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ABSTRACT OF THE DISSERTATION

Self-Organizing Wireless Networks: Challenges, Design, and Implementation

by

Hans Chinghan Yu

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2021

Professor Ramesh R. Rao, Chair

A self-organizing network refers to a computer network that can configure, man-

age, and optimize itself. To achieve this goal, it first collects the network information for

performance analysis at some control entities. After the control entities determine the

optimized parameters, they push the settings back to the network again using the same

channel they use to collect the information. Network optimization has been extensively

studied over the last two decades. Most works ignore actual mechanisms for data collec-

tion and parameter update. This is partially true because device vendors, such as Cisco

x



or Juniper, have their own control interfaces. Unfortunately, these interfaces are generally

not compatible with each other, and so a unified control protocol, OpenFlow, emerged.

OpenFlow defines a set of commands for data collection and parameter update

for wired networks. However, wireless networks, or the most richly existing Wi-Fi, were

not the primary targets of OpenFlow. In this dissertation, we first showed OpenFlow

protocol could be migrated from wired networks to wireless networks with minor software

modification and use to build a software-defined mobile ad hoc network (SD MANET)

prototype.

Seeing the tight constraints in our SD MANET, we moved on to loosen these

limitations. We came up with an approach to support most nowadays smart devices using

the standard IEEE 802.11v/r protocol to replace the last mile connection between the

devices and their associated access points. Our solution did not require any hardware or

software modification on users’ devices but only need the built-in IEEE 802.11v/r support,

which can be found in many mainstream smart devices.

In addition to smart devices having rich network capability. We noticed another

group of wireless connectivity devices but did not support advanced protocols such as IEEE

802.11v/r due to their simplified architectures. These devices include the ever-popular

internet-of-things devices built on simple, low-power, and low-cost Wi-Fi system-on-chip

solutions. Because Wi-Fi connection consumes lots of power, today’s Wi-Fi IoT devices

generally require external power support, and we can hardly see battery-powered Wi-Fi

IoT devices. Seeing the demand, we design a non-coherent wake-up receiver that takes

over the channel monitoring task of a power-consuming Wi-Fi interface so that the Wi-Fi

xi



interface can be completely turned off. Our wake-up receiver consumes only 20-40 µW

when monitoring the channel, whereas a general Wi-Fi interface can easily drain more than

100 mW. We also came up with an extendable finite-state-machine design that supports

multicast wake-up. Multiple receivers can wake up through a single, carefully selected

wake-up signal.

Practicality is the main idea of this dissertation. We have seen solutions with

amazing performance but required either huge investment or complicated hardware design.

In this dissertation, we chose the other way around by first analyzing the capabilities of

existing frameworks and design solutions installed as overlays. Through this process,

practicality is guaranteed.
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Chapter 1

Introduction

Self-Organizing Network (SON) is an emerging concept in which a network man-

ages itself with little human intervention. Two important factors establishing the base of a

self-managed network are real-time control and real-time monitoring. Generally speaking,

a self-managed network has a feedback control loop in which the network configures itself

based on the network dynamics it collects. The control mechanism can be either central-

ized or decentralized depending on the network topology and the intended applications.

Many enterprise-level networks already have centralized control mechanisms, whereas ad

hoc/peer-to-peer (P2P) networks are mostly decentralized. SON offers some benefits. Take

an in-home network as an example. Assume we start watching a Netflix drama on TV.

A predefined rule is triggered when the controller on a router senses an increase in traf-

fic throughput between Netflix’s cloud server and the TV. The controller quickly applies

congestion control algorithms to guarantee the bandwidth of Netflix streaming. When

wireless communication is part of the network, given its mobile nature, channel character-
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istics, and device locations, also need to be considered. Say a user would like to print out

the photo from her smartphone. The controller uses the location information to determine

the best available printer nearby and help the two devices set up their connection. Because

wireless communication is already part of our daily lives, there is little reason to exclude

wireless networks from the SON paradigm. Also, the above example implies that location

information could serve as a key to optimization.

This dissertation is intended to show our answer to how a wireless SON (WSON)

can be built on top of different types of existing networks with our software-oriented

solutions and how the location information can be obtained at a close-to-zero cost. We

agree a new hardware design will likely lead to even better performance, but it also creates

extra cost and compatibility issues, preventing it from being widely accepted and deployed.

On the other hand, software-based solutions generally have a much lower deployment cost

and can more easily adapt to an existing setup. Throughout this dissertation, we weigh

practicality as important as system performance, meaning that we plan not to argue how

reasonably we can scarify some current features in exchange for a performance gain.

1.1 SON for Wireless Mobile Ad Hoc Networks

In the upcoming 5G scenario, we can expect an increase in local traffic, i.e.,

the traffic source and destination are close in proximity. Examples of such kinds include

video casting. We stream a video clip from a smartphone to a TV and smart cities where

vehicles learn and share local real-time traffic information to optimize speed and route

2



planning. In the current architecture, even local data are first sent to the cloud before

they are redistributed. This approach is sub-optimal, especially in sharing time-sensitive

information like local traffic. Not only because it suffers from a longer delay but also

because it creates congestion at base stations, road-side units, or access points (APs). A

solution to this problem would be direct device-to-device (D2D) communications [1], in

which local nodes together form a wireless ad hoc network and run the same protocol.

One of the most well-known D2D protocols is ad hoc on-demand distant vec-

tor (AODV)[2], a reactive protocol finding path only when there is a demand. This ap-

proach inevitably suffers from long delay and pronto fail when there is a rapid topology

change. On the other hand, the optimized link-state routing protocol (OLSR)[3] maintains

a link-state among a node and its neighboring nodes by periodically exchanging control

messages and updating the network topology at each node. A major disadvantage of this

protocol is that a change might take a long time for nodes at the other end to learn in a

large network. Also, frequent topology changes could create excessive control messages,

resulting in significant overhead. A hybrid solution called zone routing protocol (ZRP) was

proposed to reduce the number of control messages and balance the performance. ZRP

divides nodes into clusters based on their geographical locations. The protocol assumes

there is generally more intra-cluster traffic than inter-cluster traffic. Hence, nodes belong

to the same cluster can exchange their data with an OLSR-like protocol, and inter-cluster

traffic is transmitted over an AODV-like protocol. This hybrid approach significantly re-

duces the number of control messages because updated topology information is maintained

only among the nodes within each cluster, and not so surprisingly, a significant delay is
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introduced when a packet is destined to a node in a different cluster because the new

packet needs to be searched reactively.

The above findings show that we cannot entirely rely on reactive path-finding if

we want an acceptable delay. In the meantime, we also need to limit the use of a proactive

path-finding approach in a large network to avoid excessive overhead. One might think

that there might be an optimal network size in terms of the number of nodes to balance

traffic delay and overhead. We chose not to follow the same thought process but have

found a solution by using the concept of software-defined networks (SDN),[4] in which we

put control messages and data in different network planes and made the size of the network

more scalable.

Admittedly, SDN needs two different networks instead of one, and this is not

a fair comparison to existing D2D networks. However, we believe this assumption is far

from impractical, providing many smart devices today have two or more network interfaces.

For example, we can route control messages over cellular networks with a local controller

installed at a base station, forming a star-topology network and let all the local traffic

transmitted over the D2D network. We did see a significant performance gain in our

experiments as we bench-marked our wireless mobile ad hoc network (MANET) [5] against

an OLSR counterpart.

A major reason why we could realize our software-defined MANET (SD-MANET)

in this manner was that we confirmed the existence of a one-to-one mapping between an

Ethernet frame and Wi-Fi ad hoc frame, i.e., an Ethernet frame can be converted to its Wi-

Fi ad hoc version and vice versa without losing any information. This mapping bridges
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the gap between wired and wireless networks, and we were able to port OpenFlow [6]

SDN protocol to wireless networks with minor fixes. The implementation is present in

Chapter 2.

1.2 SON for Infrastructure Wi-Fi Networks

After explaining the details of building our SD-MANET in Chapter 2, we focus

on porting the SDN paradigm to infrastructure mode Wi-Fi in Chapter 3 because the

infrastructure mode Wi-Fi is more widely seen today. In contrast, the ad hoc mode is

seldom used. We soon encountered two challenges. The first roadblock we had was no

one-to-one relation between an Ethernet frame and an infrastructure mode Wi-Fi frame.

Enforcing similar conversions in our SD-MANET design would violate the standard, mak-

ing our design complicated and less compatible with existing devices. We decided not

to follow this path but to dedicate our time to a standard-compatible software-oriented

solution. The second challenge was that unlike nodes in ad hoc networks in which beacons

are broadcasted periodically, station devices (STA) in infrastructure mode Wi-Fi do not

broadcast beacons, making it hard to estimate their locations.

To deal with location issues, we made a device that generates expected signal

patterns to identify its neighboring nodes. One way to have a device make sound is to

disassociate it from the AP intentionally. After being disassociated, the device will start

looking for other APs for connection by sending probe requests on all the channels, giving

us a hint for triangulation. However, during this AP probing period, all the ongoing traffic
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has to stop. An all-channel probe could take up to several hundred milliseconds, long

enough to break VoIP calls or video conferencing[7, 8].

A more practical solution would be not to disassociate the device from the AP

but still trigger the probe. We found that the 802.11v [9] BTM control frame best fits our

needs and becomes a key to our goal. By sending unsolicited BTM control frames in an

orchestrated way through the associated AP, the controller suggested a list of candidate

APs, triggering the AP probes. Because almost all current smart devices support compat-

ible with the 802.11v standard, our solution does not require any additional hardware or

software support.

Our solution consists of two parts. First, we could obtain real-time location

information. Then we use it as an input to the controller. Combining our Wi-Fi tracking

technique with the existing Bluetooth Low-Energy (BLE) tracking one, a radio-based

contact tracing system that helps against the ongoing COVID-19 pandemic would be

possible.

1.3 SON and Wi-Fi Internet of Things Devices

Now we have covered solutions for both ad hoc mode and infrastructure mode

Wi-Fi. Another group of devices does not either form ad hoc networks, nor do they

support 802.11v protocol. For example, Internet of Things (IoT) devices such as Wi-Fi

switches and smart plugs. These devices are built with micro-controllers and only support

infrastructure mode Wi-Fi in general for simplicity.
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In addition to Wi-Fi, BLE and LoRa[10] are two other popular radio standards

for IoT communications. These standards are designed for low-power applications because

they generally consume much less power than Wi-Fi and are more suitable for battery-

powered scenarios. However, to collect data from these devices, we need to build a new

infrastructure, which might not be cost-efficient because they are unlikely to have a high

traffic demand. One way to resolve this challenge is to try to make a Wi-Fi interface

consume less power by introducing a standard-compatible wake-up receiver circuit (WuRx)

as a front end to the original Wi-Fi interface. Such a circuit will turn on the Wi-Fi interface

only after seeing a specific radio pattern in a Wi-Fi channel. Based on our measurements,

the circuit consumes only 20-40 uW of power, whereas a general Wi-Fi interface consumes

100-150 mW.

In our design, a wake-up radio pattern can be generated through the Wi-Fi frame

injection technique from a user application with compatible hardware and does not require

any hardware change. In our experiments, we confirmed that at least two brands of Wi-Fi

cards could be used to wake up the circuit.

The COVID-19 pandemic has largely reshaped our life. People are strongly en-

couraged to practice social distancing and wear masks. We have yet to know when a

vaccine will be available and put an end to this pandemic. Many people started work-

ing remotely when they were told to shelter at home, and they stayed connected to their

communities and the whole world through computer networks.

As network traffic increases, problems and challenges that have been overlooked

for a long time are hungry for solutions. Through documenting my answers in this dis-
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sertation, I think it will, hopefully in large, at least in part, light up a way to a better

network design in the future.
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Chapter 2

Wireless SDN Mobile Ad Hoc

Network

As mentioned in Section 1.1, OpenFlow protocol [6] was originally designed for

wired networks and did not consider frame structure or mobile characteristics of wireless

networks. However, its well-defined application program interfaces (APIs) and cross-layer

support make it suitable for dealing with wireless networks’ fast-changing environment.

This chapter starts by identifying our building blocks and then putting these building

blocks to build the whole system. First, let’s look into the format differences between an

Ethernet [11] frame and a Wi-Fi [9] frame.
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2.1 Wi-Fi Frame Structure

Unlike wired links that electromagnetic signals propagate in copper wires and one

link only goes to one destination, wireless connections use a shared medium. Of course,

we can put links on different channels to be physically apart like their wired counterpart,

limiting the number of sender/recipient pairs and resulting in inefficiency. Alternatively,

people use addresses as keys to identify links. Each node has a unique address called the

medium access (MAC) layer address. It should only capture and process messages with

an address related to itself while ignoring all others. In Wi-Fi, messages are packed into

the frame format whose header holds the addresses and control parameters necessary for

the recipient to process correctly.

There are two different Wi-Fi service modes: 1) basic service set (BSS) mode

is commonly known as infrastructure mode, whereas 2) independent BSS (IBSS) mode is

called ad hoc mode. This section will first cover our solution to extending SDN to ad hoc

mode Wi-Fi networks.

Figure 2.1 shows headers of an Ethernet frame, ad hoc Wi-Fi frame, infrastruc-

ture Wi-Fi frames, and mesh frames. Although they look slightly different, there are still

common fields shared by all four kinds of frames. For example, both the Ethernet frame

and ad hoc Wi-Fi frame consist of only two addresses in their headers, whereas the in-

frastructure Wi-Fi frame has three addresses. An infrastructure Wi-Fi frame’s additional

address is used to determine the relationship between an AP and a station node (STA).

This is because the AP is may not be the final destination of a frame, but it is more
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likely to be an intermediate node. The third address is necessary because there might be

multiple APs within the range of access, and the STA has to use the third address field to

identify the targeted AP for frame sending. Similarly, there could be multiple STAs within

the range of a single AP. The AP also uses the third address to identify the receiving STA

without touching the source and destination addresses.

We first focused on the shared fields between the Ethernet frame and ad hoc

Wi-Fi one. We quickly confirmed if the BSSID is known in advance, an Ethernet frame

can be translated into an ad hoc Wi-Fi frame without losing any information. A backward

conversion is also possible.

Figure 2.2 shows the forward and the backward conversion of frames. Because of

this possibility, it is possible to replace a wired link with an ad hoc Wi-Fi link in a network

with minor modifications. In fact, in Linux systems, this conversion is done automatically

when necessary in the kernel. More detail will be covered in Section 2.3. This gives us a

perfect chance to extend the OpenFlow protocol to wireless networks.

2.2 MAC Address Rewriting

We mentioned that wireless senders use MAC addresses to identify frame recipient

in Section 2.1. To inform the sender that the frame has correctly arrived at the recipient,

the recipient replies an acknowledgment (ACK) by putting the sender’s MAC address in

it. Therefore, if the sender does not hear the ACK associated with a particular frame in

time, it assumes that the frame was lost and will resend it again. This feedback mechanism
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provides reliability to wireless communications.

In many nowadays Wi-Fi interfaces, due to timing constraints, this feedback

mechanism is usually implemented at the hardware or firmware level to avoid a possibly

long delay between the interface and the CPU. To build a multi-hop network, we need to

follow what has been hard-coded in the hardware. For example, assume there are three

nodes sS, sH, and sD, and a frame wants to make two hops, from sS to sH and then from

sH to sD, as shown in Figure 2.3.

We need to make sure that for the sS-sH link, all the frames should have sS as

their source MAC address and sH as destination MAC address. After these frames arrive

at sH, we rewrite their headers so that sH becomes their source address and sD becomes

the destination for them to follow the sH-sD link. There are two other host nodes in

Figure 2.3 hS and hD, serving as source host and destination host. These two machines

are introduced in our testbed for debugging purposes and can be easily integrated into sS

and sD, respectively. This setup also implies that the multi-hop network is transparent to

hS and hD because they see no difference and treat the incoming frames as if they were

sent over an Ethernet cable.

