effect [4, 10], topological insulators [11–15],

Weyl semimetals [16–19] and other phenomena. Here we report a remarkable linking number (knot

theory) invariant associated with loops of electronic band crossings in a mirror-symmetric ferromag-

net [20–26]. Using state-of-the-art spectroscopic methods, we directly observe three intertwined

degeneracy loops in the material’s bulk Brillouin zone three-torus, T3. We find that each loop links

each other loop twice. Through systematic spectroscopic investigation of this linked loop quantum

state, we explicitly draw its link diagram and conclude, in analogy with knot theory, that it ex-

hibits linking number (2, 2, 2), providing a direct determination of the invariant structure from the

experimental data. On the surface of our samples, we further predict and observe Seifert boundary

states protected by the bulk linked loops, suggestive of a remarkable Seifert bulk-boundary corre-

spondence. Our observation of a quantum loop link motivates the application of knot theory to

the exploration of exotic properties of quantum matter.
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Quantum topology is powerful in understanding condensed matter systems that exhibit a

winding [1–19]. Often, this winding occurs in real space. For example, in a magnetic mate-

rial, the local magnetization may exhibit a rotating pattern centered around a point in real

space, forming a magnetic vortex encoding an integer winding number [3, 8]. Alternatively,

the winding may occur in momentum space. For example, in a one-dimensional topological

insulator, the quantum-mechanical wavefunctions wind as the momentum scans through

the Brillouin zone [4, 5, 10–14]. These two broad paradigms—order parameters, such as

magnetization, which wind in real space and quantum wavefunctions which wind in mo-

mentum space—capture a vast landscape of topological phases of matter, spanning decades

of research by myriad communities of physicists. Real-space order parameter winding fur-

ther encompasses disclinations in liquid crystals; vortices in superconductors and superfluid

4He; and magnetic skyrmions, whose invariants are proposed as the basis for next-generation

computing memory and logic [2, 3, 6–9]. On the other hand, momentum-space wavefunction

winding is associated with emergent Dirac fermions in two- and three-dimensional topologi-

cal insulators; Weyl fermions in topological semimetals; and the quantum Hall effect, which

sets the prevailing von Klitzing standard of electrical resistance [10–19]. Despite their im-

portance in modern physics, there is no indication that these two paradigms are exhaustive.

Novel paradigms for topology promise to deepen our fundamental understanding of nature,

as well as enable new quantum technologies.

Recently, there has been considerable interest in node loops, an electronic structure where

two bands cross along a closed curve in momentum space [19–21, 27–31]. Away from the

crossing curve, the two bands disperse linearly, so that the node loop consists of a cone

dispersion persisting along a loop. Within the paradigm of momentum-space wavefunction

winding, node loops are topological, with a quantized Berry phase invariant [11–14, 19, 30,

31]. However, in contrast to other electronic structures studied to date [10–19], node loops

can link each other, encoding a linking number invariant (Fig. 1a, Extended Data Fig.

1) [22–26]. Unlike the traditional paradigms of winding, this linking number is associated

with the composite loop structure of quantum-mechanical band crossings of the Hamiltonian.

Such linked node loops offer the possibility of a new bridge between physics and knot theory.

It has further been proposed that these links are governed by emergent non-Abelian node

loop charges [22] and that the linking number determines the θ angle of the axion Lagrangian

in certain node loop phases [25, 32, 33]. Since the three-dimensional condensed matter
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Brillouin zone is a three-torus T3, linked node loops also offer the rare possibility of observing

links in a space other than ordinary infinite space R3. Moreover, the Seifert surface of the

bulk link is associated with topological boundary states, opening the possibility of a unique

Seifert bulk-boundary correspondence in quantum matter [34–38].

Ferromagnets with crystalline mirror symmetry naturally give rise to node loops. In this

scenario, the ferromagnetic exchange interaction produces spin-split electronic bands which

are generically singly-degenerate throughout momentum space, while mirror symmetry pro-

tects two-fold band degeneracies along closed curves confined to the momentum-space mirror

planes [28]. Such node loops are called Weyl loops, by analogy with the two-fold degeneracy

of a Weyl point [16–18, 29–31]. Weyl loops are extremely effective at concentrating Berry

curvature, giving rise to giant anomalous Hall and Nernst effects, up to room temperature

and promising for technological applications [20, 39–43]. In crystallographic space groups

with multiple perpendicular mirror planes, different Weyl loops living in different mirror

planes can naturally link each other [21, 26]. The ferromagnet Co2MnGa exhibits a crys-

tal structure with multiple perpendicular mirror planes and was recently observed to host

electronic Weyl loops [20, 21], bringing together the key ingredients for node loop links.

