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Abstract 

Levee stability is highly influenced by seepage. Specifically, hydraulic 
conductivity distribution within a levee influences pore pressure distribution 
and controls the drained strength of the soil. In this study the influence of 
hydraulic conductivity and blanket layer thickness on failure probability is 
evaluated within the context of reliability analyses that also include soil 
strength and unit weight as random variables. First-Order Reliability Method 
(FORM) is used to evaluate reliability, rank random variables by importance 
and to obtain sensitivity of the solution to each random variable and its 
distribution parameters. Stability is computed using Spencer’s method of 
slices coupled to a finite element seepage code to directly evaluate pore 
pressure. In addition, response surface method solutions are compared to 
the direct reliability solution to assess response surface accuracy. The results
show that blanket layer thickness is more important than most strength 
parameters and that the uncertainty in hydraulic conductivity is less 
important to the variance in safety factor for the case of a low-permeability 
blanket layer. Numerical challenges caused by implementing a finite element
limit-state function are discussed. Response surface methods are found to 
give a reasonable approximation to the direct reliability solution when the 
design point is between response surface fitting points.

INTRODUCTION

The evaluation of the expected performance of levee systems is a 
challenging problem and given the many miles of levees that must be 
evaluated for potential failure it is essential to develop risk based 
assessment methodologies to guide efficient allocation of resources (NRC 
2013). In Northern California, 100’s of miles of levees along the Sacramento 
River present a particular challenge and have been the subject of extensive 
analyses on regional scale (URS and JBA 2008; DWR 2012). However, while 
the regional approach provides assessment of the global risk to the system, 
it does not consider specific local conditions or mechanisms. The purpose of 
the analyses presented herein is to develop a more site specific mechanistic 
model of levee performance. We build on prior work of the U.S. Army Corps 
of Engineers who used expert elicitation and the First-Order Second Moment 
reliability analysis to arrive at the risk of levee failure (USACE 2006; Perlea 
and Ketchum 2011). The advantage of the reliability analysis is that it 
incorporates uncertainty of input parameters and can provide important 
insights to guide future analysis and investment in these important 



engineering systems (Baecher and Christian 2003). In the approach 
presented herein we use the First-Order Reliability Method (FORM), which 
uses complete probability information to assess failure probability and is able
to provide a suite of additional results that quantify the relationship of the 
solution to random variable input parameters (Der Kiureghian 2004). 
However, the solution requires iterative evaluation of the geotechnical 
response, making FORM a difficult method to implement in practice without a
significant investment in time. A common solution to this obstacle is to use 
response surface methods, which use a variety of fitted functions to 
approximate geotechnical response (Li et al. 2016); however, their accuracy 
can be difficult to verify. By combining existing seepage, stability and 
reliability codes into a coupled code, we are able to incorporate hydraulic 
conductivity and blanket layer thickness into a reliability analysis. Response 
surface methods are also shown for comparison to provide insight to analysts
without access to a coupled seepage, stability and reliability code.

MECHANISTIC LEVEE MODEL

An embankment cross-section was chosen to represent Sacramento River 
levees south of Sacramento in the Central Valley of California. A soil profile 
typically consists of discontinuous floodplain deposits where silt and clay 
surficial soils formed by overbank flows or low-relief marshland that are 
underlain by sandy meandering channel deposits. Active channels are 
confined by embankments, or levees, that have been constructed and 
maintained over 150 years using a variety of methods and materials and 
generally do not impound significant water levels outside of flood events. 
Levees are typically situated on top of fine-grained overbank deposits 
completely intersected by the confined channel, allowing a direct hydraulic 
connection between the river and relatively high-permeability channel 
deposits. This condition develops high pore pressures in the blanket layer on 
the land-side of the levee, reducing effective stress and stability of the slope 
as well as causing foundation erosion from high hydraulic gradients (under-
seepage).

Seepage and stability are evaluated for a single levee cross-section (Figure 
1) consisting of a symmetric 5.2 m embankment founded on a 5.5 m low-
permeability blanket layer underlain by a 9.8 m aquifer, both of uniform 
thickness. A 6.1 m berm separates the water-side levee toe and channel, 
which is 10.7 m deep and intersects the blanket and aquifer. Channel and 
levee slopes are 2.5:1 (H:V) and the levee crest is 7.6 m wide. Embankment 
and aquifer soils were modeled as poorly graded sand with silt (SP-SM) and 
the blanket layer as silt (ML); engineering properties are summarized in 
Table 1.



