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Abstract 
 

Untargeted Adductomics of Newborn Dried Blood Spots 
to Identify Exposures Associated with Childhood Leukemia 

 
by 
 

Yukiko Yano 
 

Doctor of Philosophy in Environmental Health Sciences 
 

University of California, Berkeley 
 

Professor Stephen M. Rappaport, Chair 
 
 
The causes of cancer are likely to involve a combination of genetic factors, exposures, and 
random chance. However, current evidence suggests between a third and a half of cancers may 
be preventable, and that exposures may play an important role in the etiology of cancer. In fact, it 
is possible that the most common type of cancer among children, childhood leukemia, may be a 
preventable disease. Current scientific knowledge suggests early life exposures, including 
exposures occurring in utero, play critical roles in the development of childhood leukemia. 
However, few risk factors have been established, and the underlying disease mechanisms remain 
elusive.  
 
The overarching goal of this dissertation research was to address this gap in knowledge by 
performing an untargeted adductomics analysis of archived newborn dried blood spots (DBS) to 
identify risk factors for childhood leukemia resulting from in utero exposures. Metabolism of 
chemicals derived from the diet, exposures to xenobiotics, the microbiome, and lifestyle factors 
(e.g., smoking, alcohol consumption) produce electrophiles that react with nucleophilic sites in 
circulating proteins, notably Cys34 of human serum albumin (HSA). Since HSA has a residence 
time of 28 days, HSA-Cys34 adducts measured in archived newborn DBS reflect systemic 
exposures during the last month of gestation and allow us to explore potential risk factors 
resulting from in utero exposures.   
 
Here, we have developed an untargeted adductomics method to detect HSA-Cys34 adducts in 
4.7-mm punches from DBS (equivalent to 5 – 8 𝜇𝜇L of whole blood). The workflow includes 
extraction of proteins from DBS, measurement of hemoglobin to normalize for blood volume, 
addition of methanol to enrich HSA by precipitation of hemoglobin and other interfering 
proteins, digestion with trypsin, and detection of HSA-Cys34 adducts via nanoflow liquid 
chromatography-high resolution mass spectrometry. As proof-of-concept, we tested the DBS-
adductomics method with 49 archived DBS collected from newborns whose mothers either 
actively smoked or were nonsmokers during pregnancy. A novel normalization method (‘scone’) 
was used to remove unwanted technical variation arising from: HSA digestion, blood volume, 
DBS age, mass spectrometry analysis, and batch effects. A total of 26 HSA-Cys34 adducts were 
detected, including Cys34 oxidation products, mixed disulfides with low-molecular-weight thiols 



2 
 

(e.g., cysteine, homocysteine, glutathione, cysteinylglycine, etc.), and other modifications. Using 
an ensemble of variable selection methods, including both linear and nonlinear models, we found 
that the Cys34 adduct of cyanide consistently discriminated between newborns of smoking and 
nonsmoking mothers with a fold change (smoking/nonsmoking) of 1.31 and a cross-validated 
area under the estimated receiver operating characteristic curve (cvAUC) of 0.79. Indeed, 
hydrogen cyanide is a component of cigarette smoke, and these results indicated that DBS-based 
adductomics is suitable for investigating in utero exposures to reactive electrophiles that may 
influence disease risks later in life.  
 
We then applied the DBS-adductomics method to analyze 783 archived newborn DBS collected 
from childhood leukemia cases and matched controls participating in the California Childhood 
Leukemia Study. Childhood leukemia cases included the two main subtypes, acute 
lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), with additional molecular 
subtypes for ALL. After data preprocessing and normalization, a combination of linear and 
nonlinear models were used to identify adducts that discriminated between leukemia cases and 
controls. Of the 28 Cys34 adducts that were detected, none was predictive of ALL overall. 
However, several adducts showed increases in adduct abundances in subgroups of cases with T-
cell ALL and B-cell ALL with t(12;21) translocations. For both subgroups, elevated levels of 
adducts of reactive carbonyl species in cases may suggest that oxidative stress and lipid 
peroxidation had influenced adduct production. Regarding AML, the Cys34 homocysteine 
adduct (with loss of H2O) was found to consistently discriminate between AML cases and 
controls with a fold change (case/control) of 0.66. Since homocysteine is an important 
intermediate in the folate-mediated one-carbon metabolism, this indicates alterations in 
epigenetic regulations and folate status may be involved in the etiology of AML. Moreover, 
because lower homocysteine levels were detected in newborn DBS collected years before AML 
cases were diagnosed, biological changes involved in the initiation of AML may be present at 
birth and that there may be avenues for preventing the disease. Since this was a hypothesis-
generating study, these findings warrant replication in follow-up studies with larger sample sizes 
of the various subtypes. Future integrated analyses with other omics (e.g., genomics, 
metabolomics, epigenomics) will be key to obtaining a full picture of the disease mechanisms 
regarding childhood leukemia. 
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Chapter 1.  
 

Introduction 
 
 
1.1 Causes of cancer – is cancer preventable?  
 

The global disease burden continues to shift from communicable diseases to cancer and 
other non-communicable diseases (e.g., cardiovascular diseases, chronic respiratory diseases, and  
diabetes).1,2 Cancer is becoming the predominant challenge in global health as the leading driver 
of morbidity, mortality, and health-care costs.1,3,4 Cancer risk involves a composite of inherited 
genes, exposures, and random chance.5–8 Here, exposures broadly encompass non-genetic factors 
including chemical exposures from the diet, xenobiotics (e.g., occupational or environmental 
pollutants), the microbiome, and lifestyle factors such as smoking and alcohol consumption. 
While the relative contributions of genes, exposures, and chance have been debated for some 
time,5,6 it is clear that cancer is a multifactorial disease that probably manifests as a result of 
gene-environment interactions.7,9 In the last decade, genome-wide association studies (GWAS) 
have identified many genetic variants associated with cancer, but most common variants 
individually or in combination showed modest effects on cancer risk (odds ratios 1.1 – 1.5).10–12 
In fact, familial and twin studies investigating the heritability of cancers 13,14 suggest exposures 
may play a predominant role in cancer etiology. This is in agreement with epidemiological 
evidence showing the large geographical and temporal variations in incidence rates of specific 
cancers in different parts of the world,4,15 and from the observed increase in cancer incidence 
when populations migrated from a low-risk to a high-risk country.16  

Evidence suggests that while both genetics and exposures are causal components of 
cancer,7 the vast majority of cancers may be preventable.6,9,17–19 Most cancers require more than 
one genetic mutation in order to progress into the clonal expansion of cancer cells which result in 
overt cancer.20,21 Premalignant clones occur more frequently than clinical cancer rates,21 meaning 
that cancer is commonly initiated but rarely promoted to full malignancy.22 This observation 
along with the complexity of cancer mutations and the long time period often required for cancer 
symptoms to emerge (anywhere between 1 and 50 years), suggest cancer is promoted through 
sequential events in which additional mutational and epigenetic changes occur.21,23 This multi-
stage model of carcinogenesis presents opportunities for preventive interventions to disrupt 
cancer development. Ideally, cancer can be prevented by avoiding or reducing exposures that can 
directly or indirectly lead to cancer-initiating or promoting mutations.7 Identification of 
promotional exposures that drive the emergence of overt cancer among susceptible individuals 
with premalignant clones is particularly crucial.21,23  

At the population level, between a third and a half of cancers are thought to be 
preventable based on current scientific knowledge.17,18,24,25 Known modifiable risk factors 
include tobacco smoking and secondhand smoke exposure, excessive alcohol consumption, 
being overweight or obese, an imbalanced diet (i.e., diets low in fruits and vegetables and high in 
processed food), physical inactivity, chronic infections (e.g., human papillomavirus), and 
ultraviolet radiation exposure.18,25 However, with the exception of a handful of specific cancer 
types such as lung cancer, in which >80% of the cases can be attributed to smoking, much of the 
phenotypic variability in most cancers remains unexplained.26 In addition to this large unknown 
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group of risk factors, what is still lacking is an understanding of the cumulative effects of 
multiple exposures and how they contribute to cancer risk.27 It is also necessary to address which 
exposures are most important and to identify critical periods (e.g., in utero, puberty, pregnancy) 
during which individuals are most susceptible to exposures that contribute to cancer risk.28  
 
1.2 Discovery of exposures impacting cancer risk using omics 
 

In order to address these gaps in knowledge within cancer etiology, a discovery-based 
approach using recent advances in omics is better suited than reductionist approaches that focus 
on one-to-one relations between a specified exposure and a disease outcome.26 Following the 
example of GWAS, there has been an emergence of various omics platforms (e.g., 
metabolomics, proteomics, transcriptomics, epigenomics), which allow for an untargeted 
interrogation of exposures that impact human health.29 Humans are continuously exposed to 
numerous chemicals of highly variable dynamic range26,30 that originate from both endogenous 
(e.g., human and microbial metabolism) and exogenous (e.g., diet, xenobiotics in the 
environment and occupational settings, smoking, alcohol, etc.) sources. While the genome 
remains static through one’s lifetime, these exposures can result in important changes in small-
molecule metabolites, proteins, DNA and RNA over time.31 Omics generally refers to the 
rigorous measurement of the global collection of such biological molecules in biospecimens 
using high-throughput techniques.28 For example, advances in analytical instruments such as 
liquid chromatography-high resolution mass spectrometry have driven the recent progress in 
metabolomics studies which entail simultaneous measurements of thousands of small molecules 
in biological samples such as urine and blood.32   

Omics can be readily applied to samples from epidemiologic case-control or cohort 
studies to explore the interplay between multiple exposures, identify unrecognized risk factors, 
and to discover intermediate biomarkers along the exposure-disease continuum that may help to 
better characterize the pathways from cancer initiation to development.33 Specifically, if the 
biological samples are collected long before the onset of cancer, these intermediate biomarkers 
are likely to reflect the impact of the exposures. If the samples are collected closer to diagnosis, 
then the intermediate markers are likely to be associated with the progression of cancer.34 One of 
the advantages of using omics to study complex diseases like cancer is that the findings are not 
limited by a single hypothesis known a priori. Given its agnostic approach, omics allows for the 
exploration of both known and unknown exposures, which may lead to the discovery of novel 
biomarkers resulting in the identification of unrecognized risk factors. Thus, omics provides 
opportunities to generate new hypotheses that may improve our understanding of the 
mechanisms of carcinogenesis.35  
 
1.3 Adductomics to characterize exposures to reactive electrophiles  
 
 Although thousands of chemicals can be measured with current omics technologies, it is 
still not feasible to obtain accurate measurements of all chemicals in complex sample matrices 
like blood. Blood is a reservoir of chemical exposures, with concentrations of endogenous 
chemicals, food chemicals, drugs, and exogenous pollutants spanning 11 orders of magnitude.30 
With many diverse chemicals covering such a wide concentration range, it is impractical to 
measure everything. Therefore, classes of chemicals that are likely to have toxic effects should 
be prioritized for investigation. Reactive electrophiles (i.e., electron-seeking species) are 
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inherently toxic because they can directly react with nucleophilic (i.e., electron-rich) sites in 
DNA and proteins, thereby damaging these vital macromolecules.36–38 These reactive species are 
constantly generated in vivo through metabolism of endogenous and exogenous chemicals. 
Although reactive electrophiles cannot be measured directly because of their short lifetimes in 
blood, their exposures can be characterized by measuring their stable reaction products (i.e., 
adducts) with DNA or proteins.39,40 Protein adducts have been studied for decades to monitor 
human exposures to reactive electrophiles from both endogenous (e.g., lipid peroxidation 
products)41 and exogenous (e.g., occupational benzene exposure) sources.42 However, these 
studies have been limited to targeted approaches focusing on electrophiles selected a priori. 
While these targeted analyses can unequivocally identify and quantify known exposures and 
generate dose-response relationships, they are not optimal for discovering the many unknown 
toxicants to which humans are exposed.    
 To characterize the totality of exposures to reactive electrophiles, our laboratory has 
developed an untargeted adductomics method, focusing on adducts bound to the highly 
nucleophilic Cys34 of human serum albumin (HSA).43 HSA is the most abundant protein in 
plasma (~40 mg/mL, 60% of total plasma protein).44 Of the many nucleophilic loci on proteins, 
cysteine thiol (-SH) groups are particularly important for their strong reactivity towards oxidants 
and electrophiles.38 Cys34 is the only free thiol group within HSA, and it is a powerful scavenger 
of reactive species, accounting for more than 80% of the antioxidant activity in plasma.45 The 
reactivity of HSA-Cys34 is attributed to its unusually low pKa (<6.7 compared to about 8.0 – 8.5 
for thiols in other peptides and proteins), which causes Cys34 to exist primarily in the highly 
nucleophilic thiolate (-S-) form at physiological pH of 7.4.46,47 HSA also has a residence time of 
28 days,48 meaning that HSA-Cys34 adducts represent exposures integrated over the course of 
about one month. These qualities make HSA-Cys34 adducts ideal for exploring exposures to a 
wide range of reactive electrophiles.  
 Moreover, as the major extracellular antioxidant, the redox state of HSA may serve as a 
global biomarker for the redox state of the body in human diseases.49 Oxidative stress, a 
condition with an increased amount of reactive oxygen species (ROS), has been related to the 
development of many chronic diseases including cancer.50 Upon exposure to ROS, the HSA 
nucleophilic hotspot Cys34 (Cys34-SH: mercaptalbumin) is oxidized to sulfenic (Cys34-SOH), 
sulfinic (Cys34-SO2H) and sulfonic (Cys34-SO3H) acids. Sulfenic acid is an intermediate in the 
formation of disulfides (Cys34-S-SR) between Cys34 and cysteine, homocysteine, 
cysteinylglycine, glutathione, and other low-molecular-weight thiols.45 In plasma of healthy 
young adults, 70 – 80% of HSA is in its reduced free thiol form (mercaptalbumin), and 20 – 30% 
of Cys34 forms reversible mixed disulfides with low-molecular weight thiols, with cysteinylated 
HSA being the predominant modification.51 A small fraction of Cys34 is more highly oxidized to 
the sulfinic or sulfonic forms (2 – 5%),49 which are likely to be irreversible.52 Oxidation of HSA 
has been shown to increase with age.53 Increases in oxidized HSA have also been observed in 
various chronic diseases and pathological conditions such as intrauterine growth restriction,54 
liver and kidney diseases,55 diabetes mellitus,55 and mild cognitive impairment and Alzheimer’s 
disease.56 In these studies, increases in oxidized forms of HSA have been correlated with 
decreases in mercaptalbumin, which may indicate the depletion and/or impairment of the 
antioxidant capacity of plasma.  
 In our HSA-Cys34 adductomics pipeline, HSA is first isolated from plasma or serum, 
digested with trypsin, and analyzed via nanoflow liquid chromatography-high resolution mass 
spectrometry (nLC-HRMS) to find and quantitate modifications at the third largest tryptic 
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peptide (T3) (21ALVLIAFAQYLQQC34PFEDHVK41), which contains the Cys34 site of 
modification.43 In four previous studies, we applied this adductomics method to plasma/serum 
from healthy smokers and nonsmokers in the U.S.,43 nonsmoking women in China exposed to 
indoor combustion products and local controls,57 nonsmoking British patients with lung & heart 
disease and local controls,58 and nonsmoking Chinese workers exposed to benzene and local 
controls.59 Various HSA-Cys34 adducts have been detected in these studies, including Cys34 
adducts with reactive oxygen and carbonyl species, mixed disulfides with low-molecular-weight 
thiols, and other modifications. Some adducts were associated with certain exposures such as 
Cys34 adducts of cigarette smoke constituents (e.g., ethylene oxide and acrylonitrile)43 and 
Cys34 adducts of benzene oxide and benzoquinones derived from occupational benzene 
exposures.59 Cys34 sulfoxidation products and Cys34 mixed disulfides with low-molecular-
weight thiols were commonly seen in all studies, and these adducts showed some indication of an 
altered HSA redox state among smokers,43 subjects exposed to indoor combustion products,57 
and among subjects with chronic obstructive pulmonary disease and ischemic heart disease.58    
 
1.4 Extending the adductomics assay to analyze archived newborn dried blood spots  
 
 While the adductomics assay was originally developed for the analysis of plasma and 
serum samples, we now wanted to extend this assay for the analysis of archived newborn dried 
blood spots (DBS). Newborn DBS are routinely collected by heel prick within 24 – 48 h of birth 
to screen for congenital disorders and inborn errors of metabolism in the U.S. and worldwide.60 
Almost every child in the U.S. participates in newborn screening, and some states, like 
California,61 archive residual DBS from newborns for more than 21 years.62 Thus, these archived 
newborn DBS provide an avenue for investigating the etiologies of diseases initiated in utero. 
For example, retrospective investigations of chromosome translocations in DNA from archived 
newborn DBS have provided direct evidence of the prenatal origin of childhood leukemia, the 
most common childhood cancer.63–65 There is now increasing evidence suggesting that many 
non-communicable diseases in adult life, such as type 2 diabetes mellitus, cardiovascular disease, 
and the metabolic syndrome, can also have fetal origins.66,67 Importantly, since HSA has a 
residence time of 28 days,48 measuring Cys34 adducts in archived newborn DBS allows us to 
backtrack exposures to reactive electrophiles occurring during the month prior to birth. 
Therefore, Cys34 adducts may be able to directly capture fetal exposures impacting disease risks 
later in life.  
 One of the main issues preventing the widespread use of DBS in quantitative assays is the 
hematocrit (Hct) effect, which relates to variability in blood volume that results from the 
heterogeneity in hematocrit values across individuals.68–70 Hct is a determinant of blood viscosity 
which affects the spreading of a blood drop through the filter paper and consequently leads to 
non-uniform blood volumes in fixed-size DBS punches.68,71,72 Variation in blood volume can 
impact the accuracy and precision of the assay, and can decrease the statistical power to detect 
small differences between diseased and healthy populations.71,72 Therefore, the first aim of this 
dissertation research was to develop a normalization technique to overcome the Hct issue by 
adjusting for differences in blood volume across DBS (described in Chapter 2). Here, we 
describe a simple and rapid normalization method employing UV-Visible spectroscopy to 
measure hemoglobin (Hb) concentrations in microliter volumes of extracts from DBS punches as 
a surrogate for Hct. The method was developed with DBS prepared with blood from adult 
volunteers and validated with archived newborn DBS. This normalization technique permitted 
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efficient adjustment for variation in blood volume across newborn DBS and preserved the DBS 
punches for downstream adductomics measurements.  
  Another major challenge of using newborn DBS for adductomics analysis involved the 
presence of interfering species from the sample matrix, specifically lysed red blood cells and Hb 
that are not abundant in serum or plasma.73,74 Indeed, Hb has a 7-fold higher concentration than 
HSA in whole blood,75 and the presence of Hb interfered with tryptic digestion of HSA that 
releases the T3 peptide containing Cys34 for analysis.76 Thus, while Hb was crucial for blood 
volume normalization, Hb needed to be subsequently removed from the DBS extracts in order to 
measure HSA-Cys34 adducts. For this reason, the second aim of the dissertation research was to 
develop a sample processing method to remove Hb from DBS extracts prior to digestion and 
detection of HSA-Cys34 adducts via nLC-HRMS (described in Chapter 3). Extraction and 
digestion of HSA was optimized for the analysis of 4.7-mm punches from DBS (equivalent to 5 
to 8-𝜇𝜇L of whole blood). As proof-of-concept, we analyzed archived DBS from 49 newborns 
with mothers who either actively smoked during pregnancy or were nonsmokers. Data 
normalization was performed using a novel method called ‘scone,’77,78 and we used an ensemble 
of statistical methods to identify Cys34 adducts that discriminated between newborns of smoking 
and nonsmoking mothers.   
 The final aim of this dissertation research was to apply the developed DBS-adductomics 
method to analyze 783 archived newborn DBS collected from participants of a population-based 
childhood leukemia case-control study conducted in California (described in Chapter 4). As 
described in detail below, the purpose of this study was to use adductomics to discover potential 
risk factors for childhood leukemia resulting from in utero exposures.  
 
1.5 Etiology of childhood leukemia 
 
 Leukemia is the most common cancer among children under the age of 15.79 The two 
main types of childhood leukemia are acute lymphoblastic leukemia (ALL) and acute myeloid 
leukemia (AML). ALL and AML are leukemias characterized by the uncontrolled proliferation 
of early cells of the lymphoid (both B- and T-cells) or myeloid lineage, respectively.80 ALL 
accounts for approximately 80% of leukemia cases in children while AML comprises 15% of 
cases.81 Survival rates are as high as 90% for ALL but progress has been slower for AML, and 
many childhood leukemia survivors suffer long-term consequences of the treatments.82 In the 
U.S., approximately 3,800 children are diagnosed with ALL or AML each year, and the overall 
incidence has increased significantly from 1975 to 2012 by ~1% per year.83 Childhood leukemia 
is also more common in affluent countries such as the U.S. and Europe.84 In these high income 
countries, ALL (particularly B-cell ALL) shows a marked incidence peak between ages 2 – 5 
years, but a similar peak is not seen in lower income countries such as Africa and India.19,85 Such 
temporal and geographic variations in incidence suggest exposures, rather than genetic factors, 
may be contributing to this upwards trend, and that causal factors for childhood leukemia are 
likely to have become more prevalent in the past few decades.79,85 However, the only established 
risk factors are ionizing radiation and congenital genetic syndromes such as Down’s, and these 
together explain less than 10% of the cases.85  
 Like many cancers, inherited genes are likely to contribute to the risk of developing 
childhood leukemia.86 In the last decade, numerous studies have looked at the contribution of 
inherited genetic variants by examining associations between single nucleotide polymorphisms 
(SNPs) in candidate genes involved in xenobiotic metabolism, folate metabolism, DNA repair, 
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and immune function, but oftentimes with conflicting results.87 GWAS utilizing high-throughput 
genotyping to test associations of SNPs across the entire human genome simultaneously, have 
identified risk loci for ALL in genes involved in lymphoid differentiation.88 However, the 
molecular mechanism by which these variants are associated with childhood leukemia are 
unknown, and GWAS have shown that the risk associated with individual SNPs tend to be 
modest, with expected odds ratios between 1.1 and 1.6.12,89 While additional genetic factors are 
likely to be discovered in the future, such modest effect sizes associated with genetic variants 
further implicate exposures may also be involved in the etiology of childhood leukemia.79,89,90  
 Epidemiologic studies of childhood leukemia have investigated perinatal/reproductive 
factors, as well as prenatal and early life exposures such as parental smoking and alcohol 
consumption, diet and supplement intake, home use of pesticides, parental occupational chemical 
exposures (e.g., solvents, paint), and outdoor air pollution, but the findings have been mostly 
inconsistent.90–97 On the other hand, there is increasing evidence showing that immune function 
and response to infections in early life, as well as dietary factors and commensal microbes may 
play critical roles in the development of childhood leukemia.19 Improper immune development 
may result in an abnormal response to common infections in early life, which could trigger the 
development of childhood leukemia.19 This hypothesis is corroborated by observations of a 
protective effect for day-care attendance,90 breastfeeding,98 and an increased risk in children born 
by caesarean delivery, where newborns do not experience initial microbial colonization by the 
mother’s vaginal and fecal microbiota during birth.99 However, a better understanding of the 
underlying disease mechanisms and identification of etiologic factors are still necessary in order 
to implement primary prevention of childhood leukemia.79 

 
1.6 Heterogeneity of childhood leukemia  

 
 Childhood leukemia is a biologically heterogeneous disease, and both ALL and AML 
consist of a number of subtypes defined by cell lineage as well as molecular and cytogenetic 
characteristics, such as the presence of chromosome translocations and changes in chromosome 
number.100 About 80% of ALL originate from precursor-B cells (B-cell ALL) and 20% are of T-
cell origin (T-cell ALL).101 The most common chromosomal abnormalities observed in B-cell 
ALL are hyperdiploidy (>50 chromosomes) and the ETV6-RUNX1 (TEL-AML1) fusion gene 
generated by the t(12;21)(p13;q22) translocation.102 Cytogenetic analyses have been rather 
uninformative for T-cell ALL, but T-cell ALL can be classified into distinct genetic subgroups 
corresponding to the T-cell development stage using gene expression profiling.103–106 
Classification of AML has primarily been based on morphology and immunophenotype. Seventy 
percent of AML cases belong to the following cytogenetic categories: normal karyotype; core 
binding factor AML (t(8;21) and inv(16)); acute promyelocytic leukemia (PML-RARA); and 
rearrangements involving the MLL gene.107,108 The diversity of mutated genes in AML have 
become increasingly clear with recent technological improvements in DNA sequencing.109–111 
Currently, the most widely accepted classification and prognostic markers include CEBPA, 
NPM1, and FLT3-ITD, but there are likely to be many more genetic markers for AML 
classification.109–111 Infant leukemias occurring in the first year of life is a biologically distinct 
subtype of childhood leukemia marked by their almost singular association with one particular 
genetic mutation - the fusion of the MLL gene with a variety of partner genes.85,112 Classification 
of childhood leukemia cases into these various subtypes has important implications for both 
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diagnosis and prognosis, and it is hypothesized that each of these subtypes may have distinct 
etiologies.89,91 
 
1.7 In utero origins of childhood leukemia 
 
 There is compelling evidence showing that the majority of childhood leukemia cases 
originate in utero.19,90 Direct evidence for this was obtained by backtracking preleukemic 
translocations in archived newborn DBS or stored cord blood of children with leukemia up to 14 
years before these individuals subsequently developed leukemia.64,113 This has been confirmed 
for ETV6-RUNX1 and AML1-ETO, the most common translocations for ALL and AML, 
respectively.64 Furthermore, the protracted postnatal latency of the disease and the modest 
concordance rates for ALL and AML in monozygotic twin children (5 – 25%)114 suggest that 
chromosome translocations occurring in utero may initiate leukemogenesis, but are insufficient 
by themselves to transition to overt leukemia.115 In fact, preleukemic clones are present in 1% or 
more of newborns, but only 1% of them progress to overt leukemia.116 Thus, the etiology of 
childhood leukemia is described by a two-hit model, where leukemia is initiated by common 
chromosomal rearrangements, but additional, rarer postnatal genetic or epigenetic mutations are 
required to transition to overt leukemia.115  

Exposures occurring during fetal development may contribute to the initial genetic 
aberrations involved in the first hit, which can increase the risk of developing childhood 
leukemia. Fetuses are exposed to chemicals derived from endogenous process such as maternal, 
fetal, and microbial metabolism, and to exogenous chemicals from maternal exposures. The 
mother’s diet, exposure to xenobiotics, and lifestyle factors, including smoking and alcohol 
consumption, can all influence fetal exposures. In addition, a number of xenobiotic chemicals 
(e.g., tobacco smoke constituents, illicit drugs, prescription pharmaceuticals, alcohol, pesticides, 
heavy metals, etc.) have been shown to pass through the placental barrier, thereby exposing the 
fetus to potentially toxic chemicals.117 Because fetuses have immature organ systems and their 
metabolic systems are not fully developed, they are particularly sensitive to in utero exposures 
that may result in genetic alterations impacting future disease risks.67,118 Therefore, in utero 
exposures may play a critical role in the etiology of childhood leukemia, and identification of 
risk factors resulting from in utero exposures may have important implications for preventing the 
disease. 
 