Co2MnGa crystallizes in the full Heusler structure, with face-centered cubic Bravais lat-

tice; space group Fm3̄m (No. 225); octahedral point group Oh; and conventional unit

cell lattice constant c = 5.77 Å (Fig. 1b, Extended Data Fig. 2). We observe that our

Co2MnGa samples are ferromagnetic, with Curie temperature TC = 690 K, consistent with

earlier reports [44, 45]. The point group includes mirror planes normal to x̂, ŷ and ẑ (de-

fined by the conventional unit cell lattice vectors, representative mirror plane shown in

orange in Extended Data Fig. 2a), as well as three C4 rotation symmetries relating any one

of these mirror planes to the other two. We first perform a characterization by atomic-level

energy-dispersive X-ray spectroscopy (EDS), providing direct structural evidence that our

Co2MnGa samples are crystallographically well-ordered, show the expected lattice constant

and exhibit these mirror and rotation symmetries (Fig. 1b). The real-space mirror planes

give rise to momentum-space mirror planes, labelled M1 (normal to ẑ); M2 (ŷ); and M3 (x̂,

Fig. 1c). These mirror planes contain the time-reversal invariant momenta X1, X2 and X3,

sitting at the centers of the square faces of the bulk Brillouin zone.

Motivated by the observation of mirror-symmetry-protected magnetic Weyl loops in

Co2MnGa [20, 21], we explore the electronic structure of our samples on M1, M2 and M3.
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We perform ab initio calculations of Co2MnGa in the ferromagnetic state, focusing on these

three mutually-perpendicular mirror planes. We find that each mirror plane hosts a Weyl

loop, and that the three Weyl loops link one another (Fig. 1c, Extended Data Fig. 9).

To experimentally investigate this ab initio prediction, we carry out angle-resolved pho-

toemission spectroscopy (ARPES) using soft X-ray photons, optimized for exploring bulk

electronic states [46, 47]. Without loss of generality, we consider the crystal cleaving plane

in our photoemission experiments to be parallel to M1. We first acquire a Fermi surface

at a fixed incident photon energy hν = 544 eV, chosen to fix the kz momentum to this

‘in-plane’ mirror plane (M1, Fig. 1d). We observe a diamond-shaped contour centered on

X1, which traces out a momentum-space trajectory encircling the square top face of the bulk

Brillouin zone. We also observe a small circular feature at the corners of the Fermi surface,

which arises from an unrelated band at Γ, irrelevant for what follows. We next perform a

photon-energy dependence on the same sample, measuring from hν = 500 to 800 eV, which

allows us to access the electronic structure on the ‘out-of-plane’ mirror M2 (Fig. 1e). We

again observe a diamond-shaped loop contour, now centered on X2 and encircling the square

side face of the bulk Brillouin zone. We then rotate the sample by 90◦ and repeat the same

photon-energy dependence to capture the electronic structure on the other ‘out-of-plane’

mirror M3. We observe again a similar diamond-shaped loop contour centered on X3 (Fig.

1f). These systematic observations suggest a family of symmetry-related diamond-shaped

loop contours, consistent with the octahedral point group Oh. Each of the three loops is

related to the others by rotation symmetry and each lives in one of the three mirror planes.

To further understand the loop electronic structures, we examine energy-momentum pho-

toemission spectra slicing through the M1 loop (Fig. 2a). We observe two bands which

disperse toward each other and meet near the Fermi level, EF (EB = 0), suggesting a cone

dispersion. The presence of a cone dispersion in both slices further shows that the cone per-

sists as we move in momentum space, following theM1 loop Fermi surface. Since Co2MnGa is

ferromagnetic, we expect generically singly-degenerate bands throughout the Brillouin zone

[44, 45]. This suggests a cone dispersion consisting of singly-degenerate branches which

exhibit a double degeneracy at the touching points, indicating a Weyl loop electronic struc-

ture. To better understand the cone dispersions, we perform ab initio calculations of the

electronic structure on energy-momentum slices corresponding to these ARPES spectra. The

calculation shows a Weyl cone with characteristic two-fold degenerate crossing and linear
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dispersion away from the crossing (Fig. 2b). Assembled together, this series of Weyl cones

forms a Weyl loop. The ARPES and ab initio calculations are in good agreement, further

suggesting that we have observed a magnetic Weyl loop on M1.

