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ABSTRACT OF THE DISSERTATION

Mathematical Modeling Study of the Impacts of Boundary Conditions and a Pseudo-3D
Mechanism on the Maintenance of the Shoot Apical Meristem of Arabidopsis thaliana

by

Christian Thomas Michael

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2022

Mark Alber, Chairperson

Stem cell maintenance in multilayered shoot apical meristems (SAMs) of plants requires regulation

of cell growth and division. Exactly how the milieu of chemical and mechanical signals interact in

the SAM to regulate cell division plane orientation is not well understood. In this work, simulations

using a 2D multiscale mathematical model are combined with experiments to suggest and test three

hypothesized mechanisms for the regulation of cell division plane orientation and the direction of

anisotropic cell expansion. Simulations predict that in the Apical corpus, WUSCHEL and cytokinin

regulate the direction of anisotropic cell expansion, and cells divide according to tensile stress on the

cell wall. In the Basal corpus, model simulations suggest dual roles for WUSCHEL and cytokinin

in regulating the direction of anisotropic cell expansion and cell division plane orientation. This

is supported by a detailed analysis of experimental images upon manipulation of WUSCHEL and

cytokinin. Moreover, simulations predict that this layer-specific mechanism maintains the experi-

mentally observed shape and structure of the SAM and the WUSCHEL distribution in the tissue.

The 2D model is then extended to include expansion and division of cells out-of-plane to form a

pseudo-3D (P3D) model. Both models include boundary conditions which represent tension expe-

rienced by the SAM epidermis. The P3D model maintains the epidermal cell monolayer crucial for

development in wildtype SAMs. By comparing the behavior of the P3D and 2D models, it is shown

that tension-guided cell division plane orientation acts to regulate cell and tissue shape distributions.
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line. Data from experimental studies was used to develop and calibrate submodel
components at distinct scales. Multiscale model simulations were used to test three
hypothesized mechanisms of the regulation of cell division plane orientation in the
corpus. Results from perturbation experiments were used to support model predictions. 4

1.2 Organizational structure of the SAM. (A) Diagram showing a median longi-
tudinal section of the SAM and depicting three distinct clonal layers. The tunica
encompasses the L1 and L2 cell layers. The corpus is subdivided into the Apical
corpus and Basal corpus. Vertical dashed lines represent the outer edges of the region
used in experimental analysis. The horizontal dashed line represents the separation
between the Apical corpus and Basal corpus. The L1 (blue), L2 (light blue), Api-
cal corpus (purple), and Basal corpus (red) cells that fall within the region used for
experimental analysis. These limits were manually determined for each experimental
SAM image. (B) Median longitudinal section of the SAM showing the WUS protein
domain (pWUS::eGFP-WUS) in a 9 day old SAM. (C) Median longitudinal section
of the SAM showing the cytokinin signaling reporter (pTCSn::mGFP5-ER) in a 9
day old SAM. eGFP-WUS and mGFP5-ER (green) are overlaid on FM4-64 plasma
membrane stain (Red). Scale bars = 20 µm. . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Shape and layered structure of the SAM (A) 3D confocal micrograph of the
SAM and surrounding primordia of Arabidopsis thaliana. Cell walls are stained in
red. A longitudinal sectional contour taken through the SAM apex is illustrated. (B)
Longitudinal section taken of the SAM and adjacent tissue, shown in the context of
the 3D tissue. Tunica and corpus are labeled in green and blue, respectively. (C)
Longitudinal section of the SAM taken from the previous panel. The SAM is flanked
by newly forming primordia. Larger cells below the SAM are expanded, indicating
they have begun differentiation. The tunica of the SAM (green cells) comprises two
clonally distinct monolayers layers of cells. The corpus of the SAM is rendered in blue
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Scale bar is 20µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

x



2.1 Two-dimensional multi-scale model of SAM growth and maintenance. Sim-
ulated cells are represented by two collections of nodes: cell wall nodes (solid black
dots in the red region in A and B) and internal nodes (solid dark blue dots in the blue
region in A and B). (A) Adjacent wall nodes of the same cell are shown interacting
via linear and rotational springs given by EWW that represent mechanical stiffness
and extensibility of the primary cell wall. Pairs of internal nodes and internal and cell
wall nodes of the same cell are shown interacting via Morse potential functions given
by EII , EIW that represent cell turgor-pressure. (B) Wall nodes of neighboring cells
may form adhesion partners and interact via a linear spring potential given by EAdh

that represents the adhesive properties of the middle lamella. Wall nodes of adjacent
cells enforce cell-cell volume exclusion via Morse potentials given by EWWD. The di-
vision process in the model is demonstrated in C-E, with the cell on display dividing
in response to in-plane tensile stress. The heat map shown in C-E represents in-plane
tensile stress tensile stress on each node where warmer colors represent nodes under
higher tensile stress, and cooler colors represent nodes under lower tensile stress. (C)
A simulated cell nearing mitotic phase. (D) A pair of simulated cells shortly after
division. Cytoplasm nodes are redistributed within the daughter cells and adhesion
partners of each wall node are updated. (E) The same cells as in D after an elastic
relaxation phase occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Chemical signaling submodel of the SAM. (A) Schematic of model signal ex-
pression domains of WUSCHEL and cytokinin. (B-C) Wildtype SAM longitudinal
section image. Cell walls (red) outline the dome-shape of the SAM; reporters (green)
indicate presence of the WUSCHEL protein (B) and cytokinin reporter (C). (B-C)
Contrast was manually increased in the red channels for visibility. Scale bars are
10µm. (D) Cell growth direction polarization vvv is dependent upon signaling. Wall
nodes of a model cell polarized in direction vvv are illustrated. The angle θj between vvv

and the vector connecting W j
i to W j+1

i are used to partition the wall nodes into sides
(red) and ends (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Initial conditions and equilibrium state. (A) 50 model cells and their initial
adhesion connections between neighboring cell wall nodes are shown in the initial
layout used for each simulation. (B) An example of an equilibrium state achieved
after stage one of simulations. Note that in the equilibrium state, each cell has been
stochastically assigned a direction of cell growth polarization, leading to anisotrop-
ically expanded cells at mechanical equilibrium. (A-B) Cells on the left and right
sides of the simulated tissue domain are the boundary cells which do not divide in
any stage of the simulation, but otherwise obey the same rules as other cells. Cells
in the bottom most layer are considered part of the stem, and have a much higher
damping to provide a foundation for the expansion of the SAM. The heat map shows
the distribution of in-plane tensile stress as calculated in equation (2.6). . . . . . . . 29

2.4 Aspect ratio and orientation of cells. Nodes W s1

i and W s2

i (highlighted nodes)
are chosen to evenly divide the cell area with minimal segment length. The perpen-
dicular bisector is formed and nodes nearest are taken to be the long axis W l1

i and

W l2

i (highlighted nodes). The growth direction angle θ of cell i is the positive acute
angle between the horizontal and the long axis. Aspect ratio is also calculated from
the lengths of the long and short axes. Orientation is measured in the same way as
for experimental images described above. Image was rendered via simulation output,
and the heat map shows tensile stress calculated by node as in equation (2.6). . . . . 33
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2.5 Perturbation Analysis of Equilibrium State. Perturbation analysis results of
adding small, random displacements to initial cell locations on the mechanical equilib-
rium state of the tissue - i.e. after representing t =15 minutes of growth, as discussed
in section 2.2.4. The top left and top center panels demonstrate both the impact of cell
center displacement on global curvature and how that impact may be attributed to
the fitness of a circle to the surface. The top right panel shows that the apical surface
length of the equilibrium SAM is only impacted via a negligible increase in variation of
the total apical surface length. The bottom panels show all cell-level measurements of
non-boundary cell orientation, aspect ratio, and areas from 100 simulations of increas-
ing centroid noise amplitude. These panels exhibit independence of cell geometry and
orientation from random cell displacement - suggesting that the initial tiling’s precise
spatial arrangement does not play a role in the equilibrium distribution of cells. . . . 37

2.6 Sensitivity Analysis of Equilibrium State. Tissue scale (top) and cell-scale
(bottom) measurements taken from simulated SAMs after 15 minutes of simulated
growth were represented as in section 2.2.4. Values of klin (left 6 panels) and ηBoundary

(right 6 panels) were independently varied to 100 values around their default. (Top) all
tissue-scale impacts on boundary dynamics were negligible, with the exception of the
reduction of apical surface length with a fourfold increase of klin

Boundary. However, this

is attributable to the shrinkage of the boundary cells with high klin on the boundary
which, upon observation, appear to pull the SAM surface flatter. This difference is
less than half of a micron, and so we conclude that the overall impact of boundary
cell properties on tissue-scale measurements is negligible. (Bottom) Local sensitivity
analysis shows no impact of passive boundary mechanical properties on equilibrium
cell shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 CAE-M division plane mechanism in 3D model. (A) Diagram of a 3D model
cell is shown in gray and depicts the cross-section of the division plane predicted by
the CAE-M mechanism in blue. The vector v1 (green) is used to determine the cell
division plane by finding the plane that includes both v1 and NMax, and that divides
the cell volume approximately in half. (B) Diagram of the calculation of vMax, the
maximal stress direction in TNMax within a neighborhood of NMax, and the resulting
vector v1 in TNMax

orthogonal to vMax. Vectors indicating stresses acting on NMax as
a result of nearby cell wall nodes are indicated in black, and their projection onto the
tangent plane TNMax

is shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8 CAE-M division plane in 3D cell and corresponding 2D model plane. (A)

3D SAM (black lines) with cell (blue) intersected by the 2D longitudinal plane (green)
our model simulates. (B) 3D cell (blue) intersected by the 2D model plane (green).
The front face of the cell shows the out-of-plane node with maximal stress and max-
imal stress direction (solid yellow arrow) found using the 3D version of our CAE-M
mechanism. The right face of the cell shows the in-plane node with maximal stress
and maximal stress direction (dashed yellow arrow) found using the 2D version of
our CAE-M mechanism based on in-plane tensile stresses. (C) 3D cell intersected by
2D model plane (green) and the division plane predicted by the 3D CAE-M mecha-
nism (brown). The line segment predicted by the 2D CAE-M mechanism lies at the
intersection of the 3D division plane and the 2D model plane (solid white line). . . . 40
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2.9 Layer-specific organization of cell division plane orientation. (A) Periclinal
and anticlinal divisions were quantified by cell layer on a minimum of 10 SAMs (see
S1 Appendix of [1] for details). Significance tests were performed using indepen-
dent t-tests. Asterisks indicate significance at the following levels: ** (p ≤ 0.01),
*** (p ≤ 0.0001). Higher magnification median longitudinal section from Chapter
1 Figure 1.2 showing (B) wildtype [ler ], (C) wus1-1, and (E) cre1-12;ahk2-2;ahk3-3
vegetative meristems. 48 hour Dex induction of (D) ectopic misexpression of WUS
[pCLV3::LhG4; 6xOP::eGFP-WUS-GR] and (F) ectopic misexpression of CK sig-
naling [pCLV3::LhG4; 6xOP::ARR1-∆DDK-GR]. (G) Characteristic “strips” of cells
formed by repeated periclinal divisions in the Basal corpus of ectopic misexpression
of CK experiments. (B-G) Positioning of new cell walls between speculated daugh-
ter cells after recent divisions are annotated in yellow arrowheads for anticlinal cell
division and cyan arrowheads for periclinal cell division. Scale bar = 20 µm. . . . . 41

2.10 Results of computationally testing three hypothesized mechanisms of cell
division plane orientation in the corpus. (A) Three hypothesized mechanisms for
WUS and CK-mediated regulation of cell division plane orientation and the direction
of anisotropic expansion of cells. (B) Cells are initialized as circles and allowed to
“relax” into more biological cell shapes before growth and division begin (see Section
2.2 for details on model initial and boundary conditions). The internal colors of cells
represent their levels of WUS (top row) and CK (bottom row). (C-E) Final simulation
time point after 40 hours of growth reveals differences in cell shapes and orientations
between each of the three mechanisms. The internal color shows the final levels and
spatial patterns of WUS (top row) and CK (bottom row). Line segments inside cells
are provided to help visualize cell aspect ratios and orientations. The length of each
line segment is proportional to the encompassing cell’s aspect ratio, where cell’s with
aspect ratio = 1 have line segments with length 0. The directional vector of each line
segment represents the orientation of the longest axis of the encompassing cell. Purple
lines denote daughter cells while yellow lines denote mother cells (see S1 Appendix of
[1] for details on mother/daughter cell classification). (F) The distributions of mother
cell orientations for the CAE-E (blue), CAE-M (gold), and CED (green) mechanisms
were not statistically different from wildtype experiments (black) in both the Apical
corpus (p-value = .5520, .6841, and .8330 respectively) and Basal corpus (p-value
= .7567, .3103, and .2173 respectively). (G) The distributions of cell aspect ratios
for the CAE-M (gold) and CED (green) mechanisms were not statistically different
from wildtype experiments (black) in both the Apical corpus (p-value = .4879 and
.9521 respectively) and Basal corpus (p-value = .1724 and .5781 respectively) while
the CAE-E mechanism was significantly different (p-values < 1.0e-32 in both cell
layers). (H) Proportion of periclinal cell divisions in the Apical and Basal corpus
for all three mechanisms. In the Apical corpus, the CAE-M and CED mechanisms
matched experiments, while the CAE-E mechanism did not (p-value = 2.93e-4). In the
Basal corpus, only the CED mechanism matched experiments (p-value = 5.5e-3 and
3.86e-2 for the CAE-E and CAE-M mechanisms respectively). S2 Fig of [1] provides
extended analysis between experimental wildtype SAMs and wildtype simulations for
all four hypothesized mechanisms presented in this paper ([1]). . . . . . . . . . . . . 47
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2.11 Layer-specific combined chemical and mechanical regulation of cell division
plane orientation maintains proper shape, multi-layered structure and spa-
tial distribution of WUS in the SAM. (A-D) Typical simulation output after
40 hours of growth for all four mechanisms (CAE-E, CAE-M, CED, and combined
CAE-M and CED) in wildtype signaling conditions. Cell color highlights distinct
patterns of WUS accumulation in the epidermal L1 and L2 cell layers for each mech-
anism (red = high WUS and blue = low WUS). (E-F) The combined CAE-M and
CED mechanism resulted in distributions of (E) mother cell orientations that were
similar to experiments and (F) cell aspect ratios that matched experiments. (G) The
proportion of periclinal cell divisions in combined CAE-M and CED simulations were
found to match experiments. (H) The combined CAE-M and CED mechanism re-
sulted in the smallest amount of deviation from a single-cell layer in the epidermal L1
and L2 cell layers. The combined CAE-M and CED mechanism most closely matched
experimentally observed SAM (I) size- the ratio of SAM width to dome height, (J)
shape- global curvature of the SAM surface, and (K) WUS distribution in the SAM
after 40 hrs of growth. (L) The combined CAE-M and CED mechanism resulted in
the correct number of high WUS containing cells in the epidermal L1 cell layer. (E-
L) Experimental wildtype (black), CAE-E (blue), CAE-M (gold), CED (green), and
combined (red) in all panels. See Section 2.2.3 for detailed description of all metrics
used in this Figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Information flow between the coupled submodels and novel extensions. (A-
D) Boxes show the interdependencies between the major submodel components. (A)
The cellular mechanical submodel determines the domain and signal center for the
chemical distribution submodel. (B) The impact of WUS and CK are represented by
a calibrated spatially-dependent approximation of their concentration in cells. Cells’
CK and WUS values parameterize the probabilities of anticlinal vs. periclinal expan-
sion as well as growth rate; and the orientation of cell division in the basal corpus.
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3.3 Self-similarity of curvature over time is imposed by directed boundary
tension. (A-B) 3D reconstructions of time-lapse images of a SAM. Images taken (1)
at t0 and (B) at t0 + 36 hours are shown in green and red, respectively. In (C), these
two timepoints are superimposed. The SAM is approximately self-similar in over 36
hours with a maintained curvature. The approximation of the SAM curvature from
experiments is detailed in SI section 3.1.12. (D-E) Two orthogonal longitudinal slices
of the SAM generated from the 3D reconstruction in (C). (F-G) Directing the tension
force of the SAM to promote experimentally observed curvature. (F) The apex of
the model SAM is approximated, and from there xC is calculated. Force is applied
perpendicular to the lines xLxC and xRxC . (G) When the simulation curvature,
illustrated here as rcurrent, is not aligned with the experimental curvature, the radial
component of FBoundary relative to xC acts as a corrective force. . . . . . . . . . . . 57
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3.5 Initial conditions and equilibrium state. (A) 50 model cells and their initial
adhesion connections between neighboring cell wall nodes are shown in the initial
layout used for each simulation. (B) An example of an equilibrium state achieved
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3.6 Cell Properties During Simulations. Four different properties of nodes and cells
given as color mapping. All panels depict different features for the same simulated
P3D SAM during a single timestep. (A) Boundary nodes are shown in red. Once the
direction for FBoundary is determined as in Section 3.1.3, each boundary node is pulled
in that direction with magnitude |FBoundary| / # boundary nodes. All non-boundary
wall-nodes are white, and cytoplasm nodes are not rendered. (B) Cells expanding
out-of-plane (white) are chosen stochastically at simulation initiation and at the end
of every cell cycle (details in Section 3.1.8). All other cells expand in-plane (red). (C)
Cell growth directions are shown. Cells whose nodes are green (red) are preferentially
expanding anticlinally (periclinally). Cells preferentially expanding out-of-plane or
boundary grow with uniform mechanical properties along their wall (white). (D) Cell
progress CPi is shown for each cell. Cells with smaller values of CPi have recently
finished a cell cycle, whereas cells with larger values of CPi are about to finish a cell
cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Spherical approximation for the SAM surface to calculate |FBoundary|.(A)
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3.8 Obtaining rEx and w from experimental data. (A) 3D confocal micrograph of
the SAM. (B) Corresponding output of the Spherical Harmonic Segmentation of the
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3.9 Apical Surface Structure. (A) Monolayer length of the SAM over time. Each
panel shows longitudinal data from in-plane (red) and out-of-plane (blue) simulations
under different tension ranges. Discontinuities are present in both 2D and P3D sim-
ulations under the free boundary condition, and only persist in the 2D simulations
as tension increases. Jumps in the monolayer length are sufficient to indicate a break
in L1 monolayer structure. (B) Schematic of the monolayer length. Details of this
computation and its properties are in Section 3.2. (C-D) Mean aspect ratios of both
the 2D and P3D model cells in layer 1 (C) and layer 2 (D). Error bars are 95% confi-
dence intervals computed with the Benjamini-Hochberg correction. Conditions with
non-overlapping error bars have statistically significantly different means (p < 0.05).
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pus, and Basal corpus. Each frequency distribution comprises cell aspect ratios from
30 simulated SAMs that were run to 40h. In each column, the top five graphs (green
region) are taken from 2D simulations, and the bottom five (blue region) are taken
from P3D simulations. The five frequency distributions per region were generated
under different levels of boundary tension, from Free boundary to 2X. Rounded cells
have aspect ratio 1, while elongated cells have higher aspect ratios. Cells in the 2D
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3.10 Tissue shape is robust to P3D or 2D model selection and choice of bound-
ary force magnitude. (A-B) The relative curvature for 30 SAMs per tension level
are shown for both 2D and P3D simulations. In each facet, the horizontal axis shows
the timeline of the simulation. These data are shown in two ways, splitting data points
between multiple graphs by (A) tension magnitude levels and (B) 2D and P3D simula-
tions. In each graph, the vertical axis describes the curvature of the simulated SAM.
Each facet shows the individual data points from 30 simulations, and the ribbons
around each interpolated line show the standard error. Invisible or non-overlapping
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5.1 Multiple levels of SAM organization. (A) An annotated longitudinal section
through a wildtype shoot apical meristem (SAM) and organ primordia. Clonal layers
(B) and distinct functional zones (C) of the SAM. (D) Annotated cell walls from
inferred daughters cells after division. Anticlinal cell divisions are shown in yel-
low and periclinal cell divisions are shown in cyan. (E) Overlay representing the
nuclear WUS protein distribution (green). (F) Overlay representing TCS reporter
of cytokinin signaling (purple). (G) Four features used to determine cell division
plane orientation. Segmentation output of wildtype (H),ectopic misexpression of
CK [pCLV3::LhG4; 6xOP::ARR1-∆DDK-GR] (I), and ectopic misexpression of WUS
[pCLV3::LhG4; 6xOP::eGFP-WUS-GR] (J) experimental SAMs. Line segments in-
side cells are provided to help visual each individual cell’s aspect ratio and orientation.
The length of a cell’s line segment is proportional to its aspect ratio- where cell’s with
aspect ratio = 1 have line segments with length 0. The directional vector of each line
segment represents the orientation of the longest axis of the encompassing cell. Orange
denotes cells that are classified as small cells and blue denotes cells that are classified
as large cells (see S1 Appendix Section 5.2.3 for details on analyses comparing large
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cal and Basal corpus from ectopic misexpression of CK experiments [pCLV3::LhG4;
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Chapter 1

Introduction

1.1 Study of the shape and structure of plant tissue

This section up to and including Subsection 1.1 includes, in part, reproduction of the

introduction and motivation published in [1]. Though the first authors were Mikahl Banwarth-Kuhn

and Kevin Rodriguez, I contributed substantially to the writing and revision of those sections in [1].

Deciphering how chemical signals and physical forces interact to regulate the overall size,

shape, and organizational structure of a growing tissue is a central problem in the development of

animals and plants. In contrast to their animal counterparts, plant cells are physically adhered to

each other through their shared cell wall and do not move relative to one another during tissue

growth and morphogenesis [3, 4, 5, 6, 7, 8, 9]. As such, the precise regulation of cell growth and

division rates, polarization, and division plane orientation play critical roles in pattern formation

and maintaining the size and shape of plant tissues. While recent studies suggest that cell shape

and tensile forces alone are sufficient to explain patterns of cell division plane orientation in plant

tissues [3, 10, 11, 12], most research in this area has been limited to the plant epidermis and does

not consider the role of chemical signals in orienting the direction of anisotropic cell expansion and

division plane orientation.
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Division patterning must also be robust to mechanical perturbation since a living plant

must be able to thrive when exposed to natural conditions. Even under ideal environmental con-

ditions, a healthy plant must withstand perturbations to tissue patterning due to developmental

processes. There are multiple examples in literature of tissues whose unique structure is directly

related to their mechanical context on both a local and global scale, including organization of plants’

epidermal pavement cells [13] and their xylem [14]. In this dissertation, we explore the interplay

of chemical signals and mechanical stress in regulating cell division plane orientation and the direc-

tion of anisotropic cell expansion in the corpus of the shoot apical meristem (SAM) of Arabidopsis

thaliana, as it provides an ideal system for studying cell behavior in a morphogenetic and physiolog-

ical context.

The mechanisms underlying cell division in plants have been studied extensively [3, 10, 11].

For example, Errera’s rule- which assumes that cells divide along the shortest new wall dividing the

mother cell’s volume in half- has been shown to successfully predict cell division plane orientation

in tissues with locally spherical shape and homogeneous growth, such as the tunica layers of the

central zone of the distal portion of the SAM [15, 10, 3, 16, 17]. However, recent experiments and

computational studies indicate that anisotropic stress arising from heterogeneous growth (different

between adjacent cells) and saddle-shaped regions of the SAM result in deviations to shape-based

division rules [3, 11, 18, 12]. Louveaux et al. [3] explained these deviations by proposing that new

cell walls orient along the local maximum of tensile stress on the mother cell wall. In either case,

patterns of cell surface expansion in the SAM give rise to changes in cell shape and tensile forces

that could influence the positioning of new cell walls. The challenge is to understand how chemical

regulators such as the transcription factor-WUSCHEL (WUS) and plant hormone cytokinin (CK)

interact with mechanical stress to control cell division plane orientation and maintain the layered

organization and shape of actively growing SAMs.
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1.1.1 Study of the interplay between chemical signaling and cellular me-

chanical properties

In Chapter 2 of this dissertation, I present the my contributions to the study that I par-

ticipated in the paper [1]. We explored the interplay of chemical signals and mechanical stress in

regulating cell division plane orientation and the direction of anisotropic cell expansion in the cor-

pus of the shoot apical meristem (SAM) of Arabidopsis thaliana, as it provides an ideal system for

studying cell behavior in a morphogenetic and physiological context.

