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ABSTRACT OF THE DISSERTATION 

 
 

Using a multi-satellite synergy algorithm and 

a chemical transport model to assess the environmental impact of a disaster: 

The case of the wildfires of 2020. 

 

 

by 

 

 

Oscar Alejandro Neyra Nazarrett 

 

 

Doctor of Environmental Science and Engineering 

University of California, Los Angeles, 2023 

Professor Pablo Saide Peralta, Co-Chair 

Professor Miriam Elizabeth Marlier, Co-Chair 

 

 
 
 

This dissertation employs a multi-satellite synergy algorithm and a chemical transport model to 

investigate atmospheric composition changes and public health impacts resulting from the 2020 

wildfires in the Western United States. The study synergizes data from the CrIS and TROPOMI 

satellite instruments to analyze carbon monoxide (CO) and evaluates how these two instruments 

sensed CO separately and in synergy. Results indicate significantly higher daily average CO 

columns in the Western U.S. compared to the Central and Eastern U.S., with TROPOMI 

revealing higher values near fire sources, suggesting stronger contributions from close-to-surface 

concentrations. Validation against ground-based TCCON and NDACC's FTIR CO column 

estimates demonstrated Normalized Mean Error of less than 24% for CrIS and 32% for 



 iii 

TROPOMI. The synergy between TROPOMI and CrIS CO columns was evaluated by assessing 

the elevated smoke plume on September 15, 2020, against a balloon-borne retrieval from 

AirCore. It was found that even when deviations were present in CrIS's predicted profile, 

consistency between TROPOMI and CrIS CO columns was maintained for lofted plumes. 

Overall, this analysis shows that CrIS and TROPOMI provide complementary information on 

CO, enhancing the understanding of CO distribution during the wildfires. 

 

The dissertation then focuses on a detailed study of fire-specific PM2.5 emissions, employing the 

GEOS-Chem chemical transport model. This section reveals that the 2020 wildfires resulted in 

an unprecedented emission of 328 million tons PM2.5 across the Western U.S., far exceeding the 

total emissions of the previous three years. It highlights that California alone was responsible for 

18% of the six-year total PM2.5 emissions in 2020. The study revealed that certain locations in the 

Western United States experienced prolonged periods of hazardous air quality conditions that 

exceeded the EPA's 24-hour limits for more than 40 days. In total, there were 492 million person-

days of exposure to poor air quality in the Western U.S. in 2020. This study emphasizes the 

importance of distinguishing between emissions from fire-specific smoke and smoke from 

multiple sources due to the higher toxicity of wildfire smoke. 

 

The aim of this research is to highlight the importance of understanding the impact of wildfires 

on the environment and populations, especially considering their increasing frequency and 

severity. 
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Chapter 1 Introduction 

Sophocles once said that every man sees things far off but is blind to what is near. This is 

reflected today in how we sometimes neglect the clear and present dangers of wildfires, despite 

their impacts constantly being highlighted in the news, we have yet a lot to do to understand the 

behavior of these events and to improve the technologies we use to study them.  

Wildfires have increased significantly over the past decade (Iglesias, Balch, and Travis 2022) 

with the year 2020 being unusually devastating to the United States. This was particularly 

relevant to the western U.S. where the Wildfires damaged over 10,000 structures (National 

Interagency Fire Center 2020). The 2020 wildfire season reported over 4.2 million acres burned 

in California (Cal Fire 2023), the largest area ever recorded in the history of the state. In Oregon 

and Washington, the fires burnt 1.1 million and.84 million acres during the year (Northwest 

Interagency Coordination Center 2021). Given the relevance and magnitude of such an event, it 

is necessary to understand its impact and to identify ways to improve scientific measurements 

particularly those retrieved from space. Larger wildfires will continue to catalyze ecosystem 

changes, transforming the global climate and exposing entire populations to dangerous 

emissions. Hence, it is critical that satellite retrievals are validated and improved in order to 

properly model the effects of particulate matter from wildfires. This dissertation seeks to harness 

a multi-satellite synergy algorithm and a chemical transport model to assess the environmental 

impact of the pivotal wildfires of 2020 in the Western U.S. 

 

Satellite data has been critical for analyzing wildfire emissions and has the potential to mitigate 

future wildfire threats. The observation power of modern satellites is almost unprecedented given 
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the history of satellite potential. Almost instantly, satellites can tell where wildfires are taking 

place, how big they are, and can be used to estimate what emissions they are producing, if they 

are approaching urban areas, and even what kind of fuel they are burning. Some drawbacks to 

utilizing satellite methodology include the possible effects of smoke contamination (Ye et al, 

2022), uncertain data retrievals, and sensor-specific data limitations. Satellites, nonetheless, offer 

major advantages to in-situ as it is difficult to install in-situ monitors in remote locations, and to 

make sure they remain operational during times of duress such as major wildfire events. They 

also have significant advantages in their global scale of coverage and long-term observation. 

 Furthermore, the use of multiple satellites in conjunction offers the potential to observe 

with better precision attributes of wildfires, without having to launch new instruments, a concept 

called satellite synergy. A synergistic scheme refers to an algorithm that combines observations 

from two or more spectral ranges, either simultaneously or in a hierarchical manner, to achieve a 

more precise result than when these retrievals are used independently. Successions of satellite 

platforms orbiting in proximity, exhibit great potential for improved observation by 

concentrating sensors on a given area. (Malina et al. 2022; J. Landgraf and Hasekamp 2007; Luo 

et al. 2013; Cuesta et al. 2013; Fu et al. 2018; 2016; H. M. Worden et al. 2007; J. R. Worden et 

al. 2015; Deeter et al. 2014). Although using satellite synergies can lead to improved 

measurements, the approach is rarely utilized correctly. Data retrievals are usually performed 

independently per instrument, and the retrieved products are merged as processed imagery called 

posteriori. In this context, there is a strong need to formally apply the theory of synergistic 

processes and to go beyond the combination of images (Aires et al, 2011). Combining retrievals 

from multiple instruments has proven useful already, with multiple projects demonstrating that a 

multiple-sensor synergy can lead to greater accuracy than using just one sensor. (Fu et al, 2018; 
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Yan et al, 2016). This project aims to build upon a technique that has shown potential but has not 

been extensively executed before. 