To characterize this Weyl loop using ARPES, we systematically track all cone crossings

observed along the full M1 loop trajectory (Fig. 2c). We then fit the crossings to a two-band

effective k · p Hamiltonian for a Weyl loop,

H =
∑

k, a,b∈{±}

c†kahab(k)ckb, h(k) = f(k)σz + vFqzσx + g(k)1 (1)

Here the c†ka are fermionic creation operators, k is the crystal momentum, σz and σx are

Pauli matrices, 1 is the 2 × 2 identity and qz ≡ kz − 2π/c is the ẑ component of the

momentum measured relative to M1, where c is the conventional unit cell lattice constant.

This Hamiltonian exhibits a Weyl loop on qz = 0 with trajectory given by f(k) = 0,

formed from two bands with opposite mirror eigenvalues. From our ARPES spectra, we

experimentally extract the full Weyl loop trajectory by fitting to a low-order expansion

around X1, consistent with the symmetries of the system,

f(k) = γ
(
1 + α(k2x + k2y) + βk2xk

2
y

)
(2)

Here α and β fix the Weyl loop trajectory and the scaling factor γ sets an energy scale. The

train of crossing points observed in ARPES is well-captured by α = −1.23 ± 0.03 Å2 and

β = −31.5± 4.1 Å4 (Fig. 2c). We also find that our ARPES-extracted Weyl loop trajectory

agrees well with the trajectory observed in ab initio calculations (Extended Data Fig. 3).

The energy dispersion of the Weyl loop is set by g(k), well-described by g(k) = δ+η cos(4θ),

where δ = −75 ± 17 meV, η = 46 ± 17 meV, and θ is the ordinary polar angle of k,

tan θ ≡ ky/kx. Away from the loop, the bands disperse linearly. To capture this dispersion,

we examine a deeper constant-energy photoemission slice intersecting the Weyl loop (Fig.

2d). We observe that the experimental dispersion is well-captured by γ = 0.15 ± 0.05 eV.

The extracted dispersion reaches the Fermi level within experimental resolution, suggesting

that the observed Weyl loops are relevant for transport and other low-energy response. This

result is consistent with previous reports that Weyl loops play a dominant role in the giant

anomalous Hall effect and other exotic transport properties of Co2MnGa [20, 40–42]. Our

analytical model, with all parameters extracted from photoemission spectra, allows us to
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achieve a complete experimental characterization of both the momentum trajectory and

energy dispersion of the family of Weyl loops (Fig. 2e, Extended Data Fig. 3).

We next investigate the composite structure formed by the three Weyl loops, focusing

on the Weyl loop crossing itself (degeneracy curve, shown in cyan in Fig. 2e). The loop

crossing disperses in energy, so a constant-energy slice through the electronic structure

typically intersects a loop crossing only at several discrete points (for example, the cyan

dots in Fig. 2d). However, despite this energy dispersion, we find that the typical ‘radius’ of

the Weyl loop, |k|avg = 0.66 Å−1, is much larger than the typical momentum separation of

the two branches of the Weyl cone at the Fermi level, η/vF = 0.07 Å−1. Since |k|avg � η/vF,

we can treat the Weyl loop crossing as approximately flat in energy and we can accurately

capture its trajectory by examining a constant-energy slice near the Fermi level. Therefore,

to understand the composite structure of the Weyl loops, we can focus on the M1, M2

and M3 Weyl loop Fermi surfaces. We first consider the M1 and M2 Weyl loops in an

extended zone scheme. We study two adjacent Brillouin zones (Fig. 3a, inset) and zoom in

on the momentum-space region around X1. By plotting the M1 and M2 Weyl loop Fermi

surfaces simultaneously in this region of three-dimensional momentum space, we observe

that these two loops appear to link each other twice (Fig. 3a). We next consider the M2

and M3 Weyl loops and we shift our momentum-space field of view to a region around X2.