A significant benefit in this setup is that through this MAC address rewriting

mechanism, we can control a particular flow route. Assume there is another intermediate

node sK that is also reachable from sS and sD; we can intentionally redirect the sS-sH-sD

link to the sS-sK-sD link when sH node is out of service, and the overall system robustness

is enhanced.

To efficiently utilize this setup, we need first to resolve the following two chal-
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lenges:

• How do we figure out the reachability of each node?

• How can we systematically rewrite headers?

We use beacons to test the reachability. All the nodes periodically broadcast

beacons and put their own MAC addresses as identifiers. At the same time, they also pay

attention to beacons from other nodes and report a list of nodes they can see beacons

to the SDN controller, which will be covered in Section 2.4. The SDN controller, after

collecting these data, should update the connected graph of the network. After that, the

controller uses that graph to determine the optimal route for each traffic flow and instruct

nodes with rewriting rules.

2.3 SDN Protocol and Switch

In the last section, we covered that MAC addresses were changed according to

rules systematically. If there was an update to the rules, new rules were applied at their

earliest convenience. In OpenFlow protocol, we can assign priority and an expiration

period to each rule, telling an OpenFlow switch that rule is only valid for a limited time

for fail-safe reasons. For example, we set updated rules with a higher priority and a short

expiration period and back up rules with low priority and a long expiration period. When

a switch does not receive the updated rules in time, those out-of-date will expire and

eventually be removed. The backup rules will take place and become effective.
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How does a rule look like, and how does it work? An OpenFlow rule generally

consists of two major parts, filter and command, and is pretty similar to a firewall rule.

A filter is used to identify frames with some particular characteristics. Take Figure 2.3 as

the example again, we set a filter at the incoming interface of sS, marking all the frames

having hS as the source MAC address and hD as the destination address in their headers.

The stream of these frames is called a flow, and we want to modify the frames in this

flow-through executing a set of commands, such as replacing the source MAC address

with sS and the destination address with sH. We need to apply various filters and rules on

sH and sD to allow multiple hops and recover the frames with their original headers. In

this example, we customize the rules of a particular flow on each node along its route.

In a Linux system, there are two main approaches to modify the routing paths

in a network. The first approach (A1) is based on a direct modification of each node’s

routing table. This requires a protocol that modifies the Linux kernel network layer based

on the SDN application’s information running in the node. The second approach (A2) is

based on the use of an SDN module (a wireless switch), which is the software component

on the top of the Linux kernel that can put into action the routing decisions made at the

SDN controller, i.e., it actually appends the new destination address to each packet.

We have chosen (A2) for its compatibility with the previous SDN framework to

provide a more general testbed for the networking community.

Among the supported wireless switches, we selected Open vSwitch (OVS) [12] and

Centro de Pesquisa e Desenvolvimento em Telecomunicações (CPqD) switch [13]. Both

provide the needed functionalities in our scenario. Still, we implemented OVS because it
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has a simpler architecture than CPqD, supports more versions of the Linux kernel, and

allows further flexibility in node devices’ choice.

We chose to use Raspberry Pi 2 Model B+ (RPI) [14] as the OVS device because

its hardware consists of one Ethernet port and four USB ports. We used USB-to-Ethernet

adapters and USB Wi-Fi dongles to covert USB ports into wired and wireless interfaces.

RPI also runs Linux and has all the toolchains for us to build the OVS from the source.

The installation process started from source compilation. One should check the list of

compatible OVS and Linux kernel versions. In our case, our Linux kernel version was 3.18,

so we selected OVS-2.4.0. We directly built the OVS on our target machine rather than

doing a cross-compilation. The compiled binary executables into installation packages are

packed as installation packages to copy these files onto different nodes without recompiling

the source.

Figure 2.4 shows changes in the Linux kernel network stack before and after

installing the OVS module. OVS inserts a new layer called SDN bridge between kernel’s

Ethernet stack and drivers in Figure 2.4(b). At this position, it can first filter out the

traffic that needs to be processed according to the SDN rules while allowing all unrelated

traffic to be forwarded following their original path in the kernel. A user-space application

is also introduced as a bridge, hooking a remote SDN controller and OVS module in the

kernel. This design is for a fail-safe concern, allowing us to set up some backup rules to

handle the traffic should the SDN application lose the connection to the remote controller.

For example, applying autonomous routing policies.

Figure 2.4(a) also shows how the Linux kernel handles Ethernet and Wi-Fi con-
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nections. We notice that an incoming Wi-Fi frame will be converted to an Ethernet format

before being sent to the upper layer. The conversion is done by replacing the Wi-Fi header

with an Ethernet header; conversely, an outgoing Wi-Fi frame has its Ethernet header re-

placed with a Wi-Fi header added in the MAC layer. This design allows the Linux kernel

to handle different interfaces in the same manner.

2.4 SDN Controller

After selecting the southbound protocol and setting up the switches, we need

to build the controller. The controller should continue to monitor the network dynamics

and uses the information it collects to compile rules to be pushed to the SDN switches,

forming a feedback control loop. Again, the control policy can be classified into a proactive,

reactive, or mixed one. In a proactive control policy, the controller asks all the nodes to

broadcast beacons and uses beacon information to construct the network graph. It then

installs rules for optimal routes onto each switch, even if there is no traffic demand. This

kind of design minimizes the end-to-end delay and creates excessive traffic in the control

plane (CP), the network between the controller and the controlling switches. Another

extreme policy is to use an entirely reactive control policy, which only reacts to the traffic

demand. It will result in a long delay because the controller only starts to collect the

information necessary for coming up with the rules when a new request arrives.

Based on these concerns, one can conclude an optimal point between a fully proac-

tive design and an entirely reactive design and is a mixed design for general applications.
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In fact, in our design, we keep the beaconing feature in the proactive policy to update the

network topology in real-time, but our controller reactively installs rules. More precisely

speaking, once a traffic demand appears at one node, the controller should calculate the

optimal route for that traffic and establish rules on each node along the path. Therefore,

a longer delay will only happen at the beginning of the traffic.

There are several options available for SDN controllers compatible with Open-

Flow [15, 16, 17, 18, 19], which differ based on the routing protocols implemented. Among

the controllers supported by the developer community, Open Network Operating System

(ONOS) [20] developed by ON.Lab was chosen because it provides a large number of

resources that can contribute to this project.

Figure 2.5 shows the architecture of ONOS. In the form of link information, the

network information is collected by OpenFlow and communicated to the distributed core

of ONOS through the southbound connections. The distributed core is responsible for

translating this information into a format that the routing algorithm can process. This

new information is then sent up (through the northbound connections) to the routing

algorithm’s application. Several available examples of applications, including the Border

Gateway Protocol (BGP) [21] and the Open Shortest Path First (OSPF) [22]. In general,

any centralized routing algorithm can be implemented here.
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2.5 Control Application

ONOS made the “operating system” part of its name because it tried to borrow

the concept of an operating system. A typical operating system talks to the hardware,

handle inputs/outputs and provide function libraries for a user to carry out their work.

Similarly, ONOS supports multiple southbound protocols such as SNMP, NetConf, and

OpenFlow and provide function libraries for northbound applications. The idea is to

increase the portability. For example, if one particular feature can be found in both

NetConf and OpenFlow protocols, a northbound application relying on that feature should

run without modification. This is done by not exposing all the protocol commands directly

to northbound applications. ONOS wraps these commands into its own APIs, making

itself similar to an operating system, as shown in Figure 2.5. One significant benefit to

this architecture is that a user only needs to be familiar with one set of APIs instead of

many protocols.

We built our application by extending the reactive forwarding application pro-

vided by ONOS. The example application was originally design for the wired networks and

did not have the MAC address rewriting feature mentioned in Section 2.2. Also, it works

in an entirely reactive manner, meaning that the first frame/packet of each new traffic

flow might suffer a long delay due to rule installation. We also modified this part so that

our control application will proactively install rules onto nodes along the route.

The topology finding task is handled by a separate application called ProxyARP,

a dependency of our SD MANET control application. In an IP network, a node uses an
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address resolution protocol (ARP) for discovering the link-layer address, such as MAC

address. The node uses cache memory to keep track of all the IP-MAC relations known

by itself. Should a MAC address of an IP address not be found in the table, it will send

out a broadcasting ARP probe to its on-hop neighbor, asking if they have the record. If

not, the neighboring nodes will keep forwarding the probe request until a node with the

record returns a reply.

This strategy is not suitable for wireless communications because these duplicated

probe requests are sent over a shared medium, resulting in a huge overhead. ProxyARP

application installs rules on all the nodes, asking them no to forward ARP probes if they

do not have the MAC address record but instead redirecting them to the controller, who

keeps track of all the IP-MAC records, through the control plane. ProxyARP can quickly

look up the correct address and reply to it. Through this design, an ARP probe has to

make two hops at most and will not be flooded throughout the data plane.

2.6 Putting Pieces Together

Now we have our software switches and controller ready. It time to connect them.

At each RPI node, we connected two USB Wi-Fi dongles A and B. Dongle A

was put in Wi-Fi ad hoc mode, whereas Dongle B was set as an infrastructure STA. If

an RPI was connected to a host machine, we added a USB-to-Ethernet adapter to extend

one Ethernet port. RPI’s built-in Ethernet port ran a secure shell server (SSH) and was

used for troubleshooting.
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Secondly, we installed OVS-2.4.0 on each switch node as a Linux kernel module,

added Dongle A and USB-to-Ethernet adapter to the OVS switch, and set the switch to

connect to the controller using Dongle B.

Thirdly, we connected the ONOS controller running our SD MANET application.

The controller was also associated with a Wi-Fi AP to receive connections from our OVS

switches and form a star topology control plane.

Figure 2.6 shows the final look of the SDN switches and the controller.

2.7 Evaluations

In this section, we showcase a practical implementation of our SDN framework

with commercial devices. We set up the network, and we send some data traffic with

a multi-hop topology. To show our framework’s potential advantages, we run the same

network with a distributed routing protocol. We show the benefits of the SDN framework

in the case of sudden topology changes.

2.7.1 Network Setup

The experimental scenario is composed of an SD MANET with three SDN nodes,

labeled S, H, and D, as in the previous section, deployed as shown in Fig. 2.7. Each of

these nodes is composed of one RPi Model B+ and one Wi-Fi adapter (Ralink RT5370

USB), and the transmissions in the DP use the IEEE 802.11g ad-hoc mode (on channel 6).

The three SDN nodes are equipped with OVS-2.4.0 and are connected to the CU running

20



ONOS (the chosen OpenFlow controller) and our MANET application[23].

A second network, named OLSR MANET, is set up for comparison using the

same three nodes (S, H, and D) in the same location and with the same topology. In this

second network, the nodes are not equipped with our SDN framework, but they are running

a distributed routing strategy, OLSR. In particular, olsrd-0.8.8, which the HSMM-Pi

Project provides[24], is installed in the three nodes. The parameters of OLSR are set up

as follows. The hello message interval, the hello validity time, and the topology control

message intervals are set to 10, 1, and 0.5 seconds.

In both networks, the data traffic is generated at node S using the traffic generator

iPerf3 [25], which creates a random TCP flow towards the destination, node D. The length

of the experiment is N seconds, and time is divided into intervals of 1 second. For each

interval τn, with n = 1, . . . , N , the end-to-end throughput is measured in bit-per-second

(bps) as:

T (τn) =
TCP RWND× 8

RTT
,

where TCP RWND is the average receiving window size of TCP session during interval τi,

and RTT is the average round-trip time, i.e., the elapsed time between the transmission of

the first bit of a TCP segment sent and the receipt of the last bit of the corresponding

TCP acknowledge.

To compare the behavior of the SD MANET and the OLSR MANET in the case

of a sudden topology change, we alternate the fully-connected topology, shown in Fig. 2.7-

(a), with the multi-hop topology, without a direct connection between S and D, shown in
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Fig. 2.7-(b).

Since it is not easy to perfectly control a link failure by changing the location of

the nodes, we emulate a link failure between S and D by designing a module at the MAC

layer of the nodes that can reject all the packets coming from S (for node D), or D (for

node S). In this way, we can perfectly control in our experiment when the link between S

and D fails or when it is up again.

In the following, we describe three experiments that compare SD MANET and

OLSR MANET in the case of a change in the topology (due to the failure of an existing

link or the restoration of a previously non-existing). Each experiment is repeated M = 20

times for both the SD MANET and the OLSR MANET. The average throughput, shown

in the results, is obtained as:

T (τn) =

∑M
m=1 Tm(τn)

M
,

where Tm(τn) is the throughput obtained during the time interval τn for the m-th experi-

ment.

2.7.2 Link-down Experiment

In the first experiment in Fig. 2.8, we observe the effects of a link failure event,

which changes our network’s topology. The experiment starts at t = 0 with the topology

of Fig. 2.7-(a), where the three nodes (S, H, and D) are fully connected. S starts sending

TCP traffic towards D, and both the SD MANET and the OLSR MANET choose the

direct link between S and D.
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Then, at time t = 10, the direct link between S and D fails. Thus the topology

becomes the one in Fig. 2.7-(b). The SDN controller is immediately notified about this

event, and it promptly reacts, imposing a new SDN rule to nodes S and H. In this way, node

S sends all the packets destined to D towards H, and H forwards these packets towards

D. The throughput for SD MANET is immediately restored to half the initial throughput

value since the new path from S to D now has two hops.

The OLSR MANET can identify the link failure and react to it by changing

the path to D only at t = 25, with a delay of about 15 seconds, causing a significant

throughput outage. This result is expected since OLSR has a fully distributed routing

algorithm, which takes significant time to update. On the other hand, SD MANET can

exploit the CP, which allows the routing algorithm to be run in a centralized fashion at

the CU, where all the information about link conditions are promptly collected.

2.7.3 Link-up Experiment

In the second experiment, in Fig. 2.9, we observe the averaged throughput ex-

perienced by SD MANET and OLSR MANET when the initial topology is the one in

Fig. 2.7-(b), i.e., a two-hop path between S and D. At t = 10 the direct link between S

and D is also activated, as in Fig. 2.7-(a). As expected, we observe that in the case of SD

MANET, the network can react promptly to the change in topology, and the throughput

almost doubles for t > 10. On the other hand, OLSR MANET has a delay of about 20

seconds before it can fully use the direct link, reaching the maximum throughput.
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2.7.4 Fast-changing Topology Experiment

In the third experiment, in Fig. 2.10, we have a series of consecutive topology

changes. At t = 0, the topology is the one in Fig. 2.7-(a) (direct link between S and

D), then at time t = 30 the topology becomes the one in Fig. 2.7-(b) (two hops), then it

switches again to Fig. 2.7-(a) at t = 60 and finally to Fig. 2.7-(b) at t = 90.

In this case, the experiment is repeated 20 times, and the results are averaged

over all the trials. For each topology change, we observe how the SD MANET can react

almost immediately to the topology change. In contrast, OLSR MANET reacts to the

changes with a certain delay, causing a significant throughput loss, as expected.

2.8 Conclusion and Discussions

In this work, we presented a practical implementation of an SD MANET that

provides all the advantages of D2D data transmissions and, at the same time, has the

flexibility of centralized network management. We described the SDN architecture de-

tails, and we overviewed and referenced all the software components that we adopted.

We contributed to this effort by providing new components for the wireless networking

community.