The use of satellite synergies has proven formidable in the study of a multitude of applications 

and the method could be invaluable to study dynamic events such as wildfires. Wildfires can 

rapidly change in location, duration, and intensity. However, satellites are ideally suited to 

monitor them because they can cover vast areas and utilize various sensors that capture data 

across different spectra and at different times. Hence, the use multiple satellites in conjunction 

serves as a foundation upon which the study of wildfires can be refined.   

While the potential of satellite synergies to produce better measurements is evident, its 

implementation is challenging. Differences in orbits, timing, and resolution pose significant 

challenges to the successful construction of a multi-satellite observational system (Aires et al, 

2011). Each of these attributes can only be observed independently, given that this information 

comes from instruments carried in satellites that are designed with particular purposes and 

capabilities. The combination of these factors creates challenges. Some satellites retrieve data 

from different orbits or times, producing unsynchronized imagery. Merging their data 

asynchronously has the potential to create spatial and temporal mismatches of imagery (Rogers 

and Yau 1989). Furthermore, differences in resolution, accuracy, vertical sensitivity, and spectral 

capabilities need to be considered. This is particularly challenging in the context of wildfires, as 

emissions generated by a wildfire might be substantially different in the morning and in the 

afternoon due to changes in wind speed, moisture, solar radiation, and temperature (Tang et al. 

2022).  Hence, just like it was done in this study, it is critical to construct comprehensive 
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architectures and validate them against in-situ measurements to produce better retrievals through 

satellite synergies. 

The ability to produce measurements through satellite synergies, and therefore improve 

understanding of wildfire attributes will enhance the field's ability to model wildfire effects. This 

is because satellite data serve as input to models, hence better inputs through synergies are 

relevant to produce better outputs when assimilating satellite measurements with other inputs in 

Chemical transport models (CTMs). 

CTMs provide a lens through which the spread and interaction of pollutants in the atmosphere 

can be simulated. Use of these models is majorly important in the field because these chemical 

transport models act as a bridge, assimilating different inputs and simulating its geophysical 

interaction with other inputs. These models are based on physics and can provide information on 

emissions, transport, and chemistry in areas without monitors. Nonetheless, when it comes to 

measuring ambient concentrations, models tend to be less precise than monitors (Reid et al. in 

2019). This limitation is primarily a result of uncertainties within the datasets used as inputs. 

However, models do provide a distinct advantage in their ability to quantify emissions linked to 

wildfires (Zhang et al. 2020; Jia Coco Liu et al. 2017), a capability that monitors cannot achieve. 

 

A major issue among existing models is uncertainty regarding the treatment of smoke, which 

results in inexact predictions (Ye et al 2021). To address such uncertainty, it is critical to provide 

better inputs for air quality models aiming at improving estimates of chemical concentrations and 

at better attributing the origin of these emissions. Understanding emission sources is particularly 
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relevant, as smoke from wildfires can be more toxic than other smoke, and as it is difficult to 

distinguish between emissions from fire-specific smoke and smoke from multiple sources. 

 

Better measurements could lead to better models. When fed with the advanced data gleaned from 

multi-satellite analysis, CTMs become even more powerful, offering a dynamic framework for 

improved forecasting, monitoring, and strategic planning. And better models have the potential 

to revolutionize public health approaches to wildfire analysis. Their ability to differentiate what 

is attributable to wildfires versus the background can streamline scientific efforts to focus on 

wildfire-specific damages and how to best mitigate them. This is critical information which will, 

when made predictable and more exact, help policymakers make decisions to minimize human 

exposure during high concentrations. This includes providing early warnings to vulnerable 

populations (Makkaroon et al. 2023), protecting at-risk groups such as agricultural workers 

(Marlier et al. 2022), and allowing policymakers to reevaluate and potentially increase PM2.5 

thresholds during wildfire events. All of these potentially saving thousands of lives. 

More accurate understanding of the emissions through models offers the ability to provide 

insights to mitigate negative impacts on the environment, and particularly on public health. One 

major impact of wildfires is their production of fine particulate matter, PM2.5, which contributes 

to the deterioration of global air quality. “Particulate matter” is the catch-all term for particles 

and droplets that are present in the air, both in solid and liquid form. and includes both PM10, 

particles with diameters 10 mm and smaller, and PM2.5, with diameters 2.5 mm and smaller 

(EPA 2018a). Fine PM can consist of soot, organic carbon compounds and inorganic compounds 

(Hanninen et al. 2009). Its small size allows PM to infiltrate deep into the lungs, even entering 
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the bloodstream. High levels of PM2.5 have been found to cause respiratory problems and can 

enter the bloodstream, ultimately causing premature deaths.  

The impact of wildfires on PM2.5 levels in existing literature is well-established: a plethora of 

scientists have identified wildfires as a major contributor to PM2.5 emissions (Ammann et al. 

2001; Dennis et al. 2002; Lighty et al. 2000; Sapkota et al. 2005; Coco-Liu 2016). Some suggest 

that wildfires are responsible for up to 18% of total PM2.5 air emissions in the United States 

(Phuleria et al. 2005). It is also known that fires directly alter the radiative budget of the 

atmosphere by increasing greenhouse gasses and atmospheric aerosol burdens and by modifying 

surface albedos via alteration of vegetation coverage (Sena et al 2013, Carter et al 2020). Aerosol 

emissions from fires can indirectly modify cloud properties, affecting the climate. (Ward et al 

2012, Hamilton et al 2018). In addition to these impacts, of course, fires pose major air quality 

and health concerns from wildfire smoke (Dittrich and McCallum 2020). Based on all of this 

known potential for serious health and environmental damage, it is crucial that the scientific 

community better understand the emissions of PM2.5 that are attributable to Wildfires trough 

better models.  

 

Globally, wildfires cause an estimated 339,000 deaths annually, with regions like sub-Saharan 

Africa and south-east Asia being heavily affected (Johnston et al., 2012). However, the 

comprehensive health impacts of wildfires, including increased respiratory morbidity and 

mortality rates (Youssouf et al. 2014; Liu et al. 2015; Reid et al. 2016; Cascio 2018), remain 

under-reported and insufficiently quantified due to various challenges, being exposure 

misclassification one of the most relevant. Wildfires have a disproportionate effect on the most 
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vulnerable populations, particularly the elderly, people with pre-existing cardiopulmonary 

conditions, smokers and individuals with smaller airways (Yousouff, 2014).  