We plot the M2 and M3 Weyl loop Fermi surfaces and we again directly observe from our

photoemission spectra that the two loops link each other twice (Fig. 3b). Repeating the

analogous procedure for X3, we observe that the M3 and M1 Weyl loops also link twice

(Fig. 3c). To estimate the stability of these links, we can measure how far apart one would

need to slide two Weyl loops in order to unlink them (Extended Data Figs. 4, 5). From

the loop Fermi surfaces, we find that the typical ‘depth’ of the link in momentum-space is

davg = 0.58 ± 0.08 Å−1, of the same order of magnitude as the radius |k|avg of the Weyl

loop. This large depth suggests that the system lives well within a linked electronic phase.

Our three-dimensional momentum-space analysis of the photoemission spectra suggests that

each of the M1, M2 and M3 Weyl loops links each other Weyl loop twice, forming a robust

linked structure.

To further explore this link, we examine all three Weyl loops simultaneously using the

experimentally-extracted loop trajectory, Eq. 2. In an extended zone scheme, we plot the

M1, M2 and M3 Weyl loops around six nearby X points, so that two redundant copies of
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each Weyl loop are included (Fig. 4b). We find that the M1 Weyl loop links both the M2

and M3 Weyl loops; the M2 Weyl loop links both the M3 and M1 loops; and similarly for the

M2 loop. This suggests that the three Weyl loops together form a single composite linked

structure. By plotting additional redundant copies of the loops in higher Brillouin zones,

we can form a Weyl loop network extending outward to infinity. To more deeply explore

this linked structure, we examine energy-momentum photoemission slices tangential to all

three loops near their extrema (Fig. 4a). All slices exhibit a cone dispersion, consistent

with the Weyl loop electronic structure. Moreover, we find quantitative agreement between

the Weyl loop extrema expected from Eq. 2 and the locations of the photoemission cone

dispersions, for all three loops. This agreement again suggests the observation of a composite

structure of three interwoven Weyl loops. To better visualize the complete link structure, we

construct a link diagram for our Weyl loops. In such a link diagram, we flatten the link from

three to two dimensions while preserving the link information using an over/under notation

(illustrated for the example of a Hopf link, Fig. 4c). Because the Weyl loop link lives in

the periodic momentum space of the crystal, we flatten the link into the surface Brillouin

zone. Moreover, because our analysis shows that all three Weyl loops are symmetry-related,

we choose the (111) surface Brillouin zone (Extended Data Fig. 2), which treats X1, X2

and X3 equivalently (Fig. 4d). The resulting link diagram shows three loops straddling the

edges of the surface Brillouin zone (Fig. 4e). We observe that the link wraps around T3 in

all three momentum-space directions. This behavior suggests that the link is geometrically

essential, in the sense that it cannot be smoothly perturbed to live entirely within a local

region of the Brillouin zone. The link diagram further shows that each loop is linked with

each other loop exactly twice. This gives 2 for the geometric linking number, defined as

the minimal number of crossing changes between link components needed to separate the

components. The geometric linking number of the composite Weyl loop structure can then

be written as (2, 2, 2), where the first entry in the list corresponds to the linking number

between M1 and M2, the second entry between M2 and M3, and the third entry between M3

and M1. By analogy with topological insulators and Weyl point semimetals, this Weyl loop

link is expected to be stable under arbitrary, small, symmetry-preserving perturbations of

the electronic structure.

Having systematically characterized the link structure in the bulk of Co2MnGa, we next

consider its topological surface states. Unlinked loop nodes host conventional drumhead
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surface states, which fill a simply connected region of momentum space in the surface Bril-

louin zone. By contrast, linked loops exhibit an alternating pattern of topologically distinct

regions where surface states are either present or suppressed, and which are pinned together

at generic points in momentum space. This topological structure is captured by the Seifert

surface, defined as a three-dimensional surface which has the link as its boundary [34]. For

a condensed matter system, we consider a Seifert surface defined in (kx, ky, kz) and bounded

by the linked loop nodes, with energy axis collapsed. For the minimal case of a Hopf link,

the Seifert surface exhibits a branched structure which ‘wraps’ around the link (Fig. 5a,

left). A two-dimensional projection of the Seifert surface then produces alternating filled

and empty regions, which meet at characteristic touching points (Fig. 5a, right). In the

case of the Weyl loop link which we observe in Co2MnGa, the Seifert projection on the