1.8 Application of adductomics to investigate in utero exposures associated with 
childhood leukemia 
 
 As mentioned earlier, the final aim of this dissertation research (described in Chapter 4) 
was to apply the DBS-based adductomics method (developed in work from Chapters 2 and 3) to 
discover potential risk factors for childhood leukemia resulting from in utero exposures. 
Untargeted measurements of HSA-Cys34 adducts were performed using archived newborn DBS 
collected from 783 participants in the California Childhood Leukemia Study, a previously 
described population-based case-control study.119 Cys34 adducts were compared between 387 
cases (including both ALL and AML) and 396 matched controls to identify adducts that 
discriminated the two groups. Hypothesizing that different leukemia subtypes have distinct 
etiologies, we performed separate analyses for ALL and AML, with additional stratified analyses 
for the major subtypes of ALL (i.e., B-cell ALL, B-cell ALL with high-hyperdiploidy, B-cell 
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ALL with t(12;21) chromosome translocation, and T-cell ALL). We hypothesized that Cys34 
adducts discriminating childhood leukemia cases and controls would reflect differences in in 
utero exposures to reactive electrophiles. Discriminating Cys34 adducts may represent adducts 
associated with the first hit, susceptibility to the second hit, or intermediate markers involved in 
the etiology of childhood leukemia. With a residence time of 28 days,48 we anticipated that 
detected HSA-Cys34 adducts would capture a wide range of exposures to reactive electrophiles 
occurring during the last month of gestation. Given this was the first adductomics investigation 
of childhood leukemia, our goal was to select in utero exposures that may lead to new 
hypotheses about the etiology of childhood leukemia and to provide insight into the underlying 
mechanisms of the disease.   
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2.1 Abstract  
 

Archived newborn dried blood spots (ANBS) provide valuable opportunities to 
investigate the impact of prenatal and early life exposures on disease risks. Recently, there has 
been an increasing interest in performing metabolomics and proteomics with ANBS to discover 
novel biomarkers associated with causes and effects of pediatric diseases. One challenge is the 
variation in blood volumes across ANBS punches that is introduced by differences in blood 
hematocrit (Hct) in neonates. This unknown variability in Hct reduces the statistical power to 
detect differences between groups (such as diseased vs. non-diseased) in epidemiological studies. 
Previously, potassium (K+) concentrations of ANBS extracts were measured as a surrogate for 
Hct using a micro K+ ion-selective electrode to normalize for differences in blood volume. 
However, this method was time-consuming and could not easily be integrated into high-
throughput omics analyses. Here, we describe an alternative normalization method using UV-Vis 
spectrophotometry to rapidly quantify hemoglobin (Hb) in a few microliters of ANBS extracts. 
We found that Hb and K+ concentrations were highly correlated in ANBS from a case-control 
study of childhood leukemia (n ~ 860). We demonstrate that Hb concentrations of ANBS 
extracts can be used as proxies for K+ (and Hct) to effectively remove blood volume as a variable 
in omics analyses.  

 
2.2 Introduction 
 

The analysis of archived newborn blood spots (ANBS) offers new avenues for 
epidemiological investigations. ANBS have been routinely collected by heel prick within 24 – 48 
h of birth as part of newborn screening programs in the U.S. and worldwide.1 There are currently 
14 programs in the U.S., serving approximately half of the newborn population, that archive 
residual blood spots from neonates for more than 21 years.2 The state of California has retained 
these specimen in freezer storage since 1982.3 In the past, retrospective analyses of ANBS were 
performed to provide direct evidence for the prenatal origin of childhood leukemia,4,5 thus 
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demonstrating the utility of ANBS in making important discoveries about disease etiology. With 
recent advances in high-throughput omics (i.e., genomics, metabolomics, proteomics), there is 
growing interest in using ANBS for population-based research to discover novel markers of 
disease processes.6–8     

Of the many analytical challenges that limit use of ANBS for studies of disease etiology, 
one critical factor is the variability in sample volume that results from the heterogeneity in 
hematocrit (Hct) values across neonates.9–11 Since Hct is a determinant of blood viscosity, it 
affects the spreading of a blood drop on the filter paper (Guthrie card) and thus leads to non-
uniform blood volumes within and between ANBS that affect the accuracy and precision of 
assays.7,9,12 While many laboratories rely on the assumption that equally-sized punches removed 
from ANBS contain identical volumes of blood,11 Hct values vary by sex, gestational age, and 
birth weight.10,13–15 Therefore, accounting for the variation in blood volumes in ANBS can 
increase the statistical power to detect small differences between diseased and healthy 
populations.7,12  

Capiau et al. showed that potassium (K+) concentrations were highly correlated with Hct 
in extracts from dried blood spots (DBS),16 and that normalization for K+ effectively removed 
biases in the quantitation of targeted analytes.17 However, analysis of K+ with a clinical 
chemistry analyzer resulted in loss of the sample and thus precluded analyses of other analytes in 
the same DBS extract. To circumvent this shortcoming, we used a micro ion-selective electrode 
to measure K+ concentrations in extracts from ANBS punches and then performed metabolomics 
analysis with the same extracts.7 Normalization for K+ removed nuisance variation and allowed 
us to detect biologically relevant differences in small-molecule features across ANBS in our 
samples. However, using the K+ micro-electrode was time-consuming and measurement drift was 
observed over time due to protein build-up.  

While the hemoglobin (Hb) content of DBS has also been suggested as a surrogate for 
Hct,12,18–21 these Hb-based normalization techniques require expensive equipment and/or do not 
meet the high-throughput needs of omics studies. Here, we describe an alternative technique, 
which employs UV-Vis spectrophotometry to rapidly quantify Hb concentrations in microliter 
volumes of extracts from ANBS punches. The method was developed with blood from adult 
volunteers and validated with ANBS. We found that K+ and Hb concentrations were highly 
correlated in ANBS extracts, and that this method permits efficient adjustment for variation in 
blood volume across ANBS.  
 
2.3 Materials and methods 
 
Chemicals and Reagents  

Water was prepared with a PureLab purification system (18.2 mΩ cm resistivity at 25 °C; 
Elga LabWater, Woodridge, IL). Potassium chloride (>99%) and sodium chloride (>99%) were 
purchased from Sigma Aldrich (St. Louis, MO) and Fisher Scientific (Pittsburgh, PA), 
respectively. Purified human Hb was purchased from MP Biomedicals, LLC (Santa Ana, CA).  
 
Preparation of Experimental DBS for Method Development 

Venous blood was collected in sodium heparin tubes (BD Vacutainer, BD) with informed 
consent from two adult female volunteers. Experimental DBS were prepared the same day of 
blood collection by aliquoting 50 𝜇𝜇L of whole blood on Whatman 903 Guthrie cards (GE 
Healthcare), which were air dried for a minimum of 4 days and stored at -20 ℃ in glassine 
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envelopes (GE Healthcare) prior to use (2 months – 1 year). To produce experimental DBS with 
various Hct levels for the same subject, venous blood was centrifuged at 1200 g and diluted or 
concentrated by adding or removing plasma, as described by Capiau et al.16 Blood with very low, 
low, medium (unaltered), and high Hct were prepared and aliquoted onto DBS cards, dried, and 
stored prior to use.  
 
ANBS from the CCLS  

We received single 4.7-mm ANBS punches (~8 𝜇𝜇L whole blood) for participants in the 
California Childhood Leukemia Study (CCLS, described elsewhere).22 Briefly, the CCLS is a 
population-based case-control study of incident childhood leukemia conducted in 35 counties in 
California from 1995 to 2008. Cases were ascertained within 72 hours of diagnosis at pediatric 
hospitals, and controls were selected using birth certificates. ANBS of the CCLS participants in 
the present analysis were obtained from the California Department of Public Health, where the 
ANBS had been archived at -20 ℃. In addition, information of the child’s sex and birth 
characteristics (i.e., gestational age and birth weight) were collected from interviews with the 
biological parents (mainly the mother). 

 
Method Development  

Four types of experiments were performed for method development as shown in Figure 
2.1. For the first experiment (MD1), experimental DBS of various punch sizes were extracted 
with water to test the relationship between K+ and Hb concentrations over a wide dynamic range. 
The experiment was performed in three batches, each with a different punch size range: 2.0 – 
6.0-mm (batch 1), 6.0 – 7.8-mm (batch 2), and 2.0 – 7.8-mm (batch 3). In the second experiment 
(MD2), experimental DBS punches were extracted with different volumes of water to test the 
effect of the extraction volume on the K+ and Hb concentrations. For the third experiment 
(MD3), the effect of Hct on the relationship between K+ and Hb concentrations was investigated 
by extracting experimental DBS containing different Hct levels (described above). To account 
for differences between adult blood in experimental DBS and newborn blood, ANBS punches 
from 10 randomly selected control children from the CCLS were analyzed in the fourth 
experiment (MD4).  
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Figure 2. 1 Flow chart of the experimental method: Four experiments were performed for method 
development (MD1 – 4). Linear mixed-effects models were applied to perform a combined analysis of all 
method development experiments. The resulting adjusted Hb and K+ values obtained from the mixed models 
were used to build a linear regression model to predict 𝐊𝐊+ concentrations from Hb concentrations in DBS 
extracts. This linear model was validated using ANBS from the CCLS (V1 and V2). Diagram made in 
Lucidchart (Lucid Software, Inc, South Jordan, Utah, USA). 
 
 
Extraction of K+ and Hb from blood spots 

In MD1, extracts were prepared in duplicate from DBS punches of 2.0, 3.0, 4.0, 5.0 and 
6.0-mm diameters from a single donor. Extracts representing larger punches, i.e., 6.3, 6.7, 7.2, 
and 7.8-mm, were prepared in duplicate by combining a 6-mm punch with a smaller punch (e.g., 
a 6.3-mm punch represents the combined areas of a 6-mm and a 2-mm punch). The punches 
were placed in microcentrifuge tubes and extracted with 100 𝜇𝜇L of water at room temperature for 
15 min with constant agitation at 1400 rpm (Eppendorf Thermomixer). Samples were then 
centrifuged for 10 s and a 5 𝜇𝜇L aliquot was transferred to a new tube and diluted with 20 𝜇𝜇L of 
water for Hb measurements while K+ concentrations were measured in the remaining extracts.   
For MD2, the effect of the extraction volume was investigated with duplicate 3-mm and 5-mm 
punches from a single donor. The 3-mm punches were extracted in 40, 50, 80, and 100 𝜇𝜇L of 
water, and the 5-mm punches were extracted in 80 and 100 𝜇𝜇L of water. The punches were 
analyzed for Hb and K+ as described above for MD1.  
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In MD3, the relationship between K+ and Hb was examined in relation to Hct by using 
duplicate 5-mm punches from the experimental DBS prepared with blood from the two donors. 
For the first donor, 5-mm punches were prepared from four Hct levels: very low, low, medium, 
and high, and for the second donor, 5-mm punches were prepared from three Hct levels: low, 
medium, and high. Each punch was extracted with 100 𝜇𝜇L of water for K+ and Hb measurements 
as described above. 
 The 10 ANBS from the CCLS in MD4 were extracted in 100 𝜇𝜇L of water and prepared 
for K+ and Hb measurements as described above. In addition to accounting for differences 
between newborn blood and adult blood, these ANBS were included to assess the effect of long-
term freezer storage (~20 years) on K+ and Hb concentrations in the extracts. Two 5- 𝜇𝜇L spots 
(each equivalent to a 3.8-mm punch23) from the experimental DBS, which were prepared by 
volumetrically applying blood from the adult volunteers onto the filter paper, were analyzed 
along with the ANBS in this experiment as reference points to ensure comparability with the 
method-development experiments that used experimental DBS. 
 
Validation Experiments with ANBS  

The relationship between K+ and Hb concentrations was validated in two experiments 
(Figure 2.1). In the first validation experiment (V1 in Figure 2.1), both K+ and Hb concentrations 
were measured in extracts from 4.7-mm punches of 24 randomly selected ANBS from the CCLS 
cases (n = 11) and controls (n = 13). This experiment was conducted to confirm that the same K+ 

and Hb relationship seen in method-development experiments would be observed with ANBS 
extracts. In addition, we also assessed whether Hb concentrations could be used to predict K+ 

concentrations by comparing the predicted values with the observed K+ concentrations measured 
with the micro-electrode.  

To further evaluate the utility of measuring Hb as a proxy for K+ concentrations in ANBS 
for large scale studies, the distribution of K+ concentrations obtained from an ion micro-electrode 
was compared to that predicted from Hb measurements in ANBS in the second validation 
experiment (V2). Four sets of independent samples of ANBS from the CCLS (cases and 
controls) were used. In the first set, K+ measurements had been performed with a micro-electrode 
for 221 ANBS as described by Petrick et al.7 In the second, third, and fourth sets, K+ 
concentrations were predicted from Hb measurements in 196, 206, and 203 subjects respectively. 
We tested to see if the distributions of the estimated K+ concentrations in sets 2, 3, and 4 were 
comparable with the observed K+ concentrations from the first set.  

Samples from V2 were also used to evaluate whether the Hb normalization method could 
be easily integrated into a large-scale omics workflow. Since omics studies typically entail 
hundreds of samples, it is important that the method be simple and that instrumental analysis be 
rapid. It is also necessary for the instrument to be stable over time without any loss of accuracy 
or precision because batch sizes can be large and the analyses can span days to weeks for omics 
studies. Finally, the sample volume required for the normalization method should be minimal to 
ensure there is sufficient sample left to perform downstream omics analyses.   
 
Extraction of K+ and Hb from ANBS in Validation Experiments 

Similar to the method-development samples, ANBS punches in V1 were extracted with 
100 𝜇𝜇L of water to measure Hb concentrations. Aliquots of 5 𝜇𝜇L were then diluted with 20 𝜇𝜇L of 
water for Hb measurements. The K+ concentrations were later obtained using the remainder of 
the diluted extracts from Hb measurements, after storage at -20 ℃ for approximately 1 year. This 
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required further diluting the remaining 14 𝜇𝜇L of the extracts with an additional 12 𝜇𝜇L of water to 
obtain sufficient volume for measurement of K+ concentrations. In V2, all ANBS punches in sets 
2, 3, and 4 were extracted with 100 𝜇𝜇L of water and diluted for Hb measurements as described 
above.  
 
Analysis of K+   

Potassium concentrations of DBS extracts were measured using a micro K+ ion-selective 
electrode (MI-442 and MI-401 1-mm tip, Microelectrodes Inc., Accumet AB250 meter, Fisher 
Scientific), as previously described.7 To convert voltage readings to K+ concentrations, a five-
point semi-logarithmic calibration curve was generated with standard solutions of 0.001 to 0.01 
N KCl containing 0.1 N NaCl as a potentially interfering species (as per manufacturer’s 
instructions). The 0.05 N KCl standard solution was measured after every 12 measurements in 
order to monitor measurement drift over time. K+ measurements were performed in duplicate for 
each DBS extract. Calibration curves were obtained for each batch in the method-development 
experiments and for V1. 

  
Analysis of Hb  

Hb concentrations were determined by UV-Vis absorption spectrophotometry at room 
temperature using a Cytation 5 microplate spectrophotometer with a Take3 micro-volume 16-
well plate (BioTek Instruments, Winooski, VT). The absorbance of duplicate 2.5-𝜇𝜇L sample 
aliquots was measured at 407 nm, which was the experimentally-determined absorbance 
maximum for Hb. Absorbance readings were converted into Hb concentrations with five-point 
linear calibration curves using Hb standard solutions ranging from 0.1 to 3.0 mg/mL for each 
batch in the method-development experiments and for V1. In V2, duplicate Hb measurements 
were made for each extract in batches of 48 samples, and a seven-point calibration curve was 
prepared for each batch (Hb concentration range 0.5 to 3.5 mg/mL). 
 
Statistical Analyses  

All statistical analyses were performed using the R statistical programming 
environment.24 Pearson correlation between K+ and Hb concentrations was initially determined 
separately in each of the method-development experiments, i.e., punch sizes (MD1), extraction 
volumes (MD2), varying Hct levels (MD3), and ANBS from the CCLS (MD4).  

Data from all method-development experiments were then combined in a series of 
statistical models to evaluate the overall relationship between K+ and Hb (Figure 2.1). The first 
step of this combined analysis was to adjust measured concentrations of K+ and Hb for technical 
variation (i.e., batch effects) and biological variation (i.e., differences between adult DBS and 
ANBS) using a linear mixed-effects model applied with the lme4 R package.25 The following 
equation was applied to both K+ and Hb measurements separately after log-transformation: 

𝑌𝑌ijkl = ln�𝑋𝑋ijk� = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋i + 𝛽𝛽2𝑋𝑋S + 𝛽𝛽3𝑋𝑋N + 𝑎𝑎j + 𝑏𝑏k(j) + 𝑒𝑒l(jk) (Eq. 1) 
where 𝑌𝑌ijkl is the natural logarithm of 𝑋𝑋ijkl, which represents the concentration of K+ (mM) or Hb 
(mg/mL) for the lth duplicate measurement (l = 1,2), of the kth biological replicate (k = 1,2), 
from the jth sample (j = 1,…,43), in the ith batch (i = 1,…,6). Method-development experiments 
were performed in the following batches: MD1 (batches 1 – 3), MD2 (batch 4), MD3 (batch 5), 
and MD4 (batch 6). The intercept 𝛽𝛽0 is the overall mean, and 𝛽𝛽1, 𝛽𝛽2, and 𝛽𝛽3 represent the 
coefficients for the fixed effects of 𝑋𝑋i (batch number), 𝑋𝑋S (punch size [mm]), and 𝑋𝑋N (categorical 
variable for newborn or adult, with newborn as the reference), respectively. The batch variable 
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𝛽𝛽1 accounts for nuisance variation in measurements associated with time. In Eq. 1, 𝑎𝑎j and 𝑏𝑏k(j) 
are the random effects for the kth biological replicate and the jth sample, respectively, and 𝑒𝑒l(jk) 
is the random error for the lth duplicate measurement. Adjusted, log-transformed K+ and Hb 
concentrations were predicted as 𝑌𝑌ijkl = 𝛽𝛽0 + 𝛽𝛽2𝑋𝑋S + 𝑎𝑎j, where 𝛽𝛽2 is the best linear unbiased 
estimator for the fixed effect for punch size and 𝑎𝑎j is the best linear unbiased predictor of the jth 
sample random effect 26. Variance components were estimated using the restricted maximum 
likelihood method. The precision of K+ and Hb measurements were evaluated by their respective 
coefficients of variation (CV) estimated as �e𝜎𝜎e2 − 1, where 𝜎𝜎e2 is the error variance obtained 
from the log-scale mixed model (Eq. 1). 
 In the second step of combined analysis of the method-development experiments, the 
adjusted, log-transformed K+ and Hb concentrations estimated by the mixed models (Eq. 1) were 
used as inputs for a linear regression model with K+ concentrations as the dependent variable and 
Hb concentrations as the independent variable. This linear model was then used in the validation 
experiments (V1 and V2) to estimate K+ concentrations in ANBS extracts based on Hb 
concentration measurements.  
 In V1, where both K+ and Hb concentrations were measured in the same ANBS extracts 
from 24 subjects, Pearson correlation between the two concentrations was determined, and a 
linear model was fit with K+ concentrations as the dependent variable and Hb concentrations as 
the independent variable. In linear regression analyses, model diagnostics including a plot of 
residuals against fitted values and a normal Q-Q plot of the residuals were used to identify 
deviations from the assumptions of linearity and normality. Influential points were identified 
with the Cook’s distance statistic.  

Analysis of variance (ANOVA) was used for V2 to test for differences between K+ 
concentrations in the four sets of ANBS from the CCLS. The K+ concentrations measured 
directly in ANBS extracts with the micro-electrode in the first set and K+ concentrations 
predicted from Hb with the developed linear model in the remaining three sets were compared 
with a significance level of 𝛼𝛼 = 0.05. ANOVA was performed with and without adjusting for 
case status and covariates known to affect Hct levels (i.e., sex, gestational age and birth weight). 
Missing values in the covariate data were excluded from the analysis.  
 