Pore pressures are computed with a saturated/unsaturated transient finite 
element code UNSAT1 (Neuman 1972). The saturated/unsaturated algorithm 
allows for a constant mesh to solve for the phreatic surface; time steps and 
unsaturated soil properties are chosen such that steady state conditions are 
reached in all analyses. A mesh organized in vertical columns contains 
approximately 9,000 rectangular elements varying in size from 1.5 m at the 
bottom and side model boundaries to 0.2 m in and near the embankment, 
with a maximum aspect ratio of 3.1. Three types of boundary conditions are 
applied: constant head on the vertical sides and water-side surface; 
impermeable boundaries on the aquifer base and levee crest; and, constant 
head seepage face conditions on the land-side slope and adjacent ground 
surface. The model was found to be insensitive to the presence of an 
aquitard below the aquifer; therefore, to improve computation time it is not 
included. Water surface elevations (WSE) are evaluated from the levee toe 
(datum) to crest; the 200-year WSE is at 4.0 m, about three-fourths of the 
levee height.

Stability is computed with Spencer’s method of slices implemented in 
MATLAB (MathWorks 2015) by Tabarroki (2011) and uses an efficient genetic
algorithm (Wang 2011) to search for circular and non-circular surfaces that 
minimize safety factor, FS. The stability code is modified to allow 
specification of pore pressures from the finite element seepage solution and 
computed safety factors are generally found to be within 0.01 of FS 
computed with commercial slope stability software.



Analyses described herein use the critical circular slip surface for the 200-
year WSE (Figure 1) across all WSE to provide consistent geometry for 
comparing mechanistic and stochastic results. Safety factor becomes 
marginally stable as WSE approaches the crest, where FS = 0.98. Hydraulic 
gradient, i, which is hydraulic head, h, measured across the blanket vertically
at the levee toe, i = Δh/ZB, is shown on Figure 2a with FS.

STOCHASTIC MODEL

Seven parameters are chosen to be modeled as random variables in the 
stochastic analysis: friction and unit weight for the embankment (ϕE, γE); 
cohesion, friction angle, unit weight and layer thickness for the blanket (ϕB, 
cB, γB, ZB); and the ratio of horizontal hydraulic conductivity (Kr). All variables 
are modeled with a normal distribution, excepting ZB and Kr, which are 
modeled using truncated normal and lognormal, respectively (Table 2). The 
truncated normal distribution allows a lower bound to be set for blanket 
thickness, precluding negative values, and an upper bound to facilitate finite 
element seepage computations. In addition, a lower bound on ZB prevents 
numerical issues from occurring when computing the FORM solution, as 
discussed later. Distribution parameters were selected such that each 
coefficient of variation (c.o.v.=σ/μ) is consistent with data for typical 
Sacramento Valley soils and published values in general (e.g., Baecher and 
Christian 2003); all variables are considered uncorrelated in the analyses 
presented here.

Throughout the text U will refer to the standard normal space to facilitate 
understanding of random variable effects with respect to their distributions. 
All random variables, X, are transformed to U such that U is normally 
distributed with zero mean and unit standard deviation (e.g., μ−σ is 
equivalent to U = −1), which is also a key theoretical underpinning of 
reliability analysis.



Since the hydraulic conductivity ratio controls pore pressure, Kr is included as
a single lognormal random variable to simplify the stochastic model and 
reduce computation time. Kr is modeled as a function of two lognormal 
random variables such that λr=λa,h/λb,v and ζr =ζa,h/ζb,v. Despite Kr being a 
random variable, Ka,h and Kb,v are necessary inputs for the seepage code; 
however, infinite combinations of Ka,h and Kb,v can be chosen for a given Kr. 
Three cases are considered to evaluate this effect: Case 1, hold Ka,h constant 
and vary Kb,v; Case 2, vary Ka,h and hold Kb,v constant; or, Case 3, vary Ka,h and
vary Kb,v. Constant values are set to the distribution mean. As shown in 
Figure 3, safety factor is insensitive to the absolute value of hydraulic 
conductivity when U(Kr)≥−2. For all water surface elevations the FORM 
design point of Kr was in the range 0≤U(Kr) ≤0.2; consequently, the 
reliability analyses do not depend on the absolute values of hydraulic 
conductivity in the seepage analysis and case 1 is used in all analyses.



