Title
SPALLATION REACTIONS OF CALIFORNIIUM-252 WITH HELIUM IONS

Permalink
https://escholarship.org/uc/item/9q0116n8

Authors
Sikkeland, Torbjorn
Amiel, Saadia
Thompson, Stanley G.

Publication Date
1959-02-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SPALLATION REACTIONS OF CALIFORNium-252 WITH HELIUM IONS
Torbjörn Sikkeland, Saadia Amiel, and Stanley G. Thompson
February 1959
SPALLATION REACTIONS OF CALIFORNIA-252 WITH HELIUM IONS

Torbjörn Sikkeland, *, Saadia Amiel, ** and Stanley G. Thompson

Lawrence Radiation Laboratory and Department of Chemistry
University of California, Berkeley, California

Previous publications from this laboratory have given results for excitation functions of spallation reactions on heavy elements in the region of $Z > 90$ with helium ions. The heaviest element studied in detail was Cf^{249}. The purpose of the work presented here was to obtain information concerning the reactions of helium ions with Cf^{252}, the heaviest nucleus available in sufficient amount for such studies at the time of this investigation. An additional objective of the work was to verify previous values for some decay properties of the isotopes produced.

The Cf^{252} was prepared from Pu^{239} by successive neutron-capture and beta-decay reactions in the Material Testing Reactor. The separated californium containing $\text{Cf}^{249,250,251}$ and Cf^{252} was put back into the reactor and irradiated again with neutrons for approximately 8 months to convert all light californium isotopes into Cf^{252}. The Cf^{252} used for thetarget contained < 2% of Cf^{254} and negligible amounts of the other isotopes.

The Cf^{252} (2.4x10^{-3} microgram) was chemically purified and electroplated as a uniform thin deposit on a 0.002-inch-thick gold foil in an area of 0.05 cm^2. A measured amount of Cm^{244} was added in the electroplating step in order to use its well-known $(\alpha,2n)$ excitation function as an internal standard for the cross-section measurements. The bombardments were carried out at the 60-inch cyclotron of the Crocker Laboratory, using a catcher-foil technique with the deflector-channel target assembly previously described. 2

* On leave from JENER, Kjeller, Norway.

** On leave from Israel Atomic Energy Commission, Hakirya, Tel Aviv, Israel.
The energies of the incident helium ions were reduced to the desired values with aluminum absorbers. The recoil products were collected on gold foils of about 5 mg/cm2 thickness. The gold was dissolved in a mixture of hydrochloric and nitric acids. The gold was then separated from the spallation products by sorption on a column of Dowex A-1 anion-exchange resin and the spallation products were electroplated on a platinum disc. The fermium, einsteinium, and californium isotopes were identified by measurements of their decay properties in an ionization-grid chamber with a 48 channel alpha-particle pulse-height analyzer. The decay of the various alpha-particle peaks was usually followed through several half-lives. In some cases the fermium, einsteinium, and californium were separated from each other in the final step by elution with ammonium-alpha-hydroxy isobutyrate from a column of Dowex 50 cation-exchange resin.

The cross sections measured are shown in Figs. 1 and 2, as a function of the energy of the helium ions. The errors given are statistical errors. The broad features of the excitation functions are similar to those of other very heavy isotopes, the interpretation of which has been discussed by other authors.

The product of the (α,3n)reaction Fm253 was found (by following the decay of its alpha particles) to have a half life of 3.0 ± 0.2 days. Its most abundant alpha-particle group had an energy of 6.95 ± .05 Mev. A lower alpha group of about 6.90 Mev energy seemed to be present, in which case the measured ratio of the 6.95 to the 6.90 peak would be of the order of 4. The Fm253 decay was also followed by observing the corresponding growth of its electron-capture daughter, E^{253}, in the fermium fraction. The rate of formation of E^{253} was consistent with the over-all half life of 3 ± 0.2 days for Fm253, and the amount of it
formed gives an electron-capture to alpha-decay branching ratio of 8.5 ± 1.0. A previous publication on Fm253 reported an alpha-particle energy of 6.94 Mev, a branching ratio of 8.5, and a half life of 4.5 ± 1.0 days. The similarity of the excitation function with other $(\alpha,3n)$ reactions in the heavy element region is a confirmation of the mass assignment.