2.4 Results and discussion 
 
Method development  

All experiments using the experimental DBS showed a high correlation between K+ and 
Hb concentrations (r ≥ 0.99) (Figure S2.1) regardless of punch size (MD1), extraction volume 
(MD2), and Hct level (MD3). In addition, K+ and Hb were also highly correlated in the ten 
ANBS in MD4 (r = 0.85).  
 To perform a combined analysis of the K+ and Hb relationship using all data points from 
the method-development experiments, the linear mixed-effects model in Eq. 1 was used to adjust 
for technical variation and biological variation associated with age (adult vs. newborn) in the 
measurements of either K+ or Hb. Although K+ calibration curves showed good linearity in each 
batch, there were large inter-batch differences in the curves (Figure S2.2A), particularly for 
batches where the K+ micro-electrode was not in optimal working condition. The resulting batch 
effect was clearly seen when data points were presented across all batches in a scatter plot 
(Figure S2.3). Therefore, the mixed model was used to remove this unwanted systematic 
variation in the K+ measurements. On the other hand, Hb calibration curves showed excellent 
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linearity and inter-batch stability (Figure S2.2B). The estimated CVs of the K+ and Hb 
measurements were 2.21 % and 1.02 %, respectively. Thus, while both methods showed good 
reproducibility between duplicate measurements, Hb measurements showed greater inter-batch 
stability over time.    
 Simple linear regression was used to estimate the association between adjusted K+ and 
Hb concentrations. When K+ concentrations were regressed on Hb concentrations in the natural 
log scale (Figure 2.2), the results showed a strong correlation (r2 = 0.98). The regression 
coefficient was 1.04 (95 % confidence interval [CI]: 0.99, 1.09) and the intercept was 1.19 (95 % 
CI: 1.16, 1.22). Similar results were obtained with untransformed data with r2 = 0.97 showing 
strong agreement between the two measurements (Figure S2.4). These results show that Hb 
concentrations of DBS extracts can be used as proxies for K+ concentrations to adjust for Hct.  
 
 

 
Figure 2. 2 Linear relationship between 𝐊𝐊+ (mM) and Hb (mg/mL) concentrations in DBS extracts measured 
in the method-development experiments (in log scale). Colors represent the experiments that were performed 
for method development: size (MD1), extraction volume (MD2), adjusted Hct (MD3), ANBS (MD4), and 
experimental DBS analyzed with ANBS as reference points (Ref Expt DBS, MD4). The regression line (blue) 
and the pointwise 95% confidence band (shaded) are shown.  
 
 

Using the adjusted Hb and K+ values obtained from the mixed models in the linear 
regression model, the following equation was developed to predict K+ concentrations of ANBS 
extracts from their observed Hb concentrations: 

ln(K+[mM]) = 1.04 × �ln(Hb[mg/mL]) − 𝛽𝛽3[Hb]� + 1.19 + 𝛽𝛽3[K+]  (Eq. 2) 
where ln(K+[mM]) and ln(Hb[mg/mL]) are the natural logarithm of the adjusted mM 
concentration of K+and mg/mL concentration of Hb, respectively. The terms 𝛽𝛽3[Hb] and 𝛽𝛽3[K+] in 
Eq. 2 are the fixed effect coefficients from Eq. 1 that adjusted for differences between newborns 
and adults, estimated at 0.46 and 0.35, respectively. Therefore, the equation for predicting 
newborn K+ concentrations in ANBS from Hb concentrations is simplified to: 

ln(K+[mM]) = 1.04 × ln(Hb[mg/mL]) + 1.06   (Eq. 3) 
Eq. 3 was used to estimate K+concentrations to normalize for Hct in the analysis of ANBS in the 
validation experiments. 
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Validation  
As described in the Methods section, the relationship between K+and Hb was validated 

with 24 ANBS from the CCLS in V1. While Hb concentrations of the ANBS extracts were 
measured as described, K+ concentrations were obtained from the remaining extracts a year later 
and required further dilution to obtain the necessary volume for measurement of K+. Despite 
differences in dilution and aging of approximately 1 year, the measured K+ and Hb 
concentrations from these ANBS demonstrated good correlation (r = 0.82). After removal of one 
outlier identified from model diagnostics (Figure S2.5), the K+and Hb concentrations showed a 
linear relationship (r2 = 0.81) with a slope of 2.04 (95 % CI: 1.60, 2.48) and intercept of 0.28 
(95 % CI: -0.64, 1.20) (Figure 2.3). Using Eq. 3, K+concentrations were predicted from the 
measured Hb concentrations, and predicted K+ concentrations were compared with K+ 
concentrations determined with the micro-electrode. After removing the outlier, the linear 
relationship between the predicted and observed K+ concentrations had a slope of 1.23 (95 % CI: 
0.97, 1.50), intercept of 0.58 (95 % CI: -0.63, 1.80), and r2 = 0.81 (Figure S2.6). Since the 95 % 
CI for the slope included one, and the 95 % CI for the intercept included zero, there was no 
evidence of fixed or proportional bias, respectively, between the predicted and observed K+ 
concentrations.27 However, predicted K+ concentrations were slightly higher than observed K+ 
concentrations (Figure S2.6). This difference is likely to have been caused by the different 
dilutions of the extracts in which Hb and K+measurements were made. Furthermore, this 
systematic error between predicted and observed K+concentrations does not alter the strong 
correlation between Hb and K+concentrations in ANBS extracts (Figure 2.3), and thus, does not 
diminish the utility of Hb measurements in normalizing for blood volume in the analysis of 
ANBS.  

 
 

 
Figure 2. 3 Plot of Hb (mg/mL) and 𝐊𝐊+ concentrations (mM) in extracts from 24 ANBS from CCLS analyzed 
in the validation experiment, V1. The linear regression line (blue) and the pointwise 95% confidence band 
(shaded) are shown. 
 
 

We further validated the use of Hb measurements to estimate K+concentrations for 605 
ANBS from the CCLS in V2. In our previous metabolomics analysis, K+concentrations were 
measured with the micro-electrode for 221 ANBS punches (Dataset 1).7 For the present 
validation experiment, Hb concentrations were measured from 196, 206, and 203 ANBS punches 
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in three independent analyses (Datasets 2, 3, and 4, respectively) and K+concentrations were 
estimated using Eq. 3. The mean Hb concentrations of Dataset 2, 3, and 4 were 1.93 ± 0.39, 1.95 
± 0.36, and 2.00 ± 0.39 mg/mL, respectively. We compared the observed K+concentrations 
from Dataset 1 with the estimated K+concentrations from Datasets 2, 3, and 4 to see if the four 
independent, random sample sets from the CCLS had comparable K+distributions. As can be 
seen from the box plot (Figure 2.4) and summary statistics (Table 2.1), K+concentrations from 
the four datasets were similar with no statistically significant differences (ANOVA p-value = 
0.20; unadjusted for case status and covariates). Furthermore, predicted K+concentrations in 
Datasets 2, 3, and 4 were not higher than the observed K+concentrations in Dataset 1, suggesting 
that the difference between predicted and observed K+concentrations in V1 were due to the 
different dilutions. Covariate characteristics of the four CCLS datasets in V2 are presented in 
Table 2.2. The four sets were comparable in terms of the number of cases and controls, sex, 
gestational age, and birth weight. There was no statistically significant difference in the 
K+concentrations across the four sets after adjusting for case status, sex, gestational age, and 
birth weight (ANOVA p-value = 0.24). These validation results show that Hb concentrations can 
be used as proxies for K+concentrations to normalize for Hct in ANBS analyses.  

 
 

 
Figure 2. 4 Box plot of 𝐊𝐊+ concentrations (mM) from the four CCLS datasets in the validation experiment, 
V2. In Dataset 1, 𝐊𝐊+ concentrations were directly measured in ANBS extracts with a micro-electrode. In 
Datasets 2, 3, and 4, 𝐊𝐊+ concentrations were predicted from measured Hb concentrations.  
 
 
Table 2. 1 Summary statistics of 𝐊𝐊+ concentrations (mM) from the four CCLS datasets in the validation 
experiment, V2.  

Dataset Min. 1st Qu. Median Mean 3rd Qu. Max. n 
1 3.33 5.03 5.76 5.91 6.70 9.94 221 
2 2.32 4.83 5.70 5.71 6.43 9.10 184 
3 2.85 5.00 5.76 5.80 6.47 9.79 206 
4 1.96 5.12 5.97 5.95 6.68 11.92 203 
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Table 2. 2 Case status and covariate characteristics of the four CCLS datasets in the validation experiment, 
V2. 

 Dataset 
 1 2 3 4 
Case status     
     Case 106 88 104 103 
     Control 107 96 102 100 
     Missing (%) 8 (3.6) 0 (0) 0 (0) 0 (0) 
Sex     
     Female 86 81 93 83 
     Male 127 103 113 120 
     Missing (%) 8 (3.6) 0 (0) 0 (0) 0 (0) 
Gestational age (weeks)     
     Mean (SD) 39.2 (2.5) 39.0 (2.4) 39.4 (2.1) 39.2 (2.4) 
     Missing (%) 19 (8.6) 26 (14.1) 5 (2.4) 10 (4.9) 
Birth weight (g)     
     Mean (SD) 3477 (567) 3471 (635) 3430 (537) 3409 (604) 
     Missing (%) 12 (5.4) 12 (6.5) 6 (2.9) 5 (2.5) 

 
 

In Dataset 2 of V2, there were 12 ANBS punches for which Hb could not be extracted 
with water and thus Hb could not be quantified. While these samples were removed from the 
present analysis, we were able to measure K+concentrations in these samples using the K+ ion 
micro-electrode. It is likely that these ANBS samples were exposed to different storage or 
transport conditions since there is evidence that these factors influence quantitative analysis of 
Hb extracted from DBS.12,19,28 We also observed decreased water solubility of Hb when DBS 
were stored at room temperature for several months compared to storage at -20 ℃ (data not 
shown). Hb was more susceptible to oxidation when DBS were kept at room temperature, which 
was demonstrated by color change from deep red to dark brown.29 Thus, it appears that K+ 
measurements are not as affected by these storage conditions. Since storage conditions of ANBS 
in the U.S. tend to vary by State,30 it would be necessary to ensure that the ANBS used in future 
studies have been properly maintained at -20 ℃ (or colder) to enable precise measurement of Hb.  

While the Hb normalization method is more sensitive to storage conditions, the Hb 
method is particularly attractive for omics studies for several reasons. First, measurement of Hb 
using the plate reader is very rapid (8 measurements/min) and fully automated; this is crucial for 
high-throughput analyses that require hundreds of samples. Hb measurements are highly 
reproducible, and minimal training is required to use the plate reader. In contrast, measuring 
K+with the micro-electrode was performed manually and measurements tended to drift over time 
as sample deposits accumulated on the electrode. This limited the number of samples that could 
be analyzed in a batch and required the use of loess smoothing to adjust for the K+ measurement 
drift.7 The Hb method did not have any observed measurement drift even after ~200 samples 
were analyzed in V2, as confirmed by the reproducibility of the Hb calibration curve measured 
repeatedly throughout each set (data not shown). Moreover, the Hb method requires minimal 
sample volume per measurement (~2 𝜇𝜇L), which is crucial for investigations of ANBS. Although 
absolute Hct values are not determined with this Hb method, the DBS Hb concentrations alone 
are sufficient for the purposes of adjusting for Hct in DBS, as was shown with the application of 
K+-based normalization methods.7,17  
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2.5 Conclusion 
 

Variation in Hct, which gives rise to variability in blood volume, has long hampered 
quantitative analyses of DBS31 and epidemiologic applications of ANBS. We have developed 
and validated a simple and rapid method to measure Hb as a proxy for K+, a recognized 
surrogate for Hct, in DBS extracts. Normalizing data for Hb should minimize measurement 
errors, thereby increasing statistical power to detect disease associations in studies employing 
ANBS. We are currently applying this Hb-based normalization method with data obtained from 
untargeted metabolomics to discover small molecules that discriminate between childhood 
leukemia cases and controls.7  
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2.9 Supporting information 
 

 
Figure S2. 1 Plots of K+ and Hb concentrations from the six batches of method-development experiments 
shown individually. MD1 was performed in three batches: (batch 1) punch sizes 2.0 – 6.0-mm, (batch 2) 6.0 – 
7.8-mm, and (batch 3) 2.0 – 7.8-mm. MD2, MD3, and MD4 were performed in batch 4, 5, and 6, respectively. 
Colors represent the different types of method-development experiments: size (MD1), extraction volume 
(MD2), adjusted Hct (MD3), ANBS (MD4), and experimental DBS analyzed with ANBS as reference points 
(Ref Expt DBS, MD4). 
 

 
Figure S2. 2 Calibration curves used for the six method-development experiments. Linear regression lines 
with pointwise 95% confidence bands (shaded) are shown. Batches represent independent experiments: MD1 
(batch 1 – 3), MD2 (batch 4), MD3 (batch 5), and MD4 (batch 6). (A) 𝐊𝐊+ calibration curves were used to 
convert mV measured with an ion-selective micro-electrode in the DBS extracts to 𝐊𝐊+ concentrations in M (in 
log scale). The slope did not meet the ~55 mV value suggested by the manufacturer for batches 2 and 6. (B) 
Hb calibration curves were used to convert absorbance measurements at 407 nm to Hb concentrations in the 
DBS extract in mg/mL.  
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Figure S2. 3 Unadjusted 𝐊𝐊+ and Hb concentrations measured in DBS extracts across all method-development 
experiments, colored by batch. Batches represent independent experiments: MD1 (batch 1 – 3), MD2 (batch 4), 
MD3 (batch 5), and MD4 (batch 6). Plots of 𝐊𝐊+(mM) and Hb (mg/mL) concentrations from (A) log-
transformed data and (B) untransformed data.  
 
 

 
Figure S2. 4 Linear relationship between 𝐊𝐊+ (mM) and Hb (mg/mL) concentrations in DBS extracts 
(untransformed data). Colors represent the different types of method-development experiments: size (MD1), 
extraction volume (MD2), adjusted Hct MD3), ANBS (MD4), and experimental DBS analyzed with ANBS as 
reference points (Ref Expt DBS, MD4). The regression line (blue) and the pointwise 95% confidence band 
(shaded) are shown. The slope of the line was 3.63 (95 % CI: 3.43, 3.83) and the intercept was -0.34 (95 % CI: 
-0.65, -0.03). 
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Figure S2. 5 Model diagnostics from linear regression analysis of predicted and observed 𝐊𝐊+ concentrations 
from the 24 ANBS from the CCLS in V1: (A) Plot of residuals against fitted values (left) and a normal Q-Q 
plot of the residuals (right). Sample 7 deviates from the assumptions of linearity and normality. (B) Scatter plot 
of observed (x-axis) and predicted (y-axis) 𝐊𝐊+ concentrations in these ANBS with colors representing low 
(black) to high (red) Cook’s D values. Sample 7 (red point) was identified as an influential outlier due to its 
relatively high Cook’s D value. The linear regression line and the pointwise 95% confidence band (shaded) are 
shown.  
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Figure S2. 6 Plot of observed (x-axis) and predicted (y-axis) 𝐊𝐊+ concentrations (mM) of the 24 ANBS from 
CCLS analyzed in V1. The linear regression line (blue) and the pointwise 95% confidence band (shaded) are 
shown. The dotted line represents the line of equality (y = x) representing perfect agreement between the two 
measurements. 
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3.1 Abstract 
 

Metabolism of chemicals from the diet, exposures to xenobiotics, the microbiome, and 
lifestyle factors (e.g., smoking, alcohol intake) produce electrophiles that react with nucleophilic 
sites in circulating proteins, notably Cys34 of human serum albumin (HSA). To discover 
potential risk factors resulting from in utero exposures, we are investigating HSA-Cys34 adducts 
in archived newborn dried blood spots (DBS) that reflect systemic exposures during the last 
month of gestation. The workflow includes extraction of proteins from DBS, measurement of 
hemoglobin (Hb) to normalize for blood volume, addition of methanol to enrich HSA by 
precipitation of Hb and other interfering proteins, digestion with trypsin, and detection of HSA-
Cys34 adducts via nanoflow liquid chromatography-high resolution mass spectrometry. As 
proof-of-principle, we applied the method to 49 archived DBS collected from newborns whose 
mothers either actively smoked during pregnancy or were nonsmokers. Twenty-six HSA-Cys34 
adducts were detected, including Cys34 oxidation products, mixed disulfides with low-
molecular-weight thiols (e.g., cysteine, homocysteine, glutathione, cysteinylglycine, etc.), and 
other modifications. Data were normalized with a novel method (‘scone’) to remove unwanted 
technical variation arising from: HSA digestion, blood volume, DBS age, mass spectrometry 
analysis, and batch effects. Using an ensemble of linear and nonlinear models, the Cys34 adduct 
of cyanide was found to consistently discriminate between newborns of smoking and 
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nonsmoking mothers with a mean fold change (smoking/nonsmoking) of 1.31. These results 
indicate that DBS-adductomics is suitable for investigating in utero exposures to reactive 
chemicals and metabolites that may influence disease risks later in life. 
 
3.2 Introduction 
 

Many carcinogens are reactive electrophiles that are generated through metabolism of 
chemicals from the diet, environmental exposures, the microbiome, and lifestyle factors such as 
smoking and alcohol consumption. Although these reactive intermediates are short-lived in vivo, 
they can be quantified by measuring their reaction products (adducts) with circulating proteins, 
such as hemoglobin (Hb) and human serum albumin (HSA).1,2 We have focused on HSA adducts 
bound to the highly nucleophilic sulfhydryl group at Cys34, which is a powerful antioxidant and 
scavenger of reactive electrophiles in the interstitial space.3 Whereas targeted assays are limited 
to measurement of particular HSA-Cys34 adducts known a priori, our adductomics methodology 
motivates discovery and quantitation of unknown HSA modifications of potential health 
significance.4  

In our Cys34 adductomics pipeline, HSA is isolated from plasma/serum, digested with 
trypsin, and analyzed via nanoflow liquid chromatography-high resolution mass spectrometry 
(nLC-HRMS) to find and quantitate modifications at the third largest tryptic peptide (T3) 
(21ALVLIAFAQYLQQC34PFEDHVK41).5 In four previous studies, we applied this adductomics 
pipeline to plasma/serum from healthy smokers and nonsmokers in the U.S.,5 nonsmoking 
women in China exposed to indoor combustion products and local controls,6 nonsmoking British 
patients with lung and heart disease and local controls,7 and nonsmoking Chinese workers 
exposed to benzene and local controls.8 Here, we extended the adductomics assay to measure 
Cys34 adducts in newborn dried blood spots (DBS). 

Because newborn DBS have been routinely collected at birth to screen for inborn errors 
of metabolism in the U.S. and worldwide,9 analysis of archived newborn DBS provides an 
avenue for investigating the etiologies of diseases initiated in utero. Retrospective investigations 
of chromosomal translocations in DNA from newborn DBS provide direct evidence of the 
prenatal origin of childhood leukemia, the most common childhood cancer.10–12 Chronic diseases 
in adult life, such as type 2 diabetes mellitus, cardiovascular disease, and the metabolic 
syndrome, can also have fetal origins.13 Since HSA has a residence time of 28 days,4 measuring 
Cys34 adducts in newborn DBS would allow us to investigate exposures to reactive and 
potentially carcinogenic electrophiles during the last month of gestation.  

Here, we describe untargeted measurements of HSA-Cys34 adducts in newborn DBS. A 
major challenge involved interfering species from the sample matrix, particularly lysed red blood 
cells and Hb that are not abundant in serum or plasma.14,15 Indeed, Hb is present at a 7-fold 
higher concentration than HSA in whole blood16 and interferes with tryptic digestion that 
releases the T3 peptide and its modifications for analysis.17 Using controlled addition of 
methanol, we effectively removed Hb from DBS extracts prior to digestion and detected HSA-
Cys34 adducts via nLC-HRMS in archived DBS from 49 newborns with mothers who either 
actively smoked during pregnancy or were nonsmokers. After using a novel method to normalize 
the data, we applied an ensemble of statistical methods to select adducts that discriminated 
between newborns of smoking and nonsmoking mothers. 
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3.3 Materials and methods 
 
Chemicals and Reagents 

Acetonitrile (Ultra Chromasolv, LCMS grade), triethylammonium bicarbonate (TEAB) 
buffer (1 M), ethylenediamine-tetraacetic acid (EDTA, anhydrous), HSA (lyophilized powder, 
97-99%), and porcine trypsin were from Sigma-Aldrich (St. Louis, MO). Methanol (Optima, 
LCMS grade), formic acid (Optima, LCMS grade), and iodoacetamide (IAA) were from Fisher 
Scientific (Pittsburgh, PA). Purified human Hb was purchased from MP Biomedicals, LLC 
(Santa Ana, CA). Isotopically labeled T3 (iT3) with sequence AL-[15N,13C-Val]-
LIAFAQYLQQCPFEDH-[15N,13C-Val]-K was custom-made (>95%, BioMer Technology, 
Pleasanton, CA), and the carbamidomethylated iT3 (IAA-iT3)18 was used as an internal standard 
to monitor retention time and mass drifts. Water was prepared with a PureLab purification 
system (18.2 mΩ cm resistivity at 25 ℃; Elga LabWater, Woodridge, IL). 
 
Preparation of Capillary DBS for Method Development 

For method development, capillary DBS were collected with informed consent from adult 
volunteers by finger prick with a sterile safety lancet (Fisher HealthCare, Houston, TX). The first 
drop of blood was discarded and subsequent drops were collected on Whatman 903 Protein 
Saver cards (GE Healthcare, Cardiff, UK). Blood spots were air dried for a minimum of 4 days 
and stored at -20 ℃ in glassine envelopes (GE Healthcare, Cardiff, UK) prior to use. Punches of 
5 and 6-mm diameter were obtained from these DBS with a Biopunch (Ted Pella Inc., Redding, 
CA). 
 
Archived Newborn DBS  

Newborn DBS were obtained with informed consent for 49 healthy control children from 
the California Childhood Leukemia Study (CCLS).19  These newborn DBS had been archived by 
the California Department of Public Health20 at -20 ℃ for 14 to 32 y prior to analysis in the 
current investigation. Twenty-three of these participants had mothers who actively smoked 
during pregnancy and the remaining 26 had nonsmoking mothers. Interviews with the biological 
mother were conducted to collect data on the child’s sex, race, and mother’s smoking status 
during pregnancy. A total of 23 smoking/nonsmoking pairs were matched on sex and child’s 
birth year. Smoking/nonsmoking pairs of newborn samples were analyzed together to minimize 
technical variation.   

Our methodology was developed for 4.7-mm punches from DBS. Because the archived 
newborn DBS for the present investigation were remnants from previous analyses, they consisted 
of areas of filter media equivalent to 4.7-mm punches based on size and weight. 
 
Extraction of Proteins and Measurements of Hb and Total Protein 

DBS punches were placed in microcentrifuge tubes and extracted with 55 𝜇𝜇L of water at 
room temperature for 15 min with constant agitation at 1400 rpm (Thermomixer, Eppendorf, 
Hamburg, Germany). Samples were then centrifuged for 10 s and 5-𝜇𝜇L aliquots were diluted 
with 45 𝜇𝜇L of water to measure Hb concentrations (for normalization of blood volumes) with a 
Cytation 5 microplate spectrophotometer (BioTek Instruments, Winooski, VT) at room 
temperature. The absorbance of duplicate 2.5-𝜇𝜇L sample aliquots was measured at 407 nm, 
which was the experimentally-determined absorbance maximum corresponding to heme in the ex 
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vivo oxidation state of Hb.21,22 Absorbance readings were converted into Hb concentrations with 
five-point linear calibration curves using Hb standard solutions ranging from 0.5 to 5.0 mg/mL.  