In Section 2.1, we present our newly developed, biologically-calibrated, 2D multiscale com-

putational model. Section 2.1 gives descriptions of metrics along with sensitivity and perturbation

analysis approaches used for validation of the model and for comparison to experiments. In Section

2.3, selected results from [1] are presented focusing on the detailed justification for the layer-specific

division plane mechanism.

Special focus is placed in [1] on the study of mechanisms which determine division planes in

the model of SAM cells. Out of three hypothesized mechanisms, the first two assume the sole function

of WUS and CK in regulating the direction of anisotropic expansion of cells, while the placement

of new cell walls during division is determined according to either Errera’s rule or local patterns of

in-plane tensile stress on the cell wall. In contrast, the third mechanism assumes dual roles for WUS

and CK in directly regulating both anisotropic cell expansion and cell division plane orientation.

Chapter 2 ends with selected discussion points from [1], summarizing the results and predictions of

the model. A general description of the combined multiscale modeling and experimental analysis

method we used in [1] is provided in Figure 1.1.
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Figure 1.1: Combined Multiscale Modeling and Experimental Study Workflow Out-
line. Data from experimental studies was used to develop and calibrate submodel components
at distinct scales. Multiscale model simulations were used to test three hypothesized mecha-
nisms of the regulation of cell division plane orientation in the corpus. Results from perturbation
experiments were used to support model predictions.

1.1.2 Development of a pseudo-3D model of the SAM and calibration of

its boundary conditions

There are a multitude of signals known to influence the shape, size, and organization

of the SAM though spatially-coordinated direction of cells’ growth rate, direction of anisotropic

expansion, and differentiation [19, 20]. It is unclear exactly where within these complex interactions

mechanotransduction comes into play. Experimentally, it is challenging to determine whether a given

hypothesized cell-scale mechanism is at play, as the complex and dynamic collection of interactions

between cells within a tissue makes it difficult to determine what the emergent behavior of such a
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cell-scale mechanism would have. Moreover, many experimental targets for genetic perturbations are

upstream of multiple systems, and these experiments may easily have multiple confounding impacts

due to modified downstream products.

To ameliorate this, many mathematical modeling techniques have been used to examine

specific features of the SAM. One main subject of study is the epidermis of the SAM - cell layers L1

and L2, shown in Figure 1.3. For example, [21] studies how the division patterning of these clonally

distinct layers serves to distribute tension isotropically across the SAM surface and minimize the

reliance of the tissue upon any single cell for hormone transport. Vertex models have been used to

study the L1 of the SAM [22], as well as a plethora of morphogenic phenomena in cell monolayers

[23]. However, many models that have been used to investigate the SAM and similar systems have

been two-dimensional [24, 22] the highest-resolution level of detail is cell-scale [25, 26].

In parallel, recent advancements in three-dimensional confocal microscopy have opened

exciting possibilities. Such advances allow for detailed three-dimensional images to be taken of

deep-layer tissue in the SAM to provide detailed high-resolution spatial data for model calibration

and model prediction verification. Moreover, by adapting three-dimensional cell-scale segmentation

methods such as spherical harmonic fitting, described in [27], we are able to accurately calibrate

detailed multi-scale mechanistic models of the SAM. Moreover, biological findings support the idea

that the epidermal layers of the L1 and L2 are under substantial tension, which may assist in

coordinating organ-scale mechanical cues propagated through adhesion [28]. Our previous work [1]

supports the idea that in the apical corpus of the SAM, mechanical cues are required for proper

division plane patterning, but the stress exerted on the SAM by the surrounding tissue may impact

this non-trivially.

In Chapter 3, we introduce and compare two detailed multi-scale mechanical models of the

SAM. These models, which are extended from those in [1] (presented in Chapter 2), were developed

to investigate the effect of experimentally calibrated boundary conditions on the shape and structure

of the SAM. These models, 2D and pseudo-3D (P3D), differ from one another by the incorporation of
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a stochastic, experimentally calibrated pseudo-3D submodel which represents cell anisotropy in three

dimensions. The stochastic model components are calibrated to well-reproduce the heterogeneity of

cell-scale behaviors observed in experiments, and avoids adding in any artifacts due to exclusively

in-plane expansion/division of cells, and reduces model dependence on initial conditions. Calibration

of the P3D submodel uses makes use of 3D segmentation of the SAM using the method of spherical

harmonic segmentation described in [27].

We found that the inclusion of out-of-plane anisotropically expanded cells allows us to reveal

the impact of biologically calibrated boundary tension on regulating the monolayered structure of

the epidermal and subepidermal layers of the SAM. Conversely, we found that without out-of-plane

cell expansion, cell-cell crowding dominates the distribution of mechanical stresses experienced by

cells in the tunica. Lastly, we found that both 2D and P3D models simulations maintain similar

distributions of cell and tissue shapes regardless of the magnitude of SAM boundary tension. We

have shown, using model simulations, that this is due to the mechanically-driven cell division plane

patterning in the apical corpus acting as a regulatory mechanism.

1.1.3 Organization of the thesis

This dissertation has been organized in the following manner. The Background sections of

this chapter contain both mathematical and biological contexts for the computational methods and

biological system studied in this dissertation, respectively. In Chapter 2, the mathematical model

development chapter, contains a justification for the use and applicability of a 2D model of the

longitudinal section, and a detailed presentation of each model component, as well as how they are

coupled with one another. Chapter 2 also presents a portion of the analysis of this 2D model that was

performed in parallel with experimental investigation in [1] to test multiple hypothesized mechanisms

of the determination of division plane orientation in the corpus of the SAM. Chapter 3 presents novel

models that extend this through the addition of pseudo-3D and boundary forces. We then present

our comparisons between the models and their biological implications in the Computational Model
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Predictions section. A general description of the implementation of all models and code availability

are in Chapter 4. Chapter 5 contains experimental and image Analysis methods used for model

calibration both in [1] and in my own work. Finally, Chapter 6 contains the conclusions of our

studies of the pseudo-3D model, wherein we interpret the results and address potential broader

impacts, and the differences in the models’ predictive capabilities.

1.2 Mathematical and Computational Modeling Background

Mathematical models have been used to study biological processes for many years, but

more powerful computers have been more readily available, the variety of computationally feasible

modeling methods has expanded greatly. Cell behaviors can be incredibly complex and varied, and

possess a diverse collection of important and mechanistically distinct behaviors. Any attempt to

simulate the entirety of a cell with all known molecular dynamics, stochastic behavior, chemical

interactions and mechanics is intractable not only because of the complexity, but analysis of such

a model would be near-impossible to perform in any meaningful sense. Because of this, modern

mathematical modeling approaches make an attempt to balance a few key factors, including the

level of coarse-graining, computational efficiency (as most models include numerical solution of an

ODE or PDE system [29, 30, 31, 32]), and parsimoniousness of the model. For example, an incredibly

simple model may be very efficient, but be too simple to provide meaningful results. On the other

hand, if the model is overly complex, analysis of the model is not straightforward and results may

be caused by confounding factors.

1.2.1 Cellular Potts Models

The Ising model has been traditionally used for studying ferromagnetism [33]. It was

generalized into what is now called the Potts model by Renfrey Potts in 1951[34]. Cellular Potts

models (CPM) represent a biological cell as a cluster of nodes being assigned a particular multi-
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dimensional index [35], and cell movement by randomly changing indices of nodes [36]. Nodes are

chosen randomly at every iteration step to change an index according to a transitional probability,

calculated using a Hamiltonean H, or energy. Transitional probabilities are chosen to be

P (transition is accepted) =


e−c·∆H/T ∆H ≥ 0;

1 ∆H < 0.

Here T is temperature and c is a constant.

In [35], Graner and Glazier introduced a Cellular Potts Model (CPM) where nodes in

a cluster representing a biological cell have a multidimensional index representing its identity σ =

{1, . . . , n}, and a type, “light”, “dark”, or“medium”, representing the type of cell. The HamiltoneanH

incorporated an energy of adhesive interactions between populations of cells with distinct identities,

causing cells on average to aggregate towards cells of the same type being clustered together[35].

CPMs were shown to be able to reproduce, by choosing different parameter values, a number of

experimentally observed patterns of tissue structure [37].

In [36] and [38], a diffusion limit was applied to one-dimensional and two-dimensional CPMs

of chemotactic cellular motion resulting in continuous PDE approximations of these models. The

continuous limits of CPMs resulted in, among others, equations for the motion of cellular centers of

mass in the form of classic Keller-Segel equations of chemotaxis [38]. The Keller-Segel model is a

diffusion-advection PDE system which describes the time evolution of the spatial population density

p of a motile chemotactic single-cell species whose motion is influenced by the local concentrations

c of a chemoattractant. The system is given by

∂tp = D1∂
2
xp− χ0∂x [p∂xc] ,

∂tc = D2∂
2
xc− γc+ ap;

where here χ0 represents the sensitivity of the cell to the chemoattractant, γ is the rate of decay of

the chemoattractant and a is the secretion rate of the chemoattractant by the cellular population.
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The Keller-Segel model can capture phenomena observed in well known experiments such as the

aggregation of Dictyostelium discoideum [39].

CPMs were incorporated into multi-scale models with several time and space scales of

description of a biological process. A widely used computational platform based on the Cellular

Potts model is CompuCell3D, which has been applied to simulate a plethora of biological phenomena

[40, 41, 42, 43].

1.2.2 Vertex Models

A relatively straightforward approach to representing a collection of cells in a single layer

(e.g. in most epithelial tissues) is a vertex model [23]. This is a model in which the tissue is described

as a graph, i.e. a collection of vertices connected by edges with cells being represented by polygons

which are defined by edges in the graph. In this framework, cells share membranes with their

neighbors, and the motion of the cell is modeled by the motion of the vertices. Vertices are typically

represented as being embedded in a viscous medium, and are assumed to have vanishing inertia. As

such, an individual vertex’s motion is governed by the following equation:

η
dxi
dt

=
dFi
dt

where xi is the position of vertex i, F i is the sum of forces on node i, and η is a damping factor.

Differences between vertex models are, in part, given the definitions of F , the principle forces that

primiarily drive motion of cells [23]. However, without special attention to junction rearrangements

the topology, the tissue model representation is rather rigid, since defined edges results in each

cell having a fixed set of neighbors. Since cell-cell interfaces are modeled by edges of a graph,

capturing any phenomenon in which cells do not maintain a statis set of neighbor cells (e.g. one cell

migrating through a tissue; tissue organization; cell division) requires the definition explicit rules

for rearranging the graph. These rules must be chosen carefully to reflect the biological phenomena

that they are representing.
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One of the challenges is in deciding whether to allow the model tissue the capacity for more

than three cells to be in contact with a single vertex, forming what is known as a rosette[23]. This

was a phenomenon which was not thought to exist in epithelial tissue until it was documented by

Blankenship et al. in 2006 [44]. Modeling graph rearrangements to allow for such a configuration to

occur, and to only occur with experimentally observed frequency, could prove challenging. However,

it is a challenge that is addressed in many works. This has since been addressed in works such

as [45], and is an active area of study. The computational platform, VirtualLeaf, simulates plant

tissue morphogenesis using an approach which is conceptually similar to the Cellular Potts model,

yet bears similarities to the vertex model framework [46, 47, 48].

1.2.3 Subcellular Element Models

Although the vertex and Cellular Potts models are appropriate for modeling many aspects

of cell processes and properties (e.g. proliferation of epithelial sheets [23]; complex adhesion inter-

actions [36, 39]), it is often difficult to directly represent mechanical properties of a cell. In both

CPM and vertex models, mechanical interactions are typically described by using abstract energy

functionals [23, 49, 41]. The Subcellular Element (SCE) framework is designed to provide a detailed

high-resolution coarse-grained representation of a molecular dynamics type for a cell and tissue.

Though typically computationally intensive, SCE models may directly implement specific mechan-

ical properties (e.g. elasticity of a material) which can be directly calibrated using experimental

data. SCE models represent cells by heterogeneous sets of off-lattice nodes interacting with one an-

other through simplified, yet biologically relevant potentials, representing mechanical and biological

cell-cell and cell-ECM interactions. The ability to vary model parameters at the subcellular scale

allows for the study of emergence of larger-scale tissue-level phenomena. In [2], a chemical signaling

submodel was coupled with an SCE model to study anisotropic expansion of cells and a resultant

curved tissue shape, observed in experiments.
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Another example of the SCE model framework is presented in [50], where a two-dimensional

(2D) model was used to determine a mechanism determining proper cell rounding and division in

the imaginal wing disc in a Drosophila embryo. It is important to note that this biological system

is appropriately modeled in two dimensions, since the wing disc is a single layer of cells (i.e. cell

monolayer) with relatively constant height, and the relevant cellular machinery (i.e. the actomyosin

cortex) is localized on the apical surface of the cell during division.

Other SCE type models are still being actively developed. Recently, PalaCell2D [51],

was developed to study morphogenesis using a combination of explicit forces acting on nodes from

extracellular sources (e.g. adhesion) and implicit, energy-minimizing forces to simplify the intra-

cellular mechanics (e.g. cell area conservation).

Our group’s studies focused on the interplay between chemical signaling and mechanotrans-

duction phenomena in the SAM [1, 2]. In the recent paper [1] (with some results described in this

dissertation), we used a SCE model to test a cell-scale mechanism controlling the orientations of di-

vision planes in the corpus being distinct between the apical and basal corpus. Whereas [1] provided

insight in the behavior of the SAM Corpus, the monolayer structure of the epidermis of the SAM

remained difficult to capture in simulations. The SCE model framework is particularly well-suited

to investigate the impact of intra-cellular and cellular heterogeneity on tissue-scale structuring, es-

pecially when cell-scale behavior (e.g. placement of division planes) are driven by local mechanics

(e.g. tension experienced by the cell wall). In this dissertation, we apply the SCE framework to

create the 2D and pseudo-3D models of the SAM. These models are used to investigate how cells’

responses to local mechanical stresses can regulate the distribution of cell shapes as well as tissue

shape to provide robustness to boundary forces or cellular mechanical perturbations.
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1.3 General Biological Background

1.3.1 Dependence of SAM organization on chemical signals and cellular

mechanical properties

This subsection is a reproduction of the biological background presented in [10]. Though

the first authors were Mikahl Banwarth-Kuhn and Kevin Rodriguez, I contributed substantially to

the writing and revision of this subsection.

Traditionally, SAMs have been divided into distinct clonal layers and zones [52, 53, 54] (Figs 1.2A).

The tunica consists of the outermost epidermal L1 layer and an inner sub-epidermal L2 layer. Both

the L1 and L2 are composed of a single layer of cells that divide exclusively anticlinally (perpen-

dicular to the SAM surface) ensuring that each layer remains one cell thick (Figure 1.2A). During

development, the L3 cell layer, through periclinal cell divisions, forms into the multi-layered corpus,

which we further separated into the Apical corpus and Basal corpus (Figure 1.2A). As such, rules

governing the position of new cell walls are essential to maintain the clonally distinct layers, ensuring

proper SAM organization during growth. While anticlines and periclines are traditionally used to

quantify the patterning of division plane placement relative to the nearest tissue surface or sub-

epidermal cell layers [55, 56], such definitions would present problems in the present work because

we observe considerable variation in SAM shape between some of the more deformed mutant phe-

notypes (e.g. flat vs. enlarged meristems). Thus, for consistency across mutants, we define periclinal

divisions in the corpus as those occurring perpendicular to the apical-basal axis of the SAM, and

anticlinal divisions in the corpus as those occurring parallel to apical-basal axis (i.e. perpendicular

to periclinal divisions) of the SAM [52] (see Figure 1.2A and Chapter 2 Section 2.2.3 for details).

In addition to this layered organization, the SAM is also subdivided into four distinct

functional zones (Figure 1.2). The central zone (CZ) contains a set of stem cells that span the tunica

and L3 cell layer. Within the CZ, stem cell progeny are pushed away laterally into the peripheral

zone (PZ) where they begin expression of genes involved in differentiation. The organizing center
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(OC) and rib meristem (RM) consists of stem cell progeny located beneath the CZ. Cells in the RM

span the Basal corpus and gradually differentiate along the apical-basal axis to form the stem of

the plant. Amidst this process of constant displacement and subsequent differentiation, the relative

numbers of cells in each zone are maintained, requiring precise spatial and temporal regulation of

both SAM growth and gene expression [57].

Figure 1.2: Organizational structure of the SAM. (A) Diagram showing a median longi-
tudinal section of the SAM and depicting three distinct clonal layers. The tunica encompasses
the L1 and L2 cell layers. The corpus is subdivided into the Apical corpus and Basal corpus.
Vertical dashed lines represent the outer edges of the region used in experimental analysis. The
horizontal dashed line represents the separation between the Apical corpus and Basal corpus.
The L1 (blue), L2 (light blue), Apical corpus (purple), and Basal corpus (red) cells that fall
within the region used for experimental analysis. These limits were manually determined for
each experimental SAM image. (B) Median longitudinal section of the SAM showing the WUS
protein domain (pWUS::eGFP-WUS) in a 9 day old SAM. (C) Median longitudinal section of
the SAM showing the cytokinin signaling reporter (pTCSn::mGFP5-ER) in a 9 day old SAM.
eGFP-WUS and mGFP5-ER (green) are overlaid on FM4-64 plasma membrane stain (Red).
Scale bars = 20 µm.

Genetic analysis has revealed the importance of several chemical regulators in SAM growth

and stem cell maintenance [58, 59, 60, 61, 62, 63, 64, 65]. In particular, the homeodomain tran-

scription factor (TF)- WUSCHEL (WUS) and the plant hormone cytokinin (CK) have been shown

to regulate SAM size, shape, and the number of stem cells [66, 61, 67, 68, 69]. WUS expression
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domain and size is confined to the OC in part through a negative feedback loop by CLAVATA3

which represses radial and apical expansion of WUS expression. In addition, a new regulatory loop

has been proposed through CLE40, a PZ diffused signaling peptide, which maintains the WUS do-

main by promoting WUS expression through an unknown non-cell-autonomous signal [70]. The

WUS protein migrates into adjacent cells to form a concentration gradient (Figs 1.2B and Fig 3 in

[1]). The concentration gradient resulting from this regulation has been shown to stabilize, i.e. it

maintains a steady-state distribution within the tissue, and it moves upward with the growing distal

portion of the SAM [68, 19].

Additionally, CK is perceived by a family of histidine kinase receptors localized in the

RM, thus restricting the CK response to these cells as revealed by the CK signaling reporter-

pTCSn [71, 72] (Figs 1.2C and Fig 3 in [1]). CK signaling has been shown to stabilize the WUS

protein thus regulating the WUS gradient [68]. Consistent with this observation, ectopic activation

of CK signaling results in taller SAMs [68]. Despite the central importance of WUS and CK in

regulating SAM growth and stem cell maintenance, their precise roles and interaction in controlling

cell division plane orientation in the RM is poorly understood.

1.3.2 Biological background for the study of epidermal tissue tension and

3D effects on tissue structure

The shape and structure of the SAM is maintained throughout the life of a plant [73,

74]. Composing the SAM is the tunica, comprising two clonally-distinct layers of epidermal and

sub-epidermal stem cells. The maintenance of the layered structure is crucial for the continued

development of the plant, since each layer will produce different cell types; failure to maintain

structural arrangement of this tissue will result in the misplacement of organs in the tissue. In lom

triple mutants, incorrect maintenance of layered structure results in premature termination of the

meristem which prevents the continued growth of the plant.
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Below the tunica is the corpus, which does not have layered structure (Figure 1.3 C), though

the growth and division patterns are known to be controlled by the plant hormones WUSCHEL and

cytokinin. Because all cells are tightly adhered, the ability for the plant to maintain the shape and

structure of the SAM depends entirely on cell-scale anisotropic expansion directions and cell division

orientations. Our previous work investigated division patterning in the corpus of the SAM, wherein

we found evidence of a qualitative difference in cell division plane placement between the apical and

basal regions of the corpus [1] (also presented in Chapter 2).

Figure 1.3: Shape and layered structure of the SAM (A) 3D confocal micrograph of the
SAM and surrounding primordia of Arabidopsis thaliana. Cell walls are stained in red. A
longitudinal sectional contour taken through the SAM apex is illustrated. (B) Longitudinal
section taken of the SAM and adjacent tissue, shown in the context of the 3D tissue. Tunica
and corpus are labeled in green and blue, respectively. (C) Longitudinal section of the SAM
taken from the previous panel. The SAM is flanked by newly forming primordia. Larger cells
below the SAM are expanded, indicating they have begun differentiation. The tunica of the
SAM (green cells) comprises two clonally distinct monolayers layers of cells. The corpus of the
SAM is rendered in blue (left), and (right) is subdivided into the apical corpus (red) and basal
corpus (yellow). Scale bar is 20µm.

Experimental procedures have elucidated many of the key factors in the maintenance of the

SAM, both from a mechanical and chemical perspective. Techniques such as atomic force microscopy

have examined the spatial distribution of the SAM surface via mechanical perturbations [75]. The

impact of signaling on the spatial patterning of both the cell and organ scale size and structure of

the SAM has been an active area of research [76, 73, 77, 78]. The critical role of auxin in phyllotaxis

patterning and the regulation of auxin itself has been an active area of research as well [79, 80].
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Multiple levels of control have been shown to spatially regulate the tissue structure of the SAM and

signals therein, such as the active degradation of WUS and CK deeper inside of the SAM by HAIRY

MERISTEM [81], the transportation of auxin by PIN and its downstream transport proteins [82].

Our previous work [1] sought to understand the role of mechanics on tissue structure by

employing two-dimensional subcellular element (SCE) models. Advantages of the SCE model are

in its ability to mechanistically model heterogeneity within a cell to analyze the emergent tissue-

scale impact of such heterogeneity, as in [1, 2]. While our work in [1] (and presented Chapter 2)

established that parallel longitudinal cross-sectional slices of the SAM were similar enough to merit

a two-dimensional approach [1], such an approach does not account for effects that may be acting

perpendicular to the longitudinal cross-section that was modeled. Though the two-dimensional SCE

remains a good choice for investigating mechanical cues that are spread across a tissue, the intrin-

sically three-dimensional nature of the SAM’s deep layers makes the impact of three dimensional

organization difficult to study.
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Chapter 2

Description of the Mathematical

Model and Model Simulation

Results

This chapter is a reproduction of the model description presented in [1]. Though the

first authors were Mikahl Banwarth-Kuhn and Kevin Rodriguez, I contributed substantially to the

implementation, analysis, writing, and revision of this work. I also substantially towards design

and creation all figures and their captions presented in this chapter, in collaboration with Mikahl

Banwarth-Kuhn in their revision. It should be noted that the models in this chapter and Chapter

3 are based on the same subcellular element model approach, but are substantially different. The

model in Chapter 2 is two-dimensional, and the model in Chapter 3 is pseudo-3D and has a detailed

description of boundary forces. The notations used are substantially different between this chapter

and Chapter 3. I independently developed the models in Chapter 3.
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2.1 2D Mathematical Model of Plant Tissue Maintenance

2.1.1 Mathematical Model Development

To study the interplay between chemical regulators and mechanical stresses in directing

underlying cell behaviors and maintaining SAM structure and shape, we developed a detailed,

multiscale, 2D computational model and calibrated it using experimental data. The model uses

the subcellular element (SCE) computational framework to simulate a two-dimensional (2D) lon-

gitudinal section of the central region (as depicted in Figure 1.2A) of a growing SAM (see Fig-

ure 2.10, S1, S2, and S3 Videos of [1] for typical simulation output, and Section 2.2 for details

on model initial and boundary conditions). The SCE modeling approach is a well-established,

coarse-grained simulation framework for determining the impact of local biophysical and biochem-

ical processes on emergent cell and tissue scale properties of growing or deforming multicellular

tissues [83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94].