Reliability analysis is used to evaluate the probability of slope failure, taken 
as P[FS(X)≤1.0] using a limit-state function g(X)=FS−1.0. The FORM solution
is used to solve for a design point, u*, such that g(X)≤0 and probability 
density in the standard normal space is maximized (Der Kiureghian 2004); 
thus, the design point represents the set of random variables, x*, most likely 
to lead to failure. Failure probability is estimated using the reliability index, 
β, such that pf=Φ(-β). FORM also produces quantities which illustrate the 
effect of each random variable and their distribution parameters on the 
solution. The importance vector, α, quantifies the effect of each variable on 
the variance of β, whereas sensitivity vectors quantify the impact of a 
parameter relative to mean and standard deviation ∂β/∂μ and ∂β/∂σ. 
Sensitivity vectors δ and η are ∂β/∂μ and ∂β/∂σ statistically scaled by the 
standard deviation of each random variable, respectively (e.g., δi=∂β/∂σ·σi). 
FORM is carried out with FERUM 4.1 (Bourinet 2010), which is implemented 
in MATLAB (MathWorks 2015) along with the seepage and stability codes 
discussed above.

RESPONSE SURFACE ANALYSIS

Although the reliability analyses described herein are directly integrated with
a seepage and stability solution, a suite of response surface approximations 
was developed to evaluate accuracy when code integration is not possible. 
As described by Sudret and Der Kiureghian (2000), the method computes an 

approximate polynomial limit-state,  where  is a column 
vector of response surface variables x arranged such that individual terms 
are multiplied with coefficients, a, appropriately. Least-square error is 
minimized between a subset of fit points, evaluated at the response surface 
and approximated function, y, to solve for the coefficients per Faravelli 
(1989):

Thus, the vectors  has been expanded to matrix and  to a vector by 
inclusion of a particular set of fit points, xFP while a contains a value for each 
coefficient selected by the analyst. Equation 1 incorporates the Moore-

Penrose pseudo-inverse, allowing  to be a non-square matrix.

At least one fit point is required for every coefficient specified by a particular 
response surface equation. For example, a quadratic equation for two 
variables would contain 5 coefficients if one constant term is incorporated:

 Various response surface models were computed
and compared to the seepage-stability and reliability solutions to evaluate 
their accuracy with respect to the seepage parameters ZB and Kr, specifically:
polynomials of order one through four; several subsets of random variables; 
and, fit points selected at ±1σ, ±2σ and ±3σ for each random variable.



RESULTS

Failure probability increases monotonically from a negligible value at low 
WSE to 0.098 at the 200-yr WSE and a maximum value of 0.531 with WSE at 
the levee crest, corresponding to reliability indices of 1.291 and −0.078, 
respectively (Figure 4a). Solutions were not possible for WSE in the bottom 
third of the levee due to the inability of the stability code to compute FS for 
low values of U. As illustrated in Figure 4b, the design point in U-space for 
each random variable moves toward U=0 for all random variables, with Kr 
the only exception.

Importance and sensitivity vector trends were found to be consistent for WSE
in the upper two-thirds of the levee profile; therefore, results and 
relationships are described only for the 200-yr WSE (4.0 m), but may 
generally be applied to all other locations (Table 3). As illustrated by α, all 
random variables except Kr are capacity variables (i.e., inversely related to 
failure probability), and the importance of each variable is ranked as follows:

While α describes the impact of a random variable on β variance, the 
sensitivity vector δ show that the absolute value of β is most sensitive to a 
change in ZB, the toe blanket thickness, followed closely by γB and Kr. Thus, 
while Kr is the least important variable with regard to variance, a unit-change
in the absolute value of Kr would have the third-largest impact on β relative 
to other random variables. Finally, the sensitivity vector η shows the 
dominating effect that standard deviation for ZB has on failure probability: a 
10% reduction in standard deviation for ZB would result in Δβ=0.3, changing 
computed failure probability from 0.098 to 0.117. Sensitivity is illustrated on 
Figure 4a, where the dashed curves represent computed failure probability 
and reliability index if the distribution means of γB, ZB and Kr were increased 
by ±σ (i.e., the sensitivity δi), providing a graphical understanding of the 
solution variance.



A quadratic response surface with fit points at U={−1, 0, +1} generally 
provides sufficient accuracy for all random variables considered in this study,
with the exception of Kr. Relative error across a range of values produced 
residuals within a few percent of the true solution when evaluation points 
were close to the fit points used to generate a response surface. As shown in
Figure 2b, the shape of FS(Kr) is characterized by a sharply decreasing linear 
segment transitioning abruptly near to a relatively horizontal linear segment,
which is poorly represented by a quadratic function. Response surface error 
is presented in Figure 5a for quadratic, cubic and quartic models where all 
variables were set simultaneously to values of −3≤U≤+3. Cubic models 
required a third fit point, which was either U=2 or 3; the quartic surface used
both points, as it requires 4 total. Clearly a quartic function best fits the 
levee response, although cubic response surfaces approximate the general 
shape, regardless of the fit point used. Regardless, all four models quickly 
accumulate error once applied beyond ΔU=0.25 outside any fit point used.

