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Abstract

Computational models of memory used in adaptive learning
settings trace a learner's memory capacities. However, less
work has been done on the implementation of these models in
the clinical realm. Current assessment tools lack the reliable,
convenient, and repeatable qualities needed to capture the
individualized and evolving nature of memory decline. The
goal of this project was to predict and track memory decline in
subjectively- or mildly cognitively impaired (MCI) individuals
by using a model-based, adaptive fact-learning system. Here
we present data demonstrating that these tools can diagnose
mild memory impairment with over 80% accuracy after a
single 8-minute learning session. These findings provide new
insights into the nature and progression of memory decline and
may have implications for the early detection and management
of Alzheimer's disease and other forms of dementia.

Keywords: memory; forgetting; dementia; ACT-R

Introduction

Memory and cognitive impairments are a common and
debilitating aspect of aging, particularly in conditions such
as dementia due to Alzheimer's Disease (AD). Despite
significant efforts to understand and treat these conditions,
progress has been slow. One major challenge is the lack of
understanding of the relationship between long-term
memory decline and the underlying neuropathology. To gain
a better understanding of this relationship, it is necessary to
have precise and longitudinal assessments of memory
function that can identify which aspect of long-term
memory is declining, at what rate, and due to which
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underlying affected neural circuit. However, current clinical
tools for memory assessments are not adequate for this
purpose. They are often only administered by experts,
cannot be performed frequently, lack transparency in
interpretation, and are not specific (e.g., not distinguishing
between true forgetting and retrieval difficulties, especially
in mildly affected patients).

One potential solution to understanding the relationship
between long-term memory decline and neuropathology is
the use of computational cognitive models. Here, we
employed a cognitive model that simulates encoding and
passive forgetting based on established cognitive and
biological principles, providing a framework for
understanding the underlying mechanisms of memory
decline in aging and neurodegenerative conditions. This
approach can be used to generate predictions about the
progression of memory decline and identify potential
therapeutic targets.

Model

The model used herein was originally developed by
Anderson & Schooler (1991) within the ACT-R architecture.
Consistent with Multiple Trace Theory (Nadel et al., 2000),
the model assumes that a memory is made of individual
traces created every time the same information is
encountered. Each trace decays according to the power law
of forgetting (Newell & Rosenbloom, 1982). The odds of
retrieving a memory m at time ¢ are proportional to its
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activation A(m, f), which represents the log odds of
retrieving any of its component traces, as shown in Eq. (1)

A(m, t)=log ¥, (¢ - t(@))"" )

Where #(i) is the creation time of the i-th trace, and d(7) is
its characteristic power decay rate. This trace-specific decay
rate, in turn, depends on the residual activation of the
memory at the time the trace was created (Pavlik &
Anderson, 2005; Sense et al., 2016):

d(l) — A(m, t=1(i)) +a

(@)

Because Eq. (2) makes the decay rate of each trace
dependent on the memory’s activation, it provides an
explanation for the spacing effect (Cepeda et al., 2008). That
is, traces closer in time have higher decay rates because of
the greater activation A(m, f) of the memory at time ().

Note that this model still depends on a single parameter,
a, which we refer to as the speed of forgetting (SoF). The
speed of forgetting explains the relationship between the
history of a memory and the likelihood of being able to
retrieve it in the future. Thus, the odds of being able to
recall a memory at a later time depend solely on the rate at
which the memory is forgotten. Additionally, this suggests
that by looking at the history of a memory and the number
of times it has been assessed, it is possible to determine the
rate at which that memory is forgotten.

This model has been previously used as a cognitive
support tool to optimize student learning (Sense & Rijn,
2022; Sense, Velde, & Rijn, 2021; van Rijn et al., 2009;
Wilschut, van der Velde, Sense, Fountas, & van Rijn, 2021).
In this paradigm, students use the software to learn new
facts. The software uses the students’ responses to estimate
the speed of forgetting value for each fact and optimizes the
time and frequency of presentation to maximize the number
of facts being memorized. Van Rijn et al. (2009) greatly
improved on this design by using the students’ response
times, in addition to errors, to estimate speed of forgetting.

Sense et al found that speed of forgetting was
characteristic of an individual, and was highly stable (» >
0.6) across time and materials (2016). Furthermore, using
neuroimaging methods, Zhou et al. (2021) and Xu et al.
(2021) found that not only does speed of forgetting capture
individual differences in long-term memory function, but
also correlates with, and can be decoded from, their
spontaneous brain activity at rest.