To show the advantages of the SD MANET and the validity of all the software

provided, we compared our SD MANET with an ad hoc network managed in a distributed

way. With few simple examples, we highlighted the significant advantages of our approach,

particularly for fast-changing network topology.
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However, there were still missing pieces in our work. First, we did not cover the

controller’s sensitivity to the network changes, nor did we cover the controller’s best policy

to react against a fast-changing scenario. Moreover, our work showed the OpenFlow could

be extended to a MANET running Wi-Fi ad hoc mode. Still, the solution to the more

popular infrastructure mode remained undetermined in this work.
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Figure 2.3: Modifications in the MAC header for a packet generated at node S, relayed
by node H, and destined for node D. Wired connections are denoted by solid lines, whereas
wireless connections are represented with dashed lines.
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–

Figure 2.5: Architecture of our ONOS controller.
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Controller

Figure 2.6: SD MANET testbed

Figure 2.7: Network topology for testing the throughput: (a) both a one-hop link and a
two-hop link are available between S and D; (b) only the two-hop link is available.
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Chapter 3

Wi-Fi Roaming as a Location-based

Service

After uncovering a software-defined solution for MANET, we changed our course

to a more popular and widely seen scenario, the infrastructure mode Wi-Fi. Ranging from

in-home wireless networks, on-campus networks to many Wi-Fi HotSpots in shopping

malls, coffee shops, and grocery stores, The infrastructure mode dominates our current

Wi-Fi architecture. Thus, it becomes challenging if we want to bring in new hardware

or new standards not compatible with existing ones. On the contrary, if we can develop

a fully software-oriented and logically practical solution, we may leverage all the existing

Wi-Fi frameworks and clear the path to popularity.
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3.1 Challenges in Infrastructure Wi-Fi

As mentioned in Section 2.1, there is no easy way to establish a one-to-one map-

ping between an Ethernet frame and an infrastructure Wi-Fi frame because there are

additional address fields in the frame header. The transmitter/receiver addresses in an

infrastructure Wi-Fi frame determine the frame’s intermediate recipient, as shown in Fig-

ure 2.1-(c) and (d).

It turns out that the thought process of expanding the OpenFlow protocol to SD

MANET is not fully applicable to infrastructure mode Wi-Fi, and additional modifications

are required. One approach (A1) [26] is to extend OpenFlow’s API set, adding new

functions that deal with addressing issues, channel selections..., etc. One shortcoming of

this approach is that it would lead to a new protocol design that is not fully compatible

with the existing one. Another disadvantage, which might be even more challenging,

requires all the STAs to have wireless OpenFlow support. If they do not have built-in

support from their operating systems, extra software packages are required, making itself

less practical.

However, our idea (A2) was that we chose not to extend SDN protocol to all the

STAs but limited the SDN support at the APs. We only turned our APs into SDN-enabled

APs and left all the STAs untouched. STAs such as users’ laptops, smartphones, or tablets

would see no difference between a regular AP and our SDN-enabled APs.

Figure 3.1 illustrates the difference between approach A1 and A2. Devices with

SDN support are marked in blue, and the support is provided through SDN software

35



SDN SDN

(a) (b)

Figure 3.1: (a) both APs and STAs have SDN support (marked in blue); (b) only APs
have SDN support

packages. As shown in Figure 2.4, SDN is done by parameter change in network frames/-

packets and generally requires kernel-level privileges. This, unfortunately, could raise some

concerns. In A2, we build a smart infrastructure that supports all the features that an

existing one has but uses SDN to uncover valuable information such as location estima-

tions. Because now wireless client does not necessarily support SDN, we cannot use the

approach in Chapter 2 but also because a client is connected to our infrastructure, it must

be one-hop away from its associated AP, we still can use the association information to

estimate the network topology and infer the location.

Many smartphone applications require to know the location information to work.

Location-based computing can be done in portable devices to improve performance and

provide a better quality of service (QoS). For example, when a user brings a smartphone

close to a wireless printer, the infrastructure can inform both smartphone and printer to be

ready for a print. Moreover, when a smartphone moves away from its currently associated

AP, the infrastructure quickly reacts against the change. It helps the phone locate a new
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AP for a handoff, preventing ongoing traffic from being dropped.

Since many devices are equipped with Wi-Fi functionality, it would be very cost-

efficient if topology information could be retrieved directly through existing Wi-Fi infras-

tructure rather than extra hardware. Topology information, such as locations, BSSIDs,

operating channels, or traffic load on neighboring APs, is valuable to clients but more

easily accessible from the infrastructure side because infrastructure is generally managed

by a single entity, whose devices share a unified interface in general. A good example is

roaming. Tseng et al. [27] assumed the location of clients is known and showed that lo-

cation information could play an important role in helping clients find correct APs. They

thought location information was available and proposed to use a location server to keep

track of clients and suggest probable next APs, adding another degree of certainty in the

roaming decision-making metrics.

The Wi-Fi roaming process is usually initialized by clients who have no prior

knowledge of network topology. Still, they are unfairly tasked with quickly finding cor-

rect APs before they are disconnected. Many clients collect necessary information with

time-consuming full-channel scans, during which no ongoing traffic can be sent. Fig. 3.2

illustrates a standard Wi-Fi handoff process. A client does a full-channel scan first, eval-

uates the results, and then tries to connect to a selected AP. However, a full-channel scan

takes a relatively long time, so many clients only start scanning after they detect packet

loss or their current links have become unstable, but that would be too late because a

full-channel scan can take up to 500 ms, long enough to interrupt a video streaming or a

VoIP call services.
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As we can see, a full-channel scan is a culprit for a prolonged interruption. To

speed up the scanning process, a client device should avoid full-channel scans as much it

can. But how? If the infrastructure can share such information with clients, clients can

do a partial scan and select an AP for roaming promptly.

3.2 Location Information for Roaming

Localization is the heart of location-based services. One localization method is

triangulation, which requires obtaining channel information from at least three APs almost

simultaneously. That, however, could be challenging because Wi-Fi APs generally operate

on various channels. SyncScan [28] overcame this challenge by synchronizing beacon timers

so that beacons’ arrival times in neighboring channels differ by a fixed amount of time.

For example, assume the beacon interval is T , beacons in channel 1 arrive at t, those in

channel 2 arrive at t+d, and those in channel n arrive at t+(n−1)d. If (n−1)d is smaller

than T , then a client can quickly scan all the channels in T . With this solution, however,

firmware-level support is required to make timers work coherently across APs.

Another solution seen in the literature was to use multiple radios [29] in which

some radios were used for background scanning for potential handoff candidates, and some

were used for data transmission. In an ideal situation, as the node gets closer to a new

AP, the scanning interface got associated with that new AP because of a stronger RSSI

and started data transmission, providing a seamless handoff. The data sending interface

disconnected from the old AP and started scanning. This solution added another layer
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of complexity and needed an organized way to maintain routing and ARP tables. A few

works [30, 31] proposed the use of Multi-path TCP (MPTCP) [32] to address this issue.

However, MPTCP has not yet been integrated into Linux’s mainline kernel and is not

widely seen on Android devices.

The third solution we saw in the literature was ClientMarshal [33]. However, the

paper focused on seamless roaming. The authors’ techniques could be used for triangula-

tion. In ClientMarshal, all the APs shared the same BSSID, which served as each AP’s

unique identifier. In general, no two AP should have used the same BSSID in the same

channel if their radios covered the same area; otherwise, a device connecting to either

AP would lose synchronization in data transmission and a power-saving mode. Due to

this issue, the authors put nearby APs onto different channels, making them physically

isolated. To achieve seamless roaming, they used the channel switching announcement

(CSA) frame to tell a particular client that the AP had moved to a different channel.

Because the target AP also had the same BSSID, it looked the same as the previous one

from the device perspective. As for the beacon synchronization problem, ClientMarshal

used unicast beacons and tweaked the beacon interval field to tell the recipient when to

expect the next beacon and maintain the synchronization. One of the biggest challenges

was that their controller also needed to track the difference of beacon timers across APs

to maintain the synchronization.

To avoid this overhead while achieving the same goal, we explore another oppor-

tunity offered by the IEEE 802.11v protocol [9] that allows us to trigger selective scans at

the client-side without beacon synchronization.
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Element 

ID
Length BSSID

BSSID 

Information

Operating 

Class

Channel 

Number

PHY 

Type

Optional 

Subelements

Octets 1 1 6 4 1 1 1 variable

(a)

AP 

Reachability
Security

Key 

Scope
Capability

Mobility 

Domain

High 

Throughput

Very High 

Throughput
FTM Reserved

Bits 2 1 1 6 1 1 1 1 18

(b)

Figure 3.3: The entry format of PCL in a BTM request frame: (a) Figure-9.295 in [9]:
neighbor report element format and (b) Figure-9.296 in [9]: BSSID information field

3.3 Selective Scans for Triangulation

The 802.11v protocol defines a set of new management frames. Among these

frames, an unsolicited BSSID Transition Management (BTM) request frame sent from

an AP to a client may attach a preferred candidate list (PCL) along with their priority,

BSSID, and operating channels. Figure 3.3 shows the format of a neighbor entry in a

PCL. An entry contains parameters necessary for a device to connect to the target AP,

so there is no need to maintain synchronization as required in [28, 33]. When a client

receives a BTM frame, it knows the associated AP might cease the service shortly. Hence,

it extracts the PCL information and quickly starts an off-channel scan according to the

suggested priorities at its first availability. Because the client only needs to verify the

existence of APs in the list rather than all the APs in all the channels, a selective scan is

enough to collect the necessary information for roaming.

We have confirmed this behavior in the source code of wpa supplicant-2.6 [34],

a Wi-Fi manager widely found in many Linux and Android devices. Its

ieee802 11 rx bss trans mgnt req() function defined in wnm sta.c inspired us and es-
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Figure 3.4: Triggering a selective scan with a unsolicited BTM request frame

tablishes the base of our work. After a BTM request frame arrives at the client, its PCL

is unpacked and processed. wpa supplicant will first try to look up the most recent scan

results from the kernel. If the scan results are fresh enough, it checks if the roaming can-

didates suggested by the PCL are also in the scanning results. If so, then there is no need

to schedule a proactive scan; otherwise, the roaming candidates are proactively probed.

We can always include a non-existing phantom candidate in the PCL to make sure the

scan is always triggered. After that, wpa supplicant will then ask the interface to probe

these candidates, allowing us to measure RSSI at the AP side.

Figure 3.4 shows how our customized BTM request frame triggers a selective

scan. Assume there are three software-defined APs under the controller’s control. These
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APs need not be on the same channel, and the device is currently associated with A. The

controller asks A to send the BTM request frame, putting B, C, and a phantom AP, D

into the frame’s PCL section. Upon receiving the BTM request frame, the device cannot

find D’s record in its most recent scan results and would decide to schedule a new scan at

its earliest availability.

There is a chance that the device might actually roam and move its connection to

B or C. This roaming process generally involves disassociation and re-association and can

cause traffic interruption. Here we suggest also enabling IEEE 802.11r [9] that speeds up

the roaming process from several hundred milliseconds to less than a hundred milliseconds

should it happens.

3.4 Controller Design

Now we uncover the way to trigger selective scans at a device without interrupting

the ongoing traffic. We need to orchestrate these selective scans to make sure that we

trigger the scan only when necessary and efficiently.

We have come up with the following algorithms. Algorithm 1 shows a process

of finding the roaming candidate. First, the associated AP of a particular client device

can be easily looked up. Because there is likely to be ongoing traffic, the signal strength

seen from the AP is also available. Second, if the location of all the APs is known in

advance, we can use that knowledge to find out the neighboring APs. To not make a client

device scan too often and drain out its battery power, we suggest the client scan for the
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roaming candidates only when the signal strength is degraded. When that happens, we

use the neighbor information in the previous step to build the unsolicited BTM request

frame. We may give its currently associated AP the highest priority. In this case, since

we recommend that the client not roam, there will be a scan but no roam. An important

reason we have to do this is that in our experiments, we found a client might spend more

than 100 ms if it has to scan the channels and re-associate to a new AP. Suggesting the

client not to roam by giving its currently associated AP the highest priority decouples the

scanning and roaming into different tasks.

After we decide to steer the client device and increase the targeted AP’s priority

in the PCL, the chances are that the client decides not to follow the suggestion and stay

connected with the current. We call the device becomes sticky. Apple’s iOS devices are

generally more sticky than those running Android because iOS has its own Wi-F roaming

metrics, whereas Android entirely relies on wpa supplicant package.

When an iOS device declines the suggestion, it might reply to a BTM response

frame, arguing why it decides not to move. A BTM response frame may also come with a

PCL, suggesting why the device thinks the currently associated AP is the best one. Because

we cannot obtain the source code or Apple’s implementation when this dissertation is being

written, we rely on our observation. The good news is that Android has a larger market

share than iOS does, and we know Google’s Android system relies on wpa supplicant,

which is an open-source package. We can still optimize our design for many Android

devices.

Algorithm 2 shows how we treat a sticky client. We set the disassociation
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Algorithm 1: FindRoamingCandidate(Client)

1 AP = GetAssociatedAP(Client);

2 RSSI = GetAssociatedRSSI(Client);

3 Candidate = AP;

4 Location = GetLocation(AP);

5 if RSS < rss threshold then

6 Neighbors = SelectNeighbors(GetAllNeighbors(AP));

7 BTM = BuildBTM(Neighbors, disassoc imminent = False);

8 sendFrame(AP, BTM);

9 sleep(120 ms); /* wait for measurement */

10 RssiMap = GetRssiMap() ∪ (AP, RSSI);

11 Location = EstimateLocation(RssiMap);

12 Candidate = SelectCandidate(Location);

13 end

14 return (Candidate, Location);
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imminent (DI) bit in the BTM request frame to True, telling the client that we are

enforcing this suggestion. If the client decides to stay, it would be disassociated shortly.

After that, we blacklist the client at the AP, preventing it from coming back for 3 seconds.

Algorithm 2: SteerClient(Client, Candidate)

1 AP = GetAssociatedAP(Client);

2 BTM = BuildBTM(Candidate, dissaoc imminent = True);

3 sendFrame(AP, BTM);

4 sleep(100 ms);

5 if AP == GetAssociatedAP(Client) then

6 blacklistClient(AP, Client);

7 disassocClient(AP, Client);

8 sleep(3000 ms);

9 whitelistClient(AP, Client);

10 end

3.5 AP Implementation

To show our proposed approach is general enough and does not require any

hardware or software modification at the client-side, we built a testbed. We chose to

use two typical smartphones: Apple iPhone 7 (A1778) running iOS 12.4.1 and Samsung

Galaxy S7 Edge (SM-G935T) running Android 8.0. Table 3.1 gives the specifications of the
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Figure 3.5: Control framework: the csm control application uses socket I/O to connect
to qDock at the AP side, and qDock uses another socket to talk to Wi-Fi drivers on the
same AP.

devices that participated in our tests. These client devices were not rooted or jailbroken

to allow kernel modification.

We used a Quantenna/On Semiconductor QSR1000 reference AP design [35] as

our infrastructure APs. The design was adopted by many vendors and can be found in

their off-the-shelf devices as their 5 GHz Wi-Fi solutions [36]. It runs Linux and can

give real-time RSSI reports for each associated client device with packet-level granularity.

We implemented a control panel for customized 802.11v BTM frame sending and RSSI

collecting with Quantenna’s service development kit (SDK).

Figure 3.5 shows the architecture and the data flows among our controller, APs,

and clients. The controller kept collecting the CSI or RSSI data. When it decided to

locate the client, it asked the associated AP to compile an unsolicited BTM frame and

sent it to the client. After the client received the BTM request, it probed the APs listed

in the PCL. The APs being probed then updated the RSSI, and the controller came and

collected these samples for determining a roaming candidate.

47



Table 3.1: Device Specifications

Device

AP Client

Quantenna Apple Samsung

QSR1000 iPhone 7 Galaxy S7 Edge

Wi-Fi module
Quantenna

QT2518B

Murata

339S00199

Murata

KM5D18098

Band 5 GHz 2.4/5 GHz 2.4/5 GHz

Standard a/n/ac a/b/g/n/ac a/b/g/n/ac

Antenna

configuration

4×4 MIMO 2×2 MIMO 2×2 MIMO

OS Linux 2.6.35 iOS 12.4.1 Android 8.0

Wi-Fi manager hostapd SBWiFiManager
WifiManager +

wpa supplicant

802.11v supported supported supported

802.11r supported supported supported
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Table 3.2 shows our control interface. The numbered MAC addresses on the left

under the STA column are client stations, and the addresses under the Seen By column

shows their RSSI values measured by the APs; Age values indicate the time elapsed since

the last RSSI update in second.