Response surface accuracy is significantly improved and numerical errors 
avoided when fit points of each random variable are transformed to the 
standard normal space prior to solving Equation 1. To compare accuracy of 
reliability analyses using a response surface, FS was computed at the true 
design point, the results of which are presented on Figure 5b using the same 
four models in Figure 5a. If the response surface exactly matches the true 
solution it should compute FS=0 at the true design point (subject to the 
reliability algorithm tolerance). Despite differences in polynomial order, all 
four models produce consistent errors in computed FS, which are reduced 
from 1.15 to 0.01 as WSE approaches the crest. The decreasing trend and 
remarkable accuracy at high WSE are explained by Figure 4b: as WSE 
increases, the design point converge to ui*=0 for all random variables, which
is where the response surfaces are most accurate.



DISCUSSION

Inclusion of seepage parameters in reliability analyses allows comparison of 
the influence of ZB and Kr relative to that of strength parameters. While the 
results presented here do not produce unexpected results, they do illustrate 
a key deficiency in standard practice. Geotechnical investigations typically 
focus a disproportionate effort to selecting strength parameters for use in 
mechanistic models; however, reliability analyses indicate blanket thickness 
is more important than almost every strength parameter, with γB the only 
exception. Therefore, it may be warranted for similar problems to invest 
more investigation and testing effort to reducing uncertainty of γB and ZB.

Incorporating a finite element seepage analysis into the reliability analysis 
required a consistent finite element mesh and sufficient hydraulic 
conductivity floating point precision to converge to a design point. Inclusion 
of blanket layer thickness, ZB, as a random variable allowed for pore 
pressures and FS to be computed consistently across a range of values of ZB.
Pore pressures applied at the base of each slice in the slope stability 
algorithm are interpolated between finite element nodes using shape 
functions is therefore dependent on the finite element mesh. Early attempts 
at solving the seepage-stability algorithm with FORM could not find a solution
due to small-scale variations in the computed FS, caused by a mesh that was
changing at each iteration. For example, ΔZB =1 m generally resulted in 
ΔFS~0.05 but local variations of ΔFS~0.005 occurred on a much smaller 
scale of ZB (Figure 6). FORM requires a continuously differentiable limit-state 
function and local variations in the derivative prevent convergence to a 
design point. The solution was to allow nodal points nearest the blanket layer
base to be adjusted vertically to match the value of ZB required by each 
FORM iteration while ensuring that failure surface elements remain constant.
The minimum value of the truncated normal distribution for ZB was therefore 
set to prevent the FORM algorithm from modifying the mesh within the 
sliding mass during an iteration. Similar localized variations of safety factor 



occurred due to perturbations in Kr: ΔKr=0.1 resulted in ΔFS~0.001 with 
localized variations of ΔFS~0.0001. In this case, however, the problem was 
caused by insufficient specification of floating point precision in the seepage 
finite element code.

Computation time was dramatically affected by the number of iterations 
required for each FORM analysis, which typically required 3 to 10 iterations 
to reach a solution. Approximately 5 seconds are required to complete a 
coupled seepage-stability evaluation, of which 10 evaluations are generally 
required per FORM iteration on a computer with 16 GB memory and a 4-core 
3.4 GHz processor. Therefore, a single reliability analysis can be completed 
within 3 minutes, but that time could also increase by an order of magnitude 
if a large number of iterations are required. Improving selection of 
computation settings and gradient response of the limit-state function could 
significantly reduce the variability in computation time.

CONCLUSION

We present a FORM analysis of seepage-induced slope stability using a code 
that couples saturated-unsaturated seepage and slope stability computations
within the reliability analysis. Blanket thickness importance was 2 to 3 times 
that of other strength parameters for the levee example considered, but 0.7 
times that of blanket unit weight. Importance of hydraulic conductivity is an 
order of magnitude less. Model error on the order of 1% caused problems in 
the FORM algorithm; care must be taken to ensure smooth levee response 
computations when incorporating finite element solutions in reliability 
analyses. Response surface methods can produce accuracies on the order of 
1% for safety factor and reliability when evaluated at points within the region
of fit points used to develop the model. If a response surface is used for 
reliability analysis the computed design point should be confirmed to lie 
within the region of fit points.
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