Absorbance measurements at 280 nm were used to calculate total protein concentrations 
in DBS extracts with correction for nucleic acid interferences at 260 nm and background 
correction at 320 nm.23 
 
Sample Preparation for Adductomics 

Various extraction protocols were tested and the method described below was found to be 
optimal for isolating HSA from DBS while removing Hb and other proteins from the extract 
(Results and Discussion provides further details). After Hb measurement, 41 𝜇𝜇L of methanol was 
added to the remaining 50 𝜇𝜇L of DBS extract (resulting in 45% methanol), vortexed, and mixed 
at 37 ℃ for 30 min with agitation at 1400 rpm (Thermomixer, Eppendorf, Hamburg, Germany). 
Samples were then stored at 4 ℃ for 30 min and centrifuged at 14,000×g for 10 min to remove 
precipitates and cellulose fibers. A 55-𝜇𝜇L aliquot of the supernatant was diluted with 95 𝜇𝜇L of 
digestion buffer (50 mM TEAB, 1 mM EDTA, pH 8.0), and the solution was loaded into a 
Costar Spin-X centrifuge tube filter (0.22 𝜇𝜇m cellulose acetate, Corning Incorporated, Corning, 
NY) and centrifuged at 10,000×g for 10 min. A 130-𝜇𝜇L aliquot of the filtered solution 
(containing ~17% methanol to enhance trypsin activity)5 was transferred into BaroFlex 8-well 
strips (Pressure Biosciences Inc., South Easton, MA) to which 1 𝜇𝜇L of 10-𝜇𝜇g/𝜇𝜇L trypsin was 
added (~1:10 enzyme-to-protein ratio). Pressure-assisted proteolytic digestion was performed 
with a Barozyme HT48 (Pressure Biosciences Inc., South Easton, MA) instrument, which cycled 
between ambient pressure (30 s) and 1,380 bar (20 kpsi, 90 s) for 32 min. After digestion, 3 𝜇𝜇L 
of 10% formic acid was added to denature trypsin. Digests were transferred to new tubes and 
centrifuged for 2 min at 10,000×g. A 100-𝜇𝜇L aliquot of the digest was transferred to a 300-𝜇𝜇L 
silanized glass vial (Micosolv Technology Corporation, Leland, NC), and 1 𝜇𝜇L of the 
isotopically labeled internal standard (IAA-iT3, 20 pmol/𝜇𝜇L) was added. Samples were stored in 
liquid nitrogen prior to nLC-HRMS. The 49 newborn DBS were processed daily in four batches 
of 12 or 13 samples. 
 
nLC-HRMS Analysis 

Digests were analyzed by an Orbitrap Elite HRMS coupled to a Dionex Ultimate 3000 
nanoflow LC system via a Flex Ion nanoelectrospray ionization source (Thermo Fisher 
Scientific, Waltham, MA), as described previously.5 A Dionex PepSwitft monolithic column 
(100 𝜇𝜇m i.d. × 25 cm) (Thermo Scientific, Sunnyvale, CA) was used with mobile phases 
consisting of 0.1% formic acid in water (solvent A) and 0.1% formic acid in acetonitrile (solvent 
B), with gradient elution (2-35 % B, 26 min) at a flow rate of 750 nL/min. Two 1- 𝜇𝜇L aliquots 
were injected for each sample. Full scan mass spectra were acquired in the positive ion mode 
with a resolution of 120,000 at m/z 400 in the m/z = 350 – 1500 mass range using the Orbitrap. 
The MS was operated in data-dependent mode to collect tandem MS (MS2) spectra in the linear 
ion trap. Additional details of nLC-HRMS analysis are available in Supporting Information. 
 
Identification, Quantitation, and Annotation of Putative Adducts 

HSA adducts were pinpointed using the adductomics pipeline, as described previously.5 
Adducts were grouped by monoisotopic mass (MIM) within 10 ppm and retention time (RT) 
within 1.5 min. The means of MIMs and RTs were calculated for each adduct across all samples. 
Masses added to the thiolate ion of the triply charged T3 peptide (Cys34-S-) were calculated and 
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annotated as described previously5 (see Supporting Information for details). Mass accuracies 
were estimated by the difference between theoretical and observed MIMs. 

Peak picking and integration were performed using the Xcalibur Processing Method 
(version 3.0, Thermo Fisher Scientific, Waltham, MA) based on the average MIMs (5 ppm mass 
accuracy) and RTs of the putative adducts. Peaks were integrated with the Genesis algorithm 
after normalizing the RTs using the internal standard (IAA-iT3) and using a RT window of 60 s.  
 
Statistical Analysis 

All statistical analyses were performed using the R statistical programming 
environment.24 Peak areas were log-transformed and the means of duplicate measurements were 
used after removal of four obvious outliers. Missing values were imputed using k-nearest-
neighbor imputation (see Supporting Information for details).25  

Data normalization was optimized using the Bioconductor R package ‘scone,’26 which 
explored different scaling methods and used a regression-based strategy to adjust for unwanted 
factors of variation.27 Normalization workflows were ranked by a variety of metrics  to reduce 
unwanted technical variation while preserving the biological variation of interest.28 The top-
ranking normalization scheme according to ‘scone’ used DESeq scaling and removed unwanted 
variation due to the following factors: digested HSA, blood volume, DBS age, instrument 
performance, and batch effects. Here, ‘digested HSA’ was quantified by the abundance of the 
tryptic housekeeping peptide adjacent to T3 with sequence 42LVNEVTEFAK51 (doubly charged 
precursor ion at m/z = 575.3111).5 ‘Blood volume’ was indicated by measurement of Hb in DBS 
extracts. ‘DBS age’ (i.e., 2017 – child birth year) was used to adjust for differences in the 
extraction efficiency due to the age of the DBS.29 ‘Instrument performance’ was indicated by the 
drift in the abundance of the internal standard over time. ‘Batch effect’ was used to adjust for 
differences in the four subsets of samples that were prepared on different days.  

To ensure robust associations with mothers’ smoking status, a combination of linear and 
nonlinear models were used to identify discriminating adducts. First, the following multivariable 
regression model was applied: 

𝑌𝑌𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽2𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽3𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆 + 𝛽𝛽4𝑋𝑋𝐵𝐵𝑅𝑅𝐵𝐵𝑅𝑅ℎ + 𝛽𝛽5𝑋𝑋𝐻𝐻𝐻𝐻 + 𝛽𝛽6𝑋𝑋𝐼𝐼𝑆𝑆 + 𝛽𝛽3𝑋𝑋𝐻𝐻𝐻𝐻 +
𝛽𝛽3𝑋𝑋𝐷𝐷𝐵𝐵𝑆𝑆 𝐴𝐴𝐴𝐴𝑆𝑆 + 𝜀𝜀𝑖𝑖,                    (1) 

where 𝑌𝑌𝑖𝑖 is a vector of logged, DESeq scaled abundances of the ith adduct, 𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆 (0 = 
other, 1 = white) are binary vectors, 𝑋𝑋𝐵𝐵𝑅𝑅𝐵𝐵𝑅𝑅ℎ is a four-level categorical variable indicating batch, 
𝑋𝑋𝐻𝐻𝐻𝐻 is the vector of housekeeping peptide abundances, 𝑋𝑋𝐼𝐼𝑆𝑆 is the vector of internal standard 
abundances, 𝑋𝑋𝐻𝐻𝐻𝐻 is the vector of Hb measurements, and 𝑋𝑋𝐷𝐷𝐵𝐵𝑆𝑆 𝐴𝐴𝐴𝐴𝑆𝑆 is a vector of DBS sample 
ages. The coefficient 𝛽𝛽1 and estimated p-values were used to rank adducts by their associations 
with mothers’ smoking status. Significance levels were adjusted for multiple testing with the 
Benjamini-Hochberg method to control the false discovery rate (FDR) at 𝛼𝛼 = 0.05.30 The mean 
fold change (smoking/nonsmoking) in adduct intensities between newborns of smoking and 
nonsmoking mothers was calculated as exp(𝛽𝛽1). 

Next, a logistic least absolute shrinkage and selection operator (lasso)31 model was fitted 
to the logged, scaled, and normalized adduct abundances from ‘scone’ along with the matching 
variables (i.e., sex, birth year), to select a subset of adducts that best predicted the mothers’ 
smoking status. To increase stability, the logistic lasso regression was performed on 500 
bootstrapped data sets.32 The percentage of times each adduct was selected by the lasso model 
out of the 500 iterations was used as a measure of variable importance. This process was 



41 
 

performed for a range of values of the lasso penalty parameter (lambda range: 0.12 ~ 0.20) to 
ensure that the final variable selections were robust.  

Finally, adducts were also ranked by their associations with the mothers’ smoking status 
using random forest variable importance.33 A random forest with 500 trees was used to predict 
mothers’ smoking status with the logged, scaled, and normalized adduct abundances in addition 
to matching variables. Adducts were ranked by the mean decrease in Gini index, which indicates 
the total decrease in node impurity (as measured by the Gini index when splitting on the adducts 
within the decision tree averaged over all trees).34  

To evaluate the importance of selected adducts that discriminated between the smoking 
and nonsmoking mothers based on all three statistical approaches, we obtained 10-fold cross-
validated area under the estimated receiver operating characteristic (ROC) curve (AUC) by 
fitting a logistic regression model on smoking status with discriminating adducts as predictors. 
Cross-validated AUC estimates were obtained with the ‘cvAUC’ R package.35  
 
3.4 Results and discussion 
 
Measurement of Hb in Archived DBS 

Our analysis was performed exclusively with newborn DBS that had been maintained in 
freezers at -20 ℃ for 14 to 32 y prior to analysis. Quantitative analysis of Hb in DBS stored at 
room temperature can be problematic because of oxidation of Hb.36 Indeed, when DBS were 
stored at room temperature for several months compared to storage at -20 ℃, we observed that 
the color changed from deep red to dark brown indicating oxidation of Hb,37 and decreased water 
solubility of Hb (data not shown). The absorption spectra in the 250 – 750 nm range for the Hb 
calibration curve (Figure S3.1A) and Hb measured from extracts of 10 randomly selected 4.7-
mm punches from archived newborn DBS (Figure S3.1B) both showed maximum absorbance at 
407 nm. The Hb calibration curves measured for each of the four batches of newborn DBS 
showed a strong linear relationship between Hb concentrations and absorbance measurements at 
407 nm (r2 > 0.99, Figure S3.1C). Details on oxidation of Hb is provided in Supporting 
Information. 
 
Adductomics Analysis of DBS 

In preparing DBS for adductomics, HSA must first be extracted from the filter paper and 
isolated from whole blood. Previous analyses of proteins extracted from DBS have used mixed 
aqueous-organic solutions to selectively precipitate proteins in solution.38,39 Since Hb is one of 
the most prominent interfering proteins in whole blood, we tested various mixtures of organic 
solvents (ethanol, methanol, acetonitrile, and 1-propanol) to precipitate Hb while retaining HSA 
in solution (data not shown), and found ethanol and methanol to be most effective. When the 
concentration of ethanol and methanol were gradually increased from 30 to 60% (v/v), HSA 
remained in solution at concentrations less than 40% ethanol or 45% methanol and increasingly 
precipitated at concentrations up to 60% for both ethanol and methanol (Figure S3.2). Methanol 
was more effective at precipitating Hb with a ~95% decrease in concentration at 45% methanol 
when compared to DBS extracted with water (Figure S3.2).  

The recovery of HSA was also influenced by the total protein concentration of the DBS 
extract, where higher total protein concentrations led to a lower recovery of HSA after 
precipitation (Figure S3.3). Based on preliminary analysis of ten 4.7-mm punches from archived 
newborn DBS, we found that the average total protein concentration for newborns (4.98 mg/mL) 
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was approximately equivalent to a 6-mm punch from an adult DBS. The observed higher total 
protein concentration of newborn blood reflects the higher Hb concentrations in newborns 
compared to adults.40 Therefore, we used 6-mm punches from adult DBS to find the optimal 
concentration of methanol in the extraction mixture to isolate HSA. In addition, the isoelectric 
points (pI) of fetal and adult Hb differ (fetal Hb: pI 6.98, adult Hb: pI 6.87),41 and fetal Hb 
precipitates more readily at neutral pH. When comparing 40, 45, 48, and 50% methanol, we 
observed that Hb did not precipitate with 40% methanol and that there was a ~40% loss of HSA 
when the methanol concentration was increased to 50% (Figure S3.4). Based on this result, we 
chose 45% methanol to isolate HSA in the DBS extract. We also found that incubating the 
samples at 37 °C (as opposed to room temperature) after addition of methanol to the aqueous 
DBS extract was essential for denaturing and precipitating Hb. When we tested extraction with 
45% methanol on four 4.7-mm punches from archived newborn DBS, there was no loss of HSA 
and the residual Hb concentration was ~0.02 mg/mL (1.2% of the initial concentration) (Figure 
S3.5).  

Digestion of HSA was optimized by testing various digestion programs using the 
pressure-cycling technology and by adjusting the proteolytic enzyme-to-protein ratio (E:P). 
While conventional proteomics approaches perform reduction and alkylation of proteins prior to 
digestion,42 we did not apply these techniques in order to preserve Cys34 disulfides and to 
prevent the formation of artifacts. The digestion time was tested at 16, 32 and 64 min to 
determine the optimal time needed for a high yield of digestion. Both the total ion chromatogram 
and base peak chromatogram were examined for the presence of undigested proteins and yield of 
peptides.17 While chromatograms from 32 and 64 min digests were comparable, there were fewer 
peptides and a more prominent peak for undigested proteins with the 16 min digestion, 
suggesting that 32 min was sufficient (Figure S3.6). Undigested protein was observed despite 
longer digestions, and probably reflects the lack of denaturation and reduction of disulfide bonds. 
It may also be due to the presence of residual non-HSA proteins, including Hb, which increase 
competition for trypsin cleavage sites and thereby interfere with the digestion of HSA.42 We 
tested various 30 min digestion programs consisting of shorter and longer cycles at high 
pressure, but there was little difference in the resulting chromatograms (data not shown). The E:P 
was optimized to ensure an amount of trypsin that was sufficient for digestion while preventing 
autolysis.43 When the E:P was increased from 1:18 to 1:3, trypsin activity showed a plateau at 
about 1:10, after which a further increase in trypsin did not improve the digestion (Figure S3.7). 
Increasing trypsin to a ratio of 1:5 resulted in incomplete digestion and more trypsin autolysis 
products, which could lead to ion suppression during MS detection.44 
 
Analysis of Archived Newborn DBS 

Normalization of blood volumes based on Hb measurements proved to be effective in 
removing unwanted variation in adduct abundances as indicated by ‘scone.’ In addition, there 
was a relatively strong negative correlation (Pearson’s r = -0.56) between Hb concentrations and 
the second estimated factor of unwanted variation (Figure S3.8) using the RUVg method of 
Risso et al., a factor analysis method that estimates factors of unwanted variation via 
decomposition of a subset of the data consisting of negative control adducts.27 This shows that 
Hb is indeed a factor of unwanted variation in DBS analysis. Furthermore, the weights of the 
DBS and Hb concentrations were highly correlated (Pearson’s r = 0.93), suggesting that Hb is a 
good predictor of blood volume in newborn DBS. 
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Relative log abundance (RLA) plots,45 which were obtained by standardizing each adduct 
by the median abundance across samples and logging the resulting ratio, were used to visually 
inspect the reproducibility of replicate measurements and to assess the normalization scheme. 
Two subjects (of nonsmoking mothers) were removed from the analysis and only one 
measurement was used for one subject due to high variation in adduct abundances based on the 
RLA plot of duplicate measurements (Figure S3.9). Three adducts were removed from the 
analysis since they were missing in over half of the samples (Figure S3.10). This left 47 subjects 
and 26 putative Cys34 adducts for analysis. 

Newborns of smoking and nonsmoking mothers, matched by sex and birth year, were 
similar with respect to race, DBS weight, and Hb concentrations (Table S3.1). The distribution of 
adduct peak areas in each sample before and after normalization for unwanted factors of 
variation (i.e., Hb concentration, DBS age, housekeeping peptide, internal standard, and batch 
effects) is shown in Figure 3.1. By comparing the RLA plots from before (Figure 3.1A) and after 
(Figure 3.1B) normalization, it can be seen that this scheme effectively removed unwanted 
variation.  

 

 
Figure 3. 1 RLA plots from (A) before and (B) after normalization with ‘scone.’ Colors represent sample 
batches. 
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Table 3. 1 Adducts detected in 47 archived DBS from newborns whose mothers smoked during pregnancy and 
those who did not.  

Adduct RT 
(min) 

MIM 
observed 
(m/z, 3+) 

MIM 
theoretical 
(m/z, 3+) 

∆Mass 
(ppm) 

Added 
mass (Da) 

Elemental 
composition of 
added mass 

Annotation 

796.43b,c,d 27.08 796.4304 796.4301 0.39 -45.9854 -CH2S Cys34→Gly  
805.76b,c,d 26.73 805.7616 805.7618 -0.22 -17.9919 -SH2, +O Cys34→Oxoalanine 
810.43 26.85 810.4335   

 
-3.9761   Unknown  

811.09 26.60 811.0915 811.0875 4.98 -2.0020 -H2 Cys34 Sulfenamide  
811.76a,b,c,d 27.67 811.7589 811.7594 -0.61 1.0078 +H Unmodified T3e  
815.76 27.26 815.7593 815.7594 -0.07 12.0013 +CH2O, -H2O CH2 crosslink 
816.42a,b,c,d 25.43 816.4197 816.4191 0.72 13.9825 -H2, +O Cys34 Sulfinamidee  
816.43a,b,c,d 27.53 816.4312 816.4312 -0.05 15.0248 +CH3 Methylation (not at 

Cys34) 
819.09 27.59 819.0865 819.0867 -0.23 22.9907 +Na S-Sodiation 
820.09a,b,d 27.72 820.0914 820.0911 0.31 26.0053 +CN S-Cyanylation 
821.75a 27.33 821.7506 821.7507 -0.08 30.9831 -H2, +O2 Cys34 Sulfonamide 
822.42a,b,c,d 26.70 822.4224 822.4226 -0.28 32.9984 +HO2 Cys34 Sulfinic acide  
827.09a,b 27.25 827.0947 827.0945 0.24 47.0153 +CH3O2 S-(O)-O-CH3 
827.75a,b,c,d 27.00 827.7542 827.7543 -0.08 48.9938 +HO3 Cys34 Sulfonic acide 
830.43b 27.20 830.4342 830.4348 -0.74 57.0337 +C3H5O Unknown (possible 

S-addition of 
acrolein) 

832.43 27.43 832.4260 832.4262 -0.24 63.0091 +CH3O3 Unknown  
835.11b,d 27.29 835.1064 835.1066 -0.35 71.0503 +C4H7O S-Addition of 

crotonaldehydee 
839.78b 27.58 839.7777 839.7785 -0.99 85.0643 +C5H9O S-Addition of tiglic 

aldehydee 
845.11 27.16 845.1110 845.1102 0.98 101.0642 +C5H9O2 Unknown  
850.10b,c,d 27.51 850.0950 850.0958 -0.88 116.0162 +C4H6NOS S-Addition of hCys  

(-H2O) 
851.42a,b,c,d 26.12 851.4249 851.4274 -2.90 120.0060 +C3H6NO2S S-Addition of Cyse  
856.10a,b,c,d 26.46 856.0990 856.0993 -0.32 134.0282 +C4H8NO2S S-Addition of hCyse 
857.44 27.67 857.4418 857.4419 -0.10 138.0567 +C7H8NO2 Unknown  
870.43a,b,c,d 25.75 870.4346 870.4345 0.11 177.0351 +C5H9N2O3S S-Addition of 

CysGlye  
913.45a,b,c,d 26.06 913.4487 913.4487 -0.06 306.0773 +C10H16N3O6S S-Addition of GSHe 
918.12a 26.39 918.1205 918.1206 -0.16 320.0926 +C11H18N3O6S Unknown (likely S-

addition of GSH and 
CH2 crosslink) 

Cys, cysteine; hCys, homocysteine; CysGly, cysteinylglycine; GSH, glutathione; MIM, monoisotopic mass; 
RT, retention time. 
aAlso detected by Liu et al. 2018.7 

bAlso detected by Grigoryan et al. 2018.8 
cAlso detected by Lu et al. 2017.6 
dAlso detected by Grigoryan et al. 2016.5 
eAnnotation confirmed with a synthetic standard 
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Table 3.1 summarizes the 26 adducts that were detected in the DBS of newborns from 
smoking and nonsmoking mothers. Representative MS2 spectra of the adducts are shown in 
Figure S3.11. Nineteen of the 26 adducts have been previously reported, including truncations, 
unmodified T3, methylated T3, Cys34 sulfoxidation products (e.g., sulfinic and sulfonic acids), a 
cyanide adduct, and Cys34 disulfides of low-molecular-weight thiols.5,6,8 Only three of the 
remaining 7 adducts had putative annotations, i.e., the Cys34 sulfenamide (811.09), a CH2 
crosslink (815.76), and the sodium adduct (819.09). Aside from the unmodified T3 peptide 
(811.76), the Cys34 sulfinic acid (822.42) and the S-glutathione (GSH) disulfide (913.45) were 
the most abundant adducts across all samples (Figure S3.12).  

In studying reaction pathways leading to Cys34 sulfoxidation products, Grigoryan et al. 
reported an intramolecular cyclic sulfinamide adduct (816.42) with the added mass (+O, −H2), 
which results from the formation of a cross-link between Cys34 and the amide group of the 
adjacent Gln33.18 Two different pathways were proposed for the formation of the sulfinamide 
adduct: (1) from dehydration of Cys34 sulfenic acid (Cys34-SOH) resulting in the sulfenamide 
adduct (mass difference [−H2]) with the Cys34-Gln33 cross-link, which is then oxidized to the 
sulfinamide adduct; (2) from oxidation of the sulfenic acid to the sulfinic acid (822.42, Cys34-
SO2H), from which loss of water results in the sulfinamide adduct (Figure 3.2). The second 
reaction pathway appeared to be more likely because the intermediate sulfenamide adduct had 
not been detected in plasma/serum samples.5,6,18 However, in newborn DBS we detected both the 
sulfenamide (811.09) and sulfinamide (816.42) adducts, suggesting that formation of the 
sulfinamide adduct is possible via both pathways. In addition, we detected the sulfonamide 
adduct (821.75, added mass [+O2, −H2]), which results from oxidation of the sulfinamide adduct 
(Figure 3.2).46 The formation of these intramolecular cyclic adducts may have been promoted by 
the drying of DBS with subsequent dehydration of sulfenic, sulfinic, and sulfonic acids to 
produce the sulfenamide, sulfinamide, and sulfonamide adducts, respectively (Figure 3.2). It is 
also possible that these intramolecular cyclic adducts (particularly sulfenamide) were detected in 
the present analysis due to an increased stability of these analytes in DBS compared to plasma 
and serum. Analytes in DBS are typically less reactive than in liquid blood because they are 
stabilized through adsorption onto a solid cellulose matrix (i.e., the filter paper).47 Proteins 
commonly degrade in aqueous solutions due to aggregation, oxidation, and hydrolysis48 that 
appear to be minimized during long-term storage of DBS in a freezer. In fact, we did not observe 
the T3 dimer in our analysis of newborn DBS although this dimer is routinely detected in 
plasma/serum samples.5–8 Furthermore, adducts in DBS may be less susceptible to formation of 
artifacts because HSA is immobilized by the filter paper and less likely to interact with other 
molecules during storage. 
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Figure 3. 2 Reaction pathways proposed for the formation of Cys34 oxidation products (Adapted from 
Grigoryan et al. 2012).18 Observed monoisotopic masses are shown. 
 