3.6 Performance Evaluations

With our controller and APs ready, we were able to connect them. To show that

our design is general enough, we set up a controller PC as a gateway, and our AP and

devices are put in a private subnet. All the traffic that comes from and goes through the

internet has to first pass through the gateway, and we run our controller application on the

PC. First, we wanted to show that our design has little to no negative throughput impact

on the devices. This drew our baseline, i.e., meaning the smartphones should have at least

the same throughput as if we were not there. Secondly, we showed the performance gain.

3.6.1 Impact of Frequent BTM Requests

In the first experiment, we wanted to find out how frequently we could get up-

dated RSSI samples and use them to construct a base for our proposal to test how drivers

react against unsolicited BTM requests at a fixed location. A BTM request contains three

fields: 1) PCL, 2) abridged bit (A), and 3) disassociation imminent bit (DI) for us to

customize. Abridged bit implies the strength of roaming suggestion, and disassociation

imminent bit informs whether the client will be disassociated if not moved. Note that even
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when we set DI, we did not disassociate our client after the BTM request. We performed

the following steps:

• Setup traffic with iPerf3 [25].

• Prepare a BTM request with a customized PCL, A, and DI fields. For example,

(PCL = 3*, A = 1, DI = 1) can be interpreted to mean there are three APs in the

PCL; the AP strongly suggests the client roam, and it disassociates from it. We

use ‘*’ to indicate that the currently associated AP is the most recommended one;

otherwise, the AP suggests the client roam to a different AP.

• Send the BTM request frame to the client.

• Check the timestamps of RSSI measurement at the controller. If a particular AP’s

timestamp is not refreshed, it implies that the client did not scan the AP.

The results are shown in Table 3.3.

Based on our test results, we noticed that as long as there were multiple APs in

the PCL, both clients only scanned after 300 and 210 seconds, whereas when there was

only one AP, both clients scanned that AP immediately after receiving the BTM request,

triggering RSSI updates. We also noticed that iPhone was more sticky and our Galaxy S7

Edge always roamed in our tests.
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Table 3.3: Test results of RSSI update frequencies

BTM Devices Reaction

AP A DI iPhone 7 Galaxy S7 Edge

3 0 0
scanned every 300 sec.;

not roamed

scanned every 210 sec.

roamed

3 1 0
scanned every 300 sec.;

not roamed

scanned every 210 sec.

roamed

3 1 1
scanned every 300 sec.;

roamed

scanned every 210 sec.

roamed

3* 0/1 0/1 no scan, no roam no scan, no roam

1 0 0
scanned immediately;

not roamed

scanned immediately;

roamed

1 1 0
scanned immediately;

not roamed

scanned immediately;

roamed

1 1 1
scanned immediately;

roamed

scanned immediately;

roamed

1* 0/1 0/1 no scan, no roam no scan, no roam
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Figure 3.6: Experiment setup on Atkinson Hall 4th floor.
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3.6.2 Multi-channel Localization

Some localization approaches to[37, 38] require multiple APs and the client to

be on the same channel so that the traffic sent by the client can be overheard by APs,

allowing RSSI or CSI to be measured. We relaxed this constraint by using BTM-triggered

selective scans, allowing APs not to be on the same channel but the client goes to different

channels.

Our indoor office environment consists of multiple rooms and desks shown in

Figure 3.6. A client smartphone was connected to AP1 on channel 36 initially and traveled

at walking speed along the dotted blue path, passing through another two APs. We

triggered the scans and measured RSSI values at four different locations.

The visualized RSSI map seen by the controller is shown in Figure 3.7. The
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controller could only detect a relative location of the smartphone among all three APs. For

example, RSSI values measured by AP1 between Locations 1 and 2 were almost the same,

but those by AP2 and AP3 were significantly different. The controller could thus infer

Location 2 is closer to AP2 and AP3 and came up with a hot zone where the smartphone

is most likely to be. This is enough for handoff decisions because a higher RSSI generally

leads to a better throughput in the MAC layer. However, the overall throughput might

be affected by other factors in the upper layers.

3.6.3 Impact of Selective Scans

We showed a way to trigger selective scans, and we can utilize the results for

localization and roaming from our previous experiments. In this experiment, we aimed to

determine the impact of our approach on ongoing streaming traffic. More precisely, we

wanted to determine if there would be a noticeable streaming delay; if so, is there a solution

to mitigate such an impact? We reused the same setup as described in Section 3.6.1,

captured Wi-Fi frames with Wireshark [39] installed on a PC, and measured the real-time

throughput with a modified iPerf3 at 100 ms granularity.

The real-time TCP throughput measurement of two smartphones are shown in

Figure 3.8. Before the traffic started, we made the phone connect to a distant AP and

generated a TCP flow. Traffic started at t = 0 second. At t = 5, the controller sent out

the first BTM request with one non-associated AP in the PCL, unset abridge bit, and

unset disassociation imminent bit (AP = 1, A = 0, DI = 0). The purpose of this BTM

request was to make the phone probe the target AP and update its information in the
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Figure 3.8: Real-time traffic throughput interrupted by 802.11v BTM frames

local database.

Our Galaxy S7 Edge always roamed in our tests, and it took 150 ms for traffic to

recover. This was the expected behavior of wpa supplicant and implied Google did not

make too many changes to it but included it into its Android SDK. On the contrary, our

iPhone 7 did not roam in most of the tests and was generally more sticky than our Galaxy

S7 Edge. Our results showed that its throughput dropped and recovered within 100 ms.

To force the iPhone 7 to connect to the targeted AP, we sent another BTM request with

A = 1 and DI = 1 at t = 6. The second throughput was also shorter than 100 ms, meeting

the requirement.

Figure 3.9 visualizes the above-mentioned approach of decoupling the scanning

from roaming by toggling the A bit and the DI bit in two consecutive BTM requests.
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Figure 3.9: Meeting 100 ms requirement: (a) When abridged bit and disassociation
imminent bit is set in an 802.11v BTM request frame, the client should handoff and
connect to a new AP right after the scan, making the overall process longer than 100 ms
to complete. (b) We can implement the decouple scan and handoff process by clearing both
the abridge bit and the disassociation imminent bit. The client will not hand off after the
scan, making the traffic gap shorter than 100 ms. If a handoff is necessary, the controller
sends another BTM request with only the targeted AP and sets both the abridged bit and
the disassociation imminent bit.

Although the overall traffic downtime caused by two BTM requests was more significant

than that caused by a single request, each traffic gap was shorter than 100 ms. Moreover,

in cases where we do not want a client to roam but want to find out its location, we can

send out only the first BTM request.

3.7 Discussion and Conclusion

Our results showed different clients react differently to the same set of BTM

requests. For example, our Galaxy S7 Edge behaved more compliantly than did iPhone

7. A similar observation was also mentioned in a Cisco tech report [40]. It pointed out

that Apple built its own Wi-Fi scoring system, and iOS devices would only roam when the

RSSI of the suggested AP is at least 8 dBm better than its currently associated one. This

prevented us from freely steering iOS devices even when there is a load balancing demand.

Therefore, if we really want to force an iOS device to connect to the desired AP,
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we have to send back-to-back BTM requests to force a handoff. However, we may not

want to steer that iOS device if we know the targeted AP is not 8-dBm greater in signal

strength than the device’s currently associated AP. Android devices rely on open-sourced

wpa supplicant, but they are more likely to roam even when we merely want it to perform

a selective scan. We checked the source code of wpa supplicant-2.9 (v2.6 and v2.9) and

confirmed that 1) abridged bit (A) is not involved in any part of its roaming decision,

2) disassociation imminent bit (DI) will force it to schedule a scan and it is up to the

driver’s decision on whether to perform a scan and 3) when there is only one AP in PCL

(AP = 1), the scheduled scan will also include targeted BSSID. This matches our results

in Section 3.6.1, and we look forward to seeing the abridged bit become involved in the

decision-making process to refine our control policies further.

A detailed analysis of how wpa supplicant decides to scan the AP can be found

in Appendix A. It turns our wpa supplicant will try to avoid excessive scans by reusing

previous results first because each off-channel scan would drain energy and be likely to

interrupt ongoing traffic. Our results showed that even if wpa supplicant has a sophis-

ticated decision making policy, we were still able to trigger the scan by putting the only

one targeted AP in the PCL of a BTM request frame.

Switching connections inevitably causes traffic stops. Our goal was to find an

efficient and systematic way to minimize traffic stops before the buffer is depleted to boost

the overall user experience.

In Chapter ,2 we showed a way to extend the SDN paradigm to wireless networks.

We found the relative location among nodes but provided that the infrastructure and the
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client or all the moving nodes have to support SDN. In this chapter, we borrowed the

concept of SDN and exploited Wi-Fi standards so that without the device’s native support

of SDN, we were still able to track it and provided roaming as a location-based service. Here

comes a new question – how if a device does not support SDN or IEEE 802.11v protocol?

Today, there have been many internet-of-things devices that are built on micro-controllers

with Wi-Fi capabilities. Unlike smartphones, tablets, or laptops, these devices generally

perform simple tasks and have no 802.11v support, and the minimum requirement for us

to track them will be discussed in the next chapter.
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Chapter 4

Design and Tracking Energy-Saving

Wi-Fi Internet of Things Devices

In the earlier chapters, we covered different approaches to track wireless devices.

For those having the full support of SDN, signal strength measurements among nodes are

available almost all the time, so performing triangulation was straightforward; for smart

devices not having SDN support, we used Wi-Fi standard protocols to orchestrate the

selective scans and collected data required for triangulation. The two examples above imply

that interactions among nodes are necessary for tracking, i.e., we need information for

inferring geological distance among nodes. The data can easily be obtained from external

sources; however, our work’s value was that we showed a software-oriented approach to

using the infrastructure, assuming that a device has SDN or necessary capabilities. There

is another group of devices whose number grows exponentially, and they do not follow our

assumption. Such devices include smart home devices and the internet-of-things devices
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built on top of microcontrollers (MCUs) with Wi-Fi/BLE radios and connected to wireless

networks. Thanks to the Wi-Fi system’s advance in semiconductor technology, these

devices can now be obtained at a meager cost.

These devices generally do not have SDN support for cost and complexity con-

cerns, nor do they have built-in IEEE 802.11v/r support. In this case, we cannot expect the

approaches in earlier chapters would always work. Still, we should exploit the possibility

of interacting with these devices under infrastructure mode Wi-Fi.

4.1 Energy-Saving Wi-Fi IoT Devices

Internet-of-Things generally describes devices with network capabilities embed-

ded with software and sensors to communicate with other devices or systems. One way to

communicate with other devices is to use radios. There are many kinds of radio standards

such as Wi-Fi, Bluetooth [41], Bluetooth Low-Energy (BLE) [42], LoRa [10], ZigBee [43],

. . . , etc. Wi-Fi would not be the most preferred one, mainly due to its power-consuming

nature for its high throughput and far-reaching capabilities. However, Wi-Fi’s rich exis-

tence around the globe could offset this shortcoming. Wi-Fi is almost available at every

corner in metropolitan areas, whereas BLE, LoRa, or ZigBee are not. Although other radio

standards might help save more energy, people would have to reinvest in the infrastructure

for small traffic. In contrast, Wi-Fi IoT devices could reuse the current infrastructure with

modifications proposed in the previous chapters.

Clearly, once we have a solution to reducing Wi-Fi energy consumption, we can
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Table 4.1: Power consumption test for Bluetooth, ZigBee, and Wi-Fi devices. We chose
ESP8266 as our Wi-Fi reference device.

Bluetooth ZigBee Wi-Fi

IEEE Spec. IEEE 802.15.1 IEEE 802.15.4 IEEE 802.11b

Sleeping Mode 10 µA 15 µA 1.2 mA

Awake Mode 35 mA 50 mA 150 mA

make it as competitive as other radio standards and make Wi-Fi IoT devices more quickly

and widely deployed.

Table 4.1 gives average power consumption levels of different radio standards.

Wi-Fi’s higher power consumption originates from its 1) larger channel bandwidth (20

MHz), 2) higher transmitting power level, 3) higher data rate, and 4) higher protocol

overhead. One can use a lower data rate to save more power; however, the receiver still

has to be continuously in the active state because transmission can happen at any time.

To further save power, an on-demand wake-up scheme that allows the receiver to turn off

its Wi-Fi interface when there is no traffic was proposed in [44]. The delay and energy

tradeoff was evaluated in [45, 46].

To realize such a scheme, an additional wake-up receiver (WuRx) circuit is at-

tached. For uplink (from device to AP) transmissions, the device sends the data, so no

wake-up is required; for downlink (from AP to device) transmissions, the sender first needs

to wake-up the device through the WuRx circuit before it starts the transmission. Now, in

the Wi-Fi interface, the WuRx circuit keeps monitoring the channel for a wake-up signal

while consuming little power.
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Two implementation proposals of the WuRx circuit design have been seen in

the literature – coherent detection and non-coherent detection. In a coherent detection

approach, the receiver demodulates the IEEE 802.11 orthogonal frequency division mul-

tiplexing (OFDM) into symbols where the wake-up and identity information is carried.

For example, in [47], the author proposed to use modified OFDM to carry the address

and identifier information. In [48], the author proposed to build data patterns of OFDM

subcarriers that produced an amplitude modulated signal after OFDM modulation. Unfor-

tunately, these approaches would require some firmware-level modifications at the sender

and would be far from being practically implemented. Another example of coherent de-

tection is Wi-Fi itself. Wi-Fi station devices synchronize themselves with the AP via AP’s

beacons and only wake up before a beacon arrives. When there is downlink traffic, the

AP sets the traffic indication map in the beacon to wake up the intended station device

for transmission. As mentioned earlier, Wi-Fi still consumes excessive power even through

this approach.

In a non-coherent detection approach, a WuRx circuit does not demodulate the

signal but uses an envelope detector (a 1-bit A/D convertor) and a clock to measure

frame durations. Authors of [49] developed an optimized frame duration-based modulation

approach that maximized the Hamming distance between equivalent wake-up messages.

Each equivalent wake-up message consisted of N = N1 + N2 frames where N1 was the

number of message frames, and N was that of the dummy frames, making N a constant

for Hamming distance calculation. They claimed the maximum Hamming distance among

these messages helped lower the false positive wake-ups against the interference. Their
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AP was turned off for power-saving during a long idle period. Hence, before a Wi-Fi

IoT device sent the AP messages, it had to send the wake-up signal to the WuRx circuit

attached to the AP and turn on the AP. The authors chose to use a burst transmission,

i.e., consecutively sending message frames in a short period of time. However, this feature

was not commonly used, so they had to modify the driver to enable this function. To

ensure their message constellation, they disabled the Wi-Fi card’s back-off feature so that

frames being sent were always gapped by the 50 µs DCF inter-frame spacing (DIFS).

Unfortunately, this modification limited the selection of supported Wi-Fi chips. In the

meantime, their maximized Hamming distance design did not consider the possibility of

multicast wake-up, i.e., to wake up multiple devices of the same group simultaneously.

In this chapter, we will also propose a non-coherent detection wake-up approach

that uses a frame duration-based modulation. Rather than the design present in [49], we

search in the frame duration distribution chart for less frequently used frame durations to

avoid interference. Wi-Fi’s frame durations are not uniformly distributed; in fact, some

durations appear much less frequently than others. We call the set of these infrequent du-

rations quiet zones. The reason why frame durations distribute unevenly will be discussed

in Section 4.2.

Figure 4.1 explains how we plan to attach the wake-up circuit to a device. The

output of the wake-up circuit will be connected to the device as an external wake-up

signal. After receiving the wake-up signal frames, the device wakes up and makes the

Wi-Fi interface connect to the AP, downloading the data, and then goes back to sleep.