(111) hexagonal surface Brillouin zone then predicts several alternating regions with and

without topological boundary states (blue and white regions, Fig. 5c), exhibiting touching

points along Γ̄− K̄. Since the Seifert surface encodes the linking number [34], the topolog-

ical boundary states are associated with a Seifert bulk-boundary correspondence. In this

correspondence, the linking number of the Weyl loops in the bulk is encoded in a Seifert

surface, whose projection gives the topological boundary states. A measurement of the bulk

link determines the Seifert boundary states, while a measurement of the Seifert boundary

states allows a reconstruction of the bulk linking number. To explore these possible surface

states, we examine the (111) surface of our Co2MnGa samples in ab initio calculation and

surface-sensitive vacuum ultraviolet (VUV) ARPES. On an energy-momentum cut through

the touching point we observe in calculation a pair of surface modes pinned together at

the Weyl loops (Figs. 5d). Moreover, our photoemission spectra are consistent with our

ab initio prediction, suggesting the observation of Seifert boundary states approaching the

Weyl loop linking point (Fig. 5e). On iso-energy contours of the electronic structure, we

expect to observe arc-like slices of the Seifert states, stretching across the filled regions and

connecting the linked Weyl loops. Examining the Fermi surface obtained in calculation, we

observe a sharp arc of surface states connecting the linked Weyl loops, consistent with the

Seifert projection (Fig. 5f, left). At the same time, the suppressed region exhibits no topo-

logical surface states in calculation. Our Fermi surface obtained by VUV-ARPES matches

the ab initio prediction well (Fig. 5f, right). We observe distinct arcs of states connecting

the linked Weyl loops across the topological region, corresponding to the topological sur-
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face states observed on the energy-momentum cuts (Figs. 5d, e) and suggestive of Seifert

states at the Fermi level in Co2MnGa. Our ab initio calculations and photoemission spectra

suggest the observation of Seifert boundary states.

Our photoemission spectra, ab initio calculations and theoretical analysis suggest the

observation of a loop node link in a quantum magnet. On the sample surface, we further ob-

serve Seifert boundary states protected by the bulk link, indicating a Seifert bulk-boundary

correspondence. These results establish a new bridge between physics and knot theory,

motivating further exploration of links and knots in electronic structures. Moreover, the

linked loop state in Co2MnGa, as well as in other materials, may give rise to exotic response

quantized to the linking number, such as a link-quantized topological magneto-electric effect

[25, 32, 33, 48]. Since high-symmetry magnetic and correlated materials are abundant in

nature, these ideas open the way to understanding the exotic behavior of a wide class of

quantum magnets and superconductors, as well as their photonic analogs.
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METHODS

Single crystal growth: Co2MnGa single crystals were grown using the Bridgman-

Stockbarger method. A polycrystalline ingot was first prepared using an induction melt

technique, with a stoichiometric mixture of Co, Mn and Ga metal pieces of 99.99% purity.

Then the powdered material was poured into an alumina crucible and sealed in a tantalum

tube. Growth temperatures were controlled using a thermocouple attached to the bottom

of the crucible. During the heating cycle, the material was melted at temperatures above

1200◦C and then slowly cooled below 900◦C.

Angle-resolved photoemission spectroscopy: Soft X-ray ARPES measurements were car-

ried out at the ADRESS beamline of the Swiss Light Source in Villigen, Switzerland under

vacuum better than 5 × 10−11 Torr and a temperature of 16 K [46, 47, 49]. Rod-shaped
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single crystals of Co2MnGa oriented along the conventional unit cell ẑ direction were

cleaved in situ at base temperature. The constant-energy cuts were symmetrized about Mx

and Mxy (Fig. 1d), Mx and Mxz (Fig. 1e) and My and Myz (Fig. 1f). The high-symmetry

energy-momentum cuts were similarly symmetrized about Mx, My or Mz, as appropriate

and consistent with the nominal symmetries of the crystal (Fig. 4a). A background was

removed from the photoemission spectra by a fixed intensity cutoff (raw, unsymmetrized

data in Extended Data Figs. 6, 7, 8). For the Fermi surfaces acquired at hν = 544 eV,

the nominal energy resolution was δE = 75 meV; for the photon-energy dependences, the

nominal energy resolution varied from δE = 75 meV at hν = 500 eV to δE = 125 meV at

hν = 800 eV. The angular resolution was better than 0.2◦ in all cases. The Fermi surfaces

were binned in an energy window of ±38 meV (Fig. 1d) and ±25 meV (Fig. 1e,f) around

EF. Vacuum ultraviolet ARPES measurements were carried out at Beamline 5-2 of the

Stanford Synchrotron Radiation Lightsource in Menlo Park, CA, USA at δE = 15 meV

and temperature 20 K.