Experimental Hypotheses

Based on the behavioral and imaging findings, we
hypothesized that the speed of forgetting successfully
summarizes, at a computational level, the different
biological processes of passive forgetting (Davis & Zhong,
2017). These processes include loss of context clues,
retrieval interference from other similar memories, and
“natural” biological decay. Critically, some of these
processes are accelerated in aging (Shuai et al., 2010) and
abnormally elevated in amnestic dementias, such as AD.
Thus, the model outlined above should be able to
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distinguish between abnormal memory impairments and
normal aging controls. If successful, this model could
become an important tool in the clinical assessment of
memory function. Furthermore, if the model-based
assessment is robust to practice effects and can be repeated
frequently, it could provide a new, highly detailed view of
memory decay trajectories in normal and abnormal aging,
and of the effects of interventions.

To test these ideas, we conducted a longitudinal study of
healthy elderly adults and elderly individuals with Mild
Cognitive Impairment (MCI). We chose individuals with
MCI, rather than dementia, to both ensure participants had
sufficient cognitive abilities to perform the task and test the
model’s ability to detect earlier, more subtle differences in
memory function as it is often a precursor to AD and other
forms of dementia (Petersen et al., 2009). This cohort of
individuals was followed for 6+ months, during which they
performed weekly online model-based assessments to
characterize their speed of forgetting. We hypothesized that
(1) individuals with MCI would exhibit larger SoF than
healthy controls; (2) SoF values would be reliable across
repeated assessments; (3) SoF values would have clinical
validity; i.e. it would be possible to identify differences in
abnormal memory function from an individual SoF; and
finally (4) SoF would increase over a period of months,
capturing the trajectory of abnormal and healthy aging.

Materials and Methods
Participants

Sixteen participants were recruited on a rolling basis from
the local NIH-designated Alzheimer’s Disease Research
Center. The inclusion criteria for the study were as follows:
(1) age between 55 and 85 years, (2) fluency in English, and
(3) no major medical or psychiatric conditions that would
affect cognitive performance. Participants were classified
into two groups: healthy cognition (N = 7; 3F aged 58-71,
4M aged 57-71) and those with mild cognitive impairment
(MCI; N =9; 2F aged 63, 7M aged 67-78).

Mild Cognitive Impairment MCI can be defined as a
decline in cognitive abilities that is greater than what is
typical for a person's age and educational background but
does not meet the criteria for a diagnosis of dementia
(Winblad et al., 2004). MCI was diagnosed using a
combination of methods including clinical evaluation,
cognitive testing, and medical history. The clinical
evaluation was conducted by a geriatric psychiatrist or a
neurologist, who assessed the participant's cognitive and
functional abilities using standardized tools. Cognitive
testing was performed using a battery of neuropsychological
tests that measured various cognitive domains such as
memory, attention, and executive function. Medical history
was obtained through a structured interview and review of
medical records. Participants were classified as having MCI
if they had a Clinical Dementia Rating scale <= 0.5.
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Additionally, individuals with subjective reports of decline
by self and/or informant in conjunction with objective
cognitive deficits were also included in the MCI group.
Healthy controls were screened for cognitive impairment
using the same methods as MCI participants. They were
classified as healthy controls if they scored within normal
limits on cognitive tests and had no history of cognitive
decline or functional impairment. All participants provided
informed consent and were compensated for their
participation in the online memory game portion of the
study. All recruitment and testing procedures were approved
by the University’s Institutional Review Board.

Adaptive Memory Assessment

Weekly at-home assessments were completed with the
online adaptive fact learning system (AFLS) described in
Sense et al. (2016). This system continuously estimates the
individualized speed of forgetting values in real time as the
participant works through the lesson. The software was
designed so that participants could perform the task from
home using any mobile device. The AFLS works by
presenting new study pairs (e.g., “France / Paris”) and
scheduling repeated tests (e.g., “France / ?”) at strategic
points based on the online estimates of a user’s speed of
forgetting. Figure 1 provides an example of the software
interface.

Test

Figure 1. Interface of adaptive fact learning software on a
mobile phone.