The products of the (α,n) and $(\alpha,4n)$ reactions, namely Fm255 and Fm252, have similar half lives and alpha-decay energies. Thus satisfactory resolution of these isotopes could not be accomplished in the pulse-height analyzer used, and the reaction yields are rather uncertain. The curve shown in Fig. 1 for the (α,n) reaction, therefore, includes the contribution from the $(\alpha,4n)$ reaction. However, the (α,n) curve shown must give the true values for the (α,n) cross sections below the energy corresponding to the threshold for the $(\alpha,4n)$ reaction, which is 31 Mev. An extrapolation of the (α,n) curve above 31 Mev was made, based on the shape of the (α,n) excitation functions of U235 obtained by Vandenbosch et al. Subtraction of the (α,n) cross sections obtained in this way from the sum of the measured (α,n) and $(\alpha,4n)$ yield gives an $(\alpha,4n)$ cross section at 40 Mev of about 1.2 ± 1 millibarns. The peak of the $(\alpha,4n)$ excitation function should occur at about 43 Mev, and it would be of interest to extend the measurements to higher energies in order to obtain more precise values for the cross sections and thus more information about the influence of the 152-neutron subshell.

The $(\alpha,2n)$ excitation function is characterized by a peak around 29 Mev resulting from neutron evaporation. The high tail at higher bombarding energies is a result of direct processes which increases the probability for the residual nuclei to be left at an excitation energy below the fission threshold; therefore relatively high cross sections are observed as compared to the cross section for the evaporation process.
The \((\alpha,p2n)\) reaction proceeds mainly through an \((\alpha,t)\) stripping mechanism\(^3\) leaving the residual nuclei at low excitation energy and therefore relatively high cross sections are observed.

The \((\alpha,\nu n)\) cross section for the production of the short lived isomer of \(E^{254}\) is as high as the \((\alpha,2n)\) cross section at 40 Mev. The \((\alpha,\nu n)\) reaction mechanism cannot be established from an excitation function curve. There is experimental evidence that an \((\alpha,d)\) stripping similar to the \((\alpha,t)\) stripping plays an important part. In addition to stripping \((\alpha,p)\) knock-on followed by an evaporated neutron or possibly \((\alpha,\nu n)\) knock-on probability contributes a significant amount to the cross section.\(^8\)

The upper limit of the \((\alpha,\nu n)\) cross section for production of the long lived isomer was less than 5 millibarns. The upper limit for the \((\alpha,p)\) reaction was 0.5 millibarns in the energy range studied.

ACKNOWLEDGMENTS

It is a pleasure to thank W. B. Jones and the crew of the 60-inch cyclotron for their operation of the machine during the bombardments. Also we wish to thank Professor Glenn T. Seaborg for his interest in this work. We are especially indebted to Thomas C. Parsons for separations of the californium and aid with the target assembly. This work was performed under the auspices of the U. S. Atomic Energy Commission.
REFERENCES

8. Robert Silva, University of California, private communication.
Fig. 1. Excitation function for Cf252 (α,xn) reactions. The open squares (□) are $\sigma(\alpha,n) + \sigma(\alpha,4n)$, the open triangles (△) are $\sigma(\alpha,2n)$ and the solid circles (○) are $\sigma(\alpha,3n)$. Errors given are statistical errors.

UCRL-8103-Rev.

50,577-1

UCRL-8103-Rev.

Fig. 2. Excitation function for Cf252 (α,pxn) reactions. The open circles (○) are $\sigma(\alpha,pn) + \sigma(\alpha,d)$ for production of the short lived isomer of E254. The cross-section for the long lived isomer was less than 5 mb. The solid circles (○) are $\sigma(\alpha,p2n) + \sigma(\alpha,t)$. The upper limit for $\sigma(\alpha,p)$ was 0.5 mb. Errors given are statistical errors.

50,576-1
Fig. 1.
Fig. 2.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.