The OR logic implies that the Wi-Fi interface can be turned on by either the circuit for
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Figure 4.1: WuRx circuit as an add-on switch to the Wi-Fi interface.

downlink traffic or the CPU for uplink traffic. Ideally, the wake-up circuit can share the

same antenna with the Wi-Fi interface because only one will be active simultaneously.

The add-on design adds gear to the existing Wi-Fi interface as a super power-

saving mode that consumes little power to monitor the channel for wake-up frame patterns,

which is one of the keys to our power-saving solution. Moreover, our approach does not

use the bust mode, so driver modification is not necessary; we will use the frame injection

technique instead and completely follow the standard.

The key contribution of our work in this chapter includes:

1. We design a wake-up signal pattern compatible with the IEEE 802.11 standard and

can be generated with commercial Wi-Fi devices without hardware, firmware, or

driver modification.

2. We use the high-speed frame injection feature available in the Linux kernel. Ker-

nel module modifications may be necessary because these features are still under

development and have not yet been integrated into the kernel.

3. Our proposed scheme can be easily adapted to the change in the number of devices

65



and extended to support multicast wake-up, which was not covered in [49]. Besides,

we introduce a mask number to inform the number of message frames the receiver

should expect, so the use of dummy frames is not necessary.

The chapter is organized as follows: in Section 4.2, we will first cover our counter-

based non-coherent detector’s architecture. An algorithm that helps find the parameters

for injecting frames with intended durations is then present. We continue to explain

the challenges brought by Wi-Fi’s CSMA/CA congestion control mechanism and how we

plan to overcome these challenges in Section 4.3 and maintain the compatibility at the

same time. The architecture of our unicast WuRx design is also proposed in this section.

Section 4.4 explains an extended version of our WuRx that supports multicast wake-up.

Section 4.5 will show how we can connect our WuRx to a microcontroller platform and

realize Wi-Fi IoT device tracking using the same framework present in Chapter 3.

4.2 Injecting Wake-up Frame Patterns

An envelope detector circuit is an RF circuit, outputting the instantaneous power

level in a binary format after sampling. It tells whether the power level is above or below

the threshold. When a Wi-Fi frame arrives, it carries energy and makes the detector

output high (logic one). The detector will output low (logic zero) if the channel is low

energy. The time duration of a Wi-Fi frame can be obtained by adding a clock and a

counter. Figure 4.2 illustrates the logic of such a design.

An incoming frame will make the counter count up by one at each clock rising
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Figure 4.2: The counter-based envelop detector

edge. After the end of the frame, the channel goes back to low energy, and the output

of envelop detector will reset the counter to output zero. We should store the output

snapshot before it is reset, and the snapshot value represents the frame duration in the

form of clock cycle numbers. The envelop detector performs non-coherent detection and

does not look into the content of frames. It tells no difference if two frames share the same

time duration and signal strength. In this case, we need to use multiple frames to perform

a frame duration-based modulation scheme.

4.2.1 Injecting Frames of Specific Duration

Frame injection is a feature provided by the Linux kernel and the chipset driver

to test and develop new Wi-Fi protocols. If the frame format is not yet supported by the

kernel or is still under development and subject to change, a user can put the Wi-Fi inter-

face into monitor (injection) mode so that the kernel will redirect the frame inputs/outputs

to the user.

If we want to send a non-standard Wi-Fi frame over the channel, we first put the
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message into a buffer and then build the radiotap header specifying that frame’s physical

layer parameters. Linux kernel’s convention does not allow a user to talk to Wi-Fi hard-

ware directly but has to do so through the radiotap header. This gives us control over

the length and the sending rate of the frame to be injected. Some patches to the Linux

kernel are necessary for it to support rate assignment. Stephan M. Günther provided

these patches in libmoep80211 [50, 51] project for his high-speed frame injection experi-

ments and made them public. According to his work, not all the hardware currently sup-

ports high-speed injection. We have confirmed Qualcomm-Atheros AR9380 (also known

as AR5BHB112) [52] and MediaTek-Ralink RT5370 [53] chip has such support after ker-

nel fixes [54]. These kernel fixes allow the kernel to pass the user’s high-speed injection

parameters to the hardware. Those without such support will always send the injected

frame at 1 Mbps, the lowest available rate. For the devices support rate assignment, we

can make the hardware send at a higher rate by specifying the sending rate in the radiotap

header [55].

Equation 4.1 shows the relation among the preamble duration Tp and the symbol

duration Ts in microseconds (µs), the minimum frame length L0 and the payload length

L in byte, the sending rate r in bit/sec (bps), and the frame duration Tf . The ceiling

function da, be in Equation 4.1 means to round up variable a to the closest multiple of

variable b such that da/be − 1 < a/b ≤ da/be where d·e is the normal ceiling function.

There could be multiple combinations of (L, r) that give the same Tf . For example, the

frame duration would remain the same if we send twice the amount of data at a doubled

rate. Also, there could be a duration that any combination cannot achieve. This might
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be due to either the frame’s duration being too short and cannot be achieved by sending

the shortest frame at the highest rate or too long and cannot be achieved by sending the

longest frame at the lowest rate. The boundaries of these parameters together form a

multi-dimensional set of solutions, allowing us to add extra value to our design.

Tf = Tp +

⌈
(L0 + L)× 8

r
, Ts

⌉
(4.1)

In the IEEE 802.11b standard, Tp is 192 µs and Ts is 1 µs/symbol; in the IEEE

802.11g, preambles can be either short or long. A short preamble lasts for 20 µs, and

its symbol duration is 4 µs/symbol. We only injected data frames for simplicity and

convenience to reuse the data structure defined in the Linux kernel. The minimum frame

length L0 is 28 bytes. Because we have control over the payload length L and the data

rate r, the frame duration is determined. Equation 4.1 also implies that a 50-µs frame

duration is not achievable in the IEEE 802.11g because a valid frame duration has to be

a multiple of 4 µs. The closest choices would be 48 or 52 µs.

In our application, we need to interpret Equation 4.1 in a reverse way to answer

the question: given a desired frame duration Tf , what are the achievable payload length

L and sending rate r combinations? We first rearrange Equation 4.1 into Equation 4.2 as

Tf − Tp =

⌈
(L0 + L)× 8

r
, Ts

⌉
(4.2)

The ceiling function implies its values has to be a multiple of Ts, so we have

(n− 1)× Ts < (Tf − Tp) ≤ n× Ts (4.3)

where n is the number of symbols constituting the payload part of the frame. We can then

use Equation 4.3 to look for all possible n’s. For example, in IEEE 802.11g, if we want a
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frame to be 52 µs. After plugging in the numbers, we solve n with

(n− 1)× 4 < (52− 20) ≤ n× 4⇒ n = 8 (4.4)

So we know that the payload is sent across 8 symbols and will last for 32 µs in the IEEE

802.11g standard. Assume we can pad the payload length till the maximum bytes allowed

in 8 symbols, we find the shortest acceptable payload length L as follows:

(L0 + L)× 8

r
= 4× 8 = 32⇒ L = 4× r − L0 (4.5)

The possible rates in the IEEE 802.11g are 6, 9, 12, 18, 24, 32, 48, and 54 Mbps.

Table 4.2 gives possible combinations of (L, r) for sending a 52-µs frame. To send a 52-µs

Wi-Fi frame, we can inject an 8-byte data frame and send it at 9 Mbps or inject a 20-

byte data frame and send it at 12 Mbps. One can easily verify these choices by plugging

numbers into Equation 4.1.

We use the frame injection technique to inject frames meeting the requirements

into the channel.

4.2.2 Avoiding False Positives with Multiple Frame Injections

Wi-Fi frame durations follow a distribution related to types of traffic. This is

reasonable because control messages are usually short, whereas web browsing and video

streaming data are long. Today’s computer networks are mostly built up with Wi-Fi

and Ethernet. Messages are converted between them and sometimes sliced into smaller

pieces to avoid hitting the maximum transmission unit (MTU) limit, which is 1,500 bytes
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Table 4.2: Payload length L for sending a 52-µs frame with different rates r in the IEEE
802.11g.

sending rate r (Mbps) payload length L (byte)

6 -4 (not achievable)

9 8

12 20

18 44

24 68

36 116

48 164

54 188

for Ethernet and 9,000 bytes for Wi-Fi. This explains why we can see a large number

of small size frames and another peak at frame size around 1,500 bytes. The histogram

in Figure 4.3 clearly shows such a phenomenon. The frames were captured through a

Qualcomm-Atheros AR9380 Wi-Fi card within one hour on the 4th floor in Atkinson Hall.

The bar width is 50 bytes. One might note that the sharp drop happened at a position

greater than 1,500 bytes. We looked into the raw data and confirmed around 500 frames

whose lengths were between 1,575 and 1,600 bytes. This might result from some protocol

overhead, and there was no frame longer than 1,600 bytes.

Figure 4.4 shows the duration statistics of the same captured frames. We put

Y-axis on a logarithmic scale to help up focus on low peak regions. As expected, a typical

in-door Wi-Fi channel contains much more short-duration frames than long-duration ones.
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Figure 4.3: Length distribution of Wi-Fi frames captured in an 1-hour period
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Figure 4.4: Time duration distribution of Wi-Fi frames captured in an 1-hour period
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However, we noticed some peaks. For example, peaks around 1,900, 2,200, 2,600, and 3,100

bytes were caused by beacon frames from APs. Beacon frames can easily reach 200 bytes

long, and they are generally sent at the lowest rate, 1 Mbps, using the IEEE 802.11b

standard to make sure that the old devices can hear them. However, many nowadays APs

send their beacons at 12 Mbps to increase efficiency.

Besides peaks, there were quiet zones in which no frame had such durations in

these time intervals. This finding suggests that we can put our wake-up frame durations

in these intervals to lower the odds of false positives. But we cannot guarantee the number

of frames having these durations is always zero, meaning there could still be false positives

if we only send one frame. The problem can be solved statistically by sending multiple

frames of predefined durations in these regions. Each device will have a unique combination

of predefined frame durations, which can also work as an identifier. The device should

wake up only if it sees frame durations matching predefined patterns before it times out;

otherwise, it should remain asleep. In our design, we assigned four integers representing

the duration of wake-up frames for each device.

Figure 4.5 shows how these predefined frame patterns in terms of durations can

work as identifiers. WuRx 1 and WuRx 2 belong to two different devices with different

wake-up frame patterns. When there is downlink traffic to WuRx 2 at the AP, it broadcasts

WuRx 2’s wake-up pattern to call up WuRx 2; WuRx 1, upon receiving such a pattern,

will not generate a wake-up signal to the CPU and continue to sleep to save the power.

The wake-up circuit’s detection precision limits the maximum number of devices

that a single AP can support. For example, in the IEEE 802.11g, the symbol duration is
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Figure 4.5: Unique wake-up pattern for device identification.

4 µs. To tell a 1-symbol difference, the sampling period should be shorter than one-half

of the symbol duration according to the sampling theorem, and the value is 2 µs for the

IEEE 802.11g.

To have a shorter than 2-µs sampling period, we need a clock to run at a frequency

faster than 50 kHz, making the time interval between two consecutive rising edges less than

2 µs. The power consumption is squarely proportional to the clock frequency in electronic

circuits. Therefore, if we intentionally ignore one-half of the durations by only sending

frames with an even number of symbols, we can use a slower clock, but that will also

reduce the number of devices that a single AP can support reduced.

Wi-Fi jumbo frames have 2,346 bytes as their MTU. They are also the longest

frame we can inject. The shortest data frame is 28 bytes. According to Equation 4.1, the

shortest duration we can obtain is 28 µs with (L, r) = (0, 54) and the longest duration is

3,148 µs with (L, r) = (2318, 1). (Note that there is always a 28-byte header L0.). Between

28 and 3,148, we have 780 possible choices of durations for a single frame. Ideally, using
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Table 4.3: Valid frame durations given by different clock frequencies

clock frequency sampling period detection precision
valid durations

(kHz) (µs) (µs)

12.5 8 16 195

25 4 8 390

50 2 4 780

100 1 2 780

a 4-frame wake-up frame allows up to 7804 combinations. Still, we recommend selecting

durations within the quiet zones in Figure 4.4 and make the duration of the first frame a

constant to lower the odds of false positives. Based on our observation, there was one-half

of the durations had no frame. These regions are for us to take advantage of.

Table 4.3 gives the relation between clock frequencies and the number of valid

frame durations. Note that increasing the clock frequency to 100 kHz does not help boost

the number of duration choices because the number of options is also limited by the 4-

µs symbol duration of the IEEE 802.11g standard. Eventually, our design choices are as

follows:

• Use a 50-kHz clock so that we can have the per-symbol resolution in the IEEE

802.11g standard;

• Limit the duration choices of frame 1. For example, always set the duration of the

first frame (frame 1) to 1,500 µs to avoid false positives;
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• Allow a flexible number of frames in a wake-up pattern. We use a 4-frame pattern

now, but we might use 3, 5, or more frames for different purposes.

4.3 Exploiting CSMA/CA Mechanism

CSMA/CA is Wi-Fi’s congestion control algorithm, which triggers a random

back-off on sending devices when detecting a collision. In a shared medium, we need a

congestion control mechanism to handle traffic scheduling; otherwise, a collision happens

when two or more devices begin their transmissions at or close to the same time, making

their signals undecodable. CSMA/CA asks all the senders to follow a listen-before-send

policy and only begin their transmission when the channel is clear for some period of time;

if the channel is busy, back-off and continue to wait for the channel is clear again.

Many commercial Wi-Fi devices have this mechanism hard-coded at the firmware

or hardware level. A direct outcome is that a device cannot send frames gaped by specified

time interval, but it has to ensure the channel becomes clear again before the subsequent

transmission.

We did not cover the detail about this issue in previous sections when mentioning

a PWM-like wake-up pattern. Now we are going to show how we plan to overcome this

challenge. The chances are that our wake-up frames could be collided by another node’s

signal, or there could be other frames inserted between two wake-up frames, disrupting

our predefined wake-up frame pattern. There are two possible solutions:

• A1: Use a CTS-to-self control frame to hold the channel for a duration long enough
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for the transmitter to send the entire wake-up pattern;

• A2: Ignore the timing gap between consecutive frames. As long as the next expected

frame comes in time, the wake-up detection process continues; otherwise, go back to

sleep.

The idea of using a CTS-to-self frame is intended to simplify the circuit design

a lot because once a slot is secured, the transmitter does not need to worry about any

collision. But in many commercial devices, CTS-to-self frames are primarily generated in

the hardware and beyond our control. In this case, the best thing we can do is set a flag,

tell the hardware that the frame has to be protected with a CTS-to-self frame, and let the

hardware take care of the reset. However, we still cannot hard code the duration field of

a CTS-to-self frame to hold the channel for an intended duration because the hardware

will automatically fill in the field based on the duration of the frame it wants to protect.

During the time this dissertation is being written, we still cannot identify any off-the-shelf

device supporting customized CTS-to-self frame injection. To our best knowledge, using

software-defined radios is the only solution, but that would significantly increase the cost.

Another challenge of using a CTS-to-self frame is that there are devices designed

not to honor the CTS-to-self frame’s duration value if they find the value to be unrealisti-

cally large. If so, they will go ahead and begin transmitting their frames in any case. This

measure is to counter the so-called “CTS-to-self attack”, in which a malicious node keeps

broadcasting CTS-to-self frames to hold the channel for long durations, preventing other

nodes from sending their traffic. Beacons from the AP will still be sent, so all the devices
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Figure 4.6: A wake-up frame pattern may vary because of congestion. There are four
scenarios: (a) it arrives as it is because there is light traffic; (b) it arrives with gap
variations, but frame durations are the same; (c) it arrives with insertions of other frames;
(d) it arrives with some loss.

are still connected but would experience low throughput due to the attack.

Based on the above analysis, using CTS-to-self frames in commercial hardware

becomes less practical. However, without CTS-to-self frames, we cannot guarantee that

the timing gaps between two consecutive frames would be fixed. This implies that our

WuRx should only pay attention to the frame durations and allow some timing variations

to the inter-frame intervals, as long as the next frame of the desired duration comes in

time.