New Pair

New Pair

Study Materials Thirty-two lessons were prepared in
advance, spanning different topics (such as European
capitals, Swahili words, Asian flags, bird species, types of
pasta, flower species). The materials were vetted prior to
the experiment to make sure they were comparable in terms
of familiarity and difficulty. For each lesson, 15 different
pairs were created, each of which associated an object with
an English noun. In half of the pairs, the object was
presented as an image (e.g., a picture of a Starling with the
name “Starling” for the Bird's lesson), and in the other half,
the object was a word (e.g., “France” / “Paris” for European
capitals). This was done to investigate possible differences
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due to the encoding modality (verbal vs. visual objects). The
number of terms reached in each lesson depended on the
response times and errors of the individual.

Data Processing The repetition, activation, and speed of
forgetting values for each term were calculated using
functions from the software package. The average speed of
forgetting values for each lesson and the individual were
identified by using the terminal o value of each pair at the
very last repetition of that term. The data was then filtered
to only contain the first full session of a topic (>6 min). This
was needed to eliminate any superfluous sessions (some
participants desired to complete the task more than once).
The data was also organized by the week the lesson was
completed to view temporal trends.

Results

Figure 2 provides an overview of the results. Across all the
topics and materials, individual speeds of forgetting varied
between 0.29 and 0.58 and were normally distributed. Speed
of forgetting across lessons ranged from o = 0.29 to a =
0.55, with a mean of @ = 0.4. The results produced in the
present study reproduced the main finding in Sense et al.
(2016), wherein individuals’ speeds of forgetting were
generally stable over time, but differed slightly across
materials.
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Figure 2. Distribution of speed of forgetting across lessons.

Reliability of the Speed of Forgetting

The test-retest reliability of the speed of forgetting
parameter across materials was assessed using pairwise
Pearson correlations between every pair of lessons. The
parameter was found to have a high average correlation
coefficient of » = 0.70 (Fig 3).
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Figure 3. Test-retest reliability of speed of forgetting.

Global Differences Between MCI and Controls

Differences in speed of forgetting for healthy controls and
individuals diagnosed with MCI as per the gold standard
clinical assessment were compared. On average, healthy
controls had a speed of forgetting of a =0.39, whereas MCI
had a speed of forgetting of a = 0.42 (Fig 4). The difference
between groups was compared using a mixed-effects linear
model that included the specific weekly topic as a random
effect (to account for differences in familiarity). The linear
model confirmed the existence of a large main effect of
group (B=10.04,t=9.78, p <0.0001).
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Figure 4. Distribution of speed of forgetting by clinical
status across all weekly lessons.

Clinical Status

Diagnostic Validity of the Speed of Forgetting

To analyze the parameter’s diagnostic potential, its
classification accuracy was plotted with a receiver operating
characteristic (ROC) curve. The ROC curve assesses the
sensitivity (true positive rate) and specificity (true negative
rate) of a classifier for varying thresholds of the speed of
forgetting parameter. The overall accuracy of the classifier
is then measured as the Area Under the Curve (AUC) of the
sensitivity and specificity obtained for different thresholds.
First, we examined the ROC curve for a single §-minute
session of data, that is, the probability of correctly
identifying group members (MCI or controls) by the speed
of forgetting value of a single test (Fig 5A). The model
proved to be highly diagnostic, with an AUC = 0.786 (that,
is, a classification accuracy of 78.6%). Then, we examined
the ROC curve for a classifier built on the average speed of
forgetting of an individual, computed across all sessions. As
expected, the classifier showed an improved accuracy of
83.6% (Fig 5B). Note that, because of the high test-retest
reliability of the speed of forgetting, classification using a
single session is almost as accurate as when averaging over
30+ sessions.

ROC, Single Session B ROC, Average

>

Sensitivity (True Positive Rate)

1.00 1.00

0.75 0.75

0.50 0.50

0.25 SoF AUC = 0.79

ccuracy AUC = 0.73

0.25 SoF AUC = 0.84

Accuracy AUC = 0.80
0.00 0.00
1.00 0.75 050 0.25 0.00

Specificity (True Negative Rate)

Sensitivity (True Positive Rate)

1.00 075 050 0.25 0.00
Specificity (True Negative Rate)

Measure === Accuracy === SoF Measure == Accuracy == SoF

Figure 5. ROC classification performance for the speed of
forgetting (red) and for response accuracy (blue) from (A) a
single session, and (B) averages across sessions.