The novel, 2D, multiscale, SCE model described in this chapter (reproduced from [1])

represents cells using two types of nodes- internal/cytoplasmic and external/cell wall nodes- that

interact via different potential functions. Such biologically calibrated interactions between nodes

simulate mechanical properties of plant cell walls facilitating novel predictions of how cell wall

mechanics can help regulate the direction of anisotropic expansion of cells, and cell division plane

orientation (see Figs 1.1 and 2.1, and Section 2.2 for details). Furthermore, an important distinction

between our previous modeling approach [83] and the computational model presented in this chapter

(reproduced from [1]), is the introduction and detailed testing of novel hypothesized mechanisms

regulating cell division plane orientation and the modification of cell wall properties leading to

anisotropic cell surface expansion (see Section 2.1.4 and Section 2.2 for details). Both of these

processes are thought to play an important role in emergent cell and tissue level properties of

the SAM. In what follows, we provide a detailed description of the development, calibration, and
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implementation of SCE submodel components at distinct scales and how they are coupled to run

multiscale simulations of SAM growth.

2.1.2 Submodel of mechanical properties of cells and cell-cell interactions

Individual cells are modeled by a heterogeneous collection of wall nodes and internal nodes

(shown in Figure 2.1A and 2.1B). Interactions between nodes represented via Morse and linear spring

type potentials as in [83]. In particular, each cell i has Ni wall nodes W j
i (for j = 1, . . . Ni) and

Mi internal nodes Iji (for j = 1, . . . ,Mi). The potential functions E in Eq 2.1-2.2 represent specific

biological features of plant cells (described in detail below) and are used in the model to calculate

the displacement of each internal or cell wall node at each time step based on their interactions with

neighboring nodes. The Langevin equations of motion used in the model are as follows:

ηi
d

dt
W j
i =−

Mi∑
k=1

∇EIW (W j
i , I

k
i )−∇EWWS(W j

i ,W
j±1
i ) (2.1)

−
∑

cells l

Nl∑
k=1

∇EWWD(W j
i ,W

k
l )−

∑
adhesion

neighbors of cell k

∇EAdh(W j
i ,W

k)

ηi
d

dt
Iji =−

Mi∑
k=1

∇EII(Iki , I
j
i )−

Ni∑
k=1

∇EIW (W k
i , I

j
i ), (2.2)

where ηi is a cell’s damping coefficient. The Morse potential functions EII and EIW together rep-

resent coarse-grained cytoplasmic forces and resulting turgor-pressure of cells. The Morse potential

function EWWD represents volume exclusion of neighboring cells. Pairwise linear spring interactions

(EAdh) between cell wall nodes of adjacent cells function as a coarse-grained model for cross-linking

of pectin molecules in the middle lamella. The potential function EWWS governs interactions be-

tween cell wall nodes of the same cell and is used to represent mechanical stiffness and extensibility

of the primary cell wall. These functions comprise both linear and rotational spring potentials, as

well as Morse potentials, given by:
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EWWS(W j
i ,W

j+1
i ) =

1

2
klin

[(∣∣∣W j+1
i −W j

i

∣∣∣− `)2

+
(∣∣∣W j−1

i −W j
i

∣∣∣− `)2
]

︸ ︷︷ ︸
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+
1

2
kbend (θ − θeq)

2︸ ︷︷ ︸
Rotational Spring Potential

,

(2.3)

EIW (W k
i , I

j
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,

EII(Iki , I
j
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U II exp
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∣∣∣Iki − Iji ∣∣∣
ξII

−W II exp

−
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︸ ︷︷ ︸

Cytoplasm Pressure

where W j±1
i denotes the positions of the nodes adjacent to node W j

i , and θ is the angle formed by the

lines W j
iW

j+1
i and W j

iW
j−1
i . Ranges for the parameters kbend,klin,θeq, and ` were calibrated based

on the modulus of elasticity, sizes, and shapes of cells measured in experiments (see Section 2.1.4

and Section 2.2 for details on sensitivity analysis and calibration of these parameters). The Morse

parameters ξ∗, γ∗, U∗ and W ∗ were chosen based on coarse graining resolution and discussed in

[83, 95]. In simulations, the exact values used for these parameters are dynamic and change in

response to a probability distribution function parameterized by the amount of signal (WUS and

CK) present in the cell at a given time (see Section 2.1.4 for details). The explicit parameter values

for all other potential functions were calibrated in previous work [83, 95].

Each simulation represents 40 hours of tissue growth. The Euler numerical scheme was used

for solving Eqs 2.1 and 2.2. The time step ∆t was chosen to be 0.4 seconds to maintain stability
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Figure 2.1: Two-dimensional multi-scale model of SAM growth and maintenance.
Simulated cells are represented by two collections of nodes: cell wall nodes (solid black dots in
the red region in A and B) and internal nodes (solid dark blue dots in the blue region in A and
B). (A) Adjacent wall nodes of the same cell are shown interacting via linear and rotational
springs given by EWW that represent mechanical stiffness and extensibility of the primary
cell wall. Pairs of internal nodes and internal and cell wall nodes of the same cell are shown
interacting via Morse potential functions given by EII , EIW that represent cell turgor-pressure.
(B) Wall nodes of neighboring cells may form adhesion partners and interact via a linear spring
potential given by EAdh that represents the adhesive properties of the middle lamella. Wall
nodes of adjacent cells enforce cell-cell volume exclusion via Morse potentials given by EWWD.
The division process in the model is demonstrated in C-E, with the cell on display dividing in
response to in-plane tensile stress. The heat map shown in C-E represents in-plane tensile stress
tensile stress on each node where warmer colors represent nodes under higher tensile stress, and
cooler colors represent nodes under lower tensile stress. (C) A simulated cell nearing mitotic
phase. (D) A pair of simulated cells shortly after division. Cytoplasm nodes are redistributed
within the daughter cells and adhesion partners of each wall node are updated. (E) The same
cells as in D after an elastic relaxation phase occurs.
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of the numerical scheme. Growth rates and cell cycle lengths are discussed in more detail in the

Section 2.1.3.

2.1.3 Chemical signal distribution submodel controls growth of cells

The concentrations of WUSCHEL ([WUS]) and cytokinin ([CK]) for individual cells are

assigned using the experimentally-calibrated exponential functions given in Eqs 2.4 and 2.5. While

multiple feedback loops are known to regulate WUS and CK at both the transcriptional and protein

levels, their net effect has been shown to result in steady-state distributions of WUS and CK in the

SAM [19, 68]. Thus, Eqs 2.4 and 2.5 in the model were calibrated based on the steady-state distribu-

tions of WUS and CK measured from experimental images as in [83], by neglecting the mechanism

underlying the establishment of such gradients. These functions describe the concentrations of WUS

and CK as being distributed with radial symmetry about a dynamically determined point, the signal

center, which represents the middle of the signals’ expression domains. Values of [CK] in L1 and L2

are maintained at 0, since in wildtype SAMs these cells do not show CK responsiveness, which is

likely due to the limitation of the CK reception system [71, 72]. Concentrations for WUS, as well as

concentrations for CK in the corpus, are independently calculated using the expressions:

[WUS] = [WUS]0 exp (−µWUS(rWUS · αWUS)) ; (2.4)

[CK] = [CK]0 exp (−µCK(rCK · αCK)) , (2.5)

where rWUS and rCK are the distance from the centroid of each cell to the WUS and CK signal centers,

respectively.

In experiments, the WUS and CK expression domains are located below the distal portion

of the SAM, heuristically described as being located two and three times the length of the average

cell diameter beneath the distal portion of the SAM, respectively (Figure 2.2B and 2.2C). We es-

tablished the signal center locations for WUS and CK similarly in simulations, setting them as two
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Figure 2.2: Chemical signaling submodel of the SAM. (A) Schematic of model signal
expression domains of WUSCHEL and cytokinin. (B-C) Wildtype SAM longitudinal section
image. Cell walls (red) outline the dome-shape of the SAM; reporters (green) indicate presence of
the WUSCHEL protein (B) and cytokinin reporter (C). (B-C) Contrast was manually increased
in the red channels for visibility. Scale bars are 10µm. (D) Cell growth direction polarization vvv
is dependent upon signaling. Wall nodes of a model cell polarized in direction vvv are illustrated.
The angle θj between vvv and the vector connecting W j

i to W j+1
i are used to partition the wall

nodes into sides (red) and ends (blue).

and three times the average diameter of the tunica cells, respectively, directly below the centroid

of the central L1 cell (Figure 2.2A). The signal centers are updated dynamically throughout the

course of simulations to ensure that the center of the WUS and CK expression domains in simu-

lations maintain their position relative to the growing distal portion of the SAM, as observed in

experiments. Parameters µWUS, µCK, [WUS]0, and [CK]0 were fitted to experimental wildtype data

in [83] for αWUS = 1 and αCK = 1. Parameters [WUS]0, [CK]0, αWUS, and αCK were then perturbed

to simulate under/over-expression or ectopic distribution of signals corresponding to experimental

mutant conditions.

In simulations, individual cell cycle lengths (the amount of time between two successive

divisions of an individual cell) are dynamically assigned based on the current WUS concentration of

individual cells as in [83]. The cell cycle length is chosen using a normal distribution parameterized

by [WUS], and calibrated using experimental data (data from [59]; calibration method as in [83]).

New cytoplasm nodes are added linearly in time until the cell divides upon having 30 internal nodes.

The process of division is detailed in subsection 2.1.5.
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2.1.4 Dependence of cell growth direction polarization and direction of

anisotropic expansion on competing signals

Cells in the SAM experience turgor-pressure driven expansion, and the orientation and

level of alignment of microfibril bundles within the cell wall can promote preferential cell expansion

along one axis of a cell [96, 8, 97]. We refer to this phenomenon as growth direction polarization,

which we capture by making the stiffness and equilibrium angle of the cell wall’s rotational springs

heterogeneous across wall nodes in a cell (Figure 2.2D). Cells that are growing on the simulation

boundary grow isotropically, so the rotational spring parameters are chosen to be uniform. All other

cells do so anisotropically, detailed below.

Model signals of WUS and CK compete to direct cell growth direction polarization, where

CK promotes growth direction polarization in the apical-basal direction and WUS promotes growth

direction polarization in the radial direction. Each cell’s growth direction polarization is signal-

determined as in Section 2.1.6. We then set the stiffness and equilibrium angle of the rotational

spring for EWWS (see Eq 2.3) heterogeneously across the cell’s wall nodes, representing microfibril-

bound wall nodes (sides) and freely growing wall nodes (ends) as in Figure 2.2. The side nodes (red)

have a much stiffer rotational spring, kbendhigh , whose equilibrium angle is set to π (flat), while the

ends (blue) have a much looser rotational spring, kbendlow , whose equilibrium angle set to prefer a

circular arrangement - i.e. π(Ni−2)
Ni

where Ni is the number of wall nodes possessed by cell i. The

explicit values of the rotational spring stiffness coefficients,kbendhigh and kbendlow , were determined

via a sensitivity analysis optimizing the range of observed areas and aspect ratios of individual cells

in single-cell simulations to the range of areas and aspect ratios measured in wildtype experiments

[95] (see Table 2.2 in Section 2.2.2 for exact parameter values and Section 2.2.4 for more details on

sensitivity analysis studies).
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2.1.5 Dependence of cell division plane orientation on chemical regulators

and in-plane tensile stress

When model cells complete a mitotic cycle (i.e. reach 30 internal nodes), they divide. Layer

1 and 2 cells are always prescribed to divide with a plane normal to the SAM surface as observed in

experiments. To do this, we defined anticlinal division planes to be perpendicular to the line segment

connecting its in-layer neighbors’ cell centers. In the corpus, each simulated meristem follows one

of four hypothesized mechanisms determining the position of the planes of division. The individual

mechanisms are described in the following subsections.

Following the choice of division plane, two daughter cells are formed. These daughter cells

are created out of the mother’s original wall nodes and redistributed cytoplasm nodes, as well as

new cell wall nodes along the division plane which represent the new cell wall and middle lamella.

These newly formed cells are adhered to one another (Figure 2.1C- 2.1E).

Cell division based on Errera’s Rule (CAE-E mechanism). Errera’s rule states that the

division plane chosen for a cell should result in the shortest possible cell wall [21]. This method

selects the plane passing through the pair of nodes that minimizes the distance
∥∥∥W j

i −W k
i

∥∥∥ while

evenly dividing the cell’s area (0.9 ≤ A1

A2
≤ 1.11).

Cell division based on in-plane tensile stress (CAE-M mechanism). The in-plane tensile

stress S on a cell wall element W j
i is calculated as the average mechanical force exerted on it by its

neighbors in the tangential direction, as follows:

Si,j =
1

2
·

∥∥∥∥∥∥Projτ

 W j
i −W

j−1
i∥∥∥W j

i −W
j−1
i

∥∥∥klin

(∥∥∥W j
i −W

j−1
i

∥∥∥− `)
∥∥∥∥∥∥

+
1

2
·

∥∥∥∥∥∥Projτ

 W j
i −W

j+1
i∥∥∥W j

i −W
j+1
i

∥∥∥klin

(∥∥∥W j
i −W

j+1
i

∥∥∥− `)
∥∥∥∥∥∥ ,

(2.6)

where denote τ as a unit vector tangent to the surface of the cell, W j
i is the node’s location

as 2D a vector, and ` and klin are the equilibrium length and stiffness of the linear spring part of
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EWWS (see Eq 2.3). We then calculate S(W j
i ) for all wall nodes in the cell and select location

of the maximally stressed wall node as one point on the division plane. The second node defining

the division plane is chosen so that the cell area divides evenly (0.9 ≤ A1

A2
≤ 1.11). We observe

in simulations that the distribution of in-plane tensile stress along the cell wall is smooth, and the

largest variation in stress is near cell wall junctions. In most cases, the node experiencing maximal

tensile stress is indicative of a local region of high tensile stress around that node, demonstrating

that a single-node based selection method is sufficient for the CAE-M mechanism. While our model

is in 2D, an analogous approach could be used for a 3D model as described in Section 2.2.

Cell division based on chemical signals (CED mechanism). Under this mechanism, cells

under relatively high levels of CK are more likely to divide periclinally, and cells under the influence of

WUS will likely divide anticlinally. The anticlinal versus periclinal behavior of the cell is determined

by the probability distribution described in the Section 2.1.6. If the cell divides periclinally, the cell

area divides evenly (0.9 ≤ A1

A2
≤ 1.11) with a horizontal plane; otherwise it divides anticlinally - that

is, evenly divided and with a vertical plane.

Layer-specific combined chemical signaling and mechanical mechanism. In this mech-

anism, cells whose lineage are traced back to the third and fourth layers of the initial conditions

divide according to the CAE-M mechanism, as in the Section 2.1.5. Cells in layers below that divide

according to the CED mechanism, as in the Section 2.1.5.

2.1.6 Stochastic antagonistic signaling between WUSCHEL and cytokinin.

Two novel hypothesized mechanisms we tested using our model include 1) whether WUS

and CK can regulate cell growth direction polarization and 2) how WUS and CK regulate cell

division plane orientation. Thus, in our model, cell behavior is influenced by WUS to expand

and divide anticlinally and by CK to expand and divide periclinally. However, we assume that

every cell responds to these competing signals with some uncertainty - abstractly representing any

26



heterogeneity in the cells’ sensitivity to the signal. To represent this, we use the relative signal - the

ratio of WUS signal in a cell to the CK signal in a cell - to parameterize the probability distribution

used to determine cells’ behavior.

More specifically, noise in the competition between WUS and CK is modeled by considering

the ratio λ = [CK]/[WUS] as a parameter for a probability mass function:

Prob(Cell follows periclinal behavior) =
1

1 +
(
KHill

λ

)NHill
;

Prob(Cell follows anticlinal behavior) = 1−

[
1

1 +
(
KHill

λ

)NHill

]
.

KHill was calculated by imposing that the midpoint between the signaling domains (Section 2.1.3) have

equally probable anticlinal and periclinal behavior, and as such KHill := [CK]/[WUS]
∣∣
x=Signal Center

.

The value of NHill was fitted experimentally to experimentally observed anticlinal-periclinal division

ratios under wildtype conditions.

2.2 Additional model and model analysis components

This section up to and including Section 2.2.4 is a reproduction of the extended model

description presented in the S3 appendix of [10]. Though the first authors were Mikahl Banwarth-

Kuhn and Kevin Rodriguez, I wrote and revised this technical description of model with direction

and guidance from Mark Alber, Weitao Chen, and Mikahl Banwarth-Kuhn. In particular, I primarily

developed and implemented subsections 2.2.2-2.2.3 and 2.2.5 equally with Mikahl banwarth-Kuhn.

I performed the sensitivity and perturbation analyses in section 2.2.4.

2.2.1 Model Parameters

Table 2.1 provides parameter values used in simulations. The µ∗ and [∗]0 values for WUS

and CK were experimentally fitted in [2]. Values for αX were defined to be 1 for wildtype, and varied

by factors that replicated observed [CK] : [WUS] ratios. Ranges of model parameters controlling me-
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chanical stiffness and extensibility of the primary cell wall (klin, `, kloose
bend , and kstiff

bend) were calibrated

in [2, 95] so that the modulus of elasticity (E) of cells lies within the biological range. Additionally,

global sensitivity analysis was used in [95] to quantify the impact of each of these parameters on the

area and aspect ratio of cells in simulations. Then the parameters with the most impact on these

two cell-level features were fit based on the area and aspect-ratio of cells measures in experiments.

There are many other parameters of the model, e.g. parameters controlling the strength of cell-cell

adhesion and for coarse-graining parameters, which have been described previously in [2, 95].

Table 2.1: Main parameter values for simulations. Parameters that varied in in-silica experi-
ments.

Parameter Value Interpretation Chosen by
µWUS 0.01573 a.u. Exponential fitting parameter Calibrated in [2]
µCK 0.01637 a.u. Exponential fitting parameter Calibrated in [2]
αWUS 0.4-1.5 a.u. Ectopic misexpression factor See Methods
αCK 0.4-1.5 a.u. Ectopic misexpression factor See Methods
[WUS]0 84.6 a.u. Maximum WUSCHEL intensity Calibrated in [2]
[CK]0 110 a.u. Maximum cytokinin intensity Calibrated in [2]
NHill 10 a.u. Steepness of stochastic threshold.

Deterministic as NHill →∞.
See Methods

KHill 1.3 a.u. [CK]/[WUS] yielding even CK-
WUS competition

See Methods

` 0.9 µm Coarse graining parameter; linear
spring equilibrium length

Calibrated in [2]

klin 280 nN
µm Cell wall extensibility Calibrated in [2, 95]

kloose

bend
4.543 nN

rad Loose wall bending spring con-
stant - See Methods

Calibrated in [2, 95]

kstiff

bend
13.5 nN

rad Stiff wall bending spring constant
- See Methods

Calibrated in [2, 95]

θeq π or π(Ni−2)
Ni

rad Equilibrium rotational spring an-
gle

See Methods

2.2.2 Initial and Boundary Conditions

The initial “wedge” shape of the tissue (see Figure 2.3, panel A) and the initial number

of cells in each layer used as the geometry input for model simulations were calibrated based on

previously published results by our group [98]. These results provide average measurements of the

central zone of the SAM, indicating that the number of central zone cells in Layer 1 is between 7-9
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cells and decreases in a wedge-like shape across the next 3 layers. Additionally, we verified using

this data that variability in both the “wedge” shape of the tissue and the number of cells in each

layer is low. Our model simulates a 2D longitudinal section of the central region of the SAM (as

depicted in Chapter 1 Figure 1.2 A) that includes the central zone together with the organizing

center and rib meristem. So, we start each simulation with 10 cells each in the first layer, where

the outermost cell on each side acts as a boundary cell (see below), and include 4 additional corpus

layers encompassing the organizing center and rib meristem (see Figure 2.3, panel A and panel C of

Fig A in S1 Appendix of [1]). The staggered configuration of cells is used to minimize the number

of four-cell rosettes (as very few are observed in experiments [99]). To ensure that our precise tiling

did not meaningfully impact simulations, we performed a perturbation analysis which is described

in section 2.2.4 below.

Figure 2.3: Initial conditions and equilibrium state. (A) 50 model cells and their initial
adhesion connections between neighboring cell wall nodes are shown in the initial layout used for
each simulation. (B) An example of an equilibrium state achieved after stage one of simulations.
Note that in the equilibrium state, each cell has been stochastically assigned a direction of cell
growth polarization, leading to anisotropically expanded cells at mechanical equilibrium. (A-B)
Cells on the left and right sides of the simulated tissue domain are the boundary cells which do
not divide in any stage of the simulation, but otherwise obey the same rules as other cells. Cells
in the bottom most layer are considered part of the stem, and have a much higher damping to
provide a foundation for the expansion of the SAM. The heat map shows the distribution of
in-plane tensile stress as calculated in equation (2.6).
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To model the tissue boundary, a single layer of cells at the bottom and sides of this config-

uration do not divide during the simulation to act as a boundary, representing the neighboring cells

around the CZ. Cells beneath the simulated region are assumed to be differentiating and expanding,

and act as a barrier to prevent downward expansion of the SAM. We capture this by giving the

bottom-most layer of cells a higher damping coefficient (ηi = 10 for cells i in the deepest layer)

compared to all other cells (ηi = 1). Each cell is initialized as being partway through its cell cycle

when the simulation begins, so we choose the initial number of cytoplasm nodes Mi to be uni-

formly random between 15 (recently divided daughter cell) and 29 (pre-mitotic, fully grown mother

cell). 2.2 Table provides values for the initial conditions used in simulations along with a description

of how each variable was calibrated.

Table 2.2: Initial conditions for simulations. Variables that control the initial configuration of
the system.

Variable Value or Pattern Calibration
Number of (Non-boundary)
L1 cells

8 Cells Experimentally quantified in
(6)

Initial Tissue Shape “Wedge”, Experimentally
quantified in (6)

Tiling of L2-L7 cells Staggered/Hexagonal grid Minimizing 4-way junctions
Initial signaling distribution Spatial distribution as in

Methods
Calibrated from experiments

Cell Growth Direction Stochastically chosen as in
Methods

Calibrated from experiments

Parameters controlling boundary cell behavior

klin
Boundary 560.3272nNµm Local SA, see section 2.2.4

ηStem 10 Local SA, see section 2.2.4
Centroid Noise Amplitude A 0 Local SA, see section 2.2.4

All simulations consist of two stages. The first stage starts with circular cells arranged in the

experimentally observed “wedge” shape representing the central region of the SAM (see Figure 2.3,

panel A). Then the simulation is run without cell growth and division to achieve an equilibrium of

the system resulting in specific cell shapes based on experiments as well as a distribution of stresses

for each cell (see Figure 2.3, panel B). The second stage makes up the main simulation and starts

with the equilibrium state achieved in stage one. In this way, the distribution of cell shapes used as
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initial conditions for the main simulation are representative of experimentally observed cell shape

distributions. During the second stage, cells are allowed to grow, divide, and dynamically change

their cell growth direction polarization in time as described in the Model Description section.

2.2.3 Metrics

Simulation outputs consist of collections of nodes’ locations, WUS and CK signal concen-

tration, cell identity within the tissue (i.e. layer), and information tracking the plane of divisions.

What follows are the metrics applied to these data for comparison of the model to experimental

data. Where applicable, experimental data were manually annotated to have directly analogous

metadata (e.g. manual identification of the layers of each cell) in order to calculate these metrics

using experimental images as well.

Anticlinal and Periclinal Division Metrics. Division data was recorded for all cells during

simulations, including both the orientation of the chosen division plane and the layer the division

occurred in. We report only on the layer 3 and below divisions, since L1 and L2 orient divisions via

a local rule that always yields anticlinal divisions.