 
Adducts that Discriminated Newborns of Smoking and Nonsmoking Mothers 

We had anticipated that Cys34 adducts of two toxic contaminants of cigarette smoke, i.e., 
ethylene oxide and acrylonitrile, might be more abundant in newborns of smoking mothers given 
our previous detection of these adducts in plasma from adult smokers and their absence in 
plasma from nonsmokers.5 However, these adducts were not detected in the newborn DBS, 
possibly due to low concentrations of the precursor molecules in newborn blood. Mothers may 
have stopped smoking during the third trimester or before the last month of pregnancy, and this 
may explain why we did not see all of the expected adducts in the present analysis.  

We used three different statistical approaches to select adducts that discriminated 
newborns of smoking and nonsmoking mothers. The volcano plot (Figure 3.3A) shows the 
relationship between the smoker/nonsmoker fold change of a given adduct and the statistical 
significance of the difference in adduct abundance obtained from Equation 1. Discriminating 
adducts were also identified using lasso on bootstrapped data, which ranked adducts by the 
percentage of times each adduct was introduced into the model out of 500 iterations (Figure 
3.3B) and by random forest (Figure 3.3C).  
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Figure 3. 3 Selection of adducts that discriminate newborns by maternal smoking status. Points represent 
adducts and the two highest-ranked adducts are shown in red (820.09 is the cyanide adduct and 830.43 is an 
unknown adduct, possibly S-addition of acrolein). (A) Volcano plot showing the mean fold change for each 
adduct between newborns with smoking/nonsmoking mothers, and the corresponding statistical significance). 
The dashed line represents a nominal p-value of 0.05. (B) Proportion of times each adduct was selected into 
the lasso model out of 500 iterations. (C) The top 20 adducts ranked by random forest variable importance. 
 
 

Of the 26 adducts that were tested, the Cys34 adduct of cyanide (820.09) was ranked the 
highest by all three statistical methods. As seen from the volcano plot (Figure 3.3A), the cyanide 
adduct showed a marked difference between newborns of smoking and nonsmoking mothers, 
with a smoker/nonsmoker mean fold change of 1.31 (nominal p-value = 0.0017; FDR-adjusted p-
value = 0.044). The cyanide adduct was also top-ranked by both the lasso model (Figure 3.3B) 
and random forest (Figure 3.3C). Based on p-values from Equation 1, the second-ranked adduct 
(830.43) was an unknown with added mass corresponding to +C3H5O (possibly S-addition of 
acrolein) with a fold change of 0.82 (nominal p-value = 0.049; adjusted p-value = 0.302) (Figure 
3.3A). This unknown adduct was also ranked second by lasso (Figure 3.3B) and fourth by 
random forest (Figure 3.3C).  

To test whether the cyanide adduct could be used to distinguish between newborns based 
on maternal smoking status, we performed a ROC analysis using logistic regression with the 
cyanide adduct as the predictor. The cyanide adduct alone provided a cross-validated AUC of 
0.79 (95% CI: 0.65, 0.93). Although the AUC estimate is likely to be optimistic, because we did 
not have an independent test set for the ROC analysis, this indicates good discrimination 
between newborns of smoking and nonsmoking mothers.  

The elevated levels of the cyanide adduct among newborns of smoking mothers are 
consistent with inhalation of hydrogen cyanide from tobacco smoke.49 The half-life of cyanide in 
blood is less than one hour, which makes it difficult to obtain accurate measurements of cyanide 
exposure from the direct analysis of blood from smokers.50 While more stable metabolites of 
cyanide, such as thiocyanate, are often used as surrogate measures of cyanide exposure, pairwise 
correlations are small between such metabolites and cyanide exposures.50,51 Since the residence 
time of HSA is ~1 month,4 the cyanide adduct of Cys34 arguably represents  a more accurate 
measure of chronic low-level exposure to cyanide.52 
 
Using Adductomics to Discover Biomarkers of in utero Exposures 

Adducts of HSA represent biomarkers of in utero exposures during the last month of 
gestation.  A good example of such exposures is maternal smoking during pregnancy, which has 
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been consistently associated with increased risks of adverse birth outcomes (e.g., low birth 
weight, preterm birth)53 and has also been suggested to increase the risk of diseases later in life, 
including various types of cancer.54–57 However, the long term effects of in utero tobacco-smoke 
exposures on the risk of childhood cancer have been inconsistent, with many studies reporting 
null associations.58 One limitation of these epidemiological investigations has been reliance on 
maternal self-reports to retrospectively characterize fetal exposures to tobacco smoke.58,59 
Exposure misclassification due to recall and reporting bias is a particular concern among 
pregnant women, who may feel uncomfortable discussing their smoking histories during 
pregnancy, and can result in underestimation of fetal health effects from smoking mothers.60  

Biomarkers complement interview-based exposure assessment by providing objective 
measures of exposure that are not susceptible to recall bias. Nicotine and its metabolite cotinine 
are commonly measured in biological fluids (e.g., urine, blood, saliva) to assess tobacco smoke 
exposures.60 For retrospective analyses of fetal exposures, archived newborn DBS are 
particularly attractive because they are readily available in California’s repository that is 
maintained at -20 ℃. In addition, newborn DBS enable direct measurement of fetal exposures 
that can accumulate in the placenta and exceed those of the mother.61  

Metabolites of nicotine, mainly cotinine, have been measured in newborn DBS to 
improve smoking surveillance among pregnant women.62,63 However, the half-life of cotinine is 
only about 28 h in infants, and cotinine may only be detected in newborns of heavy smokers who 
smoke throughout pregnancy.64 Since the residence time of HSA is 28 days,4 Cys34 adducts 
detected in newborn DBS represent exposures received during the last month of gestation and are 
only marginally affected by the day-to-day variability in exposure.65 In the present study, the 
Cys34 cyanide adduct discriminated between mothers who reported smoking during pregnancy 
vs. those who did not, suggesting that maternal self-reported smoking was reasonable in the 47 
subjects tested. 
 
3.5 Conclusion 
 

By substantially modifying an untargeted HSA-Cys34 adductomics pipeline,5 we were 
able to analyze Cys34 adducts extracted from newborn DBS.  We then validated the 
methodology with archived DBS from newborns of smoking and nonsmoking mothers. Despite 
the small sample size and limited blood volume derived from 4.7-mm DBS punches, we were 
able to detect significantly higher levels of the Cys34 cyanide adduct among newborns whose 
mothers smoked during pregnancy. Since archived newborn DBS represent snapshots of in utero 
exposures, our adductomics method can be applied to investigate early-life exposures associated 
with childhood diseases. We are currently applying this methodology to archived newborn DBS 
from the CCLS to discover HSA-Cys34 adducts associated with childhood leukemia. 
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3.9 Supporting information 
 
3.9.1 Supplemental Methods 
 
Chemicals and Reagents 

HSA (lyophilized powder, 97-99%), acetic acid (LCMS grade), dimethyl sulfoxide, were 
from Sigma-Aldrich (St. Louis, MO). Tris base was from Fisher Scientific (Pittsburgh, PA). 
Glycine and sodium dodecyl sulfate (SDS) were from Bio-Rad (Hercules, CA). Dithiothreitol 
was from Promega (Madison, WI). Purified human Hb was purchased from MP Biomedicals, 
LLC (Santa Ana, CA).  
 
Gel Electrophoresis 

One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) was used during method development to optimize the isolation of HSA in DBS extracts. 
Aliquots of capillary DBS extracts (containing about 10 𝜇𝜇g total protein) were mixed with an 
equal volume of Laemmli sample buffer (Bio-Rad, Hercules, CA) containing 0.35 M 
dithiothreitol and denatured at 95 ℃ for 10 min. SDS-PAGE was performed with ~5 𝜇𝜇g 
protein/well on 10% precast polyacrylamide gels (Bio-Rad, Hercules, CA) in Tris-glycine SDS 
buffer (pH = 8.3) at 40 V for 10 min and subsequently at 120 V for ~60 min. Proteins were fixed 
with 40% methanol containing 10% acetic acid (30 min) and stained with Coomassie Brilliant 
Blue R-250 (Bio-Rad, Hercules, CA) for 40 min. Gels were destained overnight in 40% 
methanol containing 10% acetic acid and images of the gels were acquired with an AlphaImager 
HP system (Alpha Innotech, San Leandro, CA). Gel band densities were quantified using ImageJ 
software (NIH, https://imagej.nih.gov/ij/).  
 
nLC-HRMS analysis 

After each sample was injected in duplicate, the column was washed after every two 
samples by injecting 1 𝜇𝜇L of a solution consisting of 80% acetonitrile, 10% acetic acid, 5% 
dimethyl sulfoxide, and 5% water.  

The MS was operated in data-dependent mode, in which the fifteen most intense ions 
exceeding 12,000 counts in the full scan mass spectrum were subjected to tandem MS (MS2) 
using collision-induced dissociation (CID) in the linear ion trap with a normalized collision 
energy of 28%. 

The lock mass option was enabled to provide a real-time internal mass calibration using a 
reference list of 3 identified background ions.1 Dynamic exclusion was enabled with the 
following parameters: repeat count 2, repeat duration 20 s, exclusion list size 500, exclusion 
duration 90 s, and exclusion precursor ion width ±20 ppm. Charge state screening was enabled 
to only select doubly and triply charged precursor ions in MS1 for CID fragmentation. 
     
k-nearest-neighbor imputation 

Pairwise distances between adducts were calculated using the Euclidean distance based 
on all non-missing values. To choose the value of the parameter k, 12 low abundance adducts 
were randomly chosen to be made missing in 10 samples, their values were imputed using 
several values of k ranging from 1 to 15, and the mean squared error was calculated for each k. 
The k with the smallest mean squared error, k = 5, was chosen.   
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Adduct annotation 
The mass added to the thiolate ion of the triply charged T3 peptide (Cys34-S-) was 

calculated by subtracting the observed MIM of the unmodified T3 peptide from the MIM of the 
putative adduct, multiplying the difference by 3 (charge state) and adding the MIM of one 
hydrogen atom (m/z = 1.0078).     

Putative adducts were annotated by obtaining the elemental compositions of the added 
mass using the Molecular Weight Calculator (version 6.50, www.alchemistmatt.com), Elemental 
Composition Finder from the Xcalibur Qual Browser (version 3.0, Thermo Fisher Scientific), 
ChemCalc Molecular Formula Finder (http://www.chemcalc.org/mf_finder), and UNIMOD 
(http://www.unimod.org/). Using the proposed empirical formula of a given putative adduct, the 
isotope distribution was simulated using the Xcalibur software, and the theoretical MIM was 
compared with the observed MIM to calculate mass accuracies. Database searches using the 
empirical formula were performed using the PubChem Compound database 
(https://pubchem.ncbi.nlm.nih.gov/) and the Human Metabolome Database 
(http://www.hmdb.ca/). 
 
Measurement of Hb in Archived DBS 

Upon exposure to oxygen, Hb is converted to oxyhemoglobin (oxyHb), which is further 
oxidized to methemoglobin (metHb) and denatured to hemichrome (HC).2 The transition from 
oxyHb to metHb and HC is accompanied by the change in color from red to brown, resulting in 
spectral differences primarily in the ~500 – 650 nm region.3 Various methods have previously 
been proposed to determine the sum of oxyHb, metHb, and HC (i.e., ‘total Hb’) to quantify all 
Hb derivatives in DBS as a proxy for hematocrit.2,4–6 While such methods may be important for 
the analysis of highly oxidized DBS, this was unnecessary for our analysis of newborn DBS 
archived at -20 ℃. Freezing temperatures have been shown to slow the oxidation process of Hb,7 
and we found that the conversion of oxyHb to metHb and HC was minimal in DBS maintained at 
-20 ℃, despite long-term storage. 

The absorption spectra in the 250 – 750 nm range for the Hb calibration curve and Hb 
measured from extracts of 10 randomly selected 4.7-mm punches from archived newborn DBS 
are shown in Figure S-2.  Absorption in the 450 – 750 nm range show spectral characteristics 
indicating that oxyHb is the predominant Hb form in both the Hb standards and the newborn 
DBS extracts, although there is some evidence for the presence of metHb at 630 nm (inset for 
Figure S-2A and S-2B).3,6,8 
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3.9.2 Supplemental Figures 
 
 
Figure S3. 1 Absorption spectra in the 250 – 750 nm range with insets showing the 450 – 750 nm range for the 
(A) Hb calibration curve and (B) ten 4.7-mm punches from archived newborn DBS. (C) Hb calibration curves 
used for determining Hb concentrations in DBS extracts based on the absorbance at 407 nm. The calibration 
curve was measured for each of the four batches of newborn. 
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Figure S3. 2 Isolation of HSA in DBS extracts with aqueous mixtures of ethanol (EtOH) and methanol (MeOH) 
using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Lanes 4-10 show the recovery of 
HSA after precipitation with 30% EtOH (E30), 35% EtOH (E35), 40% EtOH (E40), 45% EtOH (E45), 45% MeOH 
(M45), 50% MeOH (M50), 55% MeOH (M55). HSA and Hb standards were mixed together in Lane 2. The table on 
the right shows the percentage of HSA recovered and percentage of Hb removed after precipitation with EtOH and 
MeOH. DBS extracted in water was used as the control. HSA recovery was calculated from the gel by dividing band 
intensities of HSA after extraction with EtOH and MeOH by the band intensity of HSA in the control. Hb removal 
was calculated relative to the control based on the absorbance at 407 nm using UV-Vis spectroscopy.  
  

  
 

  
Sample Hb 

(mg/mL) 
Band intensity 
(HSA) 

HSA recovery 
(%) 

Hb removal 
(%) 

Control 2.37 3489.4   

EtOH 30% 0.24 3183.7 91.2 10.2 
EtOH 35% 0.20 3173.3 90.9 8.4 
EtOH 40% 0.18 3166.7 90.8 7.5 
EtOH 45% 0.17 2584.1 74.1 7.2 
MeOH 45% 0.13 3218.7 92.2 5.4 
MeOH 50% 0.10 2444.9 70.1 4.4 
MeOH 55% 0.11 1494.0 42.8 4.5 
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Figure S3. 3 Recovery of HSA relative to the total protein concentration in the DBS extract. DBS punches of 
increasing size were extracted to assess the effect of the total protein concentration on the recovery of HSA 
after precipitation with 50% methanol. (A) Extraction of DBS punches ranging from 2.0 – 5.0 mm. (B) 
Extraction of DBS punches ranging from 6.0 – 7.2 mm. HSA recovery before and after precipitation are shown 
side-by-side for each punch size in the gels. (C) Plot of HSA recovery in relation the total protein 
concentration before addition of methanol to precipitate proteins. HSA recovery was estimated by taking the 
ratio of post-precipitation band intensity at 60 kDa divided by the pre-precipitation band intensity at 60 kDa 
for each punch size. The plot shows a decrease in HSA recovery with increasing total protein concentration.   
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Figure S3. 4 Recovery of HSA with increasing amounts of methanol in the extraction mixture. Gel on the left 
shows HSA recovery after precipitation of proteins in the DBS extracts from 6-mm punches using 40, 45, 48, 
and 50% methanol. HSA recovery before and after precipitation are shown side-by-side for each methanol 
mixture. The table on the right shows the percentage of HSA recovered after precipitation. HSA recovery was 
estimated by taking the ratio of post-precipitation band intensity at 60 kDa divided by the pre-precipitation 
band intensity at 60 kDa.   

  

 
 
 

 
Figure S3. 5 Extraction of four 4.7-mm punches from archived newborn DBS using 45% methanol. The gel 
shows HSA recovery after precipitation of proteins in the DBS extracts. HSA recovery before (left lane) and 
after (right lane) precipitation are shown side-by-side. The table shows the percentage of Hb removed based on 
absorbance measurements at 407 nm (ratio of Hb concentrations post-precipitation:pre-precipitation). 
 

 
 
 
  

Sample Band intensity 
(HSA) 

HSA recovery 
(%)  

50% pre 4227.8  

50% post 2795.7 66.1 
48% pre 4338.7  

48% post 4105.1 94.6 
45% pre 3981.6  

45% post 3856.9 96.9 
40% pre 4571.7  

40% post 4806.1 105.1 
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Figure S3. 6 Comparison of HSA digestion between 16, 32, and 64 min digestion programs. Total ion 
chromatograms of HSA isolated from DBS extracts digested for 16 min (red), 32 min (green), and 64 min 
(blue) are shown. The largest peak at ~30 min represents undigested protein. 
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Figure S3. 7 Digestion of HSA with increasing amounts of trypsin. (A) Gel shows HSA isolated from DBS 
extracts were digested with 0 – 35 𝝁𝝁g of trypsin (enzyme to protein ratio ranging from 1:18 to 1:3). There were 
three main peaks associated with undigested protein (Band 1 – 3). (B) Undigested proteins in the gel were 
quantified using ImageJ and plotted against the amount of trypsin used.  

 
 
 
Figure S3. 8 Correlation between Hb concentrations and the second estimated factor of unwanted variation.  
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Figure S3. 9 Relative log abundance (RLA) plot of duplicate measurements for each sample. The RLA plot 
was obtained by standardizing each adduct by the median abundance across samples and logging the resulting 
ratio. Duplicate measurements should ideally have similar distributions with a median of 0 (dotted line) and 
low variation around the median. The x-axis shows the sample number and the measurement number. 
Measurements shown in red were removed from the analysis due to high variance and poor reproducibility. 
Samples 30 and 41 were removed due to poor reproducibility of duplicate measurements, and the second 
measurement of sample 33 was removed due to high variance. 

 
 
 
Figure S3. 10 Percentage of samples with missing values for each adduct. Three adducts missing in over 50% 
(dotted line) of the samples were removed from the analysis. (MIM, monoisotopic mass). 
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Figure S3. 11 Representative MS2 spectra of the 26 adducts detected from archived newborn DBS.  
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Figure S3. 12 Box plot of adduct abundances across all samples. The x-axis shows the observed adduct m/z, 
and the y-axis shows the logged, normalized abundances.  
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3.9.3 Supplemental Table 
 
Table S3. 1 Summary characteristics of the 47 subjects included in the analysis.  

 Smoker  Nonsmoker  
Number of samples 23 24 
Child's race   
White  18 17 
Other 5 7 
Child's sex   
Male  13 14 
Female  10 10 
Child's birth year   
Mean (SD) 1995 (5) 1996 (4) 
Min 1985 1985 
Max 2003 2003 
Hb (mg/mL)   
Mean (SD) 1.80 (0.72) 1.97 (0.80) 
Min 0.56 0.54 
Max 3.08 3.53 
DBS weight (mg)   
Mean (SD) 6.64 (2.16) 6.62 (2.08) 
Min 2.64 2.56 
Max 11.07 9.45 
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4.1 Abstract 
 
 Early life exposures, including those occurring in utero, are likely to play an important 
role in the etiology of childhood leukemia. However, few risk factors have been established, and 
the underlying disease mechanisms remain elusive. The developing fetus is exposed to various 
chemicals, originating from both endogenous (e.g., maternal, fetal, microbial metabolism) and 
exogenous sources (e.g., maternal exposures from the diet, xenobiotics, and lifestyle factors such 
as smoking and alcohol intake). Metabolism of these chemicals generate electrophiles that react 
with nucleophilic sites in circulating proteins, particularly Cys34 of human serum albumin 
(HSA), to produce adducts. To discover potential risk factors for childhood leukemia resulting 
from in utero exposures, we used untargeted adductomics to measure HSA-Cys34 adducts in 783 
archived newborn dried blood spots (DBS) collected from incident cases of childhood acute 
lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) and matched population-based 
controls. A total of 28 HSA-Cys34 adducts were measured, including Cys34 adducts with 
reactive oxygen and carbonyl species, mixed disulfides with low-molecular-weight thiols (e.g., 
cysteine, homocysteine, glutathione, etc.), and other modifications. After data preprocessing and 
normalization to adjust for unwanted technical variation, an ensemble of variable selection 
methods including both linear and nonlinear models was used to identify Cys34 adducts 
discriminating between cases and controls. Although we found no differences in Cys34 adduct 
abundances between childhood leukemia cases and controls overall, particular subtypes (i.e., B-
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cell ALL with t(12;21) and T-cell ALL) had higher abundances of adducts of reactive carbonyl 
species, suggestive of oxidative stress and lipid peroxidation as potentially etiologic factors. In 
addition, a Cys34 adduct of homocysteine (with loss of H2O), showed consistent discrimination 
between AML cases and controls with a fold change (cases/controls) of 0.66. Since 
homocysteine is an important intermediate in folate-methionine metabolism, this may point to 
alterations in one-carbon metabolism and epigenetic changes as predictors of AML. 
Discriminating adducts warrant replication in future studies with larger sample sizes of specific 
subtypes, particularly AML and T-cell ALL. 
 
4.2 Introduction 
 
 Acute leukemia is the most common type of cancer among children under the age of 15, 
representing about one-third of all cases.1 Childhood leukemia is a biologically heterogeneous 
disease, which includes subtypes defined by cell lineage and cytogenetic characteristics, such as 
chromosome translocations and changes in chromosome number.2 The two main types of 
childhood leukemia are acute lymphoblastic leukemia (ALL) and acute myeloid leukemia 
(AML). ALL is more common and accounts for approximately 80% of childhood leukemia 
cases, while AML comprises 15% of cases.3 In the United States (U.S.), incidence rates have 
been steadily increasing by about 1% per year, and approximately 3,800 children are diagnosed 
with ALL or AML each year.3 Prenatal and early-life exposures are likely to play important roles 
in the etiology of childhood leukemia.1,4 The growing incidence, particularly among affluent 
countries, such as the U.S. and Europe,5 suggest that exposures may be contributing to this 
upwards trend.1,6 However, the only established causal exposure for childhood leukemia is 
ionizing radiation,4,6 and the underlying disease mechanisms remain elusive. 
 It has been confirmed that the majority of childhood leukemia cases originate in utero.7 
This was shown by backtracking leukemic translocations in archived newborn dried blood spots 
(DBS) or stored cord blood of  leukemia cases up to 14 years before the onset of disease.8,9 In 
fact, it has been shown that about 1% of the normal population harbors preleukemic clones, and 
that about 1% of these eventually develop overt leukemia.10 Thus, the etiology of childhood 
leukemia appears to follow a two-hit model, where chromosome translocations occurring in 
utero initiate leukemogenesis, but additional postnatal genetic or epigenetic changes are required 
to lead to overt leukemia.11 Furthermore, it is possible that exposures occurring during fetal 
development contribute to initial genetic aberrations involved in the first hit, and these can 
increase the risk of developing childhood leukemia later in life.  
 The fetus receives chemical exposures from both endogenous (e.g., maternal, fetal, 
microbial metabolism) and exogenous sources (e.g., maternal exposures from the diet, 
xenobiotics, and lifestyle factors including smoking and alcohol consumption) during gestation. 
Metabolism of these chemicals generate electrophiles that react with nucleophilic sites in 
circulating proteins to produce adducts. Although these electrophilic species are too reactive to 
measure in blood, their adducts with circulating proteins can be used to investigate the 
corresponding exposures. Since the sulfhydryl group at Cys34 of human serum albumin (HSA) is 
a particularly powerful scavenger of reactive electrophiles in the interstitial space,12 we 
developed an untargeted adductomics method to characterize Cys34 modifications in archived 
newborn DBS.13 Our adductomics assay uses nanoflow liquid chromatography-high resolution 
mass spectrometry (nLC-HRMS) to detect and quantitate Cys34 adducts.13 Because HSA has a 
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residence time of 28 days,14 Cys34 adducts in archived DBS capture systemic exposures 
occurring during the last month of gestation.  
 Our DBS-adductomics methodology was validated with 49 archived DBS collected from 
newborns whose mothers either actively smoked during pregnancy or were nonsmokers.13 The 
sample workflow included extraction of proteins from DBS, measurement of hemoglobin to 
normalize for blood volume, addition of methanol to enrich HSA, digestion with trypsin, and 
detection of HSA-Cys34 adducts via nLC-HRMS. Data normalization was performed to remove 
unwanted technical variation arising from HSA digestion, blood volume, DBS age, mass 
spectrometry, and batch effects. Twenty-six Cys34 adducts were detected, which primarily 
consisted of Cys34 oxidation products and mixed disulfides with low-molecular-weight thiols. 
Using an ensemble of variable selection methods, including both linear and nonlinear models, 
the Cys34 adduct of cyanide was found to consistently discriminate between newborns of 
smoking and nonsmoking mothers with a fold change (smoking/nonsmoking) of 1.31 and a 
cross-validated area under the estimated receiver operating characteristic curve of 0.79. Indeed, 
hydrogen cyanide is a component of cigarette smoke, and these results indicated that DBS-based 
adductomics is suitable for investigating in utero exposures to reactive electrophiles that may 
influence disease risks later in life. 
 Here, we performed an untargeted investigation of HSA-Cys34 adducts in archived 
newborn DBS collected from 783 participants of a population-based case-control study to 
discover potential risk factors for childhood leukemia resulting from in utero exposures. After 
data preprocessing and normalization an ensemble of variable selection methods was used to 
identify adducts that discriminated between cases of ALL and AML and matched controls.  
 