We also investigated whether the speed of forgetting value
provided additional validity over traditional behavioral
measures, such as response accuracy. Note that, accuracy
and response times are collected from the AFLS, which
already uses the speed of forgetting to determine the best
moment at which a study pair is presented. Thus, the
validity of these traditional behavioral measures is, in fact,
inflated because they benefit indirectly from the study items
being driven by the speed of forgetting. Despite this, a
classifier based on response accuracy alone had a lower
AUC than a classifier built on speed of forgetting, both for
single sessions and for aggregated data (Figures 5A and
5B, blue lines). Specifically, in both cases, an SoF-based
classifier showed greater sensitivity than an accuracy-based
one even at high levels of specificity (lower left corners of
the ROC plots). That is, SoF allows for a greater ability to
detect mild memory impairments while still avoiding false
positives.
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Finally, a logistic curve was generated to model the
probability of the binary diagnosis outcomes (Fig 6). To
generate the model, individual speed of forgetting values for
each lesson were binned in increments of 0.01, and the
probability of MCI diagnosis was computed as the
proportion of individuals with an MCI diagnosis for each
bin. The logistic model showed a strong fit to the data
(Cragg and Uhler's pseudo R? = 0.26). The inflection point
of the curve (that is, the point at which the probability of an
MCI diagnosis is > 50%) was found to be at a value of & =
0.40. Additionally, the curve revealed that the probability of
an MCI diagnosis occurring increased steadily as the o
value increased, approaching a maximum probability of 1.0
at a = 0.52. Overall, the logistic curve provided a clear
visualization of the relationship between the predictor speed
of forgetting and a diagnosis of MCI.

Probability of MCI Diagnosis by SoF
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Figure 6. Probability of MCI by speed of forgetting.

Memory Assessment Temporal Trends

As memory function worsens in MCI patients, speeds of
forgetting should steadily increase over time. While
participants were only halfway through the year-long
experiment, the subtle changes in the longitudinal trajectory
of MCI patients can already be seen (Fig 7). The effect of
time was captured using a mixed-effects linear model that
included the week number as the main factor and the weekly
topic as a random effect (to account for differences in
difficulty across topics). In other words, forgetting grew
significantly in our sample over time, by approximately
0.15% per week. However, no significant interaction
between time and group existed. The analysis uncovered a
significant effect of the week (B = 0.0005, ¢t = 2.06, p =
0.04). Further analysis showed that this effect was driven by
the MCI group alone; separate linear models uncovered a
significant effect of the week for the MCI ( = 0.0006, ¢ =
2.02, p = 0.04) but not for healthy controls (f = 0.0003, ¢ =
1.13, p > 0.26). Thus, although the speed of forgetting grew
almost twice as fast as in controls, a significant difference in
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the rate of growth could not yet be detected within our
limited sample and time window.

Changes in SoF Over Time
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Figure 7. Time course of forgetting.

Differences Between Materials

As noted above, this longitudinal study also offered the
opportunity to examine the effects of different types of
materials (verbal vs. visual) on memory function. To assess
if the type of stimulus material presented affected lesson
difficulty, speed of forgetting for verbal stimuli and visual
stimuli lessons were compared. Healthy controls had similar
speeds of forgetting averages (verbal a = 0.390; visual a =
0.383), but MCIs had a higher speed of forgetting for verbal
stimuli (verbal a = 0.430; visual a = 0.416) (Fig 8). Upon
further investigation, it was found that the main stimulus
features contributing to differences in verbal and visual
materials for MCIs were non-English language and
numeracy (both of which were primarily in verbal
materials). But, it is possible that the visual stimuli also
simply provided more features to aid in memorization.

Distribution of SoF for Verbal vs Visual Stimuli
by Clinical Status
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Figure 8. Speed of forgetting by clinical status and verbal vs
visual stimuli.

MCI Subtype

To explore the model’s ability to parse out the nuances in
cognitive deficits, we categorized MCI groups subtype. We
further demonstrated that it was possible to use speed of
forgetting to accurately distinguish MCI subtypes, including



amnestic single and multiple domains (aMCI S, aMCI M)
and nonamnestic MCI (naMCI). The aMCI subtype is
characterized by a specific memory impairment, while the
naMCI subtype is characterized by a more general cognitive
decline (Fig 9). The results revealed that the cognitive
profile of the naMCI participant more closely resembled
that of the healthy control group. This observation is in line
with the fact that naMCI is characterized by a cognitive
decline in domains other than memory, such as executive
function (e.g. speed of processing, problem-solving,
set-shifting, inhibition). Therefore, it is expected that the
data would be more comparable to the control group as
there is no memory loss present in naMCI. However, the
model showed limitations in accuracy for the single
dementia patient, likely due to differences in response time
and reduced facts retained, requiring further refinement for
this population.
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Figure 9. Speed of forgetting across lessons by subtype.