Ab initio calculations: The electronic structure of Co2MnGa in the ferromagnetic phase

was calculated within the density functional theory (DFT) framework using the projector

augmented wave method as implemented in the VASP package [50, 51]. The generalized

gradient approximation (GGA) [52] and a Γ-centered k-point 12× 12× 12 mesh were used.

Ga s, p orbitals and Mn, Co d orbitals were used to generate a real space tight-binding

model, from which Wannier functions were determined. The Fermi level in DFT was shifted

to match the ARPES.

Scanning transmission electron microscopy: Thin lamellae for microstructure charac-

terization were prepared from bulk single crystals by focused ion beam cutting using a

ThermoFisher Helios NanoLab G3 UC DualBeam system (FIB/SEM). Atomic resolu-

tion high-angle annular dark-field (HAADF) scanning transmission electron microscopy

(STEM) imaging and atomic-level energy-dispersive X-ray spectroscopy (EDS) mapping

were performed on a double Cs-corrected ThermoFisher Titan Cubed Themis 300 scan-

ning/transmission electron microscope (S/TEM) equipped with an X-FEG source operated

at 300 kV with a Super-X EDS system.
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FIG. 1: Signatures of linked node loops in Co2MnGa. a, Weyl loops in the electronic

structure of Co2MnGa, predicted by density functional theory (DFT). Three distinct Weyl loops

are confined to the three mirror planes M1, M2 and M3, in such a way that the loops link one

another (additional copies of the loops in higher Brillouin zones not shown). b, Element-resolved

crystal structure of Co2MnGa along the [001] direction, acquired by atomic-level energy-dispersive

X-ray spectroscopy (EDS). Atomic columns consist either entirely of cobalt (green) or alternat-

ing manganese (red) and gallium (blue). c, Bulk Brillouin zone (black truncated octahedron) of

Co2MnGa with three mirror planes indicated, M1 (magenta, constant kz), M2 (red, constant ky)

and M3 (gold, constant kx). Each mirror plane contains square faces of the Brillouin zone. The

high-symmetry momentum-space points at the center of each square are marked X1, X2, X3. d,

Fermi surface acquired by angle-resolved photoemission spectroscopy (ARPES) at incident pho-

ton energy 544 eV, corresponding to M1. e, Out-of-plane Fermi surface acquired on the same

Co2MnGa sample by an ARPES photon energy dependence from 500 eV to 800 eV in steps of 2

eV, corresponding to M2. f, Analogous out-of-plane Fermi surface corresponding to M3, again on

the same sample.
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FIG. 2: Weyl loop trajectory in Co2MnGa. a, Energy-momentum photoemission slices

through the loop Fermi surface (slice locations marked by the dotted lines in (d) and Fig. 1d).

b, Energy-momentum slices through the Weyl loop from DFT, showing a Weyl loop cone (slice

locations marked in Extended Data Fig. 3c). c, Cone locations (magenta squares) systematically

extracted from cone dispersions observed in photoemission spectra on M1. Experimental loop

trajectory extracted by fitting to the cone locations (cyan, see main text). The binding energy axis

is collapsed. d, Constant-energy photoemission slice with analytical model of the Weyl loop (black

lines). This slice intersects the Weyl loop at a discrete set of points (cyan dots). e, Dispersion of

an effective k · p Hamiltonian for the Weyl loop, capturing the experimental loop trajectory.
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FIG. 3: Linked Weyl loops in Co2MnGa. a, M1 and M2 loop Fermi surfaces from adjacent

bulk Brillouin zones, plotted in an extended zone scheme, exhibiting a link structure. Inset: M1

and M2 plotted across multiple Brillouin zones. b, M2 and M3 loop Fermi surfaces from adjacent

bulk Brillouin zones. c, M3 and M1 loop Fermi surfaces from adjacent bulk Brillouin zones.
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FIG. 4: Linking number (2, 2, 2) in topological quantum matter. a, Energy-momentum

photoemission slices tangential to the M1, M2 and M3 Weyl loops at their extrema. b, Weyl loops

from adjacent bulk Brillouin zones, based on the analytical model extracted in Eq. 2 and Fig.