Figure 4.6 gives four different scenarios when our injected wake-up pattern arrives

at the circuit. In a light traffic scenario (a), the back-off of CSMA/CA is not triggered,

so the pattern is not changed upon arrival. However, the long delay between a userspace

application and the hardware may distort the pattern’s gap durations. In this case, the
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Figure 4.7: The finite state machine model of the wake-up procedure.
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received pattern will look like (b), in which the frame durations are the same as those in

(a), but gaps are not. If there is traffic among other devices, CSMA/CA mechanism has

to be activated for congestion control. Device competing for transmission slots results in a

received pattern like that in (c), in which all the wake-up frames are still there but mixed

with frames from other devices. We should also consider (b) and (c) as valid patterns. In

scenario (d), some frames in the pattern are missing due to noise, interference, or collisions,

and the wake-up process will fail.

Figure 4.7 depicts a finite state machine diagram to explain the algorithm. Note

that we leave room to use up to n frames and set n = 4 in our example. Our wake-up

circuit consists of a clock, a counter, a countdown timer, and storage holding the predefined

count of frame durations based on the above parameters. We expect a circuit with these

components will not consume more than 50 µW of power.

In our choice, the maximum allowed time duration between two consecutive wake-

up frames is set to 400 µs based on our experiments and environment. In a channel with

light traffic, we can inject two frames separated by 250 µs; however, we expect a busier

channel, due to the traffic, this separation could be larger.

4.4 Multicast Wake-up

There are cases where we want to wake up multiple devices at once. For exam-

ple, we want to get a snapshot of the distribution of air pollutants at a particular time—a

straightforward way to spend some time and wake up the sensor device one by one. Alter-
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Algorithm 3: wake-up procedure

1 State Initial

2 set timeout = 400 µs;

3 set clock freq = 50 kHz;

4 set frame durations [4] = [x, y, z, w];

5 goto S0 ;

6 end

7 State S0

8 repeat

9 until duration of the incoming frame == frame durations [0] ;

10 goto S1 ;

11 end

12 State S1

13 set count-down-timer = timeout;

14 while count-down-timer > 0 do

15 if duration of the incoming frame == frame durations [1] then

16 goto S2 ;

17 end

18 end

19 goto Initial ;

20 end
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21 State S2

22 set count-down-timer = timeout;

23 while count-down-timer > 0 do

24 if duration of the incoming frame == frame durations [2] then

25 goto S3 ;

26 end

27 end

28 goto Initial ;

29 end

30 State S3

31 set count-down-timer = timeout;

32 while count-down-timer > 0 do

33 if duration of the incoming frame == frame durations [3] then

34 goto Wake-up;

35 end

36 end

37 goto Initial ;

38 end
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39 State Wake-up

40 output wake-up signal;

41 goto Initial ;

42 end

natively, we can implement multicast support so that the same group’s device will wake

up altogether after receiving a particular pattern of wake-up frames promptly.

4.4.1 Mimicking IP Multicast Solution

IP protocol [56] supports multicast in the way that the destination address in a

packet header instructs some but not all the hosts in the same subnet to process the packet.

It archives multicast by assigning relative IP addresses to the same group’s hosts and uses

a mask to inform the hosts whether it is doing a unicast, a multicast, or a broadcast.

Assume host A has 192.168.1.1 and host B has 192.168.1.2 as their IP addresses.

Both hosts are given 255.255.255.0 as their mask so that if host C has 192.168.2.1 as its

address, we can tell host C is not in the same subnet as A and B. However, if we set all

their masks to 255.255.0.0, they will be in the same subnet.

The above example shows that we can carefully assign IP addresses to the hosts

and use a mask to slice hosts into groups. The idea can be ported to our case because

we design our wake-up pattern similar to IP addressing. Remember that we assign four

integers representing the durations of wake-up frames to each device. These four integers
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map to those in an IP address. In IPv4 protocol, a mask is an integer between 0 and 32,

representing the number of 1’s to work as the mask, whereas our previous design did not

reserve the room for a mask, so an extension is required.

4.4.2 Adding the Mask

To simplify our design, we use the integer between 0 and 4, telling our devices

to match the first n wake-up frames’ duration while ignoring the last (4 − n) ones. For

example, assume the duration of the wake-up pattern of device A is [152, 252, 352, 452]

and that of device B is [152, 252, 352, 472]. If we want to do masking, we need to tell

the devices to only pay attention to the first n frames. Therefore, we need to send the

mask before wake-up frames, and the pattern would be in the form of [mask, frame 1,

frame 2, frame 3, frame 4].

However, a mask could be a variable, and building a circuit that detects for a

varying frame duration is more complicated than that for a frame with a fixed duration. A

simple solution is to build four frame-1-detection loops instead of one. Another approach

would be sending another frame of a fixed duration before the mask frame such as follows

[magic number, mask, duration 1, duration 2, duration 3, duration 4].

The magic number frame has a duration that is rarely seen in Figure 4.4 to

prevent false positives. After receiving the magic number, all the devices should pay

attention to the mask frame, determining how many wake-up frames they need to honor

following the mask frame.

One challenge here is that the frame duration representing the mask is not fixed
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Figure 4.8: The finite state machine supporting multicast wake-up
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but could be a constant from a known set. An extra circuit design may be necessary

for detecting the mask frame. The modified finite state machine for multicast wake-up is

shown in Figure ,4.8 and the detailed logic is given in Algorithm 4.

Algorithm 4: wake-up procedure with multicast support

1 State Initial

2 set timeout = 400 µs;

3 set clock freq = 50 kHz;

4 set magic number = n;

5 set masks [4] = [h, i, j, k];

6 set frame durations [4] = [x, y, z, w];

7 goto Magic Number ;

8 end

9 State Magic Number

10 repeat

11 until duration of the incoming frame == n;

12 goto Mask ;

13 end
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14 State Mask

15 set count-down-timer = timeout;

16 while count-down-timer > 0 do

17 if duration of the incoming frame ∈ masks then

18 set mask = masks.index(incoming frame duration);

19 goto S0 ;

20 end

21 end

22 goto Initial ;

23 end

24 State S0

25 if mask == 0 then

26 goto Wake-up

27 end

28 set count-down-timer = timeout;

29 while count-down-timer > 0 do

30 if duration of the incoming frame == frame durations [0] then

31 goto S1 ;

32 end

33 end

34 goto Initial ;

35 end
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36 State S1

37 if mask == 1 then

38 goto Wake-up

39 end

40 set count-down-timer = timeout;

41 while count-down-timer > 0 do

42 if duration of the incoming frame == frame durations [1] then

43 goto S2 ;

44 end

45 end

46 goto Initial ;

47 end
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48 State S2

49 if mask == 2 then

50 goto Wake-up

51 end

52 set count-down-timer = timeout;

53 while count-down-timer > 0 do

54 if duration of the incoming frame == frame durations [2] then

55 goto S3 ;

56 end

57 end

58 goto Initial ;

59 end
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60 State S3

61 if mask == 3 then

62 goto Wake-up

63 end

64 set count-down-timer = timeout;

65 while count-down-timer > 0 do

66 if duration of the incoming frame == frame durations [3] then

67 goto Wake-up;

68 end

69 end

70 goto Initial ;

71 end

72 State Wake-up

73 output wake-up signal;

74 goto Initial ;

75 end
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4.5 Tracking Wi-Fi IoT Devices

Now we had a power-saving solution for Wi-Fi IoT devices, making them more

adaptable to general usage. We now move on to tracking these devices. Unlike smartphones

that tend to be mobile, IoT devices are mostly static, so a real-time location discovery

is less necessary. However, when we first deploy them on the field, we might need to

localize them by finding their relative positions to establish a mesh network. Equipping

the capability of being tracked will not add too much overhead and can still be done with

a software solution.

4.5.1 Reusing Wi-Fi Infrastructure

From a cost point of view, we should avoid adding extra hardware unless the

expected benefit could offset such a cost. We believe that adding new features that do not

depend on new hardware would reduce deployment costs and create a better marketing

strategy that gives people more incentive to try. With this idea in mind, we should reuse

the framework we built in Chapter 3 and adopt the policy that the device to be tracked

should react against the commands sent by its associated AP. For example, we can build

a command that asks the device to perform off-channel scans similar to the purpose of a

BTM request frame in Figure 3.4 because all we need is to have the device ping multiple

APs within the range so that we can do triangulation.

In this design, besides APs, we can reuse the controller in the previous chapter

and only need to replace the IEEE 802.11v support with our own command set for our
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Figure 4.9: ESP8266 chip and its pin assignment

Wi-Fi IoT devices because these devices do not support the IEEE 802.11v standard in

general. There is no need to implement full support.

We realized our idea on an ESP8266 chip, a low cost (around $3 each) Wi-

Fi IoT platform welcomed by IoT and smart cities communities. Figure 4.9 shows the

pin assignment of the chip. Its actual size is around one-third of a business card. Its

manufacturer, Espressif Systems provide an open-source SDK. However, they did not

release the firmware nor the driver source codes of its Wi-Fi module, but they instead

provided the binary file and a C/C++ header file describing the available functions in

the SDK. This measure is typically seen in many development boards. It blocks us from

diving deep into their hardware and also implies that it would be challenging to enable

the complete IEEE 802.11v support to the chip.
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Building our own command sets is a workaround to this issue. What we need is

a way to orchestrate selective scans at the device. The IEEE 802.11v standard was a way

to achieve this goal, and the beauty of this approach is that we do not need to modify

smartphones, thus reducing the privacy concerns; here, we do not have native support of

the IEEE 802.11v, so we decide to implement our commands for orchestrated selective

scans.

We observed that ESP8266 would not disassociate with its current AP when

performing off-channel scans. It generally took 30-40 milliseconds for an ESP8266 to scan

one channel in a 2.4 GHz band when doing active scans. Assume we only deploy our

APs on the three non-overlapping channels in the 2.4 GHz band, in addition to the one it

currently associates with, it only needs to scan two other channels to leave signal strength

measurements on APs for triangulation, and that will take 60-80 milliseconds, which is

shorter than the regular beacon interval. One can check Appendix B for example codes.

4.5.2 Putting Everything Together

The design’s final step is to connect the wake-up circuit’s output to the ESP8266

board as an external wake-up signal. The system is put in the power-saving mode most

of the time. When there is downlink traffic to the system, we send the predefined frame

pattern to wake it up. If it succeeds, the ESP8266 chip is set to connect to an available

AP, reporting its status to the controller and ready for a commend.

We could not carry out a system-wide test for our wake-up circuit and ESP8266

chip when this dissertation is being written due to the pandemic. We believe this would
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be logically possible because we managed to wake-up the circuit with a frame pattern

generated through frame injection. However, more tests may still be required to verify the

robustness of the wake-up circuit design.
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Chapter 5

Wi-Fi Self-Organizing Networks and

Their Future

This dissertation gave practical device tracking solutions that require software

support and hereby laying down the base for self-organizing networks. The idea was to

uncover the best possible solutions under the existing hardware infrastructure and only

introduce new hardware design when necessary.

5.1 Retrospect to the Proposed Solutions

We turned them into wireless SDN nodes for the devices having enough computing

power and open for full access. These devices formed an SD MANET or smart mesh

networks. This network’s key features include time-sensitive local data exchange, so P2P

and multihop transmission best suit this traffic. The network topology may frequently

95



change, so an on-demand route searching would unlikely to guarantee short delays, and

we introduced some proactive measures instead.

A locally centralized controller oversees the network dynamics and collects the

data. We can also run machine learning on the controller to estimate upcoming topology

changes and pre-cache control policies onto relative SDN nodes to minimize network traffic

delay. To further boost the network’s robustness, the controller may detect malicious nodes

by monitoring the traffic pattern in the network. If suspicious behavior is found, the control

isolates the node by installing policies onto the neighboring nodes.

The above-mentioned approach requires certain levels of control on software in-

stallation. One might doubt how a network operator can make their users install particular

applications on their devices. A solution is to run a rent-and-subscribe mode instead of

asking the user to buy off the hardware and software. The Rent-and-subscribe model

makes users rent the hardware and subscribe to software updates in exchange for the ser-

vices. These something-as-a-service models provide sustainable cash flow to the business

and overcome the challenge of asking users to install particular applications.

In the meantime, we expect there are still privately owned smart devices that

continue not to allow SDN module installation due to business decisions or security con-

cerns. To track these devices, we have to use whatever the device support. Currently, we

rely on the support of IEEE 802.11v/r standards. Through an orchestrated set of control

frames, we were able to make the device expose their locations. Although our work seemed

to rely on Quantenna’s reference design and their SDK, which gave us a proof of concept,

it can be further extended to hostapd application and compatible devices using the same
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control logic, dropping the dependency of Quantenna’s framework. hostapd is an open-

source AP management application seen in almost every Linux-based AP. It is responsible

for the AP-STA handshake and sending the BTM request frames to compatible devices.

An extension would be to build a new protocol between hostapd the controller so that the

controller can ask the AP to send BTM request frames when necessary.

Another possible extension would be at the device’s end. Although all Apple’s

iOS devices and Windows-running devices have proprietary Wi-Fi manager, most Android

and Linux-running devices use wpa supplicant and their Wi-Fi manager. We noticed that

there remains undid work in its BTM control frame handling process. That might explain

why sometimes there were unexpected behaviors, and we needed to disassociate the devices.

We believe there is a way to extend wpa supplicant so that Android and Linux-running

devices can react to our customized 802.11v BTM request frames more smoothly.

Lastly, we proposed an approach to track Wi-Fi IoT devices using almost the

same setup as we used to track smart devices. Enabling a feature similar to 802.11v

BTM request and reply handshake was straightforward but coming up with a standard-

compatible energy-saving way was more challenging. We introduced a low-powered wake-

up circuit as a front end to the regular, power-consuming Wi-Fi interface for channel

monitoring. Our design also includes identification and multicasting features so that a

single AP can wake up multiple devices simultaneously.
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5.2 Potential Support on Future Wi-Fi Standards

The first commercially available Wi-Fi standard, IEEE 802.11b were proposed in

1999. It operates in the 2.4 GHz band using 20 MHz bandwidth and gives a maximum raw

data rate of 11 Mbps. Although proposed almost simultaneously, IEEE 802.11a, which also

uses 20 MHz bandwidth but operates in the 5 GHz band, became commercially available

one year later in the year 2000. It was also the first Wi-Fi standard using frame-based

OFDM modulation, giving its maximum raw data rate at 54 Mbps. As mentioned in

Chapter 4, using the 5 GHz band gives 802.11a a significant advantage. First, neighboring

channels in the 2.4 GHz band are overlapped against each other, causing inter-channel-

interference, whereas those in the 5 GHz band are separate and free from inter-channel-

interference. Second, there are communication standards other than Wi-Fi operating in

2.4 GHz, such a crowded environment makes connection unstable, and coexisting different

standards becomes a headache. On the other hand, a higher carrier frequency of 5 GHz

also brings some disadvantages. For example, the overall coverage of 802.11a is smaller

due to path loss and fading characteristics. Fortunately, the fundamental propagation

advantages of the OFDM signal can help offset these disadvantages.

Three years later, the 2.4 GHz version of 802.11a, 802.11g standard became avail-

able and soon dominated the market for almost six years until 802.11n/Wi-Fi 4/Wireless

N appeared in 2009. 802.11n standard was the first standard supporting MIMO and

took advantage of spatial diversity. Interestingly, in a 4-stream scenario, the theoretically

achievable throughput is 800 Mbps rather than 4 × 150 = 600 Mbps. This is because
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802.11n uses 256 QAM-OFDM modulation, which comes with an additional 30% spatial

gain. The current mainstream 802.11ac standard is branded as Wi-Fi 5 by Wi-Fi Alliance.