For each cell division j in layers 3 and below in a simulated meristem, consider {Θj} to be

the set of acute angles the division planes made relative to the horizontal, so each Θj ∈ [0, 90◦]. We

subdivide this interval to categorize our divisions as we would in experimentation:

[0◦, 30◦]︸ ︷︷ ︸
Periclinal
Division
Range

; (30◦, 60◦)︸ ︷︷ ︸
Diagonal
Division
Range

; [60◦, 90◦]︸ ︷︷ ︸
Anticlinal
Division
Range

.

Letting A be the number of divisions whose Θj fall within the anticlinal division range and P be the

number of divisions whose Θj that fall into the periclinal division range, the proportion of periclinal

divisions for each cell layer was calculated as P/(A + P ). The partition of [0, 90◦] was chosen to

match those used for experimental observations.
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Aspect ratio and orientation of Cells. The aspect ratio and orientation of cells in all modeling

results were computed directly from simulation data in the following manner. To determine the

aspect ratio of a cell, we find the pair of cell wall nodes W s1

i ,W s2

i that define the short axis, i.e.

the line segment with minimal segment distance that evenly divides the cell. The perpendicular

bisector of the short axis is drawn to find the direction of the long axis of the cell (see Figure 2.4).

The wall nodes closest to the long axis on either side of the cell are taken to be the endpoints of

the longest axis itself W l1

i ,W
l2

i . The aspect ratio is then determined as the ratio

∥∥∥W l1

i −W
l2

i

∥∥∥
‖W s1

i −W s2
i ‖

. Cell

orientation is measured using the long axis in the same way as experiments described above. Cells

with aspect ratios smaller than 1.3 are considered isotropic in shape, otherwise cells are considered

as anisotropically expanded along the long axis. The growth direction angle is defined as the acute

angle between the x-axis and the long axis direction.

Layered organization of the epidermal L1 and L2 cell layers. To quantify the amount of

deviation from the layered organization as shown in Fig 7 H in [1], we separately calculated the root

mean squared error (RMSE) of the regression lines fit to the sets of cell centers from both the L1

and L2 cell layers. The values reported in Fig 7 H in [1] are an average of the RMSE for the L1 and

L2 layers across all 20 simulations for each distinct mechanism.

Dome height, width, and width-height ratios for simulations. To capture the exaggeration

of the dome structure in a given meristem, we measure the dome height as follows. If {(xj , yj)} are

the centroids of all layer 1 cells, then

dome height := max
j
yj −min

j
yj .

To measure the SAM width, we measured the maximum distance between layer 1 centroids, given

by the expression

width := max
j
xj −min

j
xj .

The width-height ratio was determined for a given SAM by calculating width
dome height .
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Figure 2.4: Aspect ratio and orientation of cells. Nodes W s1

i and W s2

i (highlighted nodes)
are chosen to evenly divide the cell area with minimal segment length. The perpendicular
bisector is formed and nodes nearest are taken to be the long axis W l1

i and W l2

i (highlighted
nodes). The growth direction angle θ of cell i is the positive acute angle between the horizontal
and the long axis. Aspect ratio is also calculated from the lengths of the long and short axes.
Orientation is measured in the same way as for experimental images described above. Image
was rendered via simulation output, and the heat map shows tensile stress calculated by node
as in equation (2.6).
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Global curvature of the surface of the SAM. Global curvature of the surface of the SAM

was used to compare the shape of the SAM after 40 hours of growth between experiments and

simulations. For both experimental and simulation images, the x and y coordinates of each cell

center in the L1 layer were recorded. Then a circle was fit to the resulting set of data points using

the Circle Fit (Pratt method) in MATLAB. Finally, global curvature was calculated by taking the

inverse of radius of the best fit circle for each meristem.

Spatial Distribution of WUS in the SAM. To quantify the spatial distribution of WUS in

the SAM, we measured both the radial distance of WUS in the tissue and analyzed the number of

high WUS containing cells in the epidermal L1 cell layer. In order to visualize the number of high

WUS containing cells in the L1 layer of experimental images, we first quantified the average nuclear

WUS fluorescence intensity within each cell in the L1. We then divided the average fluorescence

intensity of each cell by the value of the brightest cell in its respective SAM to determine each cell’s

relative WUS concentration. Next, we binned the relative WUS concentration of all L1 cells by their

distance (in average cell diameter) from the brightest cell (i.e. highest WUS containing cell) using

a fixed bin size of the average cell diameter for the given meristem and going out to 6 average cell

diameters on either side of the brightest cell. In addition, 95% confidence intervals are shown for

each bin. The same process was used for simulations as demonstrated in Fig 7 L in [1].

Similar analysis of the WUS concentration across the L2 and corpus of experimental images

was used to determine the maximum diameter of the set of high WUS containing cells along the

radial axis of the meristem across all layers, denoted DCZ . In addition, we manually measured the

diameter of the PZ, denoted DPZ , for each image. We define the radial distance of WUS in the

tissue as the ratio := DCZ/DPZ as can be seen in Fig 7 K in [1] and Fig A in S1 appendix of [1]. In

simulations, we measured the radial distance of WUS in the following way. Let {cj} be the set of all

cell centroids for cells with WUS concentration greater than the experimentally calibrated threshold

WUSmin. We define DCZ := maxi,j{|cj − ci|} and DPZ is equal to SAM width, as described above.
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As suggested by previous studies [98], the 8 brightest cells expressing the CLV3 reporter across the

L1 encompass the stem cell population in this layer. Thus, we determined the threshold WUSmin

for each simulation by calculating the minimum WUS value of all L1 cells within 8 average cell

diameters of the highest WUS containing cell in the L1 layer.

2.2.4 Sensitivity and Perturbation Analyses on the Equilibrium State of

the SAM

The equilibrium state of the model SAM, as described in section 2.2.2 above, is the result of

stage one of the simulation rather than being controlled by any model inputs. Since the equilibrium

state serves as the initial condition of the main simulation, we investigated the impact of perturba-

tions on the initial positioning of cells as well as variations in parameters controlling the cell-wall

extensibility and stiffness of boundary cells during the establishment of the equilibrium state. In

these analyses, we fixed an initial selection of a growth polarization direction and number of cyto-

plasm nodes for each cell to remove the stochastic confounding of the analyses. We expect that for

a fixed distribution of cytoplasm nodes and growth directions for each cell, any impacts clearly at-

tributable to those fixed distributions may be averaged out since they are the only non-deterministic

features of the stage one of the simulation.

We perturbed the initial positioning of each cells’ center from ci to ci + A · v̂(Θ), where

v̂ is a unit vector oriented towards the uniformly randomly chosen direction Θ. We perturbed the

centroid noise amplitude A from 0 to 0.2µm, where 0 returns the unperturbed system and 0.2 is

chosen to prevent cell-cell overlapping. Separately, we performed sensitivity analyses on the impacts

of two mechanical parameters, klin
Boundary and ηStem controlling boundary behavior to assess the

impact of boundary dynamics on the equilibrium structure. We examined 100 values of klin
Boundary

logarithmically sampled between one half and twice its default value, and sampled 100 values of ηStem

logarithmically around one tenth and ten times its default value. Parameter values for sensitivity
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and perturbation analyses were varied independently; when one was being varied, the others were

fixed at their default values.

Figure 2.5 shows the results of the perturbation analysis on A for two tissue-scale and three

cell-scale metrics. Though there was an increase of variance of curvature and apical surface length,

the proportional increase of the curvature circle’s fitness RMSE and the small absolute differences

of the metric values suggest that the overall impact of the perturbation is negligible, and can be

attributed to slight disruptions to the nearly-colinear centroids of the layer 1 cell layer. The cell-scale

metrics show no clear impact of A on cell orientation, aspect ratio, or area distributions. Thus, we

conclude that there are no critical singular perturbations of our equilibrium distribution of cells in

the tissue arising from any symmetry inherent in the placement of the initial cells within the range

of perturbation explored.

Figure 2.6 shows the results of the sensitivity analyses on boundary parameters klin
Boundary

and ηStem. Within the range of perturbation we explored, the impact of ηStem on all tissue-scale

and cell-scale measurements were negligible, except for a slight increase in stem-layer cell area when

damping values were dropped substantially. Lastly, klin
Boundary was demonstrated to slightly decrease

the apical surface length of the SAM by 0.3µm. However, this is consistent with the observations

that high-klin
Boundary simulations have boundary cells shrink due to tightened walls, which forces the

adhered, neighboring cells into alignment. This is further supported by the impact of klin
Boundary cell

area, wherein the equilibrium area of a boundary is smaller with a higher value of klin
Boundary. For all

non-boundary cells, the impact of klin
Boundary is negligible.

2.2.5 CAE-M Division Plane Mechanism in 3D

This subsection is a reproduction of the extended model description presented in the S3

appendix of [10]. This subsection was drafted and revised in equal collaboration between Mikahl

Banwarth-Kuhn and myself.
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Figure 2.5: Perturbation Analysis of Equilibrium State. Perturbation analysis results of
adding small, random displacements to initial cell locations on the mechanical equilibrium state
of the tissue - i.e. after representing t =15 minutes of growth, as discussed in section 2.2.4. The
top left and top center panels demonstrate both the impact of cell center displacement on global
curvature and how that impact may be attributed to the fitness of a circle to the surface. The
top right panel shows that the apical surface length of the equilibrium SAM is only impacted
via a negligible increase in variation of the total apical surface length. The bottom panels show
all cell-level measurements of non-boundary cell orientation, aspect ratio, and areas from 100
simulations of increasing centroid noise amplitude. These panels exhibit independence of cell
geometry and orientation from random cell displacement - suggesting that the initial tiling’s
precise spatial arrangement does not play a role in the equilibrium distribution of cells.
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Figure 2.6: Sensitivity Analysis of Equilibrium State. Tissue scale (top) and cell-scale
(bottom) measurements taken from simulated SAMs after 15 minutes of simulated growth were
represented as in section 2.2.4. Values of klin (left 6 panels) and ηBoundary (right 6 panels)
were independently varied to 100 values around their default. (Top) all tissue-scale impacts
on boundary dynamics were negligible, with the exception of the reduction of apical surface
length with a fourfold increase of klin

Boundary. However, this is attributable to the shrinkage of the

boundary cells with high klin on the boundary which, upon observation, appear to pull the SAM
surface flatter. This difference is less than half of a micron, and so we conclude that the overall
impact of boundary cell properties on tissue-scale measurements is negligible. (Bottom) Local
sensitivity analysis shows no impact of passive boundary mechanical properties on equilibrium
cell shape.

In what follows, we describe how the CAE-M division plane mechanism would be imple-

mented in a 3D, subcellular element (SCE) model of cells of the SAM (see Figure 2.7). In our 3D

model of cells of the SAM, plant cell walls are discretized using a triangular mesh consisting of a set

of edges and nodes in three dimensions. The 3D version of the CAE-M mechanism of positioning

the division plane consists of first calculating the local stresses at each cell wall node in the plane

tangent to the cell wall surface at each node. We denote the tangent plane at node N to be TN .

The cell wall node with the maximal net stress (i.e. the node with the largest sum-square of stresses

projected onto TN ) is chosen as the “base-point” or node with maximal stress denoted NMax. Next,

we compute the local stress vectors between cell wall nodes in a small neighborhood around NMax

and then project these stresses onto TNMax
. The vector vmax is chosen as the average of these pro-

jected stresses that represents the maximal stress direction on the cell surface at NMax, then we find

a vector v1, which is orthogonal to vmax and in the plane TNMax
. At this point, candidate division

planes are any planes which include both the vector v1 and the point NMax, and so we choose the
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Figure 2.7: CAE-M division plane mechanism in 3D model. (A) Diagram of a 3D model
cell is shown in gray and depicts the cross-section of the division plane predicted by the CAE-M
mechanism in blue. The vector v1 (green) is used to determine the cell division plane by finding
the plane that includes both v1 and NMax, and that divides the cell volume approximately in
half. (B) Diagram of the calculation of vMax, the maximal stress direction in TNMax

within
a neighborhood of NMax, and the resulting vector v1 in TNMax

orthogonal to vMax. Vectors
indicating stresses acting on NMax as a result of nearby cell wall nodes are indicated in black,
and their projection onto the tangent plane TNMax is shown in red.

3D CAE-M division plane to be the one that also divides the cell volume approximately in half.

Note that if our calculation results in v1 = 0, this represents isotropic local stress and in this case

v1 is selected as a random direction in TNMax
. We included Figure 2.8 below to demonstrate that,

in at least a simplified case, the division plane line segment in 2D lies at the intersection of the 3D

division plane and the longitudinal SAM section we are modeling in simulations.

2.3 Selected results and analysis of the 2D model

This section is a partial reproduction of the results presented in [1]. Though the first

authors were Mikahl Banwarth-Kuhn and Kevin Rodriguez, I contributed substantially to the image

analysis, writing, figure generation, and revision of this work in each section. All experimental
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Figure 2.8: CAE-M division plane in 3D cell and corresponding 2D model plane.
(A) 3D SAM (black lines) with cell (blue) intersected by the 2D longitudinal plane (green) our
model simulates. (B) 3D cell (blue) intersected by the 2D model plane (green). The front face
of the cell shows the out-of-plane node with maximal stress and maximal stress direction (solid
yellow arrow) found using the 3D version of our CAE-M mechanism. The right face of the
cell shows the in-plane node with maximal stress and maximal stress direction (dashed yellow
arrow) found using the 2D version of our CAE-M mechanism based on in-plane tensile stresses.
(C) 3D cell intersected by 2D model plane (green) and the division plane predicted by the 3D
CAE-M mechanism (brown). The line segment predicted by the 2D CAE-M mechanism lies at
the intersection of the 3D division plane and the 2D model plane (solid white line).
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Figure 2.9: Layer-specific organization of cell division plane orientation. (A) Periclinal
and anticlinal divisions were quantified by cell layer on a minimum of 10 SAMs (see S1 Appendix
of [1] for details). Significance tests were performed using independent t-tests. Asterisks indicate
significance at the following levels: ** (p ≤ 0.01), *** (p ≤ 0.0001). Higher magnification
median longitudinal section from Chapter 1 Figure 1.2 showing (B) wildtype [ler ], (C) wus1-
1, and (E) cre1-12;ahk2-2;ahk3-3 vegetative meristems. 48 hour Dex induction of (D) ectopic
misexpression of WUS [pCLV3::LhG4; 6xOP::eGFP-WUS-GR] and (F) ectopic misexpression
of CK signaling [pCLV3::LhG4; 6xOP::ARR1-∆DDK-GR]. (G) Characteristic “strips” of cells
formed by repeated periclinal divisions in the Basal corpus of ectopic misexpression of CK
experiments. (B-G) Positioning of new cell walls between speculated daughter cells after recent
divisions are annotated in yellow arrowheads for anticlinal cell division and cyan arrowheads for
periclinal cell division. Scale bar = 20 µm.

methods were designed and performed by G.V. Reddy, Kevin Rodriguez, and Alexander Plong at

the Reddy lab at U.C. Riverside. Image analysis techniques were selected and configured by Amit

K. Roy-Chowdhury his graduate student Calvin-Khang Ta. Output of image segmentation methods

were analyzed by Christian Michael and Mikahl Banwarth-Kuhn. I also substantially contributed to

the design and creation of figures and captions in this chapter.

2.3.1 Testing hypothesized mechanisms of the regulation of SAM growth

using a computational model

It is experimentally difficult if not impossible to uncouple the effects of WUSCHEL and

cytokinin in controlling cell division plane orientation and the direction of anisotropic expansion of

cells. To address this, we developed a detailed, biologically calibrated, multiscale, computational
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model and used it to test three separate hypothesized mechanisms for how WUS, CK, and mechanical

stresses can regulate cell division plane orientation in the corpus (for details see the Section 2.1.1

and Section 2.2). The first two mechanisms we tested assume that the sole functions of WUS and

CK are in regulating the direction of anisotropic expansion of cells. In the model, the direction of

anisotropic expansion of cells is determined by an experimentally-calibrated probability distribution

where cells with relatively high levels of WUS are more likely to preferentially expand in the radial

direction and cells with relatively high levels of CK are more likely to preferentially expand in the

apical-basal direction (see Section 2.1.1 for details). We refer to this mechanism of regulation as “the

control of anisotropic expansion”(CAE). In simulations assuming the CAE mechanism, we compared

simulation output where division plane orientation was determined using either Errera’s rule (CAE-

E mechanism), which assumes that cells divide by following the shortest path, or “the mechanical

division rule,” (CAE-M mechanism), which assumes that cells divide according to maximum in-plane

tensile stress on their cell wall (see Figure 2.10A and Section 2.1.1 for details).

The third mechanism we tested assumes dual roles for WUS and CK in both regulating

anisotropic cell expansion and cell division plane orientation. We refer to this mechanism of regula-

tion as “the control of expansion and division” (CED). In simulations assuming the CED mechanism,

the direction of anisotropic cell expansion is determined by relative concentrations of WUS and CK

as above, and cell division plane orientation is determined by a second experimentally-calibrated

probability distribution where cells with relatively high levels of CK are more likely to divide pericli-

nally (perpendicular to the root-to-shoot axis) and cells with relatively high levels of WUS are more

likely to divide anticlinally (perpendicular to the SAM surface) (see Figure 2.10A and Section 2.1.1

for details).

To test the CAE-E, CAE-M and CED mechanisms described above, we simulated growing

SAMs under three different experimental conditions where the levels and spatial patterns of WUS

and CK were calibrated to be analogous with either wildtype, ectopic misexpression of WUS or

ectopic misexpression of CK experiments (see the Section 2.1.1 and Section 2.2 for details). We then
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compared model simulations directly with experiments using both cell (aspect ratios and orienta-

tions) and tissue level metrics (proportion of periclinal divisions, ratio of SAM width to SAM dome

height, global curvature of the SAM surface, spatial distribution of WUS in the tissue and layered

structure of the L1 and L2 cell layers) to determine the mechanism of WUS and CK-mediated regu-

lation of cell division plane orientation in the corpus (see Section 2.2.3 for biological relevance of the

metrics we used and further details). Results below are based on 20 simulations for each of the nine

conditions tested. Each simulation begins with an organized array of 50 cells in seven cell layers as

shown in Figure 2.10B, and we allow each simulated meristem to grow for approximately 40 hours.

Typical output from simulations involving each of the three mechanisms under wildtype conditions

is shown in Figure 2.10B, 2.10C, 2.10D, 2.10E, and S1 Video of [1]. In what follows, we first demon-

strate that a 2D model provides an appropriate approximation for studying cell behaviors in the

central region of the corpus, and then we provide a detailed description of the model simulation

results used to test the specific hypothesized mechanisms above.

CAE-M and CED mechanisms regulate cell division plane orientation in a layer-specific

fashion. Next we tested whether the CAE-E, CAE-M, and CED mechanisms could produce ex-

perimentally observed proportions of periclinal divisions in the corpus. We found that in the Apical

corpus, the CAE-M and CED mechanisms resulted in a proportion of periclinal divisions that was

not significantly different from experiments, while the CAE-E mechanism was significantly higher

(p-value = 2.93e-4) (Figure 2.10H). In contrast, in the Basal corpus, we found that only the CED

mechanism resulted in a proportion of periclinal divisions that was not significantly different from

experiments, while the CAE-E and CAE-M mechanisms were significantly lower (p-value = 5.5e-3

and 3.86e-2 respectively) (Figure 2.10H). Since both the CAE-M and CED mechanisms matched

experimental cell shapes and the proportion of periclinal divisions in the Apical corpus, it is unclear

which of these two mechanisms is likely to control cell division plane orientation there. However,

since only the CED mechanism matched the proportion of periclinal divisions in the Basal corpus,
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this suggests that chemical and mechanical signals could regulate cell division plane orientation in

a layer specific fashion. Thus, in order to uncouple the role of the CAE-M and CED mechanisms

in directing cell division plane orientation in individual cell layers, we studied the effect of each

mechanism in simulations where we independently perturbed the levels and spatial patterns of WUS

and CK.

Layer-specific, combined chemical and mechanical regulation of cell division plane ori-

entation can maintain SAM structure and shape. Based on our simulation results above

(Figs 5-7 of [1]), we next tested whether a layer-specific, combined chemical and mechanical mech-

anism regulating cell division plane orientation would maintain SAM structure and shape. To do

this, we ran wildtype simulations where cells in the Apical corpus follow the CAE-M mechanism and

cells in the Basal corpus follow the CED mechanism for division plane placement (Figure 2.11D).

We refer to this model of regulation as “the combined CAE-M and CED” mechanism. First, we

found that the combined CAE-M and CED mechanism resulted in a distribution of mother cell ori-

entations that was not significantly different from experiments in the Apical corpus, and maintained

a bimodal distribution in the Basal corpus (Figure 2.11E). Second, we found that the combined

CAE-M and CED mechanism produced experimentally observed distribution of cell aspect ratios

in both the Apical corpus and Basal corpus (Figure 2.11F). We also found that the proportion of

periclinal divisions matched experiments in both the Apical corpus and Basal corpus (Figure 2.11G).

Since we observed slightly more periclinal divisions in the Basal corpus of combined CAE-M and

CED simulations compared to wildtype SAMs, we believe this could explain why the distribution of

mother cell orientations in this region did not result in a direct match with the experimental distri-

bution. Finally, we found that the combined CAE-M and CED mechanism resulted in the smallest

amount of deviation from the layered organization of the epidermal L1 and L2 cell layers compared

to the CAE-E, CAE-M, and CED mechanisms (Figure 2.11H). This suggests that a layer-specific,
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combined chemical and mechanical mechanism regulating cell division plane orientation is necessary

to maintain the multi-layered structure of the SAM.

Next, we investigated whether the combined CAE-M and CED mechanism would result in

the correct shape and size of the SAM. While all four mechanisms resulted in experimentally observed

SAM size (i.e. average ratio of SAM width to dome height) (Figure 2.11I), our analysis revealed

that the combined CAE-M and CED mechanism most closely matched experimentally observed SAM

shape (i.e. global curvature) (Figure 2.11J). Notably, while both the CED and combined CAE-M

and CED mechanisms most closely matched the experimentally observed distribution of WUS in

the radial direction (Figure 2.11K), only the combined CAE-M and CED mechanism resulted in

the correct number of high WUS containing cells in the epidermal L1 cell layer (Figure 2.11A-

2.11D, and 2.11L). S5 Fig of [1] provides additional analysis of the time evolution of simulated cell

orientations and aspect ratios by condition and division plane mechanism.

2.4 Partial discussion of 2D model results

The work of [1] aims to further elucidate the structure-function relationship between the

mechanisms driving SAM growth and proper stem cell regulation in plants. Through comparing

experimental and model simulation results obtained under multiple perturbation conditions, we

confirmed that 1) in the Apical corpus, WUS and CK only regulate anisotropic expansion of cells

and cell division plane orientation is determined based on tensile stress on the cell wall and 2)

in the Basal corpus, WUS and CK regulate both cell division plane orientation and anisotropic

expansion. Moreover, experimental results confirm our model prediction that this layer-specific,

combined chemical and mechanical mechanism can maintain proper SAM shape, layered structure,

and the correct distribution of WUS within the tissue. Hence, the results of the work of [1] provide

an additional link between the roles of WUS, CK, and mechanical stress in regulating pattern and

shape during SAM morphogenesis. Cell and tissue level outcomes resulting from the testing of four
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hypothesized mechanisms of regulation compared to experiments are summarized in Tables 1 and 2

of [1]. Since some results were not presented in this dissertation, we refer the reader to [1] for full

details.

Obtained results also complement several recent studies linking mechanical stress on the

cell wall to macroscopic behavior of plant tissues [12, 100, 101, 102]. Our work provides further

mechanistic insight into how stress on individual cell walls could regulate cell division plane orienta-

tion in the corpus. Namely, we found that model simulations assuming cell division plane orientation

based on local patterns of tensile stress on the cell wall closely matched experimental data, while

simulations assuming cell division plane orientation based on cell shape (i.e. Errera’s rule) did not.

This is profound because it suggests that tensile stress caused by growth heterogeneity and other

local interactions supersedes cell shape in controlling cortical microtubule orientation which plays a

crucial role in cell wall deposition [100, 99, 103, 12].