2, exhibiting links. Weyl cone positions (blue dots) extracted from the slices in Fig. 4a (dotted

blue lines), consistent with the analytical model (short blue line segments indicate the error). c,

Link diagrams help visualize a three-dimensional link structure by flattening it to two dimensions

while retaining the link information, illustrated for the example of a Hopf link. d, In a crystal, it

is natural to draw link diagrams in the surface Brillouin zone, such as the (001) surface Brillouin

zone (hexagon, Extended Data Fig. 2). e, Link diagram for the Co2MnGa Weyl loop link. There

are three distinct Weyl loops and each Weyl loop links each other Weyl loop exactly twice, giving

linking number (2, 2, 2). The arrows indicate out-of-plane wrapping: as one follows the loop in the

direction of the arrow, the loop wraps out of the page, exiting the Brillouin zone from the front

and re-entering from the back, at the same time reconnecting at the opposite edge of the hexagon.



21

0.90.6
k1 (Å

-1)

ARPES

kx

ky
kz

 Seifert
surface

Co2MnGa _
Γ

 _
K

 _
M-0.5

0.0

0.5

k1 (Å
-1)

k 2
 (Å

-1
)

M1

M2

M3

d, e

(111)
Seifert boundary states

 Seifert
surface

b

a

d

c

e

projection

-0.2

-0.1

0.0

E B
 (e

V)

0.90.6
k1 (Å

-1)

DFT

-0.5

0.0

0.5
k 2

 (Å
-1

)

-1.0 -0.5 0.0 0.5 1.0
k1 (Å

-1)

ARPES      (111)DFT

d, e

f

FIG. 5: Seifert bulk-boundary correspondence. a, A Seifert surface is defined as a three-

dimensional surface bounded by a link, shown for the example of a Hopf link. Its two-dimensional

projection produces alternating filled and empty regions pinned together at characteristic touching

points. b, In a condensed matter system, the Seifert surface is taken as a surface bounded by the

linked loop nodes in three-dimensional momentum space (kx, ky, kz), shown for the case of the link

observed in Co2MnGa. c, The projection of the Seifert surface into the surface Brillouin zone is

associated with topological boundary modes (blue regions) which touch at points in momentum

space. Energy axis collapsed for clarity. d, Ab initio calculation of the surface states through the

touching point, exhibiting pairs of boundary modes pinned together at the Weyl loops. e, Surface-

sensitive vacuum ultraviolet (VUV) ARPES energy-momentum cut through the touching point,

exhibiting signatures of the pinned Seifert boundary modes, consistent with ab initio calculations.

Photon energy hν = 63 eV. f, Fermi surface in ab initio calculation (left) and VUV-ARPES (right)

exhibiting Seifert boundary modes that stretch across the topological regions, connecting different

Weyl loops, consistent with the Seifert projection.
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Extended Data Fig. 1: Topological invariants in physics. a, An example of an order parameter

winding in real space: a magnetic vortex. In this case, the order parameter is the local magnetiza-

tion m(x), confined to a magnetic easy plane in real space (x, y). It may happen that m(x) winds

around a point in real space, forming a magnetic vortex characterized by a winding number topolog-

ical invariant, in this example given by w = 1. b, An example of a quantum wavefunction winding

in momentum space: the one-dimensional topological insulator (Su-Schrieffer-Heeger model). This

phase is described by Bloch Hamiltonian h(k) = d(k) · σ, where k is the one-dimensional crystal

momentum, σ refers to the Pauli matrices and d(k) is a two-component object confined to the

(dx, dy) plane. The normalized quantity d̂(k) ≡ d(k)/|d(k)| (orange arrow) moves around the

unit circle (dotted blue) as k varies. The topological invariant is related to how many times d̂(k)

winds around the origin as k scans through the one-dimensional Brillouin zone. c, Node loops

linking in momentum space: a three-dimensional electronic structure may exhibit multiple node

loops (cyan and purple), characterized by kn(θ), where n indexes the loops and θ parametrizes the

loop trajectory in momentum space. The loops may link one another, encoding a linking number

topological invariant. This example shows a Hopf link.
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Extended Data Fig. 2: Crystal structure and Brillouin zone of Co2MnGa. a, Conventional

unit cell with representative crystallographic mirror plane M (orange). b, The primitive unit cell