 

Wildfires are an increasing threat to the environment and human welfare in the modern age and 

remain highly relevant in broader discussions of climate change. Current understanding of their 

damage potential, even as measured by satellites, is limited due to a slew of complicating factors: 

remote wildfire sites, unreliable satellite coverage, and major data complications due to smoke 

coverage. It is critical that we enhance satellite retrievals for the sake of accurate emission data. 

By doing so, we can achieve better modeling to understand the significance of wildfires and thus, 

respond more effectively. This dissertation seeks to harness a multi-satellite synergy algorithm 

and a chemical transport model to assess the atmospheric composition changes as well as the 

public health impact of wildfires.  In Chapter 2, we analyze CO patterns during the 2020 

wildfires using a synergy of CrIS and TROPOMI retrievals and validate it against various 

instruments. In Chapter 3, we employ GEOS-Chem, a CTM, to estimate the PM2.5 emissions 

attributable to wildfires in the Western U.S. and evaluate their impact on the states in said region. 

Beyond wildfires, the aim of this study is to serve as a groundwork to advance our understanding 

of wildfire dynamics and their consequences so we can protect our planet and those who live on 

it.  
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Chapter 2 A multi-satellite synergy algorithm to assess and 

validate CO measurements during the wildfires of 2020 

2.1 Abstract 

The 2020 wildfire season in the western U.S. was historic in its intensity and impact on the 

atmosphere. This study aims to characterize the sensitivity to carbon monoxide (CO) of two 

satellite instruments (CrIS and TROPOMI) during these wildfires including their spatial, 

temporal, and vertical patterns. Our results show that the Western U.S. displayed significantly 

higher daily average CO columns compared to the Central and Eastern U.S., with TROPOMI 

reporting higher values near the fire sources than CrIS; associated with stronger contributions of 

close to surface concentrations to the total column. Both satellites showed consistent values 

downwind related to more lofted plumes. Temporally, TROPOMI CO column peaks were 

delayed relative to Fire Radiative Power (FRP), particularly during the intense initial weeks of 

September. 

Satellite retrievals were validated using TCCON and NDACC's FTIR CO column estimates, 

showing Normalized Mean Errors (NME) for CrIS and TROPOMI to be typically below 24% 

and 32% across Boulder, Colorado, Park Fals, and Pasadena. However, there were notable 

differences in magnitude at Pasadena likely associated to sharp spatial gradients due to 

topography and proximity to a large city, which is consistent with previous research. In-situ CO 

profiles from AirCore showing an elevated smoke plume for September 15, 2020, highlighted 

consistency between TROPOMI and CrIS CO columns for lofted plumes, even when the CrIS 

predicted profile deviates from observations. 
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The study demonstrates that both CrIS and TROPOMI provide complementary information on 

CO distribution. CrIS's sensitivity in the lower free troposphere, coupled with TROPOMI's 

effectiveness at capturing total columns, offers a more comprehensive view of CO distribution 

during the wildfires than each retrieval by itself. By combining data from both satellites as a 

ratio, we can potentially extract more detailed information about the vertical location of the 

plumes. This approach can enhance air quality models, improve vertical estimation accuracy, and 

establish a new method for assessing lower tropospheric CO concentrations during significant 

wildfire events. 

 

Keywords: satellite synergy; carbon monoxide; TROPOMI; CrIS; TCCON; AirCore; NDACC; 

wildfire; retrieval. 
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2.2 Introduction 

During the period of global lockdown, satellites remained operational and proved to be an 

indispensable tool for characterizing the spatiotemporal distribution of gases and aerosols at a 

global scale (Laughner et al. 2021). However, the effectiveness of satellite observations could 

have been impaired by uncertainties caused by unusually high emissions from wildfires, vertical 

transport of wildfire plumes, and heavy smoke (Ye et al., 2022). The 2020 wildfire season in the 

United States presented an opportune case study to determine the degree of influence that thick 

smoke may have on the accuracy of remote sensing data. Unlike previous years, the 2020 season 

resulted in a record-breaking increase in the amount of land burned in Western U.S. which 

resulted in strong local, regional, and continental impacts of  gases and aerosols emitted (Albores 

et al. 2023). 

 

The wildfires of 2020 were a major source of carbon monoxide (CO), exceeding three times the 

2001–2019 average CO emissions. (Albores et al. 2023). Wildfires can generate large amounts of 

CO due to incomplete fuel combustion, biomass burning, and hydrocarbon oxidation. Over 10% 

of global CO emissions from wildfires occur in middle and high latitudes.(Langmann et al. 

2009). CO is an excellent atmospheric tracer for incomplete combustion (Martínez-Alonso et al. 

2020). The presence of CO is highly relevant to climate change for two main reasons. Firstly, it 

reacts with the hydroxyl radical (OH), which is the primary oxidant of CO (Eqn. 1). This 

reaction results in the formation of greenhouse gases such as carbon dioxide and tropospheric 

ozone, both of which contribute to global warming. Secondly, since OH is responsible for 

removing CO from the atmosphere, an increased presence of CO means less OH is available to 

scavenge other greenhouse gases such as methane (Eqn. 2). This dynamic enhances the 
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atmospheric lifetime of these gases, impacting the atmosphere's ability to self-cleanse. (Seinfeld 

and Pandis 2012; Lelieveld et al. 2016).   

 

(EQ1) 

𝑂𝐻 + 𝐶𝑂 
𝐾2

⟶
𝐻 + 𝐶𝑂2 

(EQ2) 

𝑂𝐻 + 𝐶𝐻4  
𝐾3

⟶
  𝐶𝐻3 + 𝐻2𝑂  

 

Tropospheric CO has a mean lifetime of approximately 1 to 2 months (Seinfeld and Pandis 2016; 

Pfister et al. 2008; Intergovernmental Panel On Climate Change 2023), enabling it to withstand 

both horizontal and vertical transport while remaining unmixed. As a valuable tracer, CO is 

utilized to observe the transport, origins, and removal of polluted plumes.  