Discussion

Our study presents a novel approach for tracking and
diagnosing mild memory impairments using the speed of
forgetting model parameter from a computational cognitive
model. While this model was originally developed for
student fact learning, it has never been explicitly used in
clinical populations. Here, the speed of forgetting was found
to be normally distributed, with higher means and ranges in
MCI, and showed high diagnostic validity with test-retest
reliability. The model also revealed differences in MCI
verbal and visual memory, MCI subtypes, and subtle
declines over time. Verbal vs visual differences could
pinpoint left hemisphere involvement. =~ AD is often
asymmetric, yet clinics primarily use verbal memory to
diagnose MCI. This model could reduce the ascertainment
bias towards right-lateralized MCI. In the example of aMCI
vs naMCI, speed of forgetting proved to be a purer
assessment of memory impairment by avoiding confounds
with retrieval strategy and executive function- a common
problem in the clinical assessment of mild memory
impairment. The ability to track memory over time is of
particular importance as early detection of MCI is likely to
be crucial in therapies to delay AD and related conditions;
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and the brief, user-friendly online format makes passive data
assessments remarkably convenient. Our data are the first to
demonstrate this diagnostic potential, moreover, the
repeatability/stability of the measure makes it a good
candidate to test the efficacy of interventions like
neuromodulation or cognitive enhancers.

Limitations

As with any new method, there are several limitations that
must be considered. First, the sample size used in this study
was relatively small, impacting the generalizability of the
results to larger populations. We are currently accumulating
more data with larger and more diverse sample sizes to
confirm the validity of this model in diagnosing memory
impairments in different demographic groups.

Second, speed of forgetting, in essence, measures the
speed of passive forgetting, and it is not yet known exactly
what that speed reflects. Passive forgetting, i.e. the loss of
information over time due to the passage of time rather than
a deliberate attempt to forget, could be due to errors in
encoding, retrieval, or simply changes in the way that the
brain processes information. More research is needed to
determine which of these passive mechanisms is most
closely linked to this parameter.

Third, this study has only examined recognition memory,
not recall memory. Recognition memory refers to the ability
to identify previously learned information, while recall
memory refers to the ability to retrieve information from
memory without any cues or prompts. Research has shown
that recognition and recall memory can be affected
differently in individuals with MCI (Bennett et al., 2006).
For example, individuals with MCI may have relatively
preserved recognition memory but impaired recall memory,
or vice versa. Therefore, the current measures of recognition
memory may not provide a complete picture of the
individual's memory abilities. But, data from recall trials are
currently being investigated.

Finally, the computational model showed limitations in
accurately diagnosing memory impairment in individuals
with dementia, likely due to significant differences in
response times and the reduced number of facts the
participants were able to retain, highlighting the need for
further refinement of the model for this population.

Broader Impacts

This model holds tremendous promise for improving our
understanding of memory problems in other psychiatric
disorders. Memory impairment is a hallmark of dementia
and AD but is also present in other disorders such as
schizophrenia, depression, bipolar, PTSD, and ADHD. Each
disorder affects memory differently: schizophrenia affects
working memory, depression and bipolar impact recall of
personal memories, PTSD reduces encoding and recall, and
ADHD affects short-term memory and working memory.
These examples highlight the diverse and complex ways
that memory impairment can manifest, making it a critical
area of research.


https://www.zotero.org/google-docs/?5cDGua

Disciplinary Diversity & Integration In conclusion, this
study represents an important step forward in the
burgeoning interdisciplinary field of computational
psychiatry. Computational psychiatry aims to provide an
explanatory bridge between altered cognitive function and
its underlying neurobiological mechanisms by means of
computational models. We aim to integrate the model with
neuroimaging data to discover the underlying neural
mechanisms behind memory decline in aging and disease.
Clinical applications are not commonly presented in
Cognitive Science, and translational applications of
cognitive models do not typically include health care and
medical diagnosis. This integrative approach can provide
valuable insights into the cognitive changes that occur in
these conditions and may help to identify new ways to
mitigate or prevent these changes.
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