It reaches its maximum raw data rate of 1,733 Mbps when operated with an 80-MHz

channel and four streams. Many commercial dual-band Wi-Fi APs sum the maximum raw

data rate in 2.4 GHz band and 5 GHz band together and use “AC2600” for marketing.

Table 5.1 summarizes the dates and features of each above-mentioned Wi-Fi standard.

The resource management protocols 802.11v and 802.11r first appeared as sup-

plements for the 802.11n standard and continue to be supported by the 802.11ac standard.

We believe these two protocols will also be supported by the future Wi-Fi standards for

backward compatibility and only be replaced when more advanced ones become available.

The latest Wi-Fi 6 standards, 802.11ax, operates at the same frequency band

as 802.11n and 802.11ac. The makes the channel characteristics of 802.11ax similar to

802.11n and 802.11ac. The future Wi-Fi 6E will run in the 6 GHz band, and we can

expect it will have a smaller coverage than that of Wi-Fi 5 under the same transmission

power and will require a denser deployment to cover the area of service. As discussed in

earlier chapters, because we make AP as our sensors, AP’s denser deployment brings us

a denser deployment of sensors. The devices will undoubtedly experience more frequent

handoffs, but that shortcoming will become our tracking performance.

In sum, we believe as long as the carrier frequency becomes higher and AP’s

deployment becomes denser, the idea covered in this dissertation will be more sustainable

and perform better.
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Appendix A

BTM Frame Process Logic

When an IEEE 802.11v control frame arrives at a device running wpa supplican-2.6 [34],

several functions in wnm sta.c are supposed to handle the response.

1516 void ieee802_11_rx_wnm_action(struct wpa_supplicant *wpa_s ,

1517 const struct ieee80211_mgmt *mgmt , size_t len)

1518 {

1519 const u8 *pos , *end;

1520 u8 act;

...

1538 switch (act) {

1538 case WNM_BSS_TRANS_MGMT_REQ:

1538 ieee802_11_rx_bss_trans_mgmt_req(wpa_s , pos , end ,

1538 !(mgmt ->da[0] & 0x01));

1538 break;

If the frame’s action code is WNM BSS TRANS MGMT REQ, it calls a handler function
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to continue the process.

1538 static void ieee802_11_rx_bss_trans_mgmt_req(struct wpa_supplicant *

wpa_s ,

1538 const u8 *pos , const u8 *end ,

1538 int reply)

1538 {

...

1203 if (wpa_s ->wnm_mode & WNM_BSS_TM_REQ_DISASSOC_IMMINENT) {

1203 wpa_msg(wpa_s , MSG_INFO , "WNM: Disassociation Imminent - "

1203 "Disassociation Timer %u", wpa_s ->wnm_dissoc_timer);

1203 if (wpa_s ->wnm_dissoc_timer && !wpa_s ->scanning) {

1203 /* TODO: mark current BSS less preferred for

1203 * selection */

1203 wpa_printf(MSG_DEBUG , "Trying to find another BSS");

1203 wpa_supplicant_req_scan(wpa_s , 0, 0);

1203 }

1203 }

...

1220 if (wpa_s ->wnm_mode & WNM_BSS_TM_REQ_PREF_CAND_LIST_INCLUDED) {

1220 unsigned int valid_ms;

1220

1221 wpa_msg(wpa_s , MSG_INFO , "WNM: Preferred List Available");

...

1266 valid_ms = valid_int * beacon_int * 128 / 125;

1266 wpa_printf(MSG_DEBUG , "WNM: Candidate list valid for %u ms",

1266 valid_ms);
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1266 os_get_reltime (&wpa_s ->wnm_cand_valid_until);

1266 wpa_s ->wnm_cand_valid_until.sec += valid_ms / 1000;

1266 wpa_s ->wnm_cand_valid_until.usec += (valid_ms % 1000) * 1000;

1266 wpa_s ->wnm_cand_valid_until.sec +=

1266 wpa_s ->wnm_cand_valid_until.usec / 1000000;

1266 wpa_s ->wnm_cand_valid_until.usec %= 1000000;

...

1287 /*

1287 * Try to use previously received scan results , if they are

1287 * recent enough to use for a connection.

1287 */

1287 if (wpa_s ->last_scan_res_used > 0) {

1287 struct os_reltime now;

1287

1288 os_get_reltime (&now);

1287 if (! os_reltime_expired (&now , &wpa_s ->last_scan , 10)) {

1287 wpa_printf(MSG_DEBUG ,

1287 "WNM: Try to use recent scan results");

1287 if (wnm_scan_process(wpa_s , 0) > 0)

1287 return;

1287 wpa_printf(MSG_DEBUG ,

1287 "WNM: No match in previous scan results - try a new scan

");

1287 }

1287 }

1287
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1288 wnm_set_scan_freqs(wpa_s);

1287 if (wpa_s ->wnm_num_neighbor_report == 1) {

1287 os_memcpy(wpa_s ->next_scan_bssid ,

1287 wpa_s ->wnm_neighbor_report_elements [0]. bssid ,

1287 ETH_ALEN);

1287 wpa_printf(MSG_DEBUG ,

1287 "WNM: Scan only for a specific BSSID since there is only a

single candidate "

1287 MACSTR , MAC2STR(wpa_s ->next_scan_bssid));

1287 }

1287 wpa_supplicant_req_scan(wpa_s , 0, 0);

...

1327 }

In line 1203, if WNM BSS TM REQ DISASSOC IMMINENT bit is set, the device is to

be disassociated soon and wpa supplicant should request a scan quickly. However, at

this point, the device has no idea whether there are preferred candidates or it has to do a

full-channel scan in the worst case.

Starting at line 1220, wpa supplicant process the preferred candidate list, un-

covering more clue for the handoff. It then checks if the previous scan results in cache. If

the result is still no more aged than 10 seconds, it will determine if all the candidates are

in the result. Otherwise, it should request a new scan.

Finally, if there is only one candidate, wpa supplicant should request a unicast

scan, including the BSSID of the candidate in the probe request; otherwise, it will demand
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a broadcast scan.

One interesting finding is that the abridged bit (A) is ignored in wpa supplicant.

This might be that the author has not yet come up with a way to process it. The abridged

bit is used to indicate the severity of the roaming request according to the standard [9].

wpa supplicant req scan() is the function use for scheduling a scan. It does

not kick off the scan immediately after it is called but will put a request in the event loop

because wpa supplicant is a multi-thread application.

The declaration and the implementation of wpa supplicant req scan() is in

scan.c are in scan.h and scan.c, respectively. Here is how it was implemented.

1327 {

1327 int res;

1327

1328 if (wpa_s ->p2p_mgmt) {

1327 wpa_dbg(wpa_s , MSG_DEBUG ,

1327 "Ignore scan request (%d.%06d sec) on p2p_mgmt interface",

1327 sec , usec);

1327 return;

1327 }

1327

1328 res = eloop_deplete_timeout(sec , usec , wpa_supplicant_scan , wpa_s ,

1327 NULL);

1327 if (res == 1) {

1327 wpa_dbg(wpa_s , MSG_DEBUG , "Rescheduling scan request: %d.%06d sec

",
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1327 sec , usec);

1327 } else if (res == 0) {

1327 wpa_dbg(wpa_s , MSG_DEBUG , "Ignore new scan request for %d.%06d

sec since an earlier request is scheduled to trigger sooner",

1327 sec , usec);

1327 } else {

1327 wpa_dbg(wpa_s , MSG_DEBUG , "Setting scan request: %d.%06d sec",

1327 sec , usec);

1327 eloop_register_timeout(sec , usec , wpa_supplicant_scan , wpa_s ,

NULL);

1327 }

1327 }

If there is already a pending scan request, wpa supplicant req scan() should

reschedule it; otherwise, it can go ahead and schedule the scan.

wps supplicant scan() function in scan.c handles scan requests. It consists of

more than 400 lines of codes and is called by the event loop. Unlike ieee802ch 11 rx bss

trans mgmt req() function in wnm sta.c that primarily set the scan parameters according

to the information in the BTM request frame, wps supplicant scan() function updates

the scan parameters based on system settings as well as hardware capabilities. It would be

challenging to override system settings or hardware capabilities on a user device because

that would involve system-level modifications so we decide to let them be and focus on

the information in BTM request frames.

Another noticeable finding is that wps supplicant scan() function calls wpa
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supplicant extra ies at line 982, a function defined at line 462 in scan.c. This function

processes the information elements (IEs) defined by different vendors and opens a good

way for the extension. For example, we can make ourselves a vendor that put all the

roaming parameters in IEs and then modify wpa supplicant to support our parameters

without violating the standard. For the devices running unmodified software or those not

relying on wpa supplicant for Wi-Fi connections, they will ignore our customized IEs and

continue to operate as they should.
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Appendix B

Off-channel Scan Implementation on

ESP8266

assoc and off channel scan.ino:

1327 #include <ArduinoJson.h>

1327 #include <ESP8266WiFi.h>

1327 #include <ESPAsyncTCP.h>

1327 #include <vector >

1327

1328 #define BLINK_PERIOD 250

1327 long lastBlinkMillis;

1327 bool ledState;

1327

1328 #define SCAN_PERIOD 5000

1327 long lastScanMillis;
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1327

1328 const char *ssid = "MyPlace";

1327 const char *password = "22627298";

1327 int current_channel;

1327

1328 // command flags

1327 bool cmd_request_scan = false;

1327 bool cmd_scan_result = false;

1327 StaticJsonDocument <2048 > ap_list;

1327

1328 // a global vector holding active clients

1327 static std::vector <AsyncClient *> clients; // a list to hold all

clients

1327

1328 /* clients events */

1327 static void handleError(void *arg , AsyncClient *client , int8_t error)

{

1327 Serial.printf("\n\r connection error %s from client %s \n", client

->errorToString(error), client ->remoteIP ().toString ().c_str ());

1327 }

1327

1328 static void handleData(void *arg , AsyncClient *client , void *data ,

size_t len) {

1327 // A buffer to hold the reply string. Sadly , we only have limited

memory here so need to be careful.

1327 char reply [1024];
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1327 // print out where the data come from

1327 Serial.printf("\n\rInfo: data received from client %s: ", client ->

remoteIP ().toString ().c_str ());

1327

1328 // print out the received data

1327 Serial.write(( uint8_t *)data , len);

1327 Serial.printf(", len = %d", len);

1327

1328 if (! memcmp(data , "scan_result", max((int) len , 11))) {

1327 sprintf(reply , "Show off -channel scan reults\n");

1327 if (ap_list.isNull ())

1327 sprintf(reply , "Scan result not yet available\n");

1327 else {

1327 serializeJsonPretty(ap_list , reply);

1327 Serial.printf("\n\rcontent length = %d", measureJsonPretty(

ap_list));

1327 // cmd_scan_result = true;

1327 }

1327 } else if (! memcmp(data , "scan", max((int) len , 4))) {

1327 sprintf(reply , "Request an off -channel scan\n");

1327 cmd_request_scan = true;

1327 }

1327

1328 // reply to client

1327 if (client ->space() > strlen(reply) && client ->canSend ()) {

1327 client ->add(reply , strlen(reply));
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1327 client ->send();

1327 }

1327 }

1327

1328 static void handleDisconnect(void *arg , AsyncClient *client) {

1327 Serial.printf("\n\rInfo: client %s disconnected \n", client ->

remoteIP ().toString ().c_str ());

1327 }

1327

1328 static void handleTimeOut(void *arg , AsyncClient *client , uint32_t

time) {

1327 Serial.printf("\n\rWarning: client ACK timeout ip: %s \n", client ->

remoteIP ().toString ().c_str ());

1327 }

1327

1328 /* server events */

1327 static void handleNewClient(void *arg , AsyncClient *client) {

1327 Serial.printf("\n\rInfo: a new client has been connected to server ,

ip: %s", client ->remoteIP ().toString ().c_str());

1327

1328 // add to list

1327 clients.push_back(client);

1327

1328 // register events

1327 client ->onData (& handleData , NULL);

1327 client ->onError (& handleError , NULL);
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1327 client ->onDisconnect (& handleDisconnect , NULL);

1327 client ->onTimeout (& handleTimeOut , NULL);

1327 }

1327

1328 void scan_and_update_ap_list () {

1327 /* if async_scan is true , scanNetworks () will exit right away and

we need to check the return value of scanComplete () and

1327 * see if the scan is complete. If async_scan is false , then

scanNetworks () is blocking and scanComplete () will always

1327 * return the scan result. In our application , we need to scan only

selective channels. For a single thread application

1327 * that only deals with Wi-Fi, we can make it blocking. According

to the discussion on GitHub , Adruio has only single core

1327 * and is non -preemptive , so I better come up with a single thread

solution.

1327 */

1327 bool async_scan = false , show_hidden = false , passive = false;

1327 int chan = 1, n = -1;

1327 long lastActionMillis;

1327 ap_list.clear();

1327

1328 // scan channel 1

1327 Serial.printf("\n\rStart scanning channel %u...", chan);

1327 lastActionMillis = millis ();

1327 WiFi.scanNetworks(async_scan , show_hidden , chan , NULL , passive);

1327 n = WiFi.scanComplete ();
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1327

1328 Serial.printf(" %d network(s) found , %d ms spent", n, millis () -

lastActionMillis);

1327 while (n > 0) {

1327 n--;

1327 Serial.printf("\n\r%d: %s, %s, Ch:%d (%ddBm) %s", n + 1, WiFi.

SSID(n).c_str (), WiFi.BSSIDstr(n).c_str(), WiFi.channel(n), WiFi.

RSSI(n), WiFi.encryptionType(n) == ENC_TYPE_NONE ? "open" : "");

1327

1328 JsonObject ap = ap_list.createNestedObject(WiFi.BSSIDstr(n));

1327 if (!ap)

1327 Serial.printf("\n\rError: out of memory.");

1327

1328 ap["SSID"] = WiFi.SSID(n);

1327 ap["channel"] = WiFi.channel(n);

1327 ap["RSSI"] = WiFi.RSSI(n);

1327 //ap[" encryption "] = WiFi.encryptionType(n) == ENC_TYPE_NONE ? "

open" : "";

1327 }

1327 WiFi.scanDelete ();

1327

1328 // scan channel 6

1327 chan = 6;

1327 Serial.printf("\n\rStart scanning channel %u...", chan);

1327 lastActionMillis = millis ();

1327 WiFi.scanNetworks(async_scan , show_hidden , chan , NULL , passive);
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1327 n = WiFi.scanComplete ();

1327

1328 Serial.printf(" %d network(s) found , %d ms spent", n, millis () -

lastActionMillis);

1327 while (n > 0) {

1327 n--;

1327 Serial.printf("\n\r%d: %s, %s, Ch:%d (%ddBm) %s", n + 1, WiFi.

SSID(n).c_str (), WiFi.BSSIDstr(n).c_str(), WiFi.channel(n), WiFi.

RSSI(n), WiFi.encryptionType(n) == ENC_TYPE_NONE ? "open" : "");

1327

1328 JsonObject ap = ap_list.createNestedObject(WiFi.BSSIDstr(n));

1327 if (!ap)

1327 Serial.printf("\n\rError: out of memory.");

1327

1328 ap["SSID"] = WiFi.SSID(n);

1327 ap["channel"] = WiFi.channel(n);

1327 ap["RSSI"] = WiFi.RSSI(n);

1327 //ap[" encryption "] = WiFi.encryptionType(n) == ENC_TYPE_NONE ? "

open" : "";

1327 }

1327 WiFi.scanDelete ();

1327

1328 // scan channel 11

1327 chan = 11;

1327 Serial.printf("\n\rStart scanning channel %u...", chan);

1327 lastActionMillis = millis ();
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1327 WiFi.scanNetworks(async_scan , show_hidden , chan , NULL , passive);

1327 n = WiFi.scanComplete ();

1327

1328 Serial.printf(" %d network(s) found , %d ms spent", n, millis () -

lastActionMillis);

1327 while (n > 0) {

1327 n--;

1327 Serial.printf("\n\r%d: %s, %s, Ch:%d (%ddBm) %s", n + 1, WiFi.

SSID(n).c_str (), WiFi.BSSIDstr(n).c_str(), WiFi.channel(n), WiFi.