 

2.2.1 Use of satellite retrievals to study CO    

 

Satellite retrievals play an essential role in studying atmospheric composition, particularly in 

monitoring CO. This is because they cover a wider area, complementing the more localized 

observations of ground-based networks such as the Total Carbon Column Observing Network 

(TCCON) and the Infrared Working Group of the Network for the Detection of Atmospheric 

Composition Change (NDACC-IRWG). This expansive coverage is crucial for monitoring 

atmospheric phenomena on a global scale. While ground-based networks provide precise 
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measurements at specific locations, satellites offer broader data collection over large areas, 

which enhances our understanding of atmospheric dynamics. 

 

Various satellites can be used to measure carbon monoxide through the estimation of the 

radiation they absorb. The most widely used and long-standing instrument for this purpose is the 

"Measurements Of Pollution In The Troposphere" (MOPITT) sensor, which is onboard the 

NASA Terra satellite and has been in operation since 2000 (Drummond et al. 2010). MOPITT 

utilizes near-infrared (NIR), thermal-infrared (TIR), and multispectral (TIR+NIR) radiances to 

achieve its objective (Buchholz et al. 2017)  

 

In addition to MOPITT, other satellite instruments built to measure CO in the thermal infrared 

spectral regions include the Infrared Atmospheric Sounding Interferometer (IASI) (Clerbaux et 

al. 2009) the Tropospheric Emissions Spectrometer (TES) (K.W. Bowman et al. 2006), the 

Cross-track Infrared Sounder (CrIS) (Bloom 2001) and the Atmospheric Infrared Sounder 

(AIRS) (Fu et al. 2018) All of these instruments, with the exception of AIRS, use optimal 

estimation approaches to retrieve CO columns from measured radiances. Additionally, all have 

shown consistent hemispheric CO variability when compared to MOPITT retrievals (Buchholz et 

al. 2017). The disadvantage of this family of instruments is that measuring concentrations near 

the surface in the spectral bands they detect can be difficult (Kevin W. Bowman et al. 2002). In 

contrast, other types of infrared (IR) equipment, such as TROPOMI, typically provide superior 

insights into the lower troposphere but are unable to extract species above around 30km. 
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The TROPOMI instrument uniquely derives CO atmospheric columns through observations in 

the NIR (T. Borsdorff et al. 2018). Because of the spectral range in which it operates, TROPOMI 

can retrieve a CO column that captures most of the CO across the upper and lower troposphere 

demonstrating superior sensitivity near the surface compared to sounders such as CrIS. Using 

TROPOMI and CrIS, both recently deployed instruments, we benefit from their complementary 

capabilities and their strategic co-location on the same satellite train. This offers enhanced 

synergistic potential and the opportunity for the development of future joint retrievals, making 

them uniquely suitable to our study. 

 

 

2.2.2 Previous work validating CrIS and TROPOMI CO retrievals 

 

There is limited literature on the joint validation and assessment of the synergistic potential of 

TROPOMI and CrIS. Prior studies have validated CO retrievals from CrIS or TROPOMI by 

comparing them independently with other satellite datasets. (H. M. Worden et al. 2013; 

Martínez-Alonso et al. 2014; George et al. 2015; Martínez-Alonso et al. 2022), aircraft based 

vertical profiles (Martínez-Alonso et al. 2020; 2022), and ground measurements (Dammers et al. 

2017; Hedelius et al. 2018). These studies generally found that both CrIS and TROPOMI exhibit 

a positive correlation with other satellites, airborne data, and ground measurements. However, at 

the surface level, CrIS typically displays lower sensitivity, resulting in overestimation in low-

concentration conditions and underestimation in higher atmospheric concentration conditions 

(Dammers et al. in 2017). 
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In contrast with CrIS, there is more extensive literature evaluating TROPOMI CO retrievals 

through studies comparing them with satellite, ground-based and airborne instruments and 

reanalysis of atmospheric composition. In multi-satellite instrument comparisons, one study 

(Martínez-Alonso et al. 2020) analyzed TROPOMI CO data from November 2017 to March 

2019, comparing it with MOPITT satellite data and Atmospheric Tomography mission (ATom) 

aircraft data. This study found that TROPOMI CO retrievals over land show an average relative 

bias and standard deviation of -3.73% ± 11.51%, -2.24% ± 12.38%, and -3.22% ± 11.13% 

compared to MOPITT's TIR, NIR, and multispectral products, respectively. The study also 

revealed good agreement in temporal and spatial patterns between TROPOMI and MOPITT 

data. Another study (Martínez-Alonso et al. 2022) presented an intercomparison of TROPOMI 

CO measurements with MOPITT, including validation using vertical profiles from balloon-borne 

AirCore measurements. This study reported mean MOPITT/AirCore total column bias values 

and their standard deviation as 0.4 ± 5.5, 1.7 ± 5.6, and 0.7 ± 6.0 molec/cm2 for MOPITT's 

thermal-infrared, near-infrared, and multispectral retrievals, respectively. It also highlighted that 

TROPOMI can retrieve CO under both clear and cloudy conditions with a relative bias and 

standard deviation of 2.02% ± 11.13% in cloudy conditions, after accounting for TROPOMI's 

vertical sensitivity to CO. 

Regarding ground-based instrument comparisons, a study (Shah et al. 2021) validated 

TROPOMI's operational CO products over about three years using ground-based data from the 

Total Carbon Column Observing Network (TCCON) and the Infrared Working Group of the 

Network for the Detection of Atmospheric Composition Change (NDACC-IRWG). They 

addressed uncertainties in a priori alignment and smoothing in the validation process. Other 

approaches (Yang et al. 2020) have, compared FTIR measurements at Xianghe with co-located 
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TROPOMI satellite and ground-based Orbiting Carbon Observatory-2 (OCO-2) observations, an 

instrument that adheres to TCCON guidelines. Both studies found proper representation of 

TROPOMI. Moreover, TROPOMI retrievals have also been found consistent with atmospheric 

composition reanalysis (T. Borsdorff et al. 2018), further affirming the reliability of TROPOMI 

CO retrievals in various comparative studies. 