While our knowledge of exactly how cells sense and interpret mechanical forces prior to cell

division remains unclear, it has been demonstrated that microtubules directing microfibrils impact

placement of the preprophase band (PPB) (a microtubule and microfilament structure that marks

the cell division plane before mitosis) [99, 103, 104]. In addition, coordination of cell division among

neighboring cells both within and across clonally distinct layers could be mediated by mechanical

cues [59]. Although directly measuring mechanical stress in the internal cell layers of the SAM

remains experimentally difficult, the quantitative image analysis of microtubule dynamics has been

used to indirectly infer stress patterns in the distal portion of the SAM [12, 105]. Thus, similar

quantitative approaches could provide a way to verify stress distributions from our computational

model predictions to better understand how cells communicate via mechanical cues to regulate cell

division plane orientation.
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Figure 2.10: Results of computationally testing three hypothesized mechanisms of cell
division plane orientation in the corpus. (A) Three hypothesized mechanisms for WUS
and CK-mediated regulation of cell division plane orientation and the direction of anisotropic
expansion of cells. (B) Cells are initialized as circles and allowed to “relax” into more biological
cell shapes before growth and division begin (see Section 2.2 for details on model initial and
boundary conditions). The internal colors of cells represent their levels of WUS (top row) and
CK (bottom row). (C-E) Final simulation time point after 40 hours of growth reveals differences
in cell shapes and orientations between each of the three mechanisms. The internal color shows
the final levels and spatial patterns of WUS (top row) and CK (bottom row). Line segments
inside cells are provided to help visualize cell aspect ratios and orientations. The length of each
line segment is proportional to the encompassing cell’s aspect ratio, where cell’s with aspect ratio
= 1 have line segments with length 0. The directional vector of each line segment represents
the orientation of the longest axis of the encompassing cell. Purple lines denote daughter cells
while yellow lines denote mother cells (see S1 Appendix of [1] for details on mother/daughter
cell classification). (F) The distributions of mother cell orientations for the CAE-E (blue),
CAE-M (gold), and CED (green) mechanisms were not statistically different from wildtype
experiments (black) in both the Apical corpus (p-value = .5520, .6841, and .8330 respectively)
and Basal corpus (p-value = .7567, .3103, and .2173 respectively). (G) The distributions of
cell aspect ratios for the CAE-M (gold) and CED (green) mechanisms were not statistically
different from wildtype experiments (black) in both the Apical corpus (p-value = .4879 and
.9521 respectively) and Basal corpus (p-value = .1724 and .5781 respectively) while the CAE-E
mechanism was significantly different (p-values < 1.0e-32 in both cell layers). (H) Proportion of
periclinal cell divisions in the Apical and Basal corpus for all three mechanisms. In the Apical
corpus, the CAE-M and CED mechanisms matched experiments, while the CAE-E mechanism
did not (p-value = 2.93e-4). In the Basal corpus, only the CED mechanism matched experiments
(p-value = 5.5e-3 and 3.86e-2 for the CAE-E and CAE-M mechanisms respectively). S2 Fig of
[1] provides extended analysis between experimental wildtype SAMs and wildtype simulations
for all four hypothesized mechanisms presented in this paper ([1]).
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Figure 2.11: Layer-specific combined chemical and mechanical regulation of cell divi-
sion plane orientation maintains proper shape, multi-layered structure and spatial
distribution of WUS in the SAM. (A-D) Typical simulation output after 40 hours of growth
for all four mechanisms (CAE-E, CAE-M, CED, and combined CAE-M and CED) in wildtype
signaling conditions. Cell color highlights distinct patterns of WUS accumulation in the epider-
mal L1 and L2 cell layers for each mechanism (red = high WUS and blue = low WUS). (E-F)
The combined CAE-M and CED mechanism resulted in distributions of (E) mother cell orien-
tations that were similar to experiments and (F) cell aspect ratios that matched experiments.
(G) The proportion of periclinal cell divisions in combined CAE-M and CED simulations were
found to match experiments. (H) The combined CAE-M and CED mechanism resulted in the
smallest amount of deviation from a single-cell layer in the epidermal L1 and L2 cell layers. The
combined CAE-M and CED mechanism most closely matched experimentally observed SAM (I)
size- the ratio of SAM width to dome height, (J) shape- global curvature of the SAM surface,
and (K) WUS distribution in the SAM after 40 hrs of growth. (L) The combined CAE-M and
CED mechanism resulted in the correct number of high WUS containing cells in the epidermal
L1 cell layer. (E-L) Experimental wildtype (black), CAE-E (blue), CAE-M (gold), CED (green),
and combined (red) in all panels. See Section 2.2.3 for detailed description of all metrics used
in this Figure.
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Chapter 3

Pseudo-3D Mathematical Model of

the SAM with Boundary

Conditions

3.1 Model Description

This section describes different submodels and how they are linked to one another to provide

novel detailed 2D and Pseudo-3D models of the 2D longitudinal section of the shoot apical meristem

with specific boundary conditions (Figure 1.3 C). A diagram of the flow of information between

submodels is provided in Figure 3.1 in both the 2D SAM model and the P3D SAM model. The

main advantages of these multiscale models are their detailed biologically-calibrated descriptions of

cellular growth and division, a detailed implementation of tunica tension boundary conditions and,

for the P3D model, the inclusion of cell anisotropic expansion and division both in and out of the

model plane. The justification for modeling a specific section of the tissue is given in Section 3.1.1.

It should be noted that the models in this chapter and Chapter 2 are based on the same subcellular
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element model approach, but are substantially different. The model in Chapter 2 is two-dimensional,

and the model in Chapter 3 is pseudo-3D and has a detailed description of boundary forces.

It was found in [1], by using a 2D model, that cells in the apical corpus of the SAM are

likely to divide according to mechanical cues with freely expanding SAM boundary. In this chapter,

we study, by using a newly developed and calibrated P3D model, the roles of a force distribution

applied to the SAM boundary and of out-of-plane growth, on the maintenance of shape and structure

of the SAM. Cell growth and division are assumed to be controlled by concentrations of cytokinin

and WUSCHEL as observed in experiments [1]. Cells are modeled as a heterogeneous collection of

nodes representing the cell wall and cytoplasm which interact with each other through local forces,

are discussed in Section 3.1.2.

In the models, cytoplasm nodes are added to each cell at a signal-dependent rate, resulting

in turgor pressure increase and leading to addition of new wall nodes to accommodate for the build-

up of pressure (Section 3.1.4). Cells are assumed to grow anisotropically entirely within the model

domain in the 2D model, or both along the plane or orthogonal to the SAM longitudinal section in

P3D model (Figure 3.4 E). Model cells are assigned a concentration of WUS and CK in the chemical

signaling submodel (Section 3.1.4) which influences growth direction polarization and growth rate

(Section 3.1.5 and 3.1.4). Once cells reach the end of their cell cycle, they divide with a division plane

position determined via a mechanism discussed in [1]. Section 3.1.7 details how these models are

coupled together. Lastly, Section 3.1.8 describes the representation of out-of-plane cell anisotropic

expansion unique to the P3D model.

In these models, cytoplasm nodes are added to each cell at a signal-dependent rate, and this

turgor-pressure resultant expansion induces deposition of new wall nodes (Section 3.1.4). The models

assume that cells grow anisotropically with stochastic behavior determined by signals 3.1.6, and this

may happen either entirely within the model domain (2D), or both along the plane or orthogonal

to the SAM longitudinal section (P3D, Figure 3.4 E). Cell growth direction polarization is detailed
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Figure 3.1: Information flow between the coupled submodels and novel extensions.
(A-D) Boxes show the interdependencies between the major submodel components. (A) The cel-
lular mechanical submodel determines the domain and signal center for the chemical distribution
submodel. (B) The impact of WUS and CK are represented by a calibrated spatially-dependent
approximation of their concentration in cells. Cells’ CK and WUS values parameterize the
probabilities of anticlinal vs. periclinal expansion as well as growth rate; and the orientation
of cell division in the basal corpus. (C) The cell division submodel changes the number and
position of nodes by adding new cell walls and allowing multiple cell cycles to be represented.
(D) The growth direction polarization submodel stochastically chooses a preferred anisotropic
expansion direction for cells based on their signal concentrations, and cell growth changes the
mechanical equilibrium of the mechanical submodel by continually adding new cytoplasm nodes
at a WUS-dependent rate. (E) Tension applied to the meristem is given by force acting upon
the boundary nodes of cells in layers 1 and 2, directed to promote experimentally calibrated
curvature. The magnitude of the force is computed in Section 3.1.10. (F) In the P3D model,
growth polarization out-of-plane represents the impact of three-dimensional expansion of cells,
as well as how their division is represented.
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in Section 3.1.5. Once cells reach the end of their cell cycle, they divide with a division plane

selected via a mechanism discussed in [1], though the implementation is detailed in Section 3.1.6.

Cell growth direction polarization and division in response to signaling concentrations are governed

by an implementation of an experimentally-calibrated probability distribution based on the Hill

function as in [1] detailed in 3.1.6.

Figure 3.1 provides an overview for information flow between submodels. The cellular me-

chanical submodel provides geometry for cell division and chemical signaling domains. Distributions

of WUSCHEL and cytokinin determine growth and polarization properties of the cell (Sections 3.1.5

and 3.1.6). Division adds new cells, wall nodes, and adhesion connections. Growth and polarization

modify subcellular mechanical properties across a cell’s wall nodes. Cells in each meristem place

their division plane via the layer-specific mechanism described in [1].

3.1.1 Experimentally calibrated model of a longitudinal section of the

central zone of the SAM

At this point, the use of a detailed three-dimensional subcellular element model is pro-

hibitively expensive for large portions of three-dimensional tissue [1], so using a 2D model by lever-

aging symmetry is critical. Our models represent a longitudinal section of the central region of a

SAM as it develops in time, and the SAM has been experimentally observed to have radially sym-

metry in both tissue shape and signaling distributions. Previous work [1] showed that longitudinal

sections of the SAM contain information about the shape of the cell the sections were taken from if

consideration is restricted to those cells with high aspect-ratios. In order to use this assumption in

a P3D mechanical model of the SAM, we checked whether this symmetry holds for the distribution

of shape features of longitudinal sections of cells.

The radial symmetry is not strictly maintained due to perturbations by developmental

processes (e.g. when primordia are formed during phyllotaxis). However, a majority of SAM central

zones’ longitudinal sections look similar regardless of the plane chosen. To support this, we imaged 14
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wildtype SAM central zones in three dimensions and, after segmentation and analysis (see Section 5.4

for details), we found that when varying the choice of an axial-basal plane, 8 SAMs did not show a

significant difference in cell section area distribution, and 13 showed no difference either cell aspect

ratio distribution or directions of anisotropic expansion in cells’ longitudinal sections. However, even

a radially symmetric structure may still be affected by forces or cell behavior directed orthogonally

to a longitudinal plane. One such phenomenon, cells’ expansion and division orthogonal to the

longitudinal plane, is represented in the model in subsection 3.1.8.

Based on the image analysis, we then assume that experimentally calibrated 2D and P3D

models of the SAM are sufficient to capture the dynamics and mechanical interactions of the SAM on

a cell-scale up to matching distributions. Some of the cell-scale mechanical components of the models

were calibrated and validated in our previous work [1] by matching simulated and experimental values

of cells’ aspect ratios, orientations of longest axes, and by matching the distribution of cell centroids

in simulations to experimental longitudinal sections.

3.1.2 Subcellular elements (SCE) mechanical submodel

Individual cells are modeled as a heterogeneous collection of wall nodes and internal nodes,

interacting via potentials representing mechanical forces, moving in two dimensional space as in

Banwarth-Kuhn et al.[2]. Each cell i has Ni wall nodes W j
i (j = 1, . . . Ni) and Mi cytoplasm nodes

Cji (for j = 1, . . . ,Mi). We use W j
i and Cji to indicate both spatial coordinates of nodes in R2

as well as node identity. Moreover, W j
i is a neighbor of W j±1

i where we denote WNi+1
i = W 1

i and

W 0
i = WNi

i , since the wall nodes form a loop and the first and last nodes are neighbors. Nearby
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nodes W l
k from adjacent cells (i.e. k 6= i) can adhere to node W j

i . The Langevin equations of motion

of individual nodes are as follows:

ηi
d

dt
W j
i =−

Mi∑
k=1

∇ETurg(W j
i , C

k
i )−

∑
k=j±1

∇EExt(W
k
i ,W

j
i ) (3.7)
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∑
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ηi
d
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Mi∑
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Ni∑
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∇ETurg(W k
i , C

j
i ), (3.8)

where ηi is a cell’s damping coefficient, which represents the relative viscosity experienced by the

small amount of mass represented by each node as in [2]. The force FBoundary is the force applied to

specifically chosen nodes belonging to boundary cells in the tunica. The boundary force FBoundary

is described more in Section 3.1.3. Potentials E in the equations 3.7-3.8, yielding forces acting on

nodes representing cell wall and cytoplasm, are described in Table 3.1 and illustrated in Figure 3.2.

They have a form of a Morse or linear spring type potential:

EMorse(x,y) = UMorse exp

(
−‖x− y‖2
ξMorse

)
− VMorse exp

(
−‖x− y‖2
γMorse

)
,

ELinear Spring(x,y) =
1

2
klin

Linear Spring

(
‖x− y‖2 − `

eq
Linear Spring

)2

,

EBending Spring(x,y, z) =
1

2
kbend

Bending Spring

(
θ∠yxz − θeq

Bending Spring

)2

.

These formulae describe soft-core potentials (i.e. the potential has finite value as x→ y).

Such methods are commonly used in molecular dynamics simulations [106]. With soft-core potentials,

the volume exclusion forces never approach infinity. This promotes numerical stability. Even though

this means that volume exclusion forces may be exceeded and two cells may be “pushed to overlap”,

such a phenomenon would require tremendous force which is not observed with the parameter ranges

used in our model simulations. These forms of the potentials are also differentiable and have critical
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Figure 3.2: Diagram of the mechanical submodel. (A) Two interacting cells represented by
heterogeneous collections of linked wall nodes (solid circles) and the cytoplasmic nodes (squares)
with characteristic Morse potential ranges (rings). (B) Cells’ nodes interacting with each other
through mechanical forces represented by potentials described in Table 3.1.

Table 3.1: Model potentials and associated physical phenomenon.

Potential Type Cellular property
ETurg Morse Potential Turgor pressure
EExt Linear Spring Mechanical Stiffness & Extensibility
EM.F.B. Bending Spring Bending Stiffness of microfibrils
EV.E.D. Morse Potential Volume exclusion between different cells
EAdh Linear Spring Cell-cell adhesion (See Figure 5 of [2])
EPres Morse Potential Cytoplasmic pressure

points at x = y for our parameter values, which guarantees that −∇EMorse(x,y) is continuous in

the variable ‖x− y‖2.

3.1.3 Boundary forces provide epidermal tension and impose curvature

The SAM tunica has been observed to be under tension [28]. Moreover, curvature of an

adult SAM is maintained over at least 36 hours (demonstrated in Figure 3.3 A-E). To calibrate in

the model the impact of tension on the SAM boundary, we use rEx, the experimentally observed

average SAM curvature (calibrated in Section 3.1.10). The boundary forces are applied in the model

55



to the boundary cells in the tunica, and are directed in order to promote the experimental curvature

of the SAM.

Specifically, the force FBoundary represents the collective adhesion-propagated tension orig-

inating from the tissue lateral to the represented portion of the SAM. As such, forces are applied

to the outward-facing nodes of L1 and L2 boundary cells (Figure 3.6 A), to obtain the experimen-

tally observed SAM curvature rEx (see Figure 3.3 F). The direction of FBoundary is determined by

approximating the location of the SAM apex (xA, yA) and then defining the center of a circle whose

curvature we want to calibrate the SAM to, and we call this center xC = (xC , yC) := (xA, yA− rEx).

Point approximations of the left and right boundaries of the SAM, denoted xL and xR, are used

to compute the direction of FBoundary applied to all boundary nodes. The points xL and xR are

calculated as the midpoint of the centroids of the L1 and L2 boundary cells on the left and right

sides, respectively. Finally, the direction assigned to FBoundary is taken to be the outward facing

perpendicular direction to the lines xLxC and xRxC (Figure 3.3 F-G. In this way the radial compo-

nent of FBoundary relative to xC will act to pull the boundary cells inward, promoting the prescribed

curvature rEx (Figure 3.3 G). Throughout a given simulation, the force magnitude is maintained

as constant. This was chosen from a biologically-relevant range derived experimentally in detail in

Section 3.1.10.

3.1.4 Chemical distribution controls growth and division rate of cells

Cells in the model are assigned concentrations of WUSCHEL ([WUS]) and cytokinin ([CK])

using experimentally-calibrated concentration distributions as in [2]. As in the model published by

[2]. Namely, WUSCHEL chemical signal controls cells’ life cycle length, which is used to determine

the rate at which cytoplasm nodes are added to a growing cell. In L1 and L2, values of [CK] are

maintained at 0, since in wildtype experiments cells do not respond to cytokinin signaling. In deep-
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Figure 3.3: Self-similarity of curvature over time is imposed by directed boundary
tension. (A-B) 3D reconstructions of time-lapse images of a SAM. Images taken (1) at t0 and
(B) at t0 + 36 hours are shown in green and red, respectively. In (C), these two timepoints
are superimposed. The SAM is approximately self-similar in over 36 hours with a maintained
curvature. The approximation of the SAM curvature from experiments is detailed in SI section
3.1.12. (D-E) Two orthogonal longitudinal slices of the SAM generated from the 3D reconstruc-
tion in (C). (F-G) Directing the tension force of the SAM to promote experimentally observed
curvature. (F) The apex of the model SAM is approximated, and from there xC is calculated.
Force is applied perpendicular to the lines xLxC and xRxC . (G) When the simulation cur-
vature, illustrated here as rcurrent, is not aligned with the experimental curvature, the radial
component of FBoundary relative to xC acts as a corrective force.
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layers (i.e. L3 or deeper) cytokinin and WUSCHEL concentrations are independently calculated

using the expressions calibrated in [2]:

[WUS] = [WUS]0 exp (−µWUS(r · αWUS)) ; (3.9)

[CK] = [CK]0 exp (−µCK(r · αCK)) , (3.10)

where r is the distance from the centroid of each cell to the “signal centers”, which we introduce as

point-approximations of the centers of the WUSCHEL and cytokinin expression domains.

Signal centers for WUSCHEL and deep-layer cytokinin are located two and three cell

diameter-lengths, respectively, directly below the SAM apex (Figure 3.4 A) as observed in exper-

iments. Parameters µWUS, µCK, [WUS]0, and [CK]0, which represent the maximum intensity of

[WUS] and [CK] and their respective spatial gradients, were fitted to experimental wildtype data

in [2]. Parameters αWUS and αCK are factors to simulate under/over-expression of signals as in

experimental mutant conditions. The cell cycle length, denoted pi, represents the amount of time

between cell i’s divisions. Cell cycle lengths are chosen as normally distributed random variables

parameterized by [WUS]. The mean and standard deviation of pi values for a given concentration

of [WUS] were fitted to experimental data as in [2]. We define the cell progress, denoted CPi for

each cell i, as the portion of time elapsed after the last cell division. A new cell has CPi = 0, and

will divide when CPi = 1. Cell progress for each cell in a simulated SAM is shown as a heat map in

Figure 3.6 D.

Given the cell cycle length pi, the total amount of time that cell i takes to divide, each

cell’s progress is updated throughout its life cycle as follows:

CPi(t+ ∆t) = CPi(t) +
∆t

pi
.

Cell progress determines the number of cytoplasm nodes per cell, denoted as Mi,

Mi = bsi + (fi − si) · CP
2
3
i c. (3.11)
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The exponent 2/3 is chosen due to the assumption that volume increases linearly in time for a given

pi. For a sphere, if a the volume V ∝ t, then the cross sectional area A ∝ t2/3. At Mi increments, a

new cytoplasm node is added at the cell’s centroid resulting in an increase of the net outward force

on the wall nodes and stretching them. New cell wall nodes are added between the most stretched

pairs of adjacent wall nodes to drive irreversible expansion as in [2].

The parameters si and fi represent the starting and final number of cytoplasm nodes

in each cell, calibrated as coarse-graining parameters in [2] which determine the resolution of the

model simulations. In 2D simulations, each cell begins at si = 15 cytoplasm nodes and divides

once it reaches fi = 30 cytoplasm nodes. In the P3D model, some cells are stochastically chosen

to “expand out-of-plane” (i.e. represent the biological cells anisotropically expanding orthogonal

to the longitudinal plane of the model, described in Section 3.1.8). We heuristically assume that

the sections of cells expanding out-of-plane expand in the plane only half as much as those cells

completely in-plane, and use fi = 22. Additionally, if a cell expanding out-of-plane finishes its cell

cycle, we reset its cell progress to zero and it retains all cytoplasm nodes in the section (i.e. we set

its value of si for the next cell cycle to its previous fi). In this way, a cell that is stochastically

determined to expand and divide out-of-plane across multiple consecutive cell cycles will not further

expand in the longitudinal section.

3.1.5 Preferential expansion of cells

In the plant, cells can influence the direction of their anisotropic expansion via the rear-

rangement of a structural girdle of microfibrils on the cell wall, which constrains growth in two

directions, leaving the third orthogonal direction’s expansion promoted. We represent this by mak-

ing the bending spring’s equilibrium angle θeq
Bending Spring heterogeneous within a single cell. The only

exceptions are cells which are polarized out-of-plane (see Section 3.1.8) and cells in the simulation

boundary, whose uniform cell wall mechanics are set such that wall nodes would reach a circular

arrangement if the cell was in an isolated system.
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Plant hormones WUSCHEL and cytokinin are assumed to influence cell growth polariza-

tion, with WUSCHEL promoting anticlinal growth and cytokinin promoting periclinal growth. A

cell’s growth direction is determined as in 3.1.6, with an example of the spatial distribution of cell

growth polarization shown in Figure 3.6 B. Approximately every 4 hours of represented time, cells

will reassess their growth polarization direction using their current signaling levels, and this time

scale was based on observations of how long it takes cells to reorient their microtubules and respond

to changes in chemical signaling. Nodes belonging to cells whose growth is polarized are given hetero-

geneous equilibrium bending angles, with values varied depending on whether the nodes fall within

a cell’s “sides” or “ends” (Figure 3.4 B-D). Nodes in model cells’ sides are given θeq
Bending Spring which

prefers a linear arrangement, while the equilibrium angles for nodes on the ends prefer a circular

arrangement.

As in [1], we represent the expansion direction and division of the cells as being stochasti-

cally controlled by the relative concentrations of WUSCHEL and cytokinin. WUSCHEL is under-

stood to promote anticlinal behavior, and cytokinin is thought to promote periclinal behavior. We

paramaterize the probability mass function used to determine each cell’s behavior via the expression:

Prob(Cell follows periclinal behavior) =
1

1 +
(

KHill

[CK]/[WUS]

)NHill
;

Prob(Cell follows anticlinal behavior) = 1− Prob(Cell follows periclinal behavior).

3.1.6 Antagonistic signaling between WUSCHEL and cytokinin controls

cell anticlinal and periclinal cell divisions

For this study, the values of KHill and NHill were the same as in [1] (and presented in Chapter

2 Section 2.1.6). In that work, the value of KHill was calibrated by assuming the center of the

WUSCHEL and cytokinin’s signaling domain had a 50% chance of expanding or dividing anticlinally
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Figure 3.4: Chemical Signaling and Cell Growth Direction Polarization. (A) A
schematic for positioning the signal centers for WUS and CK is shown. These centers, which
determine signal concentration in all model cells, are placed two and three cell diameter lengths
below the SAM apex. This positioning reflects experimental observations, and is implemented as
in [1]. (B-D) A schematic for the model cell i is shown. If the cell is assigned a growth direction
v, the angle between consecutive cell wall nodes is used to determine whether cell wall nodes are
assigned to be an end (red) or a side (blue). Once assigned, the mechanical parameters of those
nodes will be modified to promote anisotropic expansion as in [1]. (E) Cells in the P3D model
(solid rings) are stochastically assigned to grow and divide either along the SAM cross-section
(green) or out of the model plane (magenta). The probability distribution for this assignment
is discussed in Section 3.1.10. In the 2D model, all cells expand and divide in-plane (i.e. along
the green axis).

or periclinally, since the apical corpus appeared unstructured compared to the basal corpus. The

value of NHill, which controls how deterministic the response of cells to the relative WUSCHEL-

cytokinin ratio is, was calibrated by matching the distribution of cell-scale features observed in

simulations to those in wildtype experiments. This was accomplished by matching the proportion

of anticlinally to periclinally expanded cells in the model SAM to the same frequency measured in

experiments.