RSSI(n), WiFi.encryptionType(n) == ENC_TYPE_NONE ? "open" : "");

1327

1328 JsonObject ap = ap_list.createNestedObject(WiFi.BSSIDstr(n));

1327 if (!ap)

1327 Serial.printf("\n\rError: out of memory.");

1327

1328 ap["SSID"] = WiFi.SSID(n);

1327 ap["channel"] = WiFi.channel(n);

1327 ap["RSSI"] = WiFi.RSSI(n);

1327 //ap[" encryption "] = WiFi.encryptionType(n) == ENC_TYPE_NONE ? "

open" : "";

1327 }

1327 WiFi.scanDelete ();

1327 }

1327

1328 void print_ap_list () {

1327 if (! ap_list.isNull ())
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1327 serializeJson(ap_list , Serial);

1327 else

1327 Serial.printf("\n\rWarning: scan results not available.");

1327 }

1327

1328 void setup() {

1327 Serial.begin (115200);

1327 Serial.println ();

1327

1328 pinMode(LED_BUILTIN , OUTPUT);

1327

1328 WiFi.mode(WIFI_STA);

1327 WiFi.disconnect ();

1327

1328 // Connect to an AP and test if off -channel scans would break the

connection.

1327 WiFi.begin(ssid , password);

1327 while (WiFi.status () != WL_CONNECTED) {

1327 delay (500);

1327 Serial.print(".");

1327 }

1327

1328 current_channel = WiFi.channel ();

1327

1328 Serial.printf("\n\rInfo: Wi -Fi connected , local IP address is %s",

WiFi.localIP ().toString ().c_str());
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1327

1328 AsyncServer* server = new AsyncServer (7050); // start listening on

tcp port 7050

1327 server ->onClient (& handleNewClient , server);

1327 server ->begin();

1327 }

1327

1328 void loop() {

1327 long currentMillis = millis ();

1327

1328 // blink LED

1327 if (currentMillis - lastBlinkMillis > BLINK_PERIOD) {

1327 digitalWrite(LED_BUILTIN , ledState);

1327 ledState = !ledState;

1327 lastBlinkMillis = currentMillis;

1327 }

1327

1328 // trigger Wi -Fi network scan

1327 if (cmd_request_scan && (currentMillis - lastScanMillis >

SCAN_PERIOD)) {

1327 scan_and_update_ap_list ();

1327 lastScanMillis = millis ();

1327 cmd_request_scan = false;

1327 }

1327

1328 // print scan result
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1327 if (cmd_scan_result) {

1327 print_ap_list ();

1327 cmd_scan_result = false;

1327 }

1327 }

118



Bibliography

[1] B. Kaufman and B. Aazhang, “Cellular networks with an overlaid device to device
network,” in Asilomar Conference on Signals, Systems and Computers, Oct. 2008,
pp. 1537–1541.

[2] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance Vector
(AODV) Routing,” IETF, RFC 3561, Jul. 2003.

[3] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol (OLSR),” IETF,
RFC 3626, Oct. 2003.

[4] “Software-Defined Networking (SDN) Definition.” [Online]. Available: https:
//www.opennetworking.org/sdn-resources/sdn-definition

[5] S. Corson and J. Macker, “Mobile Ad hoc Networking (MANET): Routing Protocol
Performance Issues and Evaluation Considerations,” RFC 2501, Jan. 1999.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: Enabling innovation in campus networks,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, Mar.
2008.

[7] International Telecommunication Union (ITU), “G.114 : One-way transmission
time.” [Online]. Available: https://www.itu.int/rec/T-REC-G.114

[8] Y. Chen, T. Farley, and N. Ye, “QoS Requirements of Network Applications on the
Internet,” Inf. Knowl. Syst. Manag., vol. 4, no. 1, pp. 55–76, Jan. 2004. [Online].
Available: http://dl.acm.org/citation.cfm?id=1234242.1234243

[9] “IEEE Standard for Information technology—Telecommunications and information
exchange between systems Local and metropolitan area networks—Specific require-
ments - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications,” Dec 2016.

119

https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.itu.int/rec/T-REC-G.114
http://dl.acm.org/citation.cfm?id=1234242.1234243


[10] M. Bor, J. Vidler, and U. Roedig, “Lora for the internet of things,” in Proceedings of
the 2016 International Conference on Embedded Wireless Systems and Networks, ser.
EWSN ’16. USA: Junction Publishing, 2016, p. 361–366.

[11] “Ieee standard for ethernet,” IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-
2015), pp. 1–5600, 2018.

[12] “Open vSwitch.” [Online]. Available: http://openvswitch.org/

[13] “CPqD - An OpenFlow 1.3 switch.” [Online]. Available: https://github.com/CPqD/
ofsoftswitch13

[14] “Raspberry Pi Model B+,” https://www.raspberrypi.org/products/model-b-plus/,
Raspberry Pi Foundation, 2014.

[15] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker,
“NOX: Towards an Operating System for Networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 3, pp. 105–110, Jul. 2008.

[16] “POX.” [Online]. Available: http://www.noxrepo.org/pox/about-pox/

[17] “Beacon.” [Online]. Available: https://openflow.stanford.edu/display/Beacon

[18] “Floodlight.” [Online]. Available: http://floodlight.openflowhub.org/

[19] “Ryu.” [Online]. Available: https://osrg.github.io/ryu/

[20] “Onos - open network operating system.” [Online]. Available: http://onosproject.org/

[21] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),” IETF,
RFC 4271, Jan. 2006.

[22] J. Moy, “OSPF Version 2,” IETF, STD 54, Apr. 1998.

[23] “SDN MANET application for ONOS.” [Online]. Available: https://github.com/
chinghanyu/onos-wfwd

[24] “Project HSMM-Pi.” [Online]. Available: https://github.com/urlgrey/hsmm-pi

[25] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP.” [Online]. Available:
https://iperf.fr/

[26] W. paper, “SDN for WiFi. OpenFlow-enabling the wireless LAN can bring new levels
of agility.”

[27] Chien-Chao Tseng, Kuang-Hui Chi, Ming-Deng Hsieh, and Hung-Hsing Chang,
“Location-based fast handoff for 802.11 networks,” IEEE Communications Letters,
vol. 9, no. 4, pp. 304–306, April 2005.

120

http://openvswitch.org/
https://github.com/CPqD/ofsoftswitch13
https://github.com/CPqD/ofsoftswitch13
https://www.raspberrypi.org/products/model-b-plus/
http://www.noxrepo.org/pox/about-pox/
https://openflow.stanford.edu/display/Beacon
http://floodlight.openflowhub.org/
https://osrg.github.io/ryu/
http://onosproject.org/
https://github.com/chinghanyu/onos-wfwd
https://github.com/chinghanyu/onos-wfwd
https://github.com/urlgrey/hsmm-pi
https://iperf.fr/


[28] I. Ramani and S. Savage, “SyncScan: practical fast handoff for 802.11 infrastructure
networks,” in Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer
and Communications Societies., vol. 1, March 2005, pp. 675–684 vol. 1.

[29] V. Brik, A. Mishra, and S. Banerjee, “Eliminating Handoff Latencies in 802.11
WLANs Using Multiple Radios: Applications, Experience, and Evaluation,” in
Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement, ser.
IMC ’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 27–27. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251086.1251113

[30] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure, “Exploring
mobile/wifi handover with multipath tcp,” in Proceedings of the 2012 ACM
SIGCOMM Workshop on Cellular Networks: Operations, Challenges, and Future
Design, ser. CellNet ’12. New York, NY, USA: ACM, 2012, pp. 31–36. [Online].
Available: http://doi.acm.org/10.1145/2342468.2342476

[31] Y. Lim, Y. Chen, E. M. Nahum, D. Towsley, and K. Lee, “Cross-layer path manage-
ment in multi-path transport protocol for mobile devices,” in IEEE INFOCOM 2014
- IEEE Conference on Computer Communications, April 2014, pp. 1815–1823.

[32] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions for
Multipath Operation with Multiple Addresses,” Internet Requests for Comments,
RFC Editor, RFC 6824, January 2013, http://www.rfc-editor.org/rfc/rfc6824.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc6824.txt

[33] A. Bhartia, B. Chen, D. Pallas, and W. Stone, “Clientmarshal: Regaining
control from wireless clients for better experience,” in The 25th Annual
International Conference on Mobile Computing and Networking, ser. MobiCom
’19. New York, NY, USA: ACM, 2019, pp. 6:1–6:16. [Online]. Available:
http://doi.acm.org/10.1145/3300061.3300135

[34] J. Malinen, “Linux WPA/WPA2/IEEE 802.1X Supplicant.” [Online]. Available:
https://w1.fi/wpa supplicant/

[35] Quantenna Communications, “QSR1000 reference AP design.” [Online]. Available:
http://www.quantenna.com/products/qsr1000/

[36] “Quantenna WiSoC Device List.” [Online]. Available: https://wikidevi.com/wiki/
Quantenna

[37] H. Lim, L. . Kung, J. C. Hou, and H. Luo, “Zero-configuration, robust indoor local-
ization: Theory and experimentation,” in Proceedings IEEE INFOCOM 2006. 25TH
IEEE International Conference on Computer Communications, April 2006, pp. 1–12.

[38] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “SpotFi: Decimeter
Level Localization Using WiFi,” in Proceedings of the 2015 ACM Conference

121

http://dl.acm.org/citation.cfm?id=1251086.1251113
http://doi.acm.org/10.1145/2342468.2342476
http://www.rfc-editor.org/rfc/rfc6824.txt
http://www.rfc-editor.org/rfc/rfc6824.txt
http://doi.acm.org/10.1145/3300061.3300135
https://w1.fi/wpa_supplicant/
http://www.quantenna.com/products/qsr1000/
https://wikidevi.com/wiki/Quantenna
https://wikidevi.com/wiki/Quantenna


on Special Interest Group on Data Communication, ser. SIGCOMM ’15.
New York, NY, USA: ACM, 2015, pp. 269–282. [Online]. Available: http:
//doi.acm.org/10.1145/2785956.2787487

[39] “Wireshark.” [Online]. Available: https://www.wireshark.org/

[40] Cisco Systems, Inc., “iPhone 6 Roaming Behavior and Optimization.” [Online].
Available: https://bit.ly/30R5a4U

[41] “IEEE Standard for Information technology– Local and metropolitan area networks–
Specific requirements– Part 15.1a: Wireless Medium Access Control (MAC) and Phys-
ical Layer (PHY) specifications for Wireless Personal Area Networks (WPAN),” IEEE
Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002), pp. 1–700, 2005.

[42] Bluetooth SIG (2020), “Specification of the BluetoothSystem - Covered Core Package
version: 5.2.” [Online]. Available: https://www.bluetooth.com/specifications/
bluetooth-core-specification/

[43] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-2020 (Revision
of IEEE Std 802.15.4-2015), pp. 1–800, 2020.

[44] Lin Gu and J. A. Stankovic, “Radio-triggered wake-up capability for sensor networks,”
in Proceedings. RTAS 2004. 10th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2004., 2004, pp. 27–36.

[45] W. L. Leow, H. Pishro-Nik, and D. Ni, “Delay and energy tradeoff in multi-state wire-
less sensor networks,” in IEEE GLOBECOM 2007 - IEEE Global Telecommunications
Conference, 2007, pp. 1028–1032.

[46] R. Jurdak, A. G. Ruzzelli, and G. M. P. O’Hare, “Multi-hop rfid wake-up radio:
Design, evaluation and energy tradeoffs,” in 2008 Proceedings of 17th International
Conference on Computer Communications and Networks, 2008, pp. 1–8.

[47] F. Hutu, A. Khoumeri, G. Villemaud, and J. Gorce, “Wake-up radio architecture for
home wireless networks,” in 2014 IEEE Radio and Wireless Symposium (RWS), 2014,
pp. 256–258.

[48] H. Zhang, C. Li, S. Chen, X. Tan, N. Yan, and H. Min, “A low-power ofdm-based
wake-up mechanism for ioe applications,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 65, no. 2, pp. 181–185, 2018.

[49] S. Tang, H. Yomo, and Y. Takeuchi, “Optimization of frame length modulation-
based wake-up control for green wlans,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 2, pp. 768–780, 2015.

[50] S. M. Günther, M. Leclaire, J. Michaelis, and G. Carle, “Analysis of injection capa-
bilities and media access of IEEE 802.11 hardware in monitor mode,” in 2014 IEEE
Network Operations and Management Symposium (NOMS), 2014, pp. 1–9.

122

http://doi.acm.org/10.1145/2785956.2787487
http://doi.acm.org/10.1145/2785956.2787487
https://www.wireshark.org/
https://bit.ly/30R5a4U
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/


[51] S. M. Günther, “libmoep – packet injection library.” [Online]. Available:
https://moepi.net/phd/

[52] DeviWiki, “Atheros AR5BHB112.” [Online]. Available: https://deviwiki.com/wiki/
Atheros AR5BHB112

[53] MediaTek, “RT5370 High-performance 802.11n Wi-Fi with antenna diversity switch-
ing.” [Online]. Available: https://www.mediatek.com/products/broadbandWifi/
rt5370

[54] 0x90, “wifi-arsenal.” [Online]. Available: https://github.com/0x90/wifi-arsenal/tree/
master/libmoep-1.1/patches

[55] “Radiotap.” [Online]. Available: https://www.radiotap.org/

[56] J. Postel, “Internet Protocol,” Internet Requests for Comments, RFC Editor, STD 5,
September 1981, http://www.rfc-editor.org/rfc/rfc791.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc791.txt

123

https://moepi.net/phd/
https://deviwiki.com/wiki/Atheros_AR5BHB112
https://deviwiki.com/wiki/Atheros_AR5BHB112
https://www.mediatek.com/products/broadbandWifi/rt5370
https://www.mediatek.com/products/broadbandWifi/rt5370
https://github.com/0x90/wifi-arsenal/tree/master/libmoep-1.1/patches
https://github.com/0x90/wifi-arsenal/tree/master/libmoep-1.1/patches
https://www.radiotap.org/
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt

	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	SON for Wireless Mobile Ad Hoc Networks
	SON for Infrastructure Wi-Fi Networks
	SON and Wi-Fi Internet of Things Devices

	Wireless SDN Mobile Ad Hoc Network
	Wi-Fi Frame Structure
	MAC Address Rewriting
	SDN Protocol and Switch
	SDN Controller
	Control Application
	Putting Pieces Together
	Evaluations
	Network Setup
	Link-down Experiment
	Link-up Experiment
	Fast-changing Topology Experiment

	Conclusion and Discussions
	Acknowledgments

	Wi-Fi Roaming as a Location-based Service
	Challenges in Infrastructure Wi-Fi
	Location Information for Roaming
	Selective Scans for Triangulation
	Controller Design
	AP Implementation
	Performance Evaluations
	Impact of Frequent BTM Requests
	Multi-channel Localization
	Impact of Selective Scans

	Discussion and Conclusion
	Acknowledgments

	Design and Tracking Energy-Saving Wi-Fi Internet of Things Devices
	Energy-Saving Wi-Fi IoT Devices
	Injecting Wake-up Frame Patterns
	Injecting Frames of Specific Duration
	Avoiding False Positives with Multiple Frame Injections

	Exploiting CSMA/CA Mechanism
	Multicast Wake-up
	Mimicking IP Multicast Solution
	Adding the Mask

	Tracking Wi-Fi IoT Devices
	Reusing Wi-Fi Infrastructure
	Putting Everything Together


	Wi-Fi Self-Organizing Networks and Their Future
	Retrospect to the Proposed Solutions
	Potential Support on Future Wi-Fi Standards

	BTM Frame Process Logic
	Off-channel Scan Implementation on ESP8266
	Bibliography