4.3 Materials and methods 
 
Chemicals and Reagents 

Acetonitrile (Ultra Chromasolv, LCMS grade), triethylammonium bicarbonate (TEAB) 
buffer (1 M), ethylenediamine-tetraacetic acid (EDTA, anhydrous), and porcine trypsin were 
from Sigma-Aldrich (St. Louis, MO). Methanol (Optima, LCMS grade), formic acid (Optima, 
LCMS grade), and iodoacetamide (IAA) were from Fisher Scientific (Pittsburgh, PA). Purified 
human hemoglobin was from MP Biomedicals, LLC (Santa Ana, CA). Isotopically labeled T3 
(iT3) with sequence AL-[15N,13C-Val]-LIAFAQYLQQCPFEDH-[15N,13C-Val]-K was custom-
made (>95%, BioMer Technology, Pleasanton, CA), and the carbamidomethylated iT3 (IAA-
iT3)15 was used as an internal standard to monitor retention time and mass drifts, as well as drift 
in instrument performance. Water was prepared with a PureLab purification system (18.2 mΩ cm 
resistivity at 25 ℃; Elga LabWater, Woodridge, IL). 
 
Study Subjects and Specimens 

Participants of the California Childhood Leukemia Study (CCLS), a previously described 
population-based case-control study,16 were selected with informed consent obtained from 
parents of the children. Incident cases of newly diagnosed ALL and AML among children under 
age 15 were ascertained from major clinical centers in northern and central California. Controls 
were randomly selected from birth certificates obtained through the California Office of Vital 
Records. Cases and controls were individually matched on child’s month and year of birth, sex, 
Hispanic ethnicity based on birth certificates, and maternal race.16 Parents were interviewed to 
collect information on socio-demographic characteristics.  
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Archived newborn DBS were retrospectively obtained from the California Department of 
Public Health, Genetic Diseases Screening Branch.17 The DBS were collected at birth and had 
been archived at -20 ℃ for 12 to 33 years prior to the present investigation. We used single, 4.7-
mm DBS punches (equivalent to 5 – 8 𝜇𝜇L of whole blood) from a total of 783 subjects; including 
387 cases (of which 339 were ALL cases and 45 were AML cases) and 396 controls. Figure 4.1 
shows the number of cases and controls for each childhood leukemia subtype.  

 
 

 

 
Figure 4. 1 Number of cases and controls in each subtype of childhood leukemia of the 783 subjects included 
in the analysis.  

 
 

Sample Preparation and nLC-HRMS analysis 
 For each subject, one 4.7-mm DBS punch was analyzed to detect and quantify HSA-
Cys34 adducts as described previously.13 Briefly, proteins were extracted from DBS, hemoglobin 
(Hb) concentrations were measured in the DBS extracts to normalize for blood volume using 
UV-Visible absorption spectroscopy. Methanol was added to enrich HSA by precipitating Hb 
and other interfering proteins. Upon digestion with trypsin and pressure cycling, the digests were 
analyzed by an Orbitrap Elite HRMS coupled to a Dionex Ultimate 3000 nanoflow LC system 
with a nanoelectrospray ionization source (Thermo Fisher Scientific, Waltham, MA). The MS 
was operated in data-dependent mode, and tandem MS (MS2) were acquired in the linear ion 
trap. Samples were analyzed in four batches of ~200 samples, and duplicate injections were 
made for each sample.  
 
Adduct Identification, Quantification, and Annotation 
 HSA-Cys34 adducts were identified, quantified, and annotated as described previously in 
detail.18 Briefly, Cys34 adducts were pinpointed from the MS2 spectra as modifications to the 
third largest tryptic peptide (T3) with the sequence 21ALVLIAFAQYLQQC34PFEDHVK41 (m/z 
= 811.7594), which contains the Cys34 site of modification. Triply charged precursor ions with 
m/z = 811.7594 ± ∆ m/z, where ∆ m/z represents the mass added to the T3-thiolate ion (Cys34-
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S-), were identified as putative Cys34 adducts. The tryptic peptide adjacent to T3 with sequence 
42LVNEVTEFAK51 (doubly charged precursor ion at m/z = 575.3111) was used as a 
housekeeping peptide to adjust for the amount of digested HSA in each sample. An isotopically 
labeled and carbamidomethylated T3 peptide (IAA-iT3)15 was used as an internal standard to 
monitor retention time, mass drifts, and instrument performance. Adduct abundances were 
obtained by peak picking and integration using the Xcalibur Processing Method (version 3.0, 
Thermo Fisher Scientific, Waltham, MA) based on the average MIMs (5 ppm mass accuracy) 
and RTs of the putative adducts, as described previously.13 Putative adducts were annotated with 
database searches based on the proposed empirical formula.13 Mass accuracies were estimated by 
differences between theoretical and observed MIMs.  
 
Data Preprocessing and Normalization 
 All statistical analyses were performed using the R statistical programming 
environment.19 Adduct abundances were log-transformed and the means of duplicate 
measurements were calculated. Missing values were imputed using k-nearest neighbor 
imputation (see Supplemental Methods in Supporting Information for details).20 Data 
normalization was optimized with the Bioconductor R package ‘scone’20,21 to select an 
appropriate scheme for removing unwanted variation (‘scone’ explores different scaling methods 
and uses regression models to remove unwanted technical variation while preserving variation 
due to case-control status). The optimal normalization scheme used DESeq scaling and adjusted 
for the following sources of unwanted variation: batch effects, instrument performance, digested 
HSA, DBS age, and blood volume. Here, ‘batch effects’ represents the four batches of samples 
analyzed at different times and ‘instrument performance’ was indicated by the abundance of the 
internal standard in each sample. As mentioned earlier, ‘digested HSA’ was quantified by the 
abundance of the housekeeping peptide in each sample. ‘DBS age’ was calculated as 2018 – 
child’s birth year to account for differences in the extraction efficiency of analytes due to the age 
of the DBS.22 Variations in ‘blood volume’ across samples were adjusted based on the Hb 
measurements of the DBS extracts.13 
 
Variable Selection: Identification of Discriminating Adducts 

Variable selection was performed to identify adducts that discriminated childhood 
leukemia cases from matched controls overall and separately for ALL and AML. For ALL, we 
performed additional analyses stratified by the major subgroups, which included B-cell ALL, B-
cell ALL with high-hyperdiploidy (51-67 chromosomes), B-cell ALL with t(12;21) chromosome 
translocation, and T-cell ALL (Figure 4.1).    

To ensure robust associations between adduct abundances and case-control status, a 
combination of linear and nonlinear models were used to find discriminating adducts.13 First, the 
following multivariable linear regression model was applied:  
𝑌𝑌𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑅𝑅𝑅𝑅𝑐𝑐𝑆𝑆 + 𝛽𝛽2𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽3𝑋𝑋𝐸𝐸𝐵𝐵ℎ𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝐵𝐵𝑛𝑛 + 𝛽𝛽4𝑋𝑋𝐵𝐵𝑅𝑅𝐵𝐵𝑅𝑅ℎ + 𝛽𝛽5𝑋𝑋𝐻𝐻𝐻𝐻 + 𝛽𝛽6𝑋𝑋𝐼𝐼𝑆𝑆 + 𝛽𝛽3𝑋𝑋𝐻𝐻𝐻𝐻 +
𝛽𝛽3𝑋𝑋𝐷𝐷𝐵𝐵𝑆𝑆 𝐴𝐴𝐴𝐴𝑆𝑆 + 𝜀𝜀𝑖𝑖,        (1) 
where 𝑌𝑌𝑖𝑖 is a vector of logged, DESeq scaled abundances of the ith adduct; 𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑋𝑋𝐸𝐸𝐵𝐵ℎ𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝐵𝐵𝑛𝑛 
are the binary, matching variables; 𝑋𝑋𝐵𝐵𝑅𝑅𝐵𝐵𝑅𝑅ℎ is a categorical variable indicating the four analytical 
batches; 𝑋𝑋𝐻𝐻𝐻𝐻 is a vector of housekeeping peptide abundances representing the amount of 
digested HSA in each sample; 𝑋𝑋𝐼𝐼𝑆𝑆 is a vector of internal standard abundances indicating 
instrument performance; 𝑋𝑋𝐻𝐻𝐻𝐻 is a vector of Hb measurements for blood volume normalization; 
and 𝑋𝑋𝐷𝐷𝐵𝐵𝑆𝑆 𝐴𝐴𝐴𝐴𝑆𝑆 is a vector of DBS sample ages. Adducts were ranked by the nominal p-values of 
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the coefficient 𝛽𝛽1, and the case-control fold change (FC) in adduct abundances were calculated 
as exp(𝛽𝛽1). Significance levels were adjusted for multiple testing by controlling the false 
discovery rate 𝛼𝛼 = 0.05 using the Benjamini-Hochberg method.23 
 Second, a logistic least absolute shrinkage and selection operator (lasso)24 regression 
model was fit with case-control status regressed on the logged, scaled, normalized adduct 
abundances of the 28 Cys34 adducts along with the matching variables (i.e., sex, ethnicity). 
Since lasso can be inconsistent in the presence of correlated variables and some adducts were 
strongly correlated, the logistic lasso regression was performed on 500 bootstrapped datasets to 
increase the stability of the results.25 Adducts were ranked by the proportion of times each adduct 
was selected into the model out of 500 bootstrap iterations. To ensure robust results, this process 
was repeated with a range of lasso penalty parameter values, which were selected using 10-fold 
cross validation.  
 Lastly, adducts were ranked by their nonlinear associations with case-control status using 
random forest variable importance.26 A random forest with 500 trees was constructed to predict 
the case-control status with the logged, scaled, normalized abundances of the 28 Cys34 adducts 
and the matching variables. The mean decrease in Gini index was used to rank the adducts by 
their importance in the random forest classifier.27 
 Adducts that were consistently top-ranked in all three statistical approaches, or were 
highly ranked in the two linear models and within the top-10 ranking adducts in random forest 
were selected for further investigation. To evaluate the importance of the selected adducts in 
discriminating leukemia cases and controls, we obtained 10-fold cross-validated area under the 
receiver operating characteristic curve (cvAUC) estimates by fitting a logistic regression model 
on case-control status with discriminating adducts as predictors using the ‘cvAUC’ R package.28 
For the T-cell ALL subgroup with the small sample size, the cvAUC was computed with a 5-fold 
cross-validation. It should be noted that the cvAUC estimates are likely to be optimistic since we 
did not have independent test sets.  
 
4.4 Results 
 
Data Preprocessing and Normalization 
 The reproducibility of duplicate measurements was visually assessed by obtaining 
relative log abundance (RLA) plots29 with each sample measurement shown side-by-side (Figure 
S4.1A) and with boxplots showing the difference in duplicate measurements for each sample 
(Figure S4.1B). To obtain RLA plots, the log-ratios of the adduct abundances of each sample to 
the median adduct abundance across samples were computed, and sample-wise boxplots of this 
standardized data were produced.  There were no obvious outliers from the boxplots of the 
difference in duplicate measurements (Figure S4.1B) and RLA plots (Figure S4.1A) so all 
samples were kept for downstream analyses. Four adducts that were missing in over half of the 
samples were removed from the analysis (Figure S4.2). The remaining missing values were 
imputed using k-nearest neighbor, with k=3 (Figure S4.3). This left a total of 783 subjects and 28 
Cys34 adducts for inclusion in downstream statistical analyses.  
 Figure 4.2A shows the RLA plot of the dataset before normalization. As can be seen, 
there were noticeable batch effects with the second batch (shown in green in Figure 4.2A) 
showing the largest deviation. Figure 4.3 shows variation in the other four known unwanted 
factors of variation (i.e., instrument performance, digested HSA, DBS age, blood volume) by the 
sample run order. DBS age and blood volume demonstrate consistent variation across all 
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samples. However, both the internal standard and the housekeeping peptide, representing 
instrument performance and digested HSA, respectively, indicate a drop in signal similar to what 
is seen in Figure 4.2A. Moreover, when removal of unwanted variation (RUVg)30 was used to 
estimate the unwanted factors of variation based on negative control adducts, the first estimated 
unwanted factor of variation was highly correlated with the internal standard (Pearson’s r = -
0.88, Figure S4.4A) and the housekeeping peptide (Pearson’s r = -0.76, Figure S4.4B). This 
suggests that the main source of unwanted variation was technical variation arising from the 
sample analysis. Figure 4.2B shows the RLA of the logged, DESeq scaled, normalized data 
which was adjusted for all known factors of unwanted variation. It can be seen that the optimized 
normalization scheme effectively removed unwanted variation, particularly due to batch effects, 
since the distribution is centered around zero with small variability. 
 
 

 
Figure 4. 2 RLA plots from (A) before and (B) after normalization. Colors represent sample batches 1-4. 
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Figure 4. 3 Variation across sample run order for the following four known unwanted factors of variation: 
instrument performance (IS), digested HSA (HK), DBS age, blood volume (Hb). 
  



87 
 

Table 4. 1 Twenty-eight Cys34 adducts detected in archived newborn DBS from childhood leukemia cases 
and controls. 

Adduct 
Median 
RT 
(min) 

MIM 
observed 
(m/z, 3+) 

MIM 
theoretical 
(m/z, 3+) 

∆ 
Mass 
(ppm) 

Added 
mass 
(Da) 

Elemental 
composition 
of added mass 

Annotation 

796.43a,c,d,e 25.67 796.4297 796.4301 -0.53 -45.9900 -CH2S Cys34→Gly  
800.43c,d,e 26.75 800.4296 800.4301 -0.65 -33.9900 -SH2 Cys34→Dehydroalanine 
805.76a,c,d,e 25.46 805.7615 805.7618 -0.34 -18.0000 -SH2, +O Cys34→Oxoalanine 

810.43a 25.73 810.4336 
  

-3.9900 
 

Unknown 
811.09a 25.24 811.0872 811.0875 -0.38 -2.0100 -H2 Cys34 Sulfenamide  
811.76a,b,c,d,e 26.36 811.7589 811.7594 -0.52 1.0078 +H Unmodified T3f 

815.76a 25.61 815.7591 815.7594 -0.35 12.0000 +CH2O, -H2O CH2 crosslink 
816.42a,b,c,d,e 23.97 816.4187 816.4191 -0.51 13.9800 -H2, +O Cys34 Sulfinamidef  
816.43a,b,c,d,e 26.63 816.4310 816.4312 -0.28 15.0178 +CH3 Methylation (not at 

Cys34) 
819.09a 26.70 819.0870 819.0867 0.34 22.9978 +Na S-Sodiation 
820.09a,b,c,e 26.21 820.0911 820.0911 -0.01 25.9978 +CN S-Cyanylation 
821.75a,b 26.13 821.7504 821.7507 -0.32 30.9778 -H2, +O2 Cys34 Sulfonamide 
822.42a,b,c,d,e 25.66 822.4222 822.4226 -0.53 32.9878 +HO2 Cys34 Sulfinic acidf  
824.41d 25.81 824.4082 824.4113 -3.77 38.9578 +K S-Potassiation 
827.09a,b,c 26.05 827.0940 827.0945 -0.64 46.9978 +CH3O2 S-(O)-O-CH3 
827.75a,b,c,d,e 25.97 827.7536 827.7543 -0.79 48.9778 +HO3 Cys34 Sulfonic acidf 

830.43a,c 25.90 830.4343 830.4348 -0.61 57.0178 +C3H5O Unknown (possible S-
addition of acrolein) 

832.43a 26.32 832.4259 832.4262 -0.34 63.0178 +CH3O3 Unknown  
835.11a,c,e 26.44 835.1070 835.1066 0.47 71.0578 +C4H7O S-Addition of 

crotonaldehydef 

845.11a 26.05 845.1092 845.1102 -1.12 101.0578 +C5H9O2 Unknown  
850.10a,c,d,e 26.59 850.0957 850.0958 -0.04 116.0278 +C4H6NOS S-Addition of hCys  

(-H2O) 
851.43a,b,c,d,e 24.66 851.4269 851.4274 -0.63 120.0178 +C3H6NO2S S-Addition of Cysf 

857.44a 26.39 857.4417 857.4419 -0.31 138.0478 +C7H8NO2 Unknown  
862.11 26.89 862.1136 862.1096 4.63 152.0578 +C7H8N2O2 Unknown 
862.77 25.97 862.7735 862.7694 4.70 154.0378 +C6H6N2O3 Unknown 
870.43a,b,c,d,e 24.14 870.4347 870.4345 0.16 177.0178 +C5H9N2O3S S-Addition of CysGlyf 

913.45a,b,c,d,e 24.77 913.4485 913.4487 -0.27 306.0778 +C10H16N3O6S S-Addition of GSHf 

918.12a,b 25.14 918.1204 918.1206 -0.22 320.0878 +C11H18N3O6S Unknown (likely S-
addition of GSH and 
CH2 crosslink) 

Cys, cysteine; hCys, homocysteine; CysGly, cysteinylglycine; GSH, glutathione; MIM, monoisotopic mass; 
RT, retention time. 
aAlso detected by Yano et al. 2018.13 
bAlso detected by Liu et al. 2018.31 

cAlso detected by Grigoryan et al. 2018.32 
dAlso detected by Lu et al. 2017.33 
eAlso detected by Grigoryan et al. 2016.18 
fAnnotation confirmed with a synthetic standard 
 



88 
 

Adducts Detected in Archived Newborn DBS 
 Table 4.1 shows the 28 adducts that were detected in the archived newborn DBS. A 
variety of adducts was observed in addition to the unmodified T3; this includes Cys34 
sulfoxidation products, Cys34 disulfides with low-molecular-weight thiols, and Cys34 adducts 
with reactive carbonyl species (RCS). Nineteen of the 28 are recurring adducts observed in 
previous analyses of plasma/serum samples.18,31–33 Of the remaining 9 adducts, two were new to 
the present study (unknown adducts 862.11 and 862.77; representative MS2 spectra are shown in 
Figure S4.5), and seven were observed in a previous pilot analysis of archived DBS collected 
from newborns whose mothers either actively smoked during pregnancy or were nonsmokers.13  
 
Adducts discriminating childhood leukemia cases and matched controls  
 Characteristics of the 783 subjects included in this analysis are presented in Table 4.2. 
Stratified summary characteristics of ALL cases and matched controls, as well as AML cases 
and matched controls are also shown. As expected from the matched design, cases and controls 
were similar with respect to sex, ethnicity, birth year, and DBS age, both overall and for ALL 
and AML. Hb concentrations were also similar between cases and controls, meaning that the 
DBS punches had comparable blood volumes. The mean age at diagnosis was ~6 years for both 
ALL and AML cases.     
 None of the adducts discriminated between childhood leukemia cases and controls 
overall. Although adduct 815.76 (CH2 crosslink) was highly-ranked in all three variable selection 
approaches (Figure S4.6, Table S4.1), this adduct was not statistically significant in the linear 
model and had a cvAUC of 0.54 (95% confidence interval [CI]: 0.50, 0.58), indicating low 
prediction. Variable selection results were inconsistent and null findings persisted for total ALL 
(Figure S4.7, Table S4.2) and total B-cell ALL (Figure S4.8, Table S4.3) subgroups. When the 
analysis was performed on the B-cell ALL with high-hyperdiploidy subgroup, adduct 824.41 
(Cys34 adduct with potassium) was ranked second by the linear model and first by lasso and 
random forest (Figure S4.9, Table S4.4). Adduct 824.41 had a FC of 0.87 (nominal p-value = 
0.16), and the cvAUC of this adduct was 0.61 (95% CI: 0.53, 0.69). Furthermore, for the B-cell 
ALL subgroup with the t(12;21) translocation, adduct 811.09 (Cys34 sulfenamide) was ranked 
first by the linear model (FC = 0.84, nominal p-value = 0.09), second by lasso, and sixth by 
random forest (Figure S4.10, Table S4.5). For this subgroup, adduct 835.11 (S-addition of 
crotonaldehyde) was first-ranked by lasso and random forest, but this adduct was ranked sixth by 
the linear model (FC = 1.13, nominal p-value = 0.34). The cvAUC of adducts 811.09 and 835.11 
were 0.61 (95% CI: 0.50, 0.72) and 0.60 (95% CI: 0.48, 0.72), respectively. For the T-cell ALL 
subgroup, adducts 835.11 (FC = 1.44, nominal p-value = 0.03, adjusted p-value = 0.48), 830.43 
(possible S-addition of acrolein; FC = 1.49, nominal p-value = 0.05, adjusted p-value = 0.48), 
and 851.43 (S-addition of cysteine; FC = 1.72, nominal p-value = 0.05, adjusted p-value = 0.48) 
were the top-three adducts ranked by the linear model (Figure S4.11). All three adducts were 
within the top-10 ranking adducts with lasso and random forest (Figure S4.11, Table S4.6). The 
5-fold cvAUC for adducts 835.11, 830.43, and 851.43 were 0.60 (95% CI: 0.43, 0.78), 0.46 
(95% CI: 0.22, 0.70), and 0.47 (95% CI: 0.22, 0.72), respectively.  
 The top-10 ranking adducts for AML, based on the three variable selection methods, are 
summarized in Table S4.7. The Cys34 homocysteine adduct with loss of H2O (adduct 850.10), 
showed clear discrimination between cases and controls (Figure 4.4). This homocysteine adduct 
was first-ranked by the linear model (Figure 4.4A) and by lasso (Figure 4.4B), and was ranked 
second by random forest (Figure 4.4C). AML cases had lower levels of the homocysteine adduct 
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compared to controls (FC = 0.66, nominal p-value = 0.01, adjusted p-value = 0.39). The 
homocysteine adduct alone provided a cvAUC of 0.69 (95% CI: 0.58, 0.81). Although adduct 
851.43 (S-addition of cysteine) was second-ranked by the linear model with a nominal p-value of 
0.05 (FC = 0.65, adjusted p-value = 0.63), this adduct was not highly ranked by lasso or random 
forest.  
 
Table 4. 2 Summary characteristics of all subjects overall, and stratified by ALL and AML.  