 

 

 

2.2.3 Satellite synergies.  

The concept of "satellite synergy" entails the fusion of data from multiple satellite sensors, and 

satellite synergies to observe attributes of the environment that are not discernible with a single 

satellite instrument. Joint retrieval, on the other hand, involves considering the interrelations 

between distinct geophysical parameters. Studies have demonstrated that the integration of data 

from multiple sensors is highly advantageous, particularly within the context of joint retrievals 

(Malina et al. 2022; Mettig et al. 2022; J. Landgraf and Hasekamp 2007; Luo et al. 2013; Cuesta 

et al. 2013; Fu et al. 2018; 2016; H. M. Worden et al. 2007; J. R. Worden et al. 2015; Deeter et 

al. 2014).  One recent study demonstrated the effectiveness of joint retrievals using CrIS-

TROPOMI with a focus on ozone (Malina et al. 2022). However, no study has been conducted to 

assess the synergistic potential of combining UV and IR spectral measurements for CO using 

CrIS and TROPOMI.   
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There is a gap in existent literature because there are no previous studies that have validated the 

synergistic potential of TROPOMI and CrIS when observing Carbon Monoxide in the presence 

of high intensity wildfire events. The present study aims to address this gap through the 

validation of such synergy using ground-based remote sensing and in-situ vertical profiles. Our 

study has two key objectives, first, it aims to understand the underlying differences in the way 

CrIS and TROPOMI observed CO during the megafires. Second, it aims to understand how 

satellite measurements compare to ground-based reference measurements during such an event, 

and the scientific implications of such comparisons. This work is organized as follows. In section 

two we describe the data and method used to homogenize the data from all the instruments. In 

the third section we present and discuss the results of our study trough temporal, spatial, and 

vertical lenses, and in section four we present the conclusions and future directions of this study. 

 

2.3 Data and Method 

2.3.1 Satellite CO retrievals  

In this section, we provide a summary of the features of the two satellite CO products we utilized 

to perform our study and provide an overview of its characteristics.  

 

Table 1: Overview of the Satellite CO products assessed. 

Dataset TROPOMI  CrIS  

Equatorial crossing time 13:30 LST 13:30 LST 

Nadir resolution (km) Up to 7x5.5 km2 14x14 km2 

File Name L2__CO____ CRIS_L2-CO 

Swath Width (km) 2600 km 2200 km  

Satellite Sentinel 5P Suomi-NPP 
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Prior TM5 model MUSES-TES 

Estimation Tikhonov regularization Optimal Estimation 

Reference (ESA 2023) (Fu et al. 2016) 

 

2.3.1.1 CrIS CO 

We use CO retrievals from the Cross-track Infrared Sounder (CrIS) aboard the Suomi National 

Polar-Orbiting Partnership (S-NPP) satellite (also referred to as NOAA-19), which has been 

providing data since 2015. The data of this instrument was obtained using the TES algorithm 

from JPL (K.W. Bowman et al. 2006), with data produced operationally at 0.7 degree resolution 

to save computational costs. We tested the impact of resolution on our data by comparing its 

consistency with reprocessed data of higher resolution (0.25 degree) for the period of Sept 11-15, 

2020, which displayed the highest CO concentrations in the fire season. We analyzed daily 

averages for the same geographical region at both resolutions and found that using 0.7 degree 

resolution provided similar results, as demonstrated in Figure A3. Nevertheless, utilizing this 

product could introduce some uncertainties since its coarser resolution might result in the 

omission of certain relevant values in space. 

 

2.3.1.2 TROPOMI CO  

The other satellite instrument utilized was TROPOMI. It is a push-broom imaging spectrometer 

carried by the Sentinel 5P Satellite from the European Space Agency (T. Borsdorff et al. 2018). 

TROPOMI has a wide swath width of 2600 km which provides quasi-global daily coverage. It 

measures radiances in the ultraviolet, visible, and solar-reflected infrared ranges (Martínez-

Alonso et al. 2022).  Its total CO column values are obtained from measurements of reflected 

solar infrared radiation in the 2.3 μm spectral band. One advantage of TROPOMI is its ability 
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retrieve CO over land in both clear and cloudy conditions (Jochen Landgraf et al. 2016). The 

reason TROPOMI is capable of this is due to its ability to retrieve parameters such as cloud 

height and optical thickness concurrently with trace gas columns. These parameters are then used 

to estimate partial CO columns above cloud tops using scaled reference profiles from the global 

chemical transport model TM5 (Krol et al. 2005). 

The recent operational changes to the Copernicus Sentinel-5P have enhanced the resolution of 

TROPOMI, providing data at approximately 7×5.5 km² since August 2019, which has been 

beneficial for our study that utilizes 2020 data (Jochen Landgraf et al., 2016). 

2.3.2 Reference Data  

2.3.2.1 Satellite Fire Radiative Power retrievals from VIIRS 

To track fire activity, we used Fire Radiative Power (FRP) data from the Visible Infrared 

Imaging Radiometer Suite (VIIRS) instrument carried by the Suomi NPP Satellite. Such 

instrument offers the advantage of providing daily globally active fire data (Csiszar et al. 2016). 

Specifically, we used S-NPP VIIRS with an imagery-resolution of 375 m-pixel (Wolfe et al. 

2013). S-NPP VIIRS operates on a sun-synchronous orbit, making a pass over the equator at 

around 1:30 local time during its descending orbit and at approximately 13:30 local time during 

its ascending orbit. The Fire Radiative Power (FRP) metric quantifies the total amount of radiant 

energy released by the fire and is expressed in megawatts (MW) at the pixel level. The product 

(VNP14IMGTDL_NRT) is available at the Fire Information for Resource Management System 

(FIRMS) database.  
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To evaluate fire activity, we analyzed cumulative Fire Radiative Power (FRP) using daily 

daytime measurements grouped into 400-second segments. This method accurately measures 

wildfire intensity, rather than wildfire activity, by summing FRP values within each 400-second 

interval. Higher sums within these segments suggest more intense fire activity. The utilization of 

short intervals facilitates capturing rapid fluctuations in fire intensity, which could be missed 

through a more aggregated analysis. Given that the majority of fire activity occurred in the 

Western U.S. we limited the FRP data extraction to this region.  

 

2.3.2.2 Ground-based TCCON CO measurements  

The TCCON Network is integrated by a group of ground-based Fourier transform spectrometers 

(FTSs) and is currently the state-of-the-art reference measurement to validate total column 

measurements through remote sensing (J. L. Laughner, 2023). The FTSs in the TCCON network 

use direct solar absorption spectra in the NIR spectral range to obtain precise column-averaged 

measurements of atmospheric constituents, such as CO2, CH4, and especially CO, in addition to 

other species (Wunch et al. 2011; Sha et al. 2021). TCCON has been effectively used to validate 

trace gas data products from satellite instruments such as GOSAT, OCO-2, MOPITT, and 

SCIAMACHY (Sha et al. 2021). 