When model cells complete a mitotic cycle (i.e. reach CPi = 1), they divide and CPi is

reset to 0 for the daughter cells. Cells growing out-of-plane (Section 3.1.8) only have one represented

daughter - the other is treated as having grown out of the cross-section - and the represented daughter

inherits all nodes and adhesion connections from the mother cell. All other cells divide in plane.

Layer 1 and 2 cells are always prescribed to divide with a plane normal to the SAM surface as occurs

in all wildtype SAMs. For deeper layers, each simulated cell follows the layer-specific division plane

placement rule introduced by [1], wherein cells in the apical corpus orient their division plane with
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respect to mechanical cues, and cells in the basal corpus orient their division plane stochastically

with probability distribution parameterized by relative levels of WUSCHEL and cytokinin.

Two daughter cells inherit the cytoplasm nodes evenly and two sets of wall nodes separated

by the division plane. A new row of wall nodes forms in each daughter cell parallel to the division

plane, representing the new walls and middle lamella. Both daughter cells are considered to be part

of the same layer as the mother cell, since the 40-hour time frame is short enough to have only

between one and two rounds of cell division on average. It is important to note that this means that

the behavioral differences between cells in the L1, L2, apical and basal corpus cells are considered

as hereditary within each simulation.

3.1.7 Coupling submodels into a cell-based model

Computational implementation of the mechanical submodel of the SAM has the smallest

time step among all submodels, with ∆t ≈ 0.4s of represented time. The chemical division submodel

is run every time a cell cycle completes, and the distributions of cell cycle lengths were experimentally

calibrated in [2], and their implementation is discussed more in Section 3.1.4. We assume that

division occurs at the end of each cell cycle as in [1]. Simulations were run to represent 40 hours as

in [1, 2]. Coupling of the mechanical and chemical signaling submodels in space is achieved implicitly

through the common use of the same spatial scale (i.e. the micron-scale) and the “signal center”

(Figure 3.4 A), whose positioning is determined by the size of cells from the mechanical submodel.

For the pseudo-3D submodel, horizontal displacement of cell centroids from the apex of the SAM

was used to categorize each cell as a central or peripheral zone cell which, along with the cell layer,

determines the probability of that cell growth polarizing along or out of the plane.

3.1.8 Description of a pseudo-3D model

The apical surface of the SAM (perpendicular to our cross-sectional plane) has a radial

symmetry (see Section 5.4), and so we assume in the model that some cells are preferentially ex-
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panding perpendicular to our cross-section. If anisotropic expansion were to occur only in-plane,

the 3D tissue would lose this radial symmetry as it elongated preferentially in that plane. Thus,

in P3D model simulations, we label the cells as having growth direction polarized out-of-plane (i.e.

growth direction polarized perpendicular to the longitudinal section) or in-plane (along the model

cross-section), as in Figure 3.4 E.

In the P3D model, we also treat out-of-plane polarized cells as growing isotropically - i.e. we

assign wall nodes of these cells uniform mechanical parameters, unlike those for the anisotropically

expanding cells. Cells in the 3D biological system anisotropically expanding out-of-plane will have

their longest axis orthogonal to the longitudinal section. We represent this in P3D by giving out-of-

plane expanding cells a smaller longitudinal sectional area than those polarized along the model plane

(≈ 25% smaller), since only their minor axis will be shown explicitly in simulations. When a cell

growing out-of-plane completes its cell cycle, one daughter cell does not fall within the cross-section

and is not represented explicitly in the simulation. Whenever an in-plane cell divides (Section 3.1.6),

both of its daughter cells are assigned to have their growth polarized either in-plane or out-of-

plane with probability distributions as discussed in the next paragraph. Similarly, an out-of-plane

expanding cell whose cell cycle finishes only has one daughter represented in the model (or, from a

computational standpoint, does not divide) and the represented daughter cell again has a randomly

assigned probability to expand either in-plane or out-of-plane by a probability distribution described

in the next paragraph. Lastly, cells expanding out-of-plane have a terminal expansion size smaller

than those in-plane, heuristically assigned to grow only to fi = 23 instead of fi = 30 for in-plane

cells (Section 3.1.4).

Experimental data suggests that the fraction of cells whose growth direction is polarized

out of a longitudinal plane intersecting it is distinct between the central and peripheral zones.

To quantify this, 450 cell divisions in wildtype SAMs were observed and the division planes were

manually classified as either radial or tangential, and a frequency distribution was obtained for cells in

the central and peripheral tunica and corpus. Section 3.1.10 details the experimental measurement
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of this frequency distribution. These frequencies were then used in P3D model simulations as a

spatially heterogeneous probability distribution to choose which cells in each zone grow out-of-plane

for their entire cell cycle. An example of a P3D simulation showing which cells are growing in and

out-of-plane is provided in Figure 3.6 C and Supplemental Video S1.

3.1.9 Initial conditions

The mechanical submodel is given an initial, wedge-shaped tissue layout as shown in Fig-

ure 3.5 A. The top layer of cells are considered, L1, the next are L2, the third and fourth are the

apical corpus cells, and the fifth and sixth are the basal corpus cells. The bottom layer cells are

considered part of the stem, and are given very high damping coefficients to represent their stiff-

ened, partially differentiated state. This initial layout was developed and connected to the biological

context in [1].

Each cell is initially circular and is given a uniformly random initial value of CPi (Section

3.1.4). In each simulation, the cells are stochastically chosen to begin as growing in-plane or out-of-

plane with the probability distribution described in 3.1.10, determined by their centroid positioning.

From this, we can determine the initial number of cytoplasm nodes Mi, and each cell is initialized

with a number of wall nodes Ni = 100 + 2Mi. Adhesion partners are formed based on proximity to

neighboring cells’ wall nodes.

The cells along the sides of the simulated SAM are marked as boundary cells, and do not

divide upon the completion of a cell cycle. They expand with uniform mechanical parameters, so

as not to promote anisotropy in any preferred direction. Nodes on the distal portions of the L1 and

L2 cells are marked as “boundary nodes”, and are the nodes to which all tension forces are applied

(Figure 3.5). Cells along the bottom of the SAM are considered to be the differentiating cells in

the stem, which are expanding vertically and given a vertical anisotropic expansion direction, as

observed in experiments. To represent the increased rigidity of more differentiated cells in the stem,

the nodes in the bottom layer of cells are given a stiffer value of ηi by an order of magnitude.
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The entire simulation has two stages. Stage one is a brief elastic relaxation phase, and

occurs rapidly within the first 15 minutes of simulated growth. During this stage, we allow the

cells to re-assign their adhesion neighbors very frequently, which effectively allows cells to “slide”

along one another to achieve a state of mechanical equilibrium. The bulk of the simulation occurs

in stage 2, which subsequently begins from the equilibrium state illustrated in Figure 3.5 B. In this

stage adhesion neighbors only update their adhesion partners once every 6 hours. This causes the

cell neighbor structure to be much more rigid, since cells are not observed to slide relative to one

another easily in the experimental context.

Figure 3.5: Initial conditions and equilibrium state. (A) 50 model cells and their initial
adhesion connections between neighboring cell wall nodes are shown in the initial layout used for
each simulation. (B) An example of an equilibrium state achieved after stage one of simulations.
(A-B) Note that in the equilibrium state, each cell has been stochastically assigned a direction
of cell growth polarization, leading to anisotropically expanded cells at mechanical equilibrium.
Cells on the left and right sides of the simulated tissue domain are the boundary cells which do
not divide in any stage of the simulation, but otherwise obey the same rules as other cells. Cells
in the bottom most layer are considered part of the stem, and have a much higher damping to
provide a foundation for the expansion of the SAM. Coloration of red, green and white shows
the stochastically chosen growth direction polarization direction of each cell. Nodes in blue show
the tunica boundary nodes, to which FBoundary is applied during both stages.

65



Figure 3.6: Cell Properties During Simulations. Four different properties of nodes and
cells given as color mapping. All panels depict different features for the same simulated P3D
SAM during a single timestep. (A) Boundary nodes are shown in red. Once the direction
for FBoundary is determined as in Section 3.1.3, each boundary node is pulled in that direction
with magnitude |FBoundary| / # boundary nodes. All non-boundary wall-nodes are white, and
cytoplasm nodes are not rendered. (B) Cells expanding out-of-plane (white) are chosen stochas-
tically at simulation initiation and at the end of every cell cycle (details in Section 3.1.8). All
other cells expand in-plane (red). (C) Cell growth directions are shown. Cells whose nodes are
green (red) are preferentially expanding anticlinally (periclinally). Cells preferentially expand-
ing out-of-plane or boundary grow with uniform mechanical properties along their wall (white).
(D) Cell progress CPi is shown for each cell. Cells with smaller values of CPi have recently
finished a cell cycle, whereas cells with larger values of CPi are about to finish a cell cycle.
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3.1.10 Model calibration

Estimation of FBoundary magnitude. In [28], the SAM studied under the assumption that it

behaved as though it was a pressurized shell, providing a justification to relate the tension-induced

pressure directly to modified boundary conditions applied to the SAM. Section 3.1.11 derives the

following expression for the boundary conditions based on the pressure experienced by the SAM P0,

the average width of a cell w, and the radius of a sphere which approximates the SAM surface rEx:

|FBoundary| =
rEx

2
· w · P0. (3.12)

The radius of curvature rEx = 80.1µm was chosen by selecting the L1 cells from segmented

3D experimental images, fitting a sphere to them, and taking the average radius for 17 wildtype

SAMs. The value of w = 7.04µm comes from measuring the diameter of each cell in the SAM in the

direction normal to the longitudinal plane (see Chapter 5 Section 5.4 for experimental details and

Section 3.1.12 for analysis methods). The value of P0 ∈ [0.66, 0.98]MPa was taken from literature

[28].

These values applied to equation 3.12 yields FBoundary ∈ [187.54, 278.47]µN . When running

simulations, we call 187.54µN “low” force, 233.01µN “average” force, and 278.47µN “high” force. We

examined the effects of running the simulations with inordinately large tension magnitudes using

557.95µN as “2X” force. If we set FBoundary = 0, we call this the free boundary condition.

Calibration of the out-of-plane expansion frequency. To calibrate the frequency of cells

growing out of plane, previously reported live time-lapse of plants expressing a fluorescent nuclear

reporter (35S::H2B-mYFP) [107] were used to analyze cell division orientation in distinct zones of

the SAM. Registration of time series of 512 x 512 x 20 images using Fijiyama on ImageJ were used

to align the nuclear reporter construct across the time series imaged every 1-1.5 hours. Image slices

capturing the layer 1, layer 2, apical corpus, and basal corpus were isolated manually in Adobe

Photoshop. Superimposing two sequential time series allowed for the manual identification of the

new nucleus after divisions.
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Table 3.2: Frequency of out-of-plane divisions by functional zone.

Region Probability of out-of-plane growth polarization

Central Zone Tunica 47.4%
Central Zone Apical Corpus 17.8%
Central Zone Basal Corpus 10.5%

Peripheral Zone Tunica 43.4%
Peripheral Zone Apical Corpus 29.0%
Peripheral Zone Basal Corpus 18.2%

These nuclei were manually classified to be aligned radially (both nucleus centers could

be touched with a single radius line from the center of the SAM) or to be tangentially aligned

(Figure 5.9). Additionally, the nucleus within an 8 cell diameter across the center were manually

classified to be in the central zone (CZ) while cells outside this region were classified as divisions in

the peripheral zone (PZ). This analysis gave us a region-specific calibration of the relative frequency

of in-plane anticlinal divisions to out-of-plane divisions. It is important to note that in this method,

it is difficult to accurately detect periclinal divisions, as the division planes may be parallel to and

between z-stack slices. To remedy this, we also incorporated established frequencies of periclinal-

divisions to in-plane anticlinal divisions taken from our previous work [1]. The final values used

to parameterize probabilities of cell growth polarization out of the plane in pseudo-3D enabled

simulations is in Table 3.2.

Other Parameter Values. Table 3.3 provides parameter values for all wildtype simulations. The

XPres Morse parameters were calibrated to experimental single-cell area and perimeter values for

our imposed Mi ∈ [15, 30] values. The µX and [X]0 values for WUS and CK were experimentally

fitted in [2]. Values for αX were defined to be 1 for wildtype, and varied by factors that replicated

observed [CK] : [WUS] ratios.

Larger values of klin
Adh and `eq

Adh had a strong effect on tissue-scale structure: smaller klin
Adh

caused cells to slide relative to one another more easily, and klin
Adh was chosen to prevent cell-cell

sliding. The adhesion equilibrium length `eq
Adh was chosen to be as small as possible while maintaining
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Table 3.3: Parameter values for simulations. Parameters with values marked as ∗ are ranges
described in more detail in the indicated sections.

Parameter Value Selection Parameter Value Selection
µWUS 0.01573 [2] UTurg 45 [2]
µCK 0.01637 [2] VTurg 0 [2]
FBoundary ∗ See section 3.1.10 ξTurg 0.3 [2]
[WUS]0 84.6 [2] γTurg 0 [2]
[CK]0 110 [2] UV.E.D. 53 Equilibrium ≈ leq

Adh

klin
Adh 12 Cell geometry (see 3.1.10) VV.E.D. 0.2 Equilibrium ≈ leq

Adh

`eq
Adh 0.07 Cell geometry (see 3.1.10) ξV.E.D. 0.103 Equilibrium ≈ leq

Adh

UPres 95 Coarse graining γV.E.D. 1.1 Equilibrium ≈ leq
Adh

VPres 6.71 Coarse graining klin
Ext 12 Calibrated in [2, 95]

ξPres 0.8 Coarse graining `eq
Ext 0.9 Calibrated in[2]

γPres 1.34 Coarse graining kbend
M.F.B. 12 [2, 95]

KHill 1.3 See [1] θeq
M.F.B. π or π(Ni−2)

Ni
See 3.1.5

NHill 10 See [1] pi 12− 72 hours [2]

numerical stability, as the middle lamella is very thin in experiments. Volume-exclusion parameters

XV.E.D. were chosen to give a very strong repulsive force with the same equilibrium length as `eq
Adh,

and to have negligible attractive force. Values of klin
Ext, `

eq
Ext and kbend

M.F.B. represent the mechanical

stiffness and extensibility of the primary cell wall, and were calibrated in [2, 95].

3.1.11 Deriving an expression for boundary tension magnitude

Our method of approximating the tension experienced by the tunica of the SAM is to

approximate the epidermal cell layers by a sphere of radius rEx inflated by uniform pressure P0. Our

two-dimensional model represents a projection of a vertical “wall” of cells upon an apical-basal plane

that they are intersected by. This assumption allows us to derive an expression which will allow us

to calibrate boundary conditions from experimental data.

The derivation of our expression for calibration begins by assuming that the surface of the

SAM is well-approximated by a sphere of radius rEx, and that the tissue represented by our SCE

model is approximated by a “thick wedge” of cells. We assume that this wedge has thickness w in

the direction orthogonal to the longitudinal plane, and the epidermal portion of this tissue forms a

strip along the surface of the SAM. This strip-approximation of the surface of the model region is

represented by the region D in Figure 3.7 A. In describing the boundary effect on cells in the L1 and
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L2 cell layers, Beauzamy et al. argue that the SAM behaves as a shell that is inflated by a pressure

P0 [28] (for explicit values used, see Section 3.1.10).

Let us approximate the surface of the 3D SAM by a portion of a sphere, and approximate

the apical surface of our SCE-represented tissue by a strip D with width w along that sphere (Figure

3.7 A. We can describe D with the following expression:

D =
{
x2 + y2 + z2 = r2

Ex, |y| ≤ w/2, z ≥ h
}

=

{
(ρ, φ, θ) : ρ = rEx, θ ∈

[
− w

2rEx
,
w

2rEx

]
, φ ∈ [−C,C]

}
.

Note that h and C are arbitrary, as the result does not depend on the length of the strip.

Whereas the SAM in vivo is a three-dimensional tissue with a two-dimensional apical

surface, approximation by a two-dimensional model of a medial longitudinal section means that the

corresponding apical surface will be one-dimensional. We represent the force-per-area pressure on

D by linear pressure along the surface of the 2D model. By assuming uniform pressure along the

interior of the SAM, we can calculate the linear pressure experienced by the 2D model P`(φ):

P`(φ) :=

∫ w/2rEx

−w/2rEx

P (φ, θ)rExdθ =

∫ w/2rEx

−w/2rEx

P0rExdθ = w · P0,

giving P`(φ) in units of force per length. Since P`(φ) is assumed to be uniform, it is constant by the

above calculation, and we refer to it as P`. To obtain the tension experienced by the surface of the

SAM, let us approximate the one-dimensional apical surface of the 2D SAM by a chain of N rigid

segments of length ε attached end-to-end. These segments are pushed outward by pressure to form

a portion of a regular N -gon. The boundary tension can be obtained by looking at the forces acting

upon any segment and observing the free-body diagram (Figure 3.8 D Inset).

Since the mass of each segment is small and motion only occurs on the timescale of cell

growth, we can assume that
∑
F ≈ 0 in all directions (i.e. - the same assumption for applying
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Figure 3.7: Spherical approximation for the SAM surface to calculate |FBoundary|.(A)
The surface of the SAM is approximated by a portion of a sphere; the region D corresponds to
the epidermal portion of the SAM that we are representing in the subcellular element model.
(B) Uniform outward-directed pressure on the SAM is represented by P (x, y), acting as a force
per unit area on the portion of the sphere representing the SAM surface. (C) Pressure on D is
approximated in the sectional view as linear pressure P` pressing on an arc of a circle with radius
rEx. In calculating mechanical equilibrium, this arc is discretized into multiple rigid, connected
rods of length ε (D) Free body diagram for calculating |FBoundary| = |FT,L| = |FT,R|, obtained
by balancing the force of P` on segments with FT,L and FT,R of neighboring segments. Tension
is obtained by sending ε→ 0

Langevin dynamics in the SCE model). Tension forces parallel to the segment are equal by symmetry

(Figure 3.7 C), so we consider the forces normal to surface, Fn̂:

|FT,L| = |FT,R|︸ ︷︷ ︸
Equal magnitude

tension forces

;
∑

Fn̂ = P` · ε− 2 |FT | sin(θs),

where θs is supplementary to the interior angles. By using the geometry of the N -gon, we obtain

ε = 2rEx sin (θs/2)

θs =
2π

N
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and so we define

|FBoundary| := P`
ε

2 sin(θs)
= P`

2rEx sin(θs/2)

2 sin(θs)
.

We then send N → ∞ to recover our circular geometry, thus θs = 2π
N → 0 as N → ∞, and the

small-angle approximation of sin(x) gives us that

|FBoundary| = lim
N→∞

P`
ε

2 sin(θs)
= P` lim

N→∞
rEx

(2π/2N)

(2π/N)

=
rEx

2
P`

=
rEx

2
· w · P0. (3.13)

3.1.12 Obtaining rEx and w from experimental data

Both rEx and w are measured from 3D confocal micrographs as in Figure 3.8 A. 3D seg-

mentation of the images were performed using the spherical harmonic method as described in the

Chapter 5 Section 5.4.2. Reconstructed longitudinal sections were taken from the segmented SAM

for five different longitudinal planes rotated about the SAM apex (Figure 3.8 C-D). The epidermal

layer of cells was identified from each longitudinal section. A sphere was then fit to the collection

of these L1 segmented cell boundaries using the “pcfitsphere” function in MATLAB’s Computer

Vision toolbox (Figure 3.8 E). It is important to note that this function’s sphere fitting is robust to

perturbations to the spherical assumption, such as the presence of primordia creating bumps on the

surface of the SAM. The value rEx = 80.11µm was taken as the average sphere radius over seventeen

SAMs.

The value of w comes from the breadth of the strip that we are representing in the model.

To measure this, we examined each of the L1 cells present in the five longitudinal planes taken for

each SAM (blue cells in Figure 3.8 E). Each of these cells i then had its diameter di measured in the

direction normal to the longitudinal section in which it appeared (Figure 3.8 F). The strip width w
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for a SAM is the mean of di. The mean strip width for 17 SAM across 5 planes was used to obtain

w = 7.04µm.

3.2 System-Specific Metric Definitions

Simulation outputs were collections of nodes’ locations, signaling information, and identity

within the tissue. What follows are the metrics applied to these data for model analysis. In all

subsections, we refer to the centroid of a cell i as

(xi, yi) :=
1

Ni

 Ni∑
j=1

W j
i

 .
We gather these cells by layer `, and define

C` := {(xi, yi) : i is in layer `} .

as the collection of cell-centers centroids in layer `. Because we wish to decouple the effects of shape

from size, we take C` and scale it so that all x-values are between 0 and 1. For this reason, we define

the scaled centroids as 
C′` :=

{
1

xmax−xmin

(
xi − xmin, yi

)
: i is in layer `

}
xmax = maxj∈` (xj) ; xmin = minj∈l (xj)

(3.14)

is the x-normalized set of cell centers.

Definition of Relative Curvature. To quantify the pronouncedness of the curved shape of the

simulated SAM and have this measurement be decoupled from its absolute size and area, we fit a

circle to the scaled set of centroids of the SAM’s tunica (Figure 3.10 C). To be more specific, the

x-scaled centroids of each cell in layer 1 C′1 are fitted with a circle of radius R using the least-squares

fitting method. The relative curvature is 1/R. In this way, the relative curvature is invariant under

similarity transformations.
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Monolayer Length of L1 and Layer Structure. The following describes a procedure to ap-

proximate the total length across the apical surface of the SAM. Though the method is simple and

intuitive - tantamount to accumulating length while “connecting the dots” between nearest L1 cen-

troid nodes - it is entirely dependent on the layered structure of the L1 layer of the tunica. Time

discontinuity of this metric is sufficient to indicate the loss of the only assumption: the layer struc-

ture of the L1. While we do expect that over time tissue will expand and apical length will increase,

the presence of sharp jumps (e.g. increasing by a factor of 1.2 in 15 minutes of growth) is sufficient

to indicate the presence of a jump.

To approximate the monolayer length, we leverage the fact that the layer-1 boundary cells

do not grow or divide. Let 1, . . . , NL be indices for all L1 cells, and k(1) ∈ 1, . . . , NL be the index of

the leftmost cell. If we assume that the layer structure of the SAM is intact, the next cell in the layer

will be the cell with the closest centroid. The next cell in the layer will be the cell closest to that, and

so on. So, we compute the distance matrix (D)i,j = |xi − xj |, and define k(2) as the nearest neighbor

of k(1), or more specifically, by mini∈{1,...,NL} (D)i,k(1) = (D)k(2),k(1) . By sequentially finding the

next nearest nodes without replacing our steps in this way, we can iterate by defining k(i+1) such

that

min
j∈{1,...,NL}\{k(1),...,k(i)}

(D)j,k(i) = (D)k(i+1),k(i) .

After all k(i) have been found, the monolayer length is calculated as

NL−1∑
i=1

(D)k(i+1),k(i) .

Now, if the layer structure of the SAM is preserved, then division of cells in the L1 cell layer

should have a small impact on the overall monolayer length. Moreover, since each node in the SAM

simulation is moved continuously and on the timescale of cell expansion, any large-scale discontinuity

of the monolayer length evolution in time is either a result of the breakdown of the assumption of

layer structure, or is the result of a higher-order tissue deformation (e.g. a wrinkle or crypt forming

in the SAM surface with a gap comparatively similar to a cell diameter). Since we have observed no
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higher-order layer folding, we conclude that any substantial jump discontinuities of the monolayer

length are indicative of a breakdown of layer structure, which has been confirmed to be the case in

several simulated SAMs. For quantification, we assume that a > 20% increase of monolayer length

within 1.4 hours of simulated growth indicates a breakdown of that SAM’s layer structure.