Overall ALL AML  
Cases Controls Cases Controls Cases Controls 

Number of 
samples 

387 396 339 332 45 44 

Child's sex 
      

Male  222 227 191 188 28 27 
Female 165 169 148 144 17 17 
Child's 
ethnicity 

      

Hispanic 180 185 158 156 22 22 
Non-Hispanic 207 211 181 176 23 22 
Child's birth 
year 

      

Mean (SD) 1996 (4) 1996 (4) 1996 (4) 1996 (4) 1997 (5) 1997 (5) 
Min 1985 1985 1985 1985 1986 1986 
Max 2006 2006 2005 2005 2006 2006 
Child's age at 
diagnosis (yr) 

      

Mean (SD) 5.68 (3.56) 
 

5.69 (3.45) 
 

5.64 (4.37) 
 

Min 0.00 
 

0.00 
 

0.00 
 

Max 14.76 
 

14.76 
 

14.06 
 

DBS age (yr)  
      

Mean (SD) 22 (4) 22 (4) 22 (4) 22 (4) 21 (5) 21 (5) 
Min 12 12 13 13 12 12 
Max 33 33 33 33 32 32 
Hb (mg/mL) 

      

Mean (SD) 1.83 (0.51) 1.86 (0.46) 1.85 (0.50) 1.86 (0.46) 1.68 (0.52) 1.96 (0.45) 
Min 0.48 0.41 0.48 0.41 0.74 0.71 
Max 3.56 3.17 3.56 3.17 3.51 3.14 
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Figure 4. 4 Variable selection for AML cases and controls using (A) multivariable linear regression, (B) 
logistic lasso regression on bootstrapped data, and (C) random forest. (A) Volcano plot showing the 
case/control fold change and the corresponding nominal p-value for each adduct. The dotted line represents a 
nominal p-value of 0.05. (B) Adducts ranked by the proportion of times each adduct was selected into the lasso 
model out of 500 bootstrap iterations. (C) The top 20 adducts ranked by random forest variable importance 
(i.e., mean decrease in Gini index).   
 
 
4.5 Discussion 
 

The purpose of this study was to perform untargeted adductomics, using archived 
newborn DBS to characterize in utero exposures to reactive electrophiles that are associated with 
childhood leukemia. In our previous adductomics study of DBS from newborns of smoking and 
nonsmoking mothers, we had shown the importance of preprocessing and normalization steps to 
remove unwanted technical variation prior to statistical analyses.13 Results from the current study 
reinforce this finding. Indeed, over the several months required for analysis of 783 samples in 
this study, normalization for run order proved to be essential in removing unwanted variation in 
LC-HRMS performance (Figures 4.2 and 4.3). Such technical variation can easily obscure 
detection of meaningful biological variability in the data (e.g., case-control differences).   

Statistical analyses of case-control differences in incidences of ALL and AML led to 
different results. While no clear associations were detected between adduct abundances and 
ALL, discrepancies in the results across the different ALL subtypes may point to the biological 
heterogeneity and distinct etiologies of this disease.34 In fact, there were suggestions that Cys34 
modifications by RCS were associated with B-cell ALL with t(12;21) and T-cell ALL. Upon 
lipid peroxidation, various reactive oxygen species (ROS) can oxidize membrane lipids to 
generate highly reactive α, β-unsaturated aldehydes such as acrolein and crotonaldehyde.35 
Despite small sample sizes, Cys34 adducts of acrolein (adduct 830.43) and crotonaldehyde 
(adduct 835.11) were both elevated in T-cell ALL cases compared to controls (FC of 1.49 and 
1.44, respectively). The crotonaldehyde adduct was also slightly more abundant in B-cell ALL 
cases with t(12;21) compared to controls, with a FC of 1.13. Although these findings need to be 
replicated with larger sample sizes, elevated levels of these Cys34 adducts of RCS suggest that 
oxidative stress may be involved in ALL. Indeed, increased levels of oxidative damage to 
proteins, as measured by protein carbonylation, has been observed in ALL cases.36 Moreover, 
elevated levels of carbonylated HSA has been observed in lung and liver cancer as well as other 
chronic diseases and conditions.37 Since protein carbonylation is irreversible,38 increases in 
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Cys34 adducts of RCS may be indicative of the decreased antioxidant capacity of HSA in 
particular subtypes of ALL. 

In the smaller set of AML cases and matched controls, the Cys34 adduct of homocysteine 
with loss of H2O (adduct 856.10) was consistently highly-ranked by the three variable selection 
methods used to test for associations between adducts and case-control status. The homocysteine 
adduct was substantially lower in AML cases compared to controls with a FC of 0.66. This 
finding offers potential insight into the biological mechanisms of AML etiology. Homocysteine 
is involved in folate-mediated one-carbon metabolism and is a key intermediate in the 
methionine recycling pathway.39 Remethylation of homocysteine produces methionine, which is 
a precursor for S-adenosylmethionine, a universal methyl group donor that plays an important 
role in DNA methylation.40 Since DNA methylation is one of the main epigenetic mechanisms, 
altered levels of homocysteine could reflect disruptions in epigenetic regulation leading to 
abnormal methylation patterns, which are often seen in cancer cells.41–43 DNA methylation is 
regulated by DNA methyltransferases (DNMTs), and DNMT3A is one of the most frequently 
mutated genes in adult AML.44 Mutations in epigenetic regulators have been shown to occur as 
early events in hematopoietic stem cells to produce preleukemic clones that can accrue additional 
proliferative mutations leading to AML.45–47 However, Bolouri et al. recently showed that the 
genomic, transcriptomic, and epigenomic landscapes of adult and childhood AML differ 
substantially.44 They further showed that mutations in epigenetic regulators, such as DNMT3A, 
were either absent or occurred less frequently in childhood AML compared to adults.44 However, 
epigenetics of childhood AML is not well characterized compared to adult AML, and epigenetic 
aberrations involving hypermethylation of CpG island gene promoters and hypomethylation of 
other regions may contribute to childhood AML.44,48,49   
 Plasma homocysteine is also an inverse indicator of folate status,50,51 and the observed 
lower levels of the homocysteine adduct in AML cases may reflect higher folate levels among 
cases. This is interesting because elevated plasma homocysteine levels have been associated with 
cardiovascular disease risk, and an increased folate intake has a protective effect on the 
development of neural tube defects.39 However, folate has been shown to have a dual effect on 
cancer, where folate is protective against cancer initiation but promotes the progression of pre-
neoplastic cells and subclinical cancers.52 The adverse effects of folic acid supplementation and 
the resulting high folate status was first observed in the 1940s by Sidney Farber and colleagues 
who saw that the administration of folic acid accelerated the progression of acute leukemia in 
children.40 Moreover, cancer proliferation is inhibited by limiting the supply of folic acid and its 
active tetrahydrofolate cofactor metabolites, which is the basis of the use of antifolate drugs in 
cancer therapy.52 
 Maternal prenatal folate intake through diet or supplements and risk of AML has been 
studied previously, but the findings have been inconclusive. Some studies have found null 
associations,53,54 while a large, pooled analysis of 12 case-control studies from the Childhood 
Leukemia International Consortium55 found a protective effect of maternal folic acid 
supplementation against AML (odds ratio [OR] = 0.68; 95% CI: 0.48, 0.96).56 In a study of 
genetic variation in folate metabolism, no associations were observed for childhood AML and 
polymorphisms in the enzyme, methylenetetrahydrofolate reductase (MTHFR) that is central for 
DNA synthesis and regulation of 5-methyl tetrahydrofolate, which is a methyl donor for 
conversion of homocysteine to methionine.57 However, in the same study, an increased risk of 
AML was observed for genetic variation in methionine synthase (MTR), the enzyme catalyzing 
remethylation of homocysteine to methionine, with an OR of 2.74 (95% CI: 1.07, 7.01).57 
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Dysfunction in MTR can disrupt the synthesis of purines and thymidine and thereby impact 
rapidly dividing blood cells in the bone marrow.39 Our results, showing lower levels of the 
homocysteine adduct in AML cases, are consistent with these previous findings and further 
suggest development of AML may be mediated by alterations in methionine metabolism.  
 In addition to being remethylated to methionine, homocysteine can also be irreversibly 
degraded via the transsulfuration pathway to cysteine.39 Homocysteine is metabolized by 
cystathionine β-synthase (CBS) to cystathioine, which is subsequently converted to cysteine by 
cystathionine γ-lyase.39 This relationship between homocysteine and cysteine may explain why 
the Cys34 cysteinylated adduct (adduct 851.43) was also highly ranked for AML (Figure 
4.4A ,B). Moreover, CBS contributes to the endogenous production of hydrogen sulfide, which 
has recently been shown to promote cancer progression.58,59 Hydrogen sulfide is a signaling 
molecule that could potentially promote cancer by mechanisms such as disrupting redox 
homeostasis or by stimulating cell proliferation and survival.58 Thus, while the relationship 
between CBS activity and leukemogenesis is unknown, it is possible that CBS dysfunction may 
promote AML through modulation of homocysteine and hydrogen sulfide. 

To better understand how altered levels of homocysteine may be related to changes in 
epigenetic regulations or folate status, our adductomics findings should be integrated with other 
omics to obtain a cohesive view of the disease mechanisms involved in AML. Metabolomics 
may reveal global changes in small molecules related to the folate pathway, and genetic variation 
in other key enzymes in the homocysteine-related pathways, such as methionine synthase 
reductase and CBS, should also be examined. More extensive genome-wide epigenomic studies 
may refine our understanding of how epigenetic events are involved in childhood AML.  

Because this was a hypothesis-generating study and some of the subgroups (particularly 
AML and T-cell ALL) were limited in sample size, our findings warrant replication in future 
studies. We cannot dismiss the possibility of false positive associations, particularly for the T-
cell ALL subgroup which consisted of 38 subjects. Nonetheless, oxidative damage is consistently 
seen in cancer, and it is possible oxidative stress may also play a role in ALL.36,37 Associations 
between the homocysteine adduct and AML were robust to the different variable selection 
methods and had a relatively high cvAUC. However, these results will also need to be replicated 
with a larger sample size with the inclusion of the various subtypes of AML. In this analysis, few 
discriminating adducts were detected and the effects sizes were relatively small. Although HSA 
adducts encompass exposures occurring during the last month of gestation, this single time point 
may not have captured all relevant exposures in the etiology of childhood leukemia. It is possible 
that important exposures may have occurred earlier in gestation and may not be reflected in HSA 
adducts. It is also possible that early markers of leukemogenesis and susceptibility may not be 
readily detectable at birth, given the long latency of the disease. However, it is important to 
emphasize that our analyses of newborn DBS detected differences in cases and controls in DBS 
collected years prior to diagnosis. Integration of different omics may reveal the biological 
mechanisms of the initial events in leukemogenesis and could provide new avenues for 
prevention and treatment of childhood leukemia.     
 
4.6 Conclusion 
 
 In conclusion, we performed untargeted adductomics using 783 DBS from a population-
based case-control study to identify HSA-Cys34 adducts associated with childhood leukemia. 
Although we found no differences in Cys34 adduct abundances between childhood leukemia 
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cases and controls overall, particular subtypes (i.e., B-cell ALL with t(12;21) and T-cell ALL) 
had higher abundances of adducts of RCS, suggestive of oxidative stress and lipid peroxidation 
as potentially etiologic factors. Interestingly, there was a 0.66-fold difference in abundances of a 
Cys34 homocysteine adduct (with loss of H2O) between AML cases and matched controls. Since 
homocysteine is an important intermediate in the folate-methionine metabolism, this may point 
to alterations in one-carbon metabolism and epigenetic changes as predictors of AML. Future 
studies should include larger sample sizes of ALL/AML cases and their subtypes to replicate 
these findings and further explore their implications. 
 
  



94 
 

4.7 Compliance with ethical standards 
 
Conflict of interest 
The authors declare they have no conflict of interest. 
 
Ethics approval 
The CCLS and Center for Integrative Research on Childhood Leukemia and the Environment 
were approved by the University of California Committee for the Protection of Human Subjects, 
the California Health and Human Services Agency Committee for the Protection of Human 
Subjects, and the institutional review boards of all participating hospitals, as appropriate. 
 
Informed consent 
Written informed consent was obtained from parents of all participating subjects in the CCLS. 
 
4.8 Acknowledgements 
 

This work was supported by the National Institute for Environmental Health Sciences of 
the U.S. National Institutes of Health (NIEHS grants P01ES018172, P50ES018172, 
R01ES009137 and P42ES0470518), by the U.S. Environmental Protection Agency (USEPA 
grants RD83451101 and RD83615901), and by a grant for a pilot project from Children with 
Cancer, a registered Charity in the U.K.  

The biospecimens used in this study were obtained from the California Biobank Program, 
(SIS request number 26), in accordance with Section 6555(b), 17 CCR.  The NIEHS, USEPA, 
and California Department of Public Health are not responsible for the results or conclusions 
drawn by the authors of this publication. 
 

  



95 
 

4.9 References 
 
(1)  Whitehead, T. P.; Metayer, C.; Wiemels, J. L.; Singer, A. W.; Miller, M. D. Childhood 

Leukemia and Primary Prevention. Curr. Probl. Pediatr. Adolesc. Health Care 2016, 46 
(10), 317–352. 

(2)  Greaves, M. Childhood Leukemia. Bmj 2002, 324, 283–287. 
(3)  Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and Adolescent 

Cancer Statistics, 2014. CA. Cancer J. Clin. 2014, 64 (2), 83–103. 
(4)  Greaves, M. A Causal Mechanism for Childhood Acute Lymphoblastic Leukaemia. Nat. 

Rev. Cancer 2018, 18 (8), 471–484. 
(5)  Erdmann, F.; Kielkowski, D.; Schonfeld, S. J.; Kellett, P.; Stanulla, M.; Dickens, C.; 

Kaatsch, P.; Singh, E.; Schüz, J. Childhood Cancer Incidence Patterns by Race, Sex and 
Age for 2000-2006: A Report from the South African National Cancer Registry. Int. J. 
Cancer 2015, 136 (11), 2628–2639. 

(6)  Wiemels, J. Perspectives on the Causes of Childhood Leukemia. Chem. Biol. Interact. 
2012, 196 (3), 59–67. 

(7)  Greaves, M. Infection, Immune Responses and the Aetiology of Childhood Leukaemia. 
Nat. Rev. Cancer 2006, 6 (3), 193–203. 

(8)  Greaves, M. In Utero Origins of Childhood Leukaemia. Early Hum. Dev. 2005, 81 (1), 
123–129. 

(9)  Wiemels, J. L.; Ford, A. M.; Van Wering, E. R.; Postma, A.; Greaves, M. Protracted and 
Variable Latency of Acute Lymphoblastic Leukemia after TEL-AML1 Gene Fusion in 
Utero. Blood 1999, 94 (3), 1057–1062. 

(10)  Mori, H.; Colman, S. M.; Xiao, Z.; Ford, A. M.; Healy, L. E.; Donaldson, C.; Hows, J. M.; 
Navarrete, C.; Greaves, M. Chromosome Translocations and Covert Leukemic Clones Are 
Generated during Normal Fetal Development. Proc. Natl. Acad. Sci. 2002, 99 (12), 8242–
8247. 

(11)  Greaves, M. F.; Wiemels, J. Origins of Chromosome Translocations in Childhood 
Leukaemia. Nat. Rev. Cancer 2003, 3 (9), 639–649. 

(12)  Aldini, G.; Vistoli, G.; Regazzoni, L.; Gamberoni, L.; Facino, R. M.; Yamaguchi, S.; 
Uchida, K.; Carini, M. Albumin Is the Main Nucleophilic Target of Human Plasma: A 
Protective Role Against Pro-Atherogenic Electrophilic Reactive Carbonyl Species? Chem. 
Res. Toxicol. 2008, 21 (4), 824–835. 

(13)  Yano, Y.; Grigoryan, H.; Schiffman, C.; Edmands, W. M. B.; Petrick, L.; Hall, K.; 
Whitehead, T. P.; Metayer, C.; Dudoit, S.; Rappaport, S. M. Untargeted Adductomics of 
Cys34 Modifications to Human Serum Albumin in Newborn Dried Blood Spots. 
Manuscript Submitted for Publication. 2018. 

(14)  Rappaport, S. M.; Li, H.; Grigoryan, H.; Funk, W. E.; Williams, E. R. Adductomics: 
Characterizing Exposures to Reactive Electrophiles. Toxicol. Lett. 2012, 213 (1), 83–90. 

(15)  Grigoryan, H.; Li, H.; Iavarone, A. T.; Williams, E. R.; Rappaport, S. M. Cys34 Adducts 
of Reactive Oxygen Species in Human Serum Albumin. Chem. Res. Toxicol. 2012, 25 (8), 
1633–1642. 

(16)  Metayer, C.; Zhang, L.; Wiemels, J. L.; Bartley, K.; Schiffman, J.; Ma, X.; Aldrich, M. C.; 
Chang, J. S.; Selvin, S.; Fu, C. H.; et al. Tobacco Smoke Exposure and the Risk of 
Childhood Acute Lymphoblastic and Myeloid Leukemias by Cytogenetic Subtype. 
Cancer Epidemiol. Biomarkers Prev. 2013, 22 (9), 1600–1611. 



96 
 

(17)  California Department of Public Health, Genetic Disease Screening Program 
https://www.cdph.ca.gov/Programs/CFH/DGDS/Pages/default.aspx (accessed Oct 10, 
2018). 

(18)  Grigoryan, H.; Edmands, W.; Lu, S. S.; Yano, Y.; Regazzoni, L.; Iavarone, A. T.; 
Williams, E. R.; Rappaport, S. M. Adductomics Pipeline for Untargeted Analysis of 
Modifications to Cys34 of Human Serum Albumin. Anal. Chem. 2016, 88 (21), 10504–
10512. 

(19)  R Development Core Team, (2016). R: A Language and Environment for Statistical 
Computing. https://www.r-project.org/ (accessed Mar 8, 2017). 

(20)  Schiffman, C.; Petrick, L.; Perttula, K.; Yano, Y.; Carlsson, H.; Whitehead, T.; Metayer, 
C.; Hayes, J.; Edmands, W. M. B.; Rappaport, S.; et al. Data-Adaptive Pipeline for 
Filtering and Normalizing Metabolomics Data. 2018, 1–12. 

(21)  Cole, M.; Risso, D. Scone: Single Cell Overview of Normalized Expression Data. R 
Packag. version 1.2.0 2018. 

(22)  Petrick, L.; Edmands, W.; Schiffman, C.; Grigoryan, H.; Perttula, K.; Yano, Y.; Dudoit, 
S.; Whitehead, T.; Metayer, C.; Rappaport, S. An Untargeted Metabolomics Method for 
Archived Newborn Dried Blood Spots in Epidemiologic Studies. Metabolomics 2017, 13 
(3), 27. 

(23)  Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and 
Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57 (1), 289–300. 

(24)  Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 
1996, 58 (1), 267–288. 

(25)  Bach, F. R. Bolasso: Model Consistent Lasso Estimation through the Bootstrap. In 
Proceedings of the 25th International Conference on Machine Learning; ACM Press: 
New York, New York, USA, 2008; pp 33–40. 

(26)  Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2 
(3), 18–22. 

(27)  Calle, M. L.; Urrea, V. Letter to the Editor: Stability of Random Forest Importance 
Measures. Brief. Bioinform. 2011, 12 (1), 86–89. 

(28)  LeDell, E.; Petersen, M.; Laan, M. Van Der. Cross-Validated Area Under the ROC Curve 
Confidence Intervals. R Packag. version 1.1.0 2016. 

(29)  De Livera, A. M.; Dias, D. A.; De Souza, D.; Rupasinghe, T.; Pyke, J.; Tull, D.; Roessner, 
U.; McConville, M.; Speed, T. P. Normalizing and Integrating Metabolomics Data. Anal. 
Chem. 2012, 84 (24), 10768–10776. 

(30)  Risso, D.; Ngai, J.; Speed, T. P.; Dudoit, S. Normalization of RNA-Seq Data Using Factor 
Analysis of Control Genes or Samples. Nat. Biotechnol. 2014, 32 (9), 896–902. 

(31)  Liu, S.; Grigoryan, H.; Edmands, W. M. B.; Dagnino, S.; Sinharay, R.; Cullinan, P.; 
Collins, P.; Chung, K. F.; Barratt, B.; Kelly, F. J.; et al. Cys34 Adductomes Differ 
between Patients with Chronic Lung or Heart Disease and Healthy Controls in Central 
London. Environ. Sci. Technol. 2018, 52 (4), 2307–2313. 

(32)  Grigoryan, H.; Edmands, W. M. B.; Lan, Q.; Carlsson, H.; Vermeulen, R.; Zhang, L.; Yin, 
S.-N.; Li, G.-L.; Smith, M. T.; Rothman, N.; et al. Adductomic Signatures of Benzene 
Exposure Provide Insights into Cancer Induction. Carcinogenesis 2018, 39 (5), 661–668. 

(33)  Lu, S. S.; Grigoryan, H.; Edmands, W. M. B.; Hu, W.; Iavarone, A. T.; Hubbard, A.; 
Rothman, N.; Vermeulen, R.; Lan, Q.; Rappaport, S. M. Profiling the Serum Albumin 
Cys34 Adductome of Solid Fuel Users in Xuanwei and Fuyuan, China. Environ. Sci. 



97 
 

Technol. 2017, 51 (1), 46–57. 
(34)  Pui, C.-H.; Carroll, W. L.; Meshinchi, S.; Arceci, R. J. Biology, Risk Stratification, and 

Therapy of Pediatric Acute Leukemias: An Update. J. Clin. Oncol. 2011, 29 (5), 551–565. 
(35)  Lee, S. E.; Park, Y. S. Role of Lipid Peroxidation-Derived α , β -Unsaturated Aldehydes 

in Vascular Dysfunction. Oxid. Med. Cell. Longev. 2013, 2013, 1–7. 
(36)  Battisti, V.; Maders, L. D. K.; Bagatini, M. D.; Santos, K. F.; Spanevello, R. M.; 

Maldonado, P. a.; Brulé, A. O.; Araújo, M. D. C.; Schetinger, M. R. C.; Morsch, V. M. 
Measurement of Oxidative Stress and Antioxidant Status in Acute Lymphoblastic 
Leukemia Patients. Clin. Biochem. 2008, 41, 511–518. 

(37)  Colombo, G.; Clerici, M.; Giustarini, D.; Rossi, R.; Milzani, A.; Dalle-Donne, I. Redox 
Albuminomics: Oxidized Albumin in Human Diseases. Antioxid. Redox Signal. 2012, 17 
(11), 1515–1527. 

(38)  Dalle-Donne, I.; Aldini, G.; Carini, M.; Colombo, R.; Rossi, R.; Milzani, A. Protein 
Carbonylation, Cellular Dysfunction, and Disease Progression. J. Cell. Mol. Med. 2006, 
10 (2), 389–406. 

(39)  Blom, H. J.; Smulders, Y. Overview of Homocysteine and Folate Metabolism. With 
Special References to Cardiovascular Disease and Neural Tube Defects. J. Inherit. Metab. 
Dis. 2011, 34 (1), 75–81. 

(40)  Strickland, K. C.; Krupenko, N. I.; Krupenko, S. A. Molecular Mechanisms Underlying 
the Potentially Adverse Effects of Folate. Clin. Chem. Lab. Med. 2013, 51 (3), 607–616. 

(41)  Rush, L. J.; Plass, C. Alterations of DNA Methylation in Hematologic Malignancies. 
Cancer Lett. 2002, 185 (1), 1–12. 

(42)  Yamashita, Y.; Yuan, J.; Suetake, I.; Suzuki, H.; Ishikawa, Y.; Choi, Y. L.; Ueno, T.; 
Soda, M.; Hamada, T.; Haruta, H.; et al. Array-Based Genomic Resequencing of Human 
Leukemia. Oncogene 2010, 29 (25), 3723–3731. 

(43)  Ehrlich, M. DNA Methylation in Cancer: Too Much, but Also Too Little. Oncogene 2002, 
21 (35), 5400–5413. 

(44)  Bolouri, H.; Farrar, J. E.; Triche, T.; Ries, R. E.; Lim, E. L.; Alonzo, T. A.; Ma, Y.; 
Moore, R.; Mungall, A. J.; Marra, M. A.; et al. The Molecular Landscape of Pediatric 
Acute Myeloid Leukemia Reveals Recurrent Structural Alterations and Age-Specific 
Mutational Interactions. Nat. Med. 2018, 24 (1), 103–112. 