We use data from three stations located in the states of Oklahoma, California, and Wisconsin 

(Lamont, Pasadena, and Park Falls respectively); Table 2 outlines the geographical specifications 

of such locations. To evaluate CO column measurements from satellites, we use the official 

TCCON XCO product, in wet mole fractions and convert them to columns as outlined in Section 

2.4.3. The TCCON data were obtained directly from https://tccondata.org/ (last access: 18 Jan 

2023).  
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Table 2: Ground based Fourier transform spectrometers (FTSs) and corresponding network. Four FTIR sites were 

used in this study, three corresponding to TCCON and one to NDACC. 

 

Attribute Boulder Pasadena Lamont Park Falls 

Latitude 40.04◦ N 34.14◦ N 36.60◦ N 45.95◦ N 

Longitude 105.24◦ W 118.13◦ W 97.49◦ W 90.27◦ W 

State Colorado California Oklahoma Wisconsin 

Network NDACC TCCON TCCON TCCON 

Reference 
(Ortega et al. 2019) (Wennberg et al. 

2023) 

(Wennberg et al. 

2023) 

(Wennberg et al. 

2023) 

 

 

2.3.2.3 Ground-based NDACC-IRWG CO retrievals  

We used data from the Boulder station of the Network for the Detection of Atmospheric 

Composition Change (NDACC), as provided by Ortega and colleagues. NDACC encompasses 

more than 20 stations, each outfitted with high-resolution Fourier transform spectrometers. These 

devices are adept at capturing solar absorption spectra within the mid-infrared (MIR, 2–14μm) 

spectral range, a methodology outlined in prior studies (Buchholz et al. 2017).   

 

NDACC retrieves CO measurements in the MIR spectra using three narrow spectral windows in 

the CO fundamental absorption band as outlined in previous studies (C. P. Rinsland et al. 2007; 

Buchholz et al. 2017; Dammers et al. 2017). Because of its rigorous calibration and quality 

control procedures, long-term and consistent data record, high-quality data, global network of 

stations, traceability to SI standards, and open access to data, NDACC has been extensively used 

to validate satellite data in prior studies (Buchholz et al. 2017; Olsen et al. 2017; Dammers et al. 

2017; Hochstaffl et al. 2018; Hedelius et al. 2018; Tobias Borsdorff et al. 2020). 
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2.3.2.4 Balloon based CO retrievals using Aircore 

We acquired data on the chemical composition of vertical profiles through the use of the AirCore 

instrument (Karion et al. 2010). Profiles were retrieved by Baier and colleagues, utilizing data 

from two specific dates, August 12th, 2020, and September 15th, 2020; with launches conducted 

in Boulder, Colorado.  

 

The AirCore, a balloon-borne atmospheric sampling tool developed by NOAA, features a unique 

design comprising an elongated, coiled tube. Its primary function is the passive acquisition of 

atmospheric samples during high-altitude balloon flights.  To produce a vertical sample, AirCore 

is charged with a preset gaseous blend, or "fill gas," that comprises average atmospheric 

concentrations of carbon dioxide (CO2) and methane (CH4), enhanced with slightly higher mole 

fractions of carbon monoxide (CO). The apparatus is designed with one end hermetically sealed 

and the other open to the external atmosphere, allowing the fill gas to be expelled when the 

balloon ascends to about 30 km above mean sea level. Following detachment from the balloon, 

the AirCore begins continuous ambient air sampling during its descend from the apex altitude to 

the terrestrial surface. When the air sample lands, a mechanism is activated to automatically shut 

the open end of the coil, preserving the integrity of the sample (Martínez-Alonso et al. 2022). 

The AirCore data were obtained directly from 

http://gml.noaa.gov/ccgg/arc/tmp/arcrepo_34Twm7/NOAA_AirCore_data_v20210813.zip (last 

access: Jan 5, 2022).   

 

http://gml.noaa.gov/ccgg/arc/tmp/arcrepo_34Twm7/NOAA_AirCore_data_v20210813.zip
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2.3.3 Satellite synergy 

To jointly assess and validate CrIS and TROPOMI CO measurements, we used a multi-satellite 

synergy that included matching retrievals in space and time and comparing CO column densities 

obtained from both as described in the following subsections.  

 

2.3.3.1 Temporal co-location of satellites  

We used temporal co-location to match TROPOMI and CrIS data, following the methods used in 

previous studies (Langerock et al. 2015). For measurements to be accurate and to mitigate noise 

due to atmospheric changes, meaningful collocation is necessary, ensuring that sensors perceive 

the same location at approximately the same time. (Rogers and Yau 1989). Fortunately, S-5P 

(hosting TROPOMI) and S-NPP (hosting CrIS) are both in the A-Train Constellation, which 

implies that one satellite overpasses the earth right before the other, with an equatorial crossing 

time of roughly 1:30 p.m. local time and an overpass time difference of less than 5 minutes 

(Latsch et al. 2022). Because both sensors are in the same train and have similar swaths, 

measurements that meet the temporal condition will likely have a match for the spatial criterion. 

 

Despite being in the same train, co-locating TROPOMI and CrIS data creates difficulties due to 

their heterogeneous nature and the spatial and temporal constraints that must be met. To address 

this, we developed a collocation approach that simplifies data processing. First, we extract 

TROPOMI files by swath crossing the continental United States. The data is then filtered and 

organized based on the hours the satellites pass over the continental US, and temporal matching 

with CrIS daytime value retrievals is performed. Hence, we obtain measurements both 

temporally and spatially homogeneous, albeit at varying resolutions. 
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To ensure the reliability of the data, we established additional filters. We only use daytime data 

for CrIS (TROPOMI data are daytime only) and quality filter with a minimum threshold of 0.5 

were used for each of the two retrievals, 'qa_value' for TROPOMI and 'Quality' for CrIS.  

 

2.3.3.2 Re-gridding of satellite data 

After performing temporal and spatial co-location of the data, the resolution of the data is 

homogenized for each day when there is a match between CrIS and TROPOMI data. Since CrIS 

pixels (0.7 or 0.25 degree) have a larger size and different resolution than TROPOMI pixels (7 

km × 3.5 km), TROPOMI was regridded to the CrIS grid by using the center of each CrIS pixel, 

drawing a square of (0.1°) around it, and averaging the TROPOMI pixels which center falls 

within the square. The dataset is then stripped of all CrIS pixels that do not have associated 

TROPOMI pixels to only keep paired pixels.  