Percentage of Periclinal Divisions. In the absence of cell motility within a tissue, the expansion

and division of cells primarily drive the directionality of the SAM’s expansion [2, 1]. The horizontal

division of cells followed by the expansion of daughter cells is then a primary driver of apical-basal

growth. As a measurement of this impact, we record the frequency of the periclinal divisions in

order to quantify the SAM’s apical-expansion driving behavior.

To capture this, information describing the timing and position of each cell division in

simulations were recorded. This included division plane orientation and the tissue region of the

dividing cell. Since the divisions in L1 and L2 were geometrically derived, our results report only

divisions from the corpus of a simulated meristem.

The plane of every division j in the 2D model has a line, and let Θj be the acute angle

between it and the radial axis (i.e. the horizontal axis). In experiments, the difference between

the natural coordinate system (as described in [108]) and the global coordinate system given by

the apical-basal axis (as used in [76]) should be small, since our model’s consideration is restricted

to the portion of the corpus subtending the central zone of the SAM. Still, there may be some

disagreement, so when classifying division planes, we consider only divisions with Θj ≤ 30◦ to be

periclinal, and divisions with Θj ≥ 60◦ to be anticlinal. Due to the model construction, the division

planes in the tunica are of little mechanistic interest (barring the degradation of layer structure) since

their division planes are prescribed geometrically to maintain layered structure. Moreover, division

patterning in the apical and basal corpus are mechanistically distinct, so we treat the division data

from those regions separately. Thus, from a chosen zone, we can define P := |{j : Θj ≤ 30◦}| and

A := |{j : Θj ≥ 60◦}| from those divisions that occurred in that zone. Values of A and P were pooled
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across replicates of simulated meristems with identical conditions and parameter sets. Percentage

of periclinal divisions within that zone is returned as P/(A+ P ).

3.3 Computational Model Predictions

The biologically calibrated P3D model maintains the monolayer structure of the SAM

epidermis observed in experiments. In wildtype SAMs, the epidermal and subepidermal lay-

ers of the SAM (collectively called tunica) are maintained as clonally distinct layers. Failure to

maintain these layers in the wildtype SAM results in misplacement of organs. However, in 2D model

simulations initialized with these layers, the tunica’s layer-structure deteriorates within 40 hours. In

those 2D simulations, cells in the tunica tend to become highly compressed and elongated.

Local buckling of the layers pushes some cells out-of-layer by allowing its neighbors to form

new connections above or below it. To quantify the proportion of SAMs whose layer structures

can’t be maintained within forty hours, we introduce and observe the time evolution of monolayer

length of model simulated SAMs (Figure 3.9 A-B and Section 3.2 for technical details), which evolves

continuously in time if a monolayer of cells is maintained.

Of 30 2D model simulations at each tension level (as defined in Section 3.1.10), 43% of SAMs

exhibit monolayer disruption in the free boundary condition and 7-10% in the low, average, and high

tension levels. Under the 2x tension condition, we did not capture any monolayer disruption in 2D

simulations. In P3D simulations, only 7% of free-boundary SAMs exhibited monolayer disruption,

and all samples maintained monolayer structure for any higher tension level.

This suggests that cells anisotropically expanding out-of-plane offsets structurally disrup-

tive cell-cell crowding in the direction of the longitudinal plane. The only quantifiable instances of

monolayer breakdown in P3D simulations were under the free boundary condition, which demon-

strates that there is a stabilizing effect of experimentally-calibrated boundary forces on the layered

tunica structure of the SAM.
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Tunica cell shape distribution is sensitive to cell-cell crowding without considering out-

of-plane growth. To further examine the crowding of cells in the epidermal and subepidermal cell

layers which may disrupt cell monolayer structure, we calculated the cell aspect ratio distributions

in the L1 and L2 cell layers, the apical corpus, and the basal corpus. The aspect ratio of a cell is

defined as the ratio between cell length along its longest axis and its length in the perpendicular

direction as in [1], and it is used as a measure of cell elongation. The mean aspect ratio of cells in the

L1 and L2 is larger in 2D simulations than in P3D simulations for any tension level (Figure 3.9 C-E).

The large aspect ratios obtained in the 2D simulations are symptomatic of individual cells being

“squeezed” into an elongated shape due to cell crowding in the same layer.

This is significantly reduced by out-of-plane expansion in the P3D model (Tukey HSD

test shows p < 10−15 for the L1 impact and p < 0.01 for the L2 impact). Moreover, L1 cells in

the 2D model showed no significant differences in aspect ratio between any levels of tension that

were tested pairwise, with the exception of the 2X boundary force condition. In the P3D model,

increasing tension provides a significant decrease in the aspect ratios of tunica cells (Figure 3.9 C-D).

This indicates that without accounting for 3D cell anisotropic expansion, the individual cell shape

is dominated by cell-cell crowding. We neither observed nor expected substantial changes in the

basal corpus, since the division plane orientation of cells in the basal corpus is determined by signal

concentrations that were not perturbed in these tests.

Tissue shape and apical corpus cell shapes are robust to mechanical perturbation. We

noticed that the impacts of model choice (2D vs. P3D) and varying the magnitude of boundary forces

on the distribution of cell aspect ratios were restricted to the tunica, with no significant differences

in the corpus (Figure 3.9 E).

We then sought to determine whether the tissue-scale shape was also robust to these factors.

Tissue shape was quantified by introducing and calculating relative curvature, which captures the

shape of the SAM while being agnostic to the absolute size of the simulated tissue (Figure 3.10 C
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for a diagram and Section 3.2 for formulation and details). Figure 3.10 shows that most simulated

SAMs from both the P3D and 2D models approach the same relative curvature value by 40 hours.

Simulated SAMs that do not reach the same relative curvature in 40 hours were obtained in the P3D

model, and this is due to the reason that lower in-plane division rate in the P3D model simulations

results in a slower rate of convergence of P3D model simulated SAMs to their calibrated curvature.

Moreover, as the magnitude of boundary force increases, the variance of the relative cur-

vature of the SAM decreases significantly. Relative curvature variance decreases from 0.06 under

the free boundary condition to 0.005 under the 2X force condition (Section 3.1.10). Figure 3.10 B

shows that increasing the magnitude of boundary force increases the rate at which the curvature of

the SAM is established. However, it is noteworthy that mean relative curvatures of 2D and P3D

free-boundary condition model simulated SAMs at 40 hours is very similar to the simulated SAMs

subjected to boundary forces (recalling that these forces act to restore the SAM curvature towards

rEx, described in 3.1.3). These observations together with the robustness of apical corpus cell aspect

ratios, suggest that there may be a regulator of cell and tissue shapes. We suspected that this reg-

ulation is an emergent property of mechanically determined division plane orientation in the apical

corpus, motivating our investigation in the following sections.

The apical corpus mechanical division mechanism regulates cellular and tissue shape.

To investigate whether cell division plane placement is compensating for mechanical perturbations,

we analyzed division plane patterning via calculation of the percentage of periclinal divisions (mea-

surement specifics in Section 3.2). The division planes in 150 2D simulated SAMs’ apical corpus

divide at 52.1% periclinal frequency and in 150 P3D simulations divide with 47.5% periclinal fre-

quency (two-way ANOVA, p < 0.002). Both 2D and P3D model simulation percentage-periclinal

means are within the confidence bounds determined in our previous experimental study [1]. This

change in division patterning, which occurs while cell and tissue shape remain largely unchanged,
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suggests that an emergent property of the mechanically-determined division plane placement in the

apical corpus has the emergent property of regulating the cell and tissue shape.

Experimentally, this would be consistent with the fact that mutant SAMs, experiencing

higher levels of CK (pCLV3::LhG4; 6xOP::ARR1-∆DDK-GR) and also no CK (cytokinin recep-

tor mutants), have substantially different shapes and division patterning [1]. In (pCLV3::LhG4;

6xOP::ARR1-∆DDK-GR) mutants, the characteristic shape of the dome is observed to be qual-

itatively taller and more pointed and, on the cell scale, a clear deviation from wildtype division

patterning is observed (Fig 3 from [1] for a representative). In wus-1 mutants, division patterning

also deviates to promote periclinal division, and the wus-1 mutant meristem is notably flatter.

In order to confirm that there was a distinct structural difference between the simulated

tissues in 2D and P3D models, we examined three more abstract quantifications of tissue structure

patterning using the simulated SAM adhesion partner graph (Figure 3.11 A-C). This method has

been used before for analyzing many types of tissues [109]. Centrality has been used as a measure of

how important an individual node in a graph (or cell in a tissue, in this case) is for communication

[109, 110]. This has been used in the SAM specifically to quantify the relative importance of any

individual cell in diffusion-based signaling [21]. We chose to investigate the frequency distribution of

three established types of centrality: random shortest path betweenness centrality (RSPB centrality)

[111], random shortest path betweenness net centrality (RSPBN centrality) [111], and PageRank

centrality [109].

The frequency distributions of the RSPBC and RSPBNC of cells in 30 SAMs were shifted

significantly lower between 2D and P3D simulations (Figure 3.11; ANOVA test, p < 10−15 for

RSPBC, p < 10−16 for RSPBNC). The PageRank centrality distribution of cells was significantly

higher in P3D simulations (ANOVA p < 10−15). While applying these metrics to the model sim-

ulations representing a longitudinal section of a tissue (as opposed to the full 3D tissue in vivo)

is rather abstract, it indicates substantial differences in the patterning between the 2D and P3D

models in addition to the percentage periclinal division patterning. Despite the marked difference in
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tissue structure and division patterning, the tissue shape distributions (via relative curvature) and

cell shape distributions (via aspect ratio) are robust to model selection.

Apical corpus structure is robust to perturbations of tunica structure. The percentage

of periclinal divisions in the apical corpus in model simulations was robust to variation of tension

magnitude up to and including double the biological maximum value (two-way ANOVA, p > 0.1).

This means that even under substantial mechanical perturbation of the tunica, the mechanically-

driven division patterning of the rib meristem remains unaffected. Values of RSPB, RSPBN, and

PageRank centrality throughout the tissue were also unaffected by tension in the tissue, indicating

a robustness of SAM’s tissue structure to boundary tension.

The tunica cells are tightly adhered to the apical corpus cells, it is noteworthy that even

under the 2X tension condition, there was no impact of the boundary forces on the shape or structure.

This is in spite of the fact that the model apical corpus cells divide in response to local mechanical

cues. This suggests that there is some other emergent phenomenon that prevents the effect of tension

tangent to the SAM surface from propagating into the apical corpus structure.

80



Figure 3.8: Obtaining rEx and w from experimental data. (A) 3D confocal micrograph
of the SAM. (B) Corresponding output of the Spherical Harmonic Segmentation of the SAM.
Each colored region in 3D is a cell that was identified via the segmentation mechanism. (C)
Individual reconstructed section of a SAM with cell sections represented as rings. (D) Multiple
longitudinal sections can be generated from the 3D reconstruction. The longitudinal planes are
rotated about the (manually identified) SAM apex. (E) Cells in the L1 of each section were
isolated in MATLAB (blue). A sphere was fit via the MSAC method, which identifies the best-
fit sphere which is robust to the presence of primordia bulges. (F) To measure w, Experimental
cells i that appear in any of the longitudinal section from (D) have their width in the direction
orthogonal to the plane, di, measured. The value for w is taken as the average of all di from 17
wildtype experimental SAMs.
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Figure 3.9: Apical Surface Structure. (A) Monolayer length of the SAM over time. Each
panel shows longitudinal data from in-plane (red) and out-of-plane (blue) simulations under
different tension ranges. Discontinuities are present in both 2D and P3D simulations under the
free boundary condition, and only persist in the 2D simulations as tension increases. Jumps in
the monolayer length are sufficient to indicate a break in L1 monolayer structure. (B) Schematic
of the monolayer length. Details of this computation and its properties are in Section 3.2. (C-
D) Mean aspect ratios of both the 2D and P3D model cells in layer 1 (C) and layer 2 (D).
Error bars are 95% confidence intervals computed with the Benjamini-Hochberg correction.
Conditions with non-overlapping error bars have statistically significantly different means (p <
0.05). (E) Frequency distributions of the aspect ratio of cells in layer 1, layer 2, Apical corpus,
and Basal corpus. Each frequency distribution comprises cell aspect ratios from 30 simulated
SAMs that were run to 40h. In each column, the top five graphs (green region) are taken from
2D simulations, and the bottom five (blue region) are taken from P3D simulations. The five
frequency distributions per region were generated under different levels of boundary tension,
from Free boundary to 2X. Rounded cells have aspect ratio 1, while elongated cells have higher
aspect ratios. Cells in the 2D simulations are tightly squeezed by their neighbors, increasing
their aspect ratios.
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Figure 3.10: Tissue shape is robust to P3D or 2D model selection and choice of
boundary force magnitude. (A-B) The relative curvature for 30 SAMs per tension level
are shown for both 2D and P3D simulations. In each facet, the horizontal axis shows the
timeline of the simulation. These data are shown in two ways, splitting data points between
multiple graphs by (A) tension magnitude levels and (B) 2D and P3D simulations. In each
graph, the vertical axis describes the curvature of the simulated SAM. Each facet shows the
individual data points from 30 simulations, and the ribbons around each interpolated line show
the standard error. Invisible or non-overlapping error ribbons for any point on the horizontal axis
represent significant differences between the faceted populations at that time with p < 0.05. (C)
Schematic of the calculation of relative curvature (details in Section 3.2. To investigate shape
while remaining agnostic to absolute size, the SAM is scaled down to width 1.
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Figure 3.11: Impact of pseudo-3D behavior on tissue structure. (A) Cell wall nodes
from a simulated SAM are shown in blue. An arbitrary label is placed on its centroid. (B-C)
A voronoi tessellation (B) was performed on each centroid to extract the adhesion neighbor
network (C). (D) Frequency distributions of RSPB random-walk centrality, RSPBN centrality,
and Pagerank centrality of cells taken from simulated SAMs at t = 40h. Centrality values were
pooled from 30 SAMs from each tension-level in both 2D (green region) and P3D (blue region).
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Chapter 4

Computational Model

Implementation and Code

Availability

4.1 Code Availability each model

Computational model code for the model presented in Chapter 2 is available at

https://github.com/ICQMB/

Combined-signaling-and-mechanical-mechanism-maintains-the-structure-and-shape-of-the-SAM.git. Com-

putational model code for the 2D and Pseudo-3D model presented in Chapter 3 is available at

https://github.com/cmich004/ScePlantCells Parallel/tree/division.
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4.2 Code Structure

The object-oriented C++ code from each model follows the same hierarchical structure.

“Wall Node” and “Cytoplasm Node” objects are endowed with member variables containing their

coordinates in R2, as well as variables for the local mechanical parameters (e.g. kbend). Wall

Node objects, in particular, have a doubly-linked list structure which endows Wall Nodes with a

neighborhood structure. Each Wall Node and Cytoplasm Node belongs to a “Cell” object, which also

contains cell-scale variables such as CPi, anisotropic expansion direction v, and signal concentrations.

Cells have member functions which allow them to label and modify node, e.g. heterogeneously

assigning mechanical properties to wall nodes as described in Chapter 3 Section 3.1.5. Cells belong

to a single “Tissue” object, whose member functions loop through every cell and executes tissue-

scale model components, such as assigning [WUS] and [CK] values to simulated cells. Stage 2 of

the simulation begins at 1.1h, or Ti = 10, 000; simulations follow Stage 1 behavior for Ti < 10, 000.

Pseudocode for the main loop is given in Algorithm 1. Components unique to the pseudo-3D model

components are indicated as such in the pseudocode.
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Algorithm 1 Main program to execute model simulations.

Require: input parameters P

1: Define tissue T = T (P ) . This implicitly defines all initial cells and nodes.

2: Initialize adhesion neighbors and signal concentrations in all cells

3: Determine which cells are expanding out-of-plane, if running the P3D model

4: for E doach timestep Ti

5: Update chemical signals and cell anisotropic expansion directions every 4.4h

6: if Stage 2 is in progress then

7: Add new wall to cells every 7min if tensile stress is sufficiently high

8: end if

9: if Stage 1 is in progress then

10: Update adhesion connections between nodes every 7min . This allows cell-cell sliding

11: else Stage 2 is in progress

12: Update adhesion connections between nodes every 5.5h

13: end if

14: if Ti = 0 then

15: Identify nodes on simulation boundary to experience FBoundary

16: end if

17: if Stage 2 is in progress then

18: Update CPi for each cell i

19: Divide cells if CPi ≥ 1. If so and in the P3D model, determine the anisotropic expansion

direction for the next cell cycle.

20: end if

21: Calculate all forces experienced by nodes. Store
∑
∇E as member-variables in each node

22: Update cell locations using the forward Euler method

23: Print output for time-series metrics

24: end for
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Due to the computational demand of these simulations, CPU parallelization was imple-

mented using the OpenMP API, distributed through the GNU Compiler Collection. We used this

method to parallelize all functions that occur for each cell independently. Notably, lines 7, 10, 12,

18, 19, 21, and 22 in Algorithm 1 while synchronizing threads between each of these lines. We ran

this simulation via parallelized CPUs since many cell-scale functions are not easily GPU-parallelized

in many cases, due largely to (1) the heavy reliance upon the linked-list structure of cell wall nodes,

(2) the difference in calculations between Cytoplasm and Wall nodes for each cell, and (3) the

heterogeneity of the number of adhesion neighbors that each wall node possesses.
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Chapter 5

Experimental and Image Analysis

Methods Used for Calibration of

the Models

This chapter contains the experimental methods and image analysis techniques used in

this dissertation. All experimental methods were designed and performed by G.V. Reddy, Kevin

Rodriguez, and Alexander Plong at the Reddy lab at U.C. Riverside. Image analysis techniques

were selected and configured by Amit K. Roy-Chowdhury his graduate student Calvin-Khang Ta.

Output of image segmentation methods were analyzed by Christian Michael and Calvin-Khang Ta.

Section 5.1 in particular is a reproduction of the experimental methods used in [1]. The text of

Sections 5.2-5.3 are reproductions of the supplemental information of [1], and were written primarily

by myself with assistance from Mikahl Banwarth-Kuhn, Calvin Khang-Ta and Kevin Rodriguez.

Figures 2 and 7 and their captions in this chapter were primarily created by Christian Michael.
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5.1 Experimental methods used in the 2D modeling study

5.1.1 Plant growth and genotypes.

Plants were grown on 0.5X MS media in plates at 25◦C under continuous light for 7-8

days. The null mutants in this study: WUS null mutant - wus1-1 [69] and cytokinin triple receptor

mutant - cre1-12; ahk2-2; ahk3-3 [112] have been previously described. Transgenic plants containing

fluorescent reporters for the WUS protein pWUS::eGFP-WUS [66] and cytokinin signaling reporter

pTCS::mGFP-ER [71, 72] have also been previously described. A two component system, consist-

ing of a LhG4 transcription factor driven from CLAVATA3 promoter constitutively activating the

6xOP promoter, and a dexamethasone (Dex) inducible rat glucocorticoid receptor (GR) were used

for ectopic misexpression of the WUS protein pCLV3::LhG4;6xOP::eGFP-WUS-GR [61] and CK

signaling pCLV3::LhG4;6xOP::ARR1-∆DDK-GR[68]. For induction of ectopic expression, seedlings

were transferred to 0.5X MS plates containing 10 µM Dex (Sigma) for 48 hours.

5.1.2 Imaging

Seedlings were embedded in molten 4% agarose and then chilled in an ice bath. Longi-

tudinal hand-dissections, using polished blades (FEATHER), were done through the seedling and

the supporting agarose. Samples were then submerged in plasma membrane stain, FM4-64, for

10 minutes and imaged with a 40x objective lens on the Zeiss LSM 880 and Leica SP5 confocal

microscopes. For 3D analysis of cells, the inflorescence meristems were stained with FM4-64 and

confocal cross sections were obtained by acquiring z-stack on the Zeoss LSM 880. FM4-64 staining

was activated with 561 nm - Zeiss or 543 nm - Leica SP5 and collected with Airyscan detector -

Zeiss or collection window 600-650 nm - Leica SP5. eGFP and mGFP were activated with 488 nm

and collected between 525-550 nm. Metrics to calculate cell and tissue values from imaging analysis

and simulations are detailed in Section 5.2.
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5.1.3 Statistical Analysis.

Statistical tests were implemented using the statannot package in python [113]. Statistical

analyses of the data (p-values and type of test) are presented in the Results section.

5.2 Image segmentation, quantification and analysis

5.2.1 Image segmentation

Images were manually cropped using MATLAB to focus on the distal portion of the SAM.

Each cropped micrograph was segmented in MATLAB by isolating the color channel containing

stained plasma membrane and passing it through a 2-D Gaussian filter with a standard deviation

of 2.5. An h-minima transformation was then applied, with the h value optimized to minimize the

variance of cell areas in each tissue region. This was followed by a watershed transformation to

segment the image and remove cells on the boundary of the image. All functions mentioned were

part of MATLAB’s Image Processing Toolbox.

5.2.2 Feature quantification

Segmentation resulted in a mask compatible with MATLAB’s “regionprops” measurements,

which included calculations of cell centroids, areas, major and minor axis lengths, and orientations

(see Fig 5.1, panels H, I, and J). We then manually annotated the layer identity of each cell as L1,

L2, or corpus (see Fig 5.1, panel B). The depth of each cell was calculated by measuring the distance

from the centroid of the cell to the center of the L1 cell layer, where the center of the L1 cell layer

was defined to be the mean of all centroids belonging to cells in the L1 cell layer. The aspect ratio of

a cell was calculated to be the ratio of the longest axis to the shortest axis of the cell. To calculate

the width of the SAM, the horizontal distance between the left-most and right-most cell centroids

among all L1 cell centroids was calculated for each SAM image. To calculate the dome height of the
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SAM, the vertical distance between the lowest and highest cell centroids among all L1 cell centroids

was calculated for each SAM image (see Fig 3 F in [1]).

Definition and quantification of anticlinal and periclinal divisions. Classically, anticlines

and periclines are used to quantify the patterning of division plane placement relative to the nearest

tissue surface or sub-epidermal cell layers [55, 56]. While developmentally relevant, such definitions

present problems in the present study because these axes implicitly require placement of vertices

in the corpus based on SAM shape which may require inconsistent or arbitrary heuristics that

vary considerably between some of the more deformed mutant phenotypes (e.g. flat vs. enlarged

meristems), ultimately leading to ambiguous definitions of anticlines and periclines for the present

work. Since we are considering cells near the tunica in the central zone and for the above reasons,

we define anticlinal and periclinal growth and division relative to the apical-basal axis in both

simulations and experimental images. In the CZ, the conservative classifications made with our

method would likely align well with classification of anticlines and periclines in the natural coordinate

system as presented in [55, 56], provided that the center of the natural coordinate system was

placed below the SAM. Moreover, we acknowledge that we are using this terminology as a metric

for establishing phenotypic distinction between meristems, which is independent of the original

developmental context behind the classic definition of anticlines and periclines.

Pairs of cells that descended from the division of a single precursor cell (i.e. sibling cells)

were manually identified based on four characteristics: 1) small longitudinal section areas, 2) similar

cell sizes, 3) straight flanking walls on the lateral edges of the cell pair and 4) one cell wall shared

exclusively between the cell pair (see Fig 5.1, panel G). To categorize division planes into anticlinal

and periclinal, the apical-basal axis was used as an absolute reference for the vertical direction.