(45)  Corces-Zimmerman, M. R.; Hong, W.-J.; Weissman, I. L.; Medeiros, B. C.; Majeti, R. 
Preleukemic Mutations in Human Acute Myeloid Leukemia Affect Epigenetic Regulators 
and Persist in Remission. Proc. Natl. Acad. Sci. 2014, 111 (7), 2548–2553. 

(46)  Shlush, L. I.; Zandi, S.; Mitchell, A.; Chen, W. C.; Brandwein, J. M.; Gupta, V.; Kennedy, 
J. A.; Schimmer, A. D.; Schuh, A. C.; Yee, K. W.; et al. Identification of Pre-Leukaemic 
Haematopoietic Stem Cells in Acute Leukaemia. Nature 2014, 506 (7488), 328–333. 

(47)  Grimwade, D.; Ivey, A.; Huntly, B. J. P. Molecular Landscape of Acute Myeloid 
Leukemia in Younger Adults and Its Clinical Relevance. Blood 2016, 127 (1), 29–41. 

(48)  Newcombe, A. A.; Gibson, B. E. S.; Keeshan, K. Harnessing the Potential of Epigenetic 
Therapies for Childhood Acute Myeloid Leukemia. Exp. Hematol. 2018, 63, 1–11. 

(49)  Liang, D.; Liu, H.; Yang, C.; Jaing, T.; Hung, I.; Yeh, T.; Chen, S.; Hou, J.; Huang, Y.; 
Shih, Y.; et al. Cooperating Gene Mutations in Childhood Acute Myeloid Leukemia with 
and DNMT3A. Blood 2013, 121 (15), 2988–2995. 

(50)  Ueland, P. M.; Hustad, S. Homocysteine and Folate Status in an Era of Folic Acid 
Fortification: Balancing Benefits, Risks, and B-Vitamins. Clin. Chem. 2008, 54 (5), 779–



98 
 

781. 
(51)  Pfeiffer, C. M.; Caudill, S. P.; Gunter, E. W.; Osterloh, J.; Sampson, E. J. Biochemical 

Indicators of B Vitamin Status in the US Population after Folic Acid Fortification: Results 
from the National Health and Nutrition Examination Survey 1999–2000. Am. J. Clin. 
Nutr. 2005, 82 (2), 442–450. 

(52)  Smith, A. D.; Kim, Y.-I.; Refsum, H. Is Folic Acid Good for Everyone? Am. J. Clin. Nutr. 
2008, 87 (3), 517–533. 

(53)  Chokkalingam, A. P.; Chun, D. S.; Noonan, E. J.; Pfeiffer, C. M.; Zhang, M.; Month, S. 
R.; Taggart, D. R.; Wiemels, J. L.; Metayer, C.; Buffler, P. a. Blood Levels of Folate at 
Birth and Risk of Childhood Leukemia. Cancer Epidemiol. Biomarkers Prev. 2013, 22 
(6), 1088–1094. 

(54)  Singer, A. W.; Selvin, S.; Block, G.; Golden, C.; Carmichael, S. L.; Metayer, C. Maternal 
Prenatal Intake of One-Carbon Metabolism Nutrients and Risk of Childhood Leukemia. 
Cancer Causes Control 2016, 27 (7), 929–940. 

(55)  Metayer, C.; Milne, E.; Clavel, J.; Infante-Rivard, C.; Petridou, E.; Taylor, M.; Sch??z, J.; 
Spector, L. G.; Dockerty, J. D.; Magnani, C.; et al. The Childhood Leukemia International 
Consortium. Cancer Epidemiol. 2013, 37 (3), 336–347. 

(56)  Metayer, C.; Milne, E.; Dockerty, J. D.; Clavel, J.; Pombo-De-Oliveira, M. S.; Wesseling, 
C.; Spector, L. G.; Schüz, J.; Petridon, E.; Ezzat, S.; et al. Maternal Supplementation with 
Folic Acid and Other Vitamins and Risk of Leukemia in Offspring: A Childhood 
Leukemia Internotionol Consortium Study. Epidemiology 2014, 25 (6), 811–822. 

(57)  Lightfoot, T. J.; Johnston, W. T.; Painter, D.; Simpson, J.; Roman, E.; Skibola, C. F.; 
Smith, M. T.; Allan, J. M.; Taylor, G. M. Genetic Variation in the Folate Metabolic 
Pathway and Risk of Childhood Leukemia. Blood 2010, 115 (19), 3923–3929. 

(58)  Zhu, H.; Blake, S.; Chan, K. T.; Pearson, R. B.; Kang, J. Cystathionine β -Synthase in 
Physiology and Cancer. Biomed Res. Int. 2018, 2018, 1–11. 

(59)  Wu, D.; Si, W.; Wang, M.; Lv, S.; Ji, A.; Li, Y. Hydrogen Sulfide in Cancer: Friend or 
Foe? Nitric Oxide 2015, 50, 38–45. 

 
  



99 
 

4.10 Supporting information 
 
4.10.1 Supplemental Methods 
 
k-nearest neighbor imputation 
 To find the k-nearest adduct neighbors, pairwise distances between adducts were 
calculated using the Euclidean distance based on all non-missing values. To optimize the value 
of the parameter k, 9 low abundance adducts missing in over 30% of the samples were randomly 
chosen to be made missing in 100 samples, their values were imputed using values of k ranging 
from 1 to 8, and the mean squared error was calculated for each k. The k with the smallest mean 
squared error, k = 3, was used to impute missing values in the dataset (see Figure S4.3). 
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4.10.2 Supplemental Figures  
 
Figure S4. 1 Visual assessment of the reproducibility of duplicate injections. (A) Boxplot of the difference in 
duplicate measurements for each subject. Samples are shown by run order in each batch. (B) Relative log 
abundance each sample measurement. Duplicate measurements are shown side-by-side for each sample. 
Samples are colored by every other sample and shown in run order by each batch. 
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Figure S4. 2 Percentage of samples with missing values for each adduct. Four adducts missing in over 50% of 
the samples (red dotted line) were excluded from the analysis.  

 
 
 
Figure S4. 3 Optimization of the parameter k in k-nearest neighbor imputation. The mean squared error (MSE) 
calculated for each k is shown. The k with the smallest MSE, k = 3, was selected.  
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Figure S4. 4 Correlation between the first estimated unwanted factor of variation from RUVg and (A) the 
internal standard (IS), (B) the housekeeping peptide (HK).  
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Figure S4. 5 MS2 spectra of the two adducts that were new to this study: adducts 862.11 and 862.77. 
 
Adduct 862.11 

 
Adduct 862.77 
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Figure S4. 6 Variable selection for childhood leukemia cases and controls overall using (A) multivariable 
linear regression, (B) logistic lasso regression on bootstrapped data, and (C) random forest. (A) Volcano plot 
showing the case/control fold change for each adduct and the corresponding nominal p-value for each adduct. 
The dotted line represents a nominal p-value of 0.05. (B) Adducts ranked by the proportion of times each 
adduct was selected into the lasso model out of 500 bootstrap iterations. (C) The top 20 adducts ranked by 
random forest variable importance (i.e., mean decrease in Gini index).   

 
 
 
Figure S4. 7 Variable selection for ALL cases and controls using (A) multivariable linear regression, (B) 
logistic lasso regression on bootstrapped data, and (C) random forest. (A) Volcano plot showing the 
case/control fold change for each adduct and the corresponding nominal p-value for each adduct. The dotted 
line represents a nominal p-value of 0.05. (B) Adducts ranked by the proportion of times each adduct was 
selected into the lasso model out of 500 bootstrap iterations. (C) The top 20 adducts ranked by random forest 
variable importance (i.e., mean decrease in Gini index).   
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Figure S4. 8 Variable selection for B-cell ALL cases and controls using (A) multivariable linear regression, 
(B) logistic lasso regression on bootstrapped data, and (C) random forest. (A) Volcano plot showing the 
case/control fold change for each adduct and the corresponding nominal p-value for each adduct. The dotted 
line represents a nominal p-value of 0.05. (B) Adducts ranked by the proportion of times each adduct was 
selected into the lasso model out of 500 bootstrap iterations. (C) The top 20 adducts ranked by random forest 
variable importance (i.e., mean decrease in Gini index).   

 
 
 
Figure S4. 9 Variable selection for B-cell ALL cases with high-hyperdiploidy and controls using (A) 
multivariable linear regression, (B) logistic lasso regression on bootstrapped data, and (C) random forest. (A) 
Volcano plot showing the case/control fold change for each adduct and the corresponding nominal p-value for 
each adduct. The dotted line represents a nominal p-value of 0.05. (B) Adducts ranked by the proportion of 
times each adduct was selected into the lasso model out of 500 bootstrap iterations. (C) The top 20 adducts 
ranked by random forest variable importance (i.e., mean decrease in Gini index). 
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Figure S4. 10 Variable selection for B-cell ALL cases with t(12;21) translocation and controls using (A) 
multivariable linear regression, (B) logistic lasso regression on bootstrapped data, and (C) random forest. (A) 
Volcano plot showing the case/control fold change for each adduct and the corresponding nominal p-value for 
each adduct. The dotted line represents a nominal p-value of 0.05. (B) Adducts ranked by the proportion of 
times each adduct was selected into the lasso model out of 500 bootstrap iterations. (C) The top 20 adducts 
ranked by random forest variable importance (i.e., mean decrease in Gini index). 

 
 
 
Figure S4. 11 Variable selection for T-cell ALL cases and controls using (A) multivariable linear regression, 
(B) logistic lasso regression on bootstrapped data, and (C) random forest. (A) Volcano plot showing the 
case/control fold change for each adduct and the corresponding nominal p-value for each adduct. The dotted 
line represents a nominal p-value of 0.05. (B) Adducts ranked by the proportion of times each adduct was 
selected into the lasso model out of 500 bootstrap iterations. (C) The top 20 adducts ranked by random forest 
variable importance (i.e., mean decrease in Gini index). 

 
 
  



108 
 

4.10.3 Supplemental Tables  
 
Table S4. 1 Top-10 ranking adducts from variable selection for childhood leukemia cases and controls overall. 
The top-10 adducts based on (1) nominal p-values from multivariable linear regression, with the corresponding 
fold change (FC); (2) proportion of times selected into the lasso model; and (3) the mean decrease in Gini 
index from random forest variable importance are shown. 

 Linear regression lasso Random forest 
Rank Adduct p-value FC Adduct Proportion Adduct Gini 
1 862.77 0.27 1.05 815.76 0.76 815.76 16.77 
2 857.44 0.27 1.06 918.12 0.41 870.43 15.20 
3 821.75 0.30 1.05 913.45 0.26 824.41 15.07 
4 815.76 0.31 0.96 862.11 0.23 810.43 15.03 
5 870.43 0.35 1.06 850.10 0.21 850.10 14.68 
6 835.11 0.36 1.04 824.41 0.19 820.09 14.27 
7 827.75 0.37 1.04 862.77 0.17 862.77 14.18 
8 918.12 0.37 0.96 821.75 0.17 811.09 14.14 
9 830.43 0.41 1.04 857.44 0.16 816.42 14.11 
10 913.45 0.44 0.97 811.76 0.16 832.43 14.10 

 
 
Table S4. 2 Top-10 ranking adducts from variable selection for ALL cases and controls overall. The top-10 
adducts based on (1) nominal p-values from multivariable linear regression, with the corresponding fold 
change (FC); (2) proportion of times selected into the lasso model; and (3) the mean decrease in Gini index 
from random forest variable importance are shown. 

 Linear regression lasso Random forest 
Rank Adduct p-value FC Adduct Proportion Adduct Gini 
1 862.77 0.14 1.07 815.76 0.79 870.43 14.70 
2 821.75 0.17 1.07 918.12 0.44 815.76 13.27 
3 857.44 0.22 1.08 811.76 0.36 824.41 13.10 
4 870.43 0.24 1.08 862.11 0.33 810.43 12.92 
5 796.43 0.29 1.06 913.45 0.33 822.42 12.84 
6 830.43 0.31 1.05 862.77 0.31 913.45 12.53 
7 850.10 0.36 1.05 824.41 0.29 820.09 12.46 
8 845.11 0.37 1.04 821.75 0.28 821.75 12.22 
9 918.12 0.38 0.96 870.43 0.21 796.43 12.19 
10 835.11 0.38 1.05 857.44 0.19 862.77 12.08 
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Table S4. 3 Top-10 ranking adducts from variable selection for B-cell ALL cases and controls. The top-10 
adducts based on (1) nominal p-values from multivariable linear regression, with the corresponding fold 
change (FC); (2) proportion of times selected into the lasso model; and (3) the mean decrease in Gini index 
from random forest variable importance are shown. 

 Linear regression lasso Random forest 
Rank Adduct p-value FC Adduct Proportion Adduct Gini 
1 862.77 0.12 1.08 815.76 0.76 870.43 13.30 
2 821.75 0.13 1.08 918.12 0.49 815.76 13.12 
3 857.44 0.25 1.08 811.76 0.42 824.41 12.58 
4 850.10 0.28 1.06 821.75 0.41 810.43 12.15 
5 870.43 0.28 1.08 862.77 0.36 811.76 11.98 
6 918.12 0.29 0.95 913.45 0.31 822.42 11.92 
7 913.45 0.33 0.95 824.41 0.29 862.77 11.76 
8 820.09 0.34 1.05 862.11 0.28 851.43 11.62 
9 796.43 0.35 1.05 870.43 0.23 821.75 11.62 
10 845.11 0.38 1.04 857.44 0.21 816.42 11.44 

 
 
Table S4. 4 Top-10 ranking adducts from variable selection for B-cell ALL cases with high-hyperdiploidy and 
controls. The top-10 adducts based on (1) nominal p-values from multivariable linear regression, with the 
corresponding fold change (FC); (2) proportion of times selected into the lasso model; and (3) the mean 
decrease in Gini index from random forest variable importance are shown. 

 Linear regression lasso Random forest 
Rank Adduct p-value FC Adduct Proportion Adduct Gini 
1 862.77 0.10 1.15 824.41 0.73 824.41 6.47 
2 824.41 0.16 0.87 862.77 0.65 870.43 4.92 
3 870.43 0.18 1.18 870.43 0.51 816.42 4.64 
4 845.11 0.29 1.09 816.42 0.50 796.43 4.33 
5 816.42 0.31 1.10 913.45 0.44 862.77 4.04 
6 913.45 0.47 0.94 820.09 0.42 815.76 3.99 
7 820.09 0.48 0.93 845.11 0.25 820.09 3.87 
8 857.44 0.53 1.08 810.43 0.24 811.09 3.85 
9 830.43 0.54 1.06 815.76 0.22 816.43 3.85 
10 800.43 0.55 1.06 857.44 0.22 850.10 3.67 
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Table S4. 5 Top-10 ranking adducts from variable selection for B-cell ALL cases with t(12;21) translocation 
and controls. The top-10 adducts based on (1) nominal p-values from multivariable linear regression, with the 
corresponding fold change (FC); (2) proportion of times selected into the lasso model; and (3) the mean 
decrease in Gini index from random forest variable importance are shown. 

 Linear regression lasso Random forest 
Rank Adduct p-value FC Adduct Proportion Adduct Gini 
1 811.09 0.09 0.84 835.11 0.67 835.11 2.56 
2 815.76 0.19 0.86 811.09 0.65 820.09 2.36 
3 816.42 0.25 0.87 815.76 0.47 816.43 2.22 
4 862.77 0.30 0.88 816.43 0.45 815.76 2.20 
5 796.43 0.34 0.88 820.09 0.39 816.42 2.09 
6 835.11 0.34 1.13 819.09 0.32 811.09 2.07 
7 822.42 0.39 0.91 816.42 0.30 810.43 2.01 
8 819.09 0.43 1.11 830.43 0.30 830.43 1.99 
9 805.76 0.47 0.93 832.43 0.29 827.09 1.98 
10 845.11 0.48 0.92 810.43 0.26 827.75 1.96 

 
 
Table S4. 6 Top-10 ranking adducts from variable selection for T-cell ALL cases and controls. The top-10 
adducts based on (1) nominal p-values from multivariable linear regression, with the corresponding fold 
change (FC); (2) proportion of times selected into the lasso model; and (3) the mean decrease in Gini index 
from random forest variable importance are shown. 

 Linear regression lasso Random forest 
Rank Adduct p-value FC Adduct Proportion Adduct Gini 
1 835.11 0.03 1.44 851.43 0.63 835.11 1.36 
2 830.43 0.05 1.49 832.43 0.57 830.43 1.00 
3 851.43 0.05 1.72 830.43 0.38 832.43 0.98 
4 800.43 0.17 1.26 835.11 0.32 819.09 0.96 
5 827.75 0.25 1.30 850.10 0.24 870.43 0.93 
6 918.12 0.28 1.28 827.75 0.21 800.43 0.90 
7 913.45 0.31 1.25 827.09 0.21 822.42 0.85 
8 805.76 0.31 1.20 819.09 0.21 827.75 0.78 
9 827.09 0.31 1.21 821.75 0.20 851.43 0.78 
10 811.09 0.33 1.23 820.09 0.20 815.76 0.76 
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Table S4. 7 Top-10 ranking adducts from variable selection for AML cases and controls. The top-10 adducts 
based on (1) nominal p-values from multivariable linear regression, with the corresponding fold change (FC); 
(2) proportion of times selected into the lasso model; and (3) the mean decrease in Gini index from random 
forest variable importance are shown. 

 Linear regression lasso Random forest 
Rank Adduct p-value FC Adduct Proportion Adduct Gini 
1 850.10 0.01 0.66 850.10 0.69 835.11 2.56 
2 851.43 0.05 0.65 827.09 0.59 850.10 2.40 
3 845.11 0.26 0.85 800.43 0.37 827.09 2.01 
4 870.43 0.35 0.83 851.43 0.36 811.09 1.99 
5 816.42 0.36 0.89 862.77 0.30 815.76 1.93 
6 918.12 0.37 0.90 811.76 0.29 800.43 1.87 
7 862.77 0.39 0.88 811.09 0.28 862.77 1.83 
8 811.09 0.43 0.92 832.43 0.27 845.11 1.76 
9 913.45 0.45 0.92 835.11 0.27 816.42 1.71 
10 821.75 0.56 0.91 816.42 0.26 832.43 1.70 
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Chapter 5.  
 

Conclusions and future directions 
 
 
 As the global disease burden continues to shift from communicable to non-communicable 
diseases, particularly cancer, we need to better understand the etiologic factors and underlying 
disease mechanisms that may lead to disease prevention. In the last few decades, advances in 
sequencing technologies have allowed for in-depth explorations of genetic factors involved in 
cancer etiology. Similar tools were not readily available for the exploration of exposures, and 
epidemiological studies often relied on questionnaires and interviews, which are prone to 
measurement errors and reporting biases. However, technological advances in analytical 
instruments such as liquid chromatography-high resolution mass spectrometry along with high-
dimensional bioinformatics/statistical tools have opened new avenues for comprehensive omics 
investigations of exposures impacting cancer risks. Since many of the etiologic factors of cancer 
remain unknown, it is anticipated that omics investigations will reveal unrecognized risk factors 
and enhance our understanding of the causes of cancer. Our untargeted HSA-Cys34 adductomics 
method is one such omics approach that allows for the exploration of both known and unknown 
exposures to reactive electrophiles contributing to the etiology of cancer. 
 The overarching goal of the work described here was to perform HSA-Cys34 
adductomics using archived newborn DBS to discover in utero exposures associated with 
childhood leukemia. We first developed an adductomics method tailored for the analysis of 
newborn DBS to overcome the unique challenges associated with DBS, which included sample 
complexity and variation in blood volume across DBS. Normalization of blood volume using 
hemoglobin measurements of the DBS extracts via UV-Vis spectroscopy was very effective and 
could easily be integrated into other future omics analyses utilizing DBS (Chapter 2). Sample 
processing for adductomics measurements was designed to allow for high-throughput analyses 
and uses a simple solvent extraction to isolate HSA in the DBS extracts (Chapter 3). We 
validated this methodology with 49 archived DBS collected from newborns with mothers who 
actively smoked or were nonsmokers during pregnancy. In this pilot study, we saw that the 
Cys34 adduct of cyanide showed consistent discrimination between newborns of smoking and 
nonsmoking mothers. Hydrogen cyanide is in fact a constituent of cigarette smoke, and these 
results indicated that the DBS-adductomics method was suitable for exploring in utero exposures 
to reactive electrophiles. While our DBS-adductomics method was developed for the analysis of 
4.7-mm newborn DBS punches preserved at -20℃, this method is also applicable for other DBS 
analyses of HSA-Cys34 adducts. 
 We then applied the DBS-adductomics method to analyze 783 archived newborn DBS 
collected from childhood leukemia cases and matched population-based controls participating in 
the California Childhood Leukemia Study (Chapter 4). This was the first large-scale adductomics 
analysis of archived newborn DBS. Our novel normalization workflow was optimized for the 
dataset and adjusted for factors of unwanted variation that were unique to DBS-adductomics, 
including batch effects, amount of digested HSA, instrument performance, DBS age, and blood 
volume. Since large numbers of samples are analyzed over long periods of time in many omics 
studies, our results indicate that it is important to minimize sources of unwanted variation prior 
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to data collection, and to adjust for this technical variation and normalize data before performing 
statistical analyses.   
 In comparing HSA-Cys34 adducts between childhood leukemia cases and controls, we 
identified several adducts that warrant further investigation. Interestingly, the Cys34 
homocysteine adduct with loss of H2O was shown to consistently discriminate AML cases and 
controls. We hypothesized that the altered levels of homocysteine may be related to changes in 
epigenetic regulations or folate status among AML cases. No consistent associations were found 
for childhood leukemia cases and controls overall, as well as the total ALL and total B-cell ALL 
subgroups. However, when the B-cell ALL subgroup was further stratified into B-cell ALL with 
high-hyperdiploidy and B-cell ALL with t(12;21) subgroups, the Cys34 adducts of potassium, 
sulfenamide, and crotonaldehyde showed modest discrimination between cases and controls. 
Likewise, for the T-cell ALL subgroup, Cys34 adducts of crotonaldehyde, acrolein, and cysteine 
showed moderate discrimination. Because this was a hypothesis-generating study, and some of 
the subgroups were limited in sample size, our findings will need to be replicated in future 
studies. 
 The etiology of childhood leukemia, and cancer in general, is very complex. In order to 
obtain a more cohesive view of the etiology of childhood leukemia, our adductomics results 
should be complemented by other omics investigations. Our findings for B-cell ALL with 
t(12;21) and T-cell ALL point to the involvement of reactive oxygen and carbonyl species that 
have long been implicated in the progression of ALL.1,2 Regarding AML, our results point to the 
possible involvement of the folate-mediated one-carbon metabolic pathway. Since the 
adductome is but one component of the biological system that is affected by exposures, our 
results would benefit from knowledge of effects to other omics layers in the same DBS 
specimens, including the epigenome, transcriptome, proteome, and the metabolome.  
 It is important to emphasize that our study used archived newborn DBS that were 
collected within 48 h of birth. While HSA encompasses exposures occurring one month prior to 
birth, this single time point may not have captured all relevant exposures in the etiology of 
childhood leukemia. It is possible that the first hit may have occurred at other critical time 
periods such as the earlier weeks of gestation. Furthermore, given the long latency spanning up 
to 14 years, it is also possible that early markers of disease manifestation or susceptibility may 
not be easily detectable at birth. Despite this, we were still able to detect differences in levels of 
particular adducts between ALL/AML cases and controls in archived newborn DBS collected 
years before diagnosis. Future integration of our results with multi-omic investigations of 
childhood leukemia may reveal biological changes related to leukemogenesis, and thereby 
present new opportunities for preventing this tragic disease. 
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