 

2.3.4 FTIR Co-location 

To verify the accuracy and consistency of our data, we conducted a spatial co-location process 

where we compared the satellite measurements with the ground-based FTIR measurements 

following the methodology of Sha (Sha et al. 2021). For each day, we chose the CrIS and 

TROPOMI homogenized observations that corresponded to the position of the ground-based 

reference data. By centering on the FTIR locations, we selected matching daily satellite data 

within a square centered at the site with a side of 1.5° (0.75° Apothem). 
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Once we successfully achieved spatial co-location between satellite data and FTIR, we 

calculated the spatial averages by obtaining an average daily measurement for CrIS and 

TROPOMI. However, we had multiple daily measurements for FTIR at this stage. Therefore, we 

filtered the FTIR data to align them temporally with the timing of the satellite retrieval 

overpassing times, averaging all FTIR retrievals for the corresponding hour.  

 

The CrIS and TROPOMI column results are then compared directly to Boulder NDACC data 

product as it already provides column estimates (Ortega et al. 2019). Yet, to align TCCON with 

the other measurements, units are converted from column-averaged dry-air mole fractions to dry 

column through a methodology closely aligned to previous studies (Langerock et al. 2015; Kiel 

et al. 2016; Yang et al. 2020; Sha et al. 2021). We calculate the total dry CO column using a 

method similar to existent methodologies (Deutscher et al. 2010) as described in Equation 3. 

Specifically, we convert the surface pressure (Ps) from atmospheres of wet air into molecules per 

cm2, recorded at the lowest vertical level of the Prior total air column. Subsequently, we estimate 

the proportion of this column that represents dry air to estimate the dry CO column.  

 

(EQ3) 

𝐶𝑜𝑙𝑢𝑚𝑛_𝐶𝑂𝐷𝑟𝑦 = 𝐶𝑜𝑙𝑢𝑚𝑛_𝐴𝑖𝑟𝑤𝑒𝑡 ∗ 𝑋𝐶𝑂 ∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝐷𝑟𝑦 

 

Where 

𝐶𝑜𝑙𝑢𝑚𝑛_𝐶𝑂𝐷𝑟𝑦 =
𝑃𝑟𝑖𝑜𝑟_𝑃𝑆𝑆𝑢𝑟𝑓𝑎𝑐𝑒

𝑀𝑊𝐴𝑖𝑟
∗ 𝑋𝐶𝑂 ∗ (1 −

𝑋𝐻2𝑂

𝑋𝐶𝑂
) 
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2.3.5 Processing of Aircore data 

 

We estimated total CO column from AirCore data applying the averaging kernels (AK) of co-

located CrIS and TROPOMI retrievals to the AirCore CO profiles. For TROPOMI, we use AK 

in units of meters derived from a first-order Tikonhov–Phillips regularization on a logarithmic 

scale (Hase et al. 2004; Schneider, Hase, and Blumenstock 2006) resulting in a CO column 

comparable to TROPOMI CO columns. For CrIS, we use Averaging Kernels derived from 

Optimal Estimation as ln(VMR) resulting in a smoothed profiles that take into account the 

vertical sensitivity of this instrument. The smoothed CO profile is then used to calculate a CO 

column to compare against the CrIS CO columns, but it can also be compared to the profile 

derived by the CrIS algorithm. 

The colocation criteria requires that measurements from the two devices be collected within a 

time range of 12 hours or less and within a geographical proximity of 0.15 degrees or less. For 

both CrIS and TROPOMI, we took the average of pixel that satisfied these colocation conditions. 

To avoid bias we used high-resolution data processed at a granularity of 0.25 degrees for CrIS 

and standard high-resolution data for TROPOMI. 

We conducted a vertical regridding (Langerock et al. 2015) of the AirCore data to match the 

levels of CrIS and TROPOMI, using pressure as a reference. Given the initial difference in 

vertical levels—with AirCore at 521 levels, TROPOMI at 50, and CrIS at 67—this regridding 

process ensured alignment with TROPOMI and CrIS. It also allowed for the application of 

Averaging Kernels, harmonizing the AirCore profile with the respective satellite measurement 

profiles.  
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2.4 Results and Discussion 

2.4.1 Synergy Evaluation 

2.4.1.1 Regional  

We compared CO columns from CrIS and TROPOMI after applying the homogenization method 

described earlier (Section 2.3). Figure 1 shows the spatial maps of CO observed by the satellites 

during September 12 of 2020 for the continental U.S., which displayed one of the highest daily 

average CO measurements of the entire fire season. We focused on three regions: the western, 

central, and eastern U.S. The figure shows that concentrations in the Western U.S. were much 

higher than in the other two regions. Near the fire, the instruments detected different CO 

concentrations. Yet, TROPOMI and CrIS measurements were generally similar at locations 

downwind from the fires. This is further evidenced when assessing the scatterplot between CrIS 

to TROPOMI in the three regions (Fig. 1 right panel), with strong fit and slope close to 1 for the 

Central and East regions, and much wider dispersion for the Western US, going from values 

close to the 1:1 line up to very strong underpredictions of CrIS relative to TROPOMI.  

 

These results could imply that close to the fires a significant fraction CO (50% on average for 

this day) was present in the lower troposphere as previous studies have shown that TROPOMI is 

better at capturing the entire column, versus CrIS, which is more sensitive in the middle 

troposphere (K.W. Bowman et al. 2006; Malina et al. 2022). When looking at Central and 

eastern US, the slopes close to one could imply that the plumes were mostly lofted in the free-

troposphere and thus both instruments sensed most of the CO column. This hypothesis will be 

reassessed when comparing the satellite retrievals to the reference measurements in the following 

sections. 
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Figure 1: Left panels: Maps of CrIS high resolution data (0.25 degrees) and homogenized version of TROPOMI. 

The three regions of interest are shown as red squares, and ground-based sites marked with stars. Right panel: A 

comparison of measurements for the Western, Central, and Eastern regions of the United States. 