This is because near the central zone (see Fig 1.2A in Chapter 1), the curvature of the SAM is not

pronounced enough to have significant disparity between the apical-basal direction and the direction

normal to the surface of the SAM. With the apical-basal axis taken as vertical, we defined the
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Figure 5.1: Multiple levels of SAM organization. (A) An annotated longitudinal section
through a wildtype shoot apical meristem (SAM) and organ primordia. Clonal layers (B) and
distinct functional zones (C) of the SAM. (D) Annotated cell walls from inferred daughters
cells after division. Anticlinal cell divisions are shown in yellow and periclinal cell divisions are
shown in cyan. (E) Overlay representing the nuclear WUS protein distribution (green). (F)
Overlay representing TCS reporter of cytokinin signaling (purple). (G) Four features used to
determine cell division plane orientation. Segmentation output of wildtype (H),ectopic misex-
pression of CK [pCLV3::LhG4; 6xOP::ARR1-∆DDK-GR] (I), and ectopic misexpression of WUS
[pCLV3::LhG4; 6xOP::eGFP-WUS-GR] (J) experimental SAMs. Line segments inside cells are
provided to help visual each individual cell’s aspect ratio and orientation. The length of a cell’s
line segment is proportional to its aspect ratio- where cell’s with aspect ratio = 1 have line
segments with length 0. The directional vector of each line segment represents the orientation
of the longest axis of the encompassing cell. Orange denotes cells that are classified as small
cells and blue denotes cells that are classified as large cells (see S1 Appendix Section 5.2.3 for
details on analyses comparing large and small cell characteristics).
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orientation of the newly-placed cell wall as the angle that the plane makes with the radial (i.e.

horizontal) axis. More specifically, since the data are two-dimensional, new cell walls appear as

lines, and the orientation is the acute angle between that line and the horizontal axis. Anticlinal

divisions are those divisions with orientation ≥ 60◦ and periclinal divisions are those divisions with

orientation ≤ 30◦. More detail on the selection of these thresholds is given in S2 Appendix. Once a

pair of sibling cells was identified, the orientation of the new cell wall between them was quantified as

either anticlinal (perpendicular to the SAM surface) or periclinal (perpendicular to the apical-basal

axis). The number of divisions of each type was counted for a minimum of 10 experimental samples

for each signaling condition.

Quantification of the direction of anisotropic cell expansion. In this study, we define the

orientation of an individual cell as the acute angle between the radial (i.e. horizontal) axis and the

longest axis of the cell. This value is given in degrees, ranging from 0◦ to 90◦ . In this way, the

orientation of a cell describes its direction of anisotropic expansion relative to the SAM tissue. For

example, a cell with orientation equal to 0◦ is expanded primarily along the radial axis of the SAM

and a cell with orientation equal to 90◦ is expanded primarily along the apical-basal axis of the SAM.

We define cells as being elongated if the cells have aspect ratio > 1.3. This threshold was determined

because elongated cell sections in 2D have their anisotropic expansion direction better-represent the

cells they are taken from in 3D (see S2 Appendix for details).

Quantification of the levels and spatial patterns of chemical signaling. The WUSCHEL

(WUS) levels of individual cells were measured using fluorescence intensity from isolated color chan-

nels reporting the WUS protein in experimental SAM images for wildtype condition as shown in

Fig 2.2B in Chapter 2. The WUS levels of individual cells and their corresponding cell depths were

then analyzed and fit to an exponential function as in [83]. This process was repeated for SAM

images containing the cytokinin (CK) distribution, which was visualized similarly (see Fig 2.2C in

Chapter 2).
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5.2.3 Large and small cell classification

We are using cell size as a proxy to classify cells as recently divided or about to divide. In

order to get the volume of data to perform the analyses presented in this work, we relied on methods

precluding the acquisition of time-series data. As such, using size as a proxy for the pre-mitotic

or post-mitotic state of a cell was a methodological necessity. For analyses comparing large and

small cell characteristics separately, we heuristically identify “large” cells as those with a greater

than average cell area within the SAM section the cell was taken from, and “small” cells to be those

cells with lower than average cell area within the SAM section the cell was taken from.

5.3 Justification of 2D experimental methods

5.3.1 Feature quantification across neighboring longitudinal section im-

ages

To determine whether feature quantification of two-dimensional, longitudinal section im-

ages was robust to the choice of median longitudinal axis, the distributions of cell aspect ratios and

orientations were compared between neighboring longitudinal section images for 9 wildtype exper-

imental SAMs. Five to ten parallel, longitudinal section images were taken from each meristem

spaced apart by 1.26 microns. Cell aspect ratios and orientations were quantified for each image as

described in S1 Appendix. Distributions of cell aspect ratios and orientations were compared across

all longitudinal section images for each meristem using the one-way analysis of variance (ANOVA).

It was determined that the distributions of cell-scale features were not significantly different between

longitudinal section images.
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5.3.2 Comparison of 3D vs. 2D experimental data

The use of a 2D model suggests that for a more accurate direct experimental comparison, 2D

experimental data should be used. However, we would like to confirm that we may draw meaningful

conclusions about an intrinsically 3D system from 2D data. Specifically, the orientation of the cell

section was predicted to be highly correlated with the orientation of the cell in 3D among elongated

cell sections - i.e. cell sections with large aspect ratios.

To test this prediction, 2D sections and 3D reconstructions of multiple cells were compared

to one another. Two 3D Z-Stacks of wildtype inflorescent SAMs were imaged at 0.33 micron intervals

producing a voxel size of 0.13 x 0.13 x 0.33 microns. These 3D images were segmented by using a

deep neural network that was trained to predict, for each cell in 3D, the distance between each pixel

from the boundary of the cell containing that pixel. The prediction includes the coefficients required

in order to spatially fit the cell’s volume in 3D to spherical harmonics, and the error in this process

was minimized by training the network on a published, hand-segmented training dataset of multiple

SAMs[114]. This segmentation method was performed in python from the pytorch library, and this

method was detailed by Eschweiler et al. in [27].

This produced two 3D reconstructions of the SAM with 49.5 and 42.9 µm depth, respec-

tively. Using these reconstructed 3D SAM images, we took multiple longitudinal sections of the

reconstructed SAM using open-access MATLAB packages to triangulate the reconstructed SAM’s

cells and intersect them with the cell boundaries. Each plane passed through the apex of the SAM,

and was parallel to the apical-basal axis. Five such planes - each different from one another by

a rotation about the apical-basal axis - were used to generate 2D cross-sections taken from the

reconstruction. Each 2D section image was then analyzed using MATLAB packages (including re-

gionprops) as before to obtain 2D features such as orientation, aspect ratio, and area. Each cell

whose section was analyzed also had its 3D properties analyzed in MATLAB’s regionprops3 package

to extract information such as the 3D orientation of each cell.
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To confirm that the orientation direction of elongated cells in 2D well-represented the

orientation direction of cells in 3D in their ability to categorize cells as anticlinal or periclinal, we

calculated the angle between the orientation vectors and the apical-basal axis (i.e. the azimuthal

angle, which is equivalent to 90◦ minus the orientation of a cell) both in 2D as well as 3D for each

cell section (see Fig 5.2, panels A and B). In the 3D setting, we define cells that are anisotropically

expanded periclinally as those with azimuthal angle ≤ 45◦ and anticlinally as those with azimuthal

angle ≥ 45◦.

It was found that for aspect ratio greater than 1.3, 80% of cell sections had their 2D

azimuthal angle within 15 degrees of the azimuthal angle measured from the 3D cell (see Fig 5.2,

panel C). Categorizations of cell sections as anticlinally or periclinally expanded were made by

placing the section azimuthal angle between 0◦ and 30◦ for periclinal, and 60◦ to 90◦ for anticlinal.

This analysis ensures that with 80% probability, anisotropically expanded cells counted as anticlinal

or periclinal by 2D section observation only give accurate representations of the cells’ anisotropically

expanded in 3D. That is to say, by considering cell sections with aspect ratio ≥ 1.3, we ensure:

Prob(2D Section azimuthal angle ≤ 30◦ and 3D azimuthal angle ≥ 45◦) ≤ 20%, and

Prob(2D Section azimuthal angle ≥ 60◦ and 3D azimuthal angle ≤ 45◦) ≤ 20%.

This is equivalently stated as

Prob(2D Section is classified as periclinal and 3D cell is classified as anticlinal) ≤ 20%, and

Prob(2D Section is classified as anticlinal and 3D cell is classified as periclinal) ≤ 20%.

Moreover, it should be noted that by observing the data (visualized in Fig 5.2, panel C), larger

threshold values, e.g. aspect ratio 1.6, would improve confidence from 80% to 90%, however it would

decrease the amount of experimental data points available. Therefore the threshold of aspect ratio

≥ 1.3 was chosen. Furthermore, by using the ranges of 0◦ − 30◦ and 0◦ − 45◦ to classify cells as

periclinally elongated in 2D and 3D respectively, and similarly using 60◦ − 90◦ and 45◦ − 90◦ to

classify cells as anticlinally expanded, 91% of 2D cell sections identified as anticlinal or periclinal
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Figure 5.2: Verification of 2D section analysis as a proxy for 3D. (A-B) The principal
direction of elongation for both 2D sections (A) and 3D cells (B) are shown in blue. The direction
of apical-basal axis (taken to be the Z axis) is shown in red, and the angle between them are the
azimuthal angles, which we use to classify cells as anticlinally or periclinally expanded. The 3D
cell and section are taken from a z-stack image of a wildtype SAM. The units of the axes are in
microns. The origin point of both the 2D and 3D axes are arbitrary. (C) The difference between
the 2D and 3D cell azimuthal angles taken from 3D cells and their longitudinal section is shown
on the vertical axis. The horizontal axis is the aspect ratio of the cell sections, with larger values
representing more dramatically elongated cell sections. The threshold chosen for aspect ratio
≥ 1.3 is indicated by the vertical red line, and the tolerance of 15◦ is shown as a horizontal line.
Cell sections analyzed in the 2D experimental analysis are those cells to the right of the vertical
line. The aspect ratio threshold of 1.3 was chosen to include a significant portion of data, while
ensuring cell sections were elongated enough to well-represent the behavior of the 3D cell.

agreed with their 3D classification. These considerations indicate that, at least among elongated

longitudinal cell sections, the orientation of a cell from a 2D section provides a good estimation of

the true 3D cell orientation.
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Figure 5.3: Cytokinin signaling increases periclinal cell divisions in Basal Corpus.
Consecutive periclinal division lead to the formation of strips in wildtype (black) and ectopic
misexpression of cytokinin (red). 4-cell strips are caused by three sequential periclinal divisions
and 10-cell strips are caused by nine sequential periclinal division. Significance was determined
by student T-test for ectopic misexpression of CK signaling compared to wildtype. Asterisks
indicate significance at the following levels ****p < 0.0001.

5.4 Experimental and Image Analysis Methods Used for the

Pseudo-3D Model

5.4.1 Experimental imaging ethods

Arabidopsis plants were grown for 3 weeks at 25◦C under continuous light. The SAMs were

excised with 2 cm of the stem. The older flowers and siliques were hand dissected. The stems were

embedded into a plastic imaging box with a 1 cm layer of 1.5% agarose. The stems were positioned

and further stabilized by adding additional molten agarose. The SAMs were then submerged in

deionized water and further processed under a stereo microscope. Extra fine tweezers were used to

remove additional flowers to expose the SAM. To stain the SAMs, the water was removed and a

droplet of 3% FM-4-64 dissolved in deionized water containing 0.016% silwet-77 was placed on each

SAMs for 10 minutes. After staining, plants were again submerged in deionized water and image in

the upright Zeiss880. FM-4-64 was captured to produce Z-stacks by exciting with the 561 nm laser
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Figure 5.4: Comparison of cell orientations, heights, and widths between experimen-
tal wildtype SAMs and wildtype simulations for all four hypothesized mechanisms.
The distributions of cell orientations for mother (solid lines) and daughter cells (dashed lines)
in the (A) apical corpus and (B) basal corpus. The distributions of (C) cell heights and (D) cell
widths in the apical corpus. The distribution of (E) cell heights and (F) cell widths in the basal
corpus. In all Fig, experimental data (black), CAE-E (blue), CAE-M (gold), and CED(green).
Significance was determined by Levene’s test.

and emissions collected with BP 570 nm - 620 nm filter. Individual slices of Z-stacks were manually

cropped to remove the floral primordia that were adjacent but not directly touching the meristem

to improve the segmentation discussed below.

5.4.2 Image Analysis: 3D Cell Segmentation

Two 3D Z-Stacks of wildtype inflorescent SAMs were imaged at 0.33 micron intervals

producing a voxel size of 0.13 x 0.13 x 0.33 microns. In order to utilize these images we perform 3D

segmentation on each cell in each stack of images. Specifically we utilize a deep neural network that

was trained to predict for each pixel the distance from the cell boundary and the parameters to a

spherical harmonic that best fits the cell. By fitting each cell to a spherical harmonic we are able
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Figure 5.5: Ectopic misexpression of CK influences the direction of anisotropic cell
expansion. The distributions of (A) cell aspect ratios and (B-D) orientations in the Apical and
Basal corpus from ectopic misexpression of CK experiments [pCLV3::LhG4; 6xOP;ARR1- ∆
DDK-GR] and simulations comparing three hypothesized mechanisms. (A,B) The distributions
for all cells in experimental (black), CAE-E (blue), CAE-M (gold), and CED (green). The
distributions of cell orientations for (C) mother cells (solid lines) and (D) daughter cells (dashed
lines) were segregated based on cell size and independently graphed. The distributions of (E-F)
cell heights and (G-H) cell widths in the Apical corpus for the ectopic misexpression of CK
condition. The distributions of (I-J) cell heights and (K-L) cell widths in the Basal corpus for
the ectopic misexpression of CK condition. (M) Amount of deviation from a single-cell layer in
the epidermal L1 and L2 cell layers for experimental SAMs (black), CAE-E simulations (blue),
CAE-M simulations (gold), and CED simulations (green) in the ectopic misexpression of CK
condition. (N) The ratio of SAM width to dome height for experimental SAMs (black), CAE-
E simulations (blue), CAE-M simulations (gold), and CED simulations (green) in the ectopic
misexpression of CK condition. (O) Global curvature of the SAM surface for experimental SAMs
(black), CAE-E simulations (blue), CAE-M simulations (gold), and CED simulations (green) in
the ectopic misexpression of CK condition. See S2 Text for detailed description of all metrics
used in this Fig
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Figure 5.6: Ectopic misexpression of WUS influences the direction of anisotropic cell
expansion. The distribution of (A) cell aspect ratios and (B-D) orientations in the apical
corpus and basal corpus from ectopic misexpression of WUS in experiments [pCLV3::LhG4;
6xOP;eGFP-WUS-GR] and simulations comparing three hypothesized mechanisms. (A,B) The
distribution for all cells in experimental (black), CAE-E (blue), CAE-M (gold), and CED (green).
The distribution of cell orientations for (C) mother cells (solid lines) and (D) daughter cells
(dashed lines) were segregated based on cell size and independently graphed. The distributions
of (E-F) cell heights and (G-H) cell widths in the apical corpus of cells in ectopic misexpression
of WUS condition. The distributions of (I-J) cell heights and (K-L) cell widths in the basal
corpus of cells in ectopic misexpression of WUS condition. (M) Amount of deviation from a
single-cell layer in the epidermal L1 and L2 cell layers for experimental SAMs (black), CAE-
E simulations (blue), CAE-M simulations (gold), and CED simulations (green) in the ectopic
misexpression of WUS condition. (N) The ratio of SAM width to dome height for experimental
SAMs (black), CAE-E simulations (blue), CAE-M simulations (gold), and CED simulations
(green) in the ectopic misexpression of WUS condition. (O) Global curvature of the SAM
surface for experimental SAMs (black), CAE-E simulations (blue), CAE-M simulations (gold),
and CED simulations (green) in the ectopic misexpression of WUS condition. See S2 Text for
detailed description of all metrics used in this Fig
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Figure 5.7: Time evolution of simulated cell orientations and aspect ratios by condi-
tion and division plane mechanism. The distributions of cell orientations (Left) and aspect
ratios (Right) at various time points computed directly from simulations, organized by cell di-
vision plane mechanisms and perturbation condition. The distributions of cell orientations and
aspect ratios were obtained for the combined mechanism only in the wildtype simulations.

to filter out low quality segmentations by rejecting any segmentations that result in irregular cell

shapes. This network was trained on a published, hand-segmented training dataset of multiple SAMs

[114]. The segmentation method was performed in Python and the neural network was implemented

using the Pytorch library, and this method was detailed by Eschweiler et al. in [27]. From there we
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Figure 5.8: WUS and CK misexpression and loss of function mutants influence the
direction of anisotropic expansion of cells. (A) Aspect ratio and (B) orientation of L1 and
L2 cells in from wildtype, ectopic misexpression of WUS [pCLV3::LhG4; 6xOP::eGFP-WUS-
GR], and ectopic misexpression of CK [pCLV3::LhG4; 6xOP::ARR1-∆DDK-GR] experimental
SAMs. (C-F) Cell layer specific aspect ratio and orientation of cells from wildtype, wus1 mutants
[wus1-1 ], and cytokinin triple receptor mutants[cre1;ahk2;ahk3 ]. Cell height (G) and width (H)
of L1 and L2 cell layers for each experimental condition. Significance was determined by t-test
for each experimental condition compared to wildtype. Asterisks indicate significance at the
following levels:****p < 0.0001.
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Figure 5.9: Quantification of out-of-plane divisions from time-lapse images. (A-B)
Manually identified cell division events in the L layer of the SAM labeled with plasma membrane-
localized YFP between time intervals 36 and 39 hours of time lapse series. The yellow ring
indicates the central zone; the blue ring is the peripheral zone. (C) Division planes observed
between 36 and 39 hours are marked in red. Lines connecting the SAM apex and the midpoint of
the new cell walls are connected and the angle between the new wall and the line are measured.
(D) Divisions are categorized as in-plane or out-of-plane based on the measured angle. (E-F) In
the deeper layers of the SAM, similar measurements were taken on the nuclear labeled images
of a SAM taken every 1.5 hours hours. Division planes in these images were inferred from cell
nucleus centroid positions (E) before versus (F) after divisions.
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then reconstructed the segmented SAMs by taking the segmentation and computing a convex hull

around each cell in 3D.

This resulted in two 3D reconstructions of SAMs with 49.5 and 42.9 µm depth, respec-

tively. Using these reconstructed 3D SAM images, we took multiple longitudinal sections of the

reconstructed SAM using open-access MATLAB packages to intersect them with the cell bound-

aries. Each plane passed through the apex of the SAM, and was parallel to the apical-basal axis.

Five such planes - each different from one another by a rotation about the apical-basal axis - were

used to generate 2D cross-sections taken from the reconstruction. Each 2D cross-section was then

analyzed using MATLAB packages (including regionprops) to extract 2D features such as orienta-

tion, aspect ratio, and area. Then from each cross-section we also had each cell’s 3D properties

analyzed using MATLAB’s regionprops3 package to extract additional 3D features such as the 3D

orientation of each cell.
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Chapter 6

Discussion and Future Work

In this dissertation, a pseudo 3D (P3D) cell-based SCE model of a longitudinal section

of the SAM in Arabidopsis thaliana is developed and calibrated using 3D experimental imaging

data. The P3D model is novel by taking into account anisotropic expansion of cells orthogonal

to the longitudinal cross-section plane. 2D and P3D models were applied to study the impacts of

epidermal tension within the biologically relevant range resulting from the connection of the SAM

to the surrounding tissue, on the maintenance of SAM tissue shape and structure. In particular, the

apical corpus has a layer structure, which is critical to properly place organs and produce different

cell types during development. Maintenance of such layer structure requires that cell division follows

a specific rule. The cell division plane placement mechanism introduced in [1] was shown to preserve

this important morphology under epidermal tension in this study.

Model simulations demonstrated that cell shapes in the tunica were dependent on the

magnitude of the SAM boundary tension in the P3D model, while other effects, such as increased

cell-cell crowding, dominated tunica cell shapes in the 2D model. Nevertheless, cell and tissue

shapes in the corpus were similar in both 2D and P3D model simulations. Upon analysis of division

patterning and cell neighborhood structure, it is shown that this may be due to the local stress

based division plane orientation mechanism. This was further supported by the observations that the
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model simulations with free boundary conditions produced tissue and corpus cell shapes very similar

to those obtained in simulations with boundary forces that give rise to experimentally observed

curvature.

Moreover, comparison between the 2D and P3D models simulations revealed regulatory

functionality of the mechanically-driven division plane mechanism in tissue patterning. Boundary

tension was shown to play an essential role in maintaining the layered structure of the SAM tunica,

though its importance is overshadowed by cell-cell crowding effects if 3D expansion is not considered

in the model. Cell-cell crowding and buckling observed in 2D simulations suggest that coordinated

anisotropic cell expansion along a plane can lead to tissue morphological changes similar to intestinal

crypt formation [115], or other epithelial invagination processes [116, 117, 118].

It was also observed that even substantially increased boundary tension along the tunica

did not impact corpus structure or distribution of cell shapes in either the 2D or P3D models. This

suggests that the cell division patterning in the apical corpus has some robustness to variations in

the magnitude of tension applied along the tunica. This robustness can facilitate plant growth, as it

implies that the cellular structure of the rib meristem could be robust to mechanical perturbations,

whether they are extrinsic (e.g. tissue damage) or intrinsic (e.g. expansin-induced changes to tunica

mechanical properties).

The results also suggest that mutant types of SAMs which exhibit deviations in percentages

of periclinal divisions and distorted tissue shapes (e.g. pCLV3::LhG4; 6xOP::ARR1-∆DDK-GR

cytokinin receptor mutants [1]) may have their division patterning disrupted by a perturbation of

the ability in cells to respond to mechanical signals. This may be caused by cell-cell crowding from

uncontrolled or uncoordinated cell growth and division within the corpus. It may also be the case

that WUS and CK have a critical role for cells in sensing their mechanical surroundings, and mutant

types are less sensitive to their mechanical environment.

Finally, we hypothesize, based on obtained results, that ectopic activation of WUS and

CK signaling can modify the cell identity, so that the division planes are no longer determined
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mechanically. Therefore, there are several different directions of future study suggested by the

current work. If the mechanical signals generated by boundary forces applied to the tunica do

not impact the apical corpus structure and organization, and if the tunica and apical corpus are

tightly adhered, it would be important to study how the mechanical signals from the tunica are kept

separate from the corpus. It will be also worthwhile to investigate how WUS and CK affect the

ability of cells in the corpus to receive mechanical signals. It is possible that there is a mechanical

signaling pathway that WUS and CK regulate nontrivially, or there are signals independent of the

ability of cells to respond to their local mechanical stresses. Identifying the downstream components

of cell growth and division regulated by WUS and CK, and analysis of the cytoskeletal response to

perturbation of these regulators may provide new insight about the maintenance of tissue structure.

In the future, we plan to build on the recently obtained results on the maintenance of

the WUS protein gradient by CLAVATA3 signaling [19] and the WUS concentration dependent

regulation of CLAVATA3 transcription [20] to implement a dynamic signaling variant of the present

model, wherein the WUS and CK gradients influence the mechanical model, and the mechanical

model provides dynamically evolving domain for signaling submodel.

Future experimentation including analysis of deep-layer division patterning under the con-

ditions of mechanically perturbed SAM tunica tension, can show the independence between the

corpus and tunica of the SAM predicted by the model simulations described in this dissertation.

The spatial localization of this patterning in a functional zone would motivate the investigation of

the functionality of this regulation. It may also suggest a self-maintenance programming of the

SAM in order to maintain a consistent spatial domain and further to facilitate the characteristic

phyllotactic patterning in the plant.
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[111] Ilkka Kivimäki, Bertrand Lebichot, Jari Saramäki, and Marco Saerens. Two betweenness

centrality measures based on randomized shortest paths. Scientific reports, 6(1):1–15, 2016.

[112] Masayuki Higuchi, Melissa S Pischke, Ari Pekka Mähönen, Kaori Miyawaki, Yukari Hashimoto,

Motoaki Seki, Masatomo Kobayashi, Kazuo Shinozaki, Tomohiko Kato, Satoshi Tabata, Ykä
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