(grey) includes one formula unit. c, Brillouin zone, with reciprocal lattice basis vectors (grey). In

the reciprocal lattice basis, the M1 plane corresponds to (001), M2 corresponds to (010) and M3

corresponds to (100). d, Slice through Γ in an extended zone scheme.
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Extended Data Fig. 3: Energy dispersion of the Weyl loop. a, Crossing point energies EB

and b, crossing point momenta (kx, ky) systematically extracted from cone dispersions observed

in the ARPES spectra (magenta squares), same dataset as Fig. 2c (hν = 544 eV), with fit of the

Weyl loop momentum trajectory and energy dispersion (cyan, see main text). The crossing point

energies are parametrized by a polar angle θ defined by tan θ ≡ ky/kx. c, Weyl loop trajectory

from DFT, with dotted lines indicating the DFT energy-momentum slices shown in Fig. 2b. The

binding energy axes in (b) and (c) are collapsed.
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Extended Data Fig. 4: Link ‘depth’ of the Weyl loops. a-c, Distance between the extrema

of the Weyl loops and the bulk Brillouin zone W points for the M1, M2 and M3 Weyl loops. We

estimate s1 = 0.32 ± 0.1 Å−1, s2 = 0.27 ± 0.1 Å−1 and s3 = 0.29 ± 0.1 Å−1. d, The link depth

captures how far in momentum space one would need to slide the Weyl loops in order to unlink

them, providing a measure of the stability of the link. Based on the loop Fermi surfaces (a-c), we

estimate d12 = 0.58 ± 0.14 Å−1, d23 = 0.55 ± 0.14 Å−1 and d31 = 0.60 ± 0.14 Å−1. The average

gives a typical link depth extracted from ARPES, davg = 0.58 ± 0.08 Å−1. e, Energy-momentum

slice along the high-symmetry path X1 − X2 from DFT, passing through two linked Weyl loops.

We obtain dDFT = 0.68 Å−1.
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Extended Data Fig. 5: Supplementary measurement of the link depth. a, M1, M2 and

M3 Weyl loops, with trajectories obtained from the analytical model (see main text), showing

that M1 links M2 twice and M3 twice. Energy-momentum photoemission slices along the high-

symmetry paths b, X1 −X2 and c, X3 −X1 obtained at photon energy hν = 642 eV. We observe

d12 = 0.56 ± 0.1 Å−1 and d31 = 0.61 ± 0.1 Å−1, consistent with Extended Data Fig. 4. d, Fermi

surface acquired at hν = 642 eV, exhibiting an in-plane Weyl loop contour, M1. We further observe

spectral weight emanating along kx and ky from the center of M1, corresponding to the linearly

dispersive branches in (b, c), again suggesting that M1 is linked by M2 and M3.
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Extended Data Fig. 6: Unsymmetrized Fermi surfaces. a-c, Left: photoemission spectra

displayed in Fig. 1d-f, without symmetrization. Right: the same spectra, with the experimentally-

determined Weyl loop trajectory overlaid across multiple Brillouin zones. The irrelevant Γ pocket is

consistently observed in all unsymmetrized spectra. Signatures of Weyl loops are observed around

all X points.
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Extended Data Fig. 7: Energy-momentum cuts through the Weyl loop. Photoemission

spectra used to extract Fig. 2c.
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Extended Data Fig. 8: Unsymmetrized energy-momentum cuts. Photoemission spectra

displayed in Fig. 4a, without symmetrization.
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Extended Data Fig. 9: Linked Weyl loop Fermi surface. Constant-energy slice of the pockets

(navy) making up two linked Weyl loops obtained by ab initio calculation, at binding energy

EB = −10 meV, below the experimental Fermi level. The Fermi surface pockets touch at a set of

discrete points, where the Weyl loop disperses through this particular EB. For reference, the full

Weyl loop trajectories are indicated, collapsed in energy (orange around X3, magenta around X1).

We observe that the Weyl loop Fermi surface pockets form a linked structure.
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Extended Data Fig. 10: Measured Fermi surfaces in an extended zone scheme. The

Brillouin zone corresponds to Γ(066) in the primitive reciprocal basis.
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