 

Figure 2 displays the daily average concentrations for CrIS and TROPOMI in the three regions 

of interest and displays the standard deviation of such measurements for each given day. Such 

analysis is further complemented with FRP measurements which was included exclusively for 

the Western region, given that the majority of fire activity occurred in this region, and the 

majority of CO was transported from this region to the East.  

 

Out temporal analysis shows that the Western region experienced much higher average CO 

concentrations than the Central and Eastern regions of the U.S. Figure 2 further evidences that 
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TROPOMI saw on average higher concentrations than CrIs during and after days with higher 

FRP in the Western U.S. This is of particular relevance for the first three weeks of September 

when TROPOMI shows not only a much higher daily average than CrIS, but also a much higher 

Standard Deviation. This again implies that for the most intense period, a large fraction of the 

smoke might be close to the surface where CrIS has low sensitivity.  

 

CrIS and TROPOMI measurements are slightly delayed relative to Fire Radiative Power as 

evidenced in the CO peak for the Western U.S. In fact, the peak CO columns appear a couple of 

days after the days with higher FRP and when FRP had the largest decline from its peak. This 

shift in the peak is likely due to multiple reasons, including FRP retrievals occurring before the 

fires reach their maximum activity and smoke accumulating in the domain during this period. 

Also, as shown in Figure 1, some of the smoke was transported over the ocean and recirculated, 

which increases the residence time in the region and contributes to the shift.  

 

When further evaluating the delay of CrIS relative to TROPOMI during the first two weeks of 

September, it can be observed that the peaks on CrIS retrievals occurs 1-2 days later than 

TROPOMI. The main reason CrIS does not immediately detect as high levels of CO as 

TROPOMI might be because CO first gets formed in the boundary layer where TROPOMI has 

better retrieval capabilities, and then it gets transported into higher altitudes. Hence, when there 

is a higher delay in CrIS matching TROPOMI CO retrievals, it could mean that a larger amount 

of CO is remaining in the lower troposphere. Conversely, on other days TROPOMI and CrIS 

peak at the same time and the column amounts are closer, which could mean that a substantial 
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amount of CO has moved to higher altitudes and the ratio of elevated versus surface smoke does 

not change drastically throughout the days.  

 

In contrast to the western US, CrIS and TROPOMI daily averages track closely for the central 

and eastern US (Figure 2, bottom panels). Is likely that a large fraction of the smoke was 

transported through the free-troposphere, and thus both instruments captured it similarly. 

 

 

 

Figure 2: Daily mean measurements obtained from CrIS and TROPOMI regridded to match CrIS measurements for 

the Western, Central, and Eastern regions. Red dotted lines indicate days with missing data in one of the satellites. 

Total fire radiative power for the Western U.S. is shown as red solid line for this region. 
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2.4.2 Data Validation 

In this section, we compare our satellite data analysis with ground-based reference measurements 

to illustrate and validate our findings. The temporal and spatial variations are compared against 

TCCON and NDACC stations. The vertical sensitivity of the satellite products is assessed using 

the Aircore observations. 

 

2.4.2.1 FTIR/Satellite  

Satellite measurements of CO show close agreement with the observations from TCCON and the 

NDACC at Boulder, Park Falls, and Lamont (Figure 3), with Normalized Bean Bias (NMB) and 

Normalized Mean Errors (NME) typically below 24% and 32%, respectively for all the four sites 

(Table 3). However, for Pasadena, while the satellites show rapid temporal variations consistent 

with the TCCON observation (r 0.74 and 0.88), they show lower mean concentrations which are 

also reflected in the slope (~1.19 and 1.32). This inconsistency aligns with existing literature on 

the subject (Shah et al., 2021). The likely cause of the discrepancy is the site's location in a major 

urban basin in Los Angeles, which is continuously affected by the urban plume. In contrast, the 

plume is diluted in the satellite data as it includes regions outside the basin. 

 

As shown in Figure 3, there were a limited number of TCCON data retrievals between 

September 9 and September 22 of 2020 for the Pasadena site. However, one example is available 

for September 7th in Pasadena where TROPOMI retrievals are within the variability of TCONN 

which shows large values (0.5-0.6 x1019 molec/cm2), while CrIS is substantially lower 
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(~0.35x1019 molec/cm2), thus corroborating that TROPOMI captures most of the column which 

seems to have a large fraction close to the ground as CrIS shows much lower values. 

 

The limited number of TCCON data retrievals between September 9 and September 22 was 

primarily due to the observatory shutting down because of ash from a nearby fire (Bobcat). This 

situation was exacerbated by COVID-19 emergency’s measurement constraints. Despite the 

difficult circumstances, satellites were able to continue functioning and gathering crucial data. 

However, it’s essential to note that they may face unique challenges in highly polluted 

environments which can affect the accuracy and reliability of their data due to factors like 

atmospheric scattering or signal absorption. Despite these potential issues, satellites were still 

able to successfully collect data that ground-based observatories couldn’t due to unfavorable 

conditions on the ground.  

 

In Boulder, it was observed that both TROPOMI and CrIS detected an outlier on August 19 

(Figure 3), with values of 0.65 x1019 and 1x1019 molec/cm2, respectively. However, the NDACC 

data for the same day showed much lower CO values ( 0.2x1019 molec/cm2). While the large 

satellite CO columns might have been influenced by the regional smoke and nearby fires, 

NDACC could have missed it given that it was a cloudy day.  This highlights how cloud cover 

can obscure ground-based measurements and hinder the detection of smoke, which could also be 

the case for other stations when the plume is already uplifted. To avoid biasing our estimations, 

the correlation calculations do not include this outlier. 
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Figure 3: Daily averaged homogenized satellite CO column measurements of CrIS and TROPOMI for four FTIR 

locations in 2020 (Boulder, Pasadena, Lamont, and Park Falls). The right side of each figure displays correlation of 

pixels across the fire season with regressions, intercept adjusted to zero, and excluding an outlier in Boulder (August 

19th, 2020). See text for details. 
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Table 3: Key statistics of average co-located satellite retrievals that correspond to each of the ground-based 

measurements shown in Figure 3. “N” refers to the number of samples, “r” signifies the correlation coefficient, 

“RMSE” stands for Root Mean Square Error, “Bias” represents the bias, “NME(%)” indicates the Normalized Mean 

Error in percentage, and “NMB(%)” denotes the Normalized Mean Bias in percentage. The data is organized based 

on the respective measurement sites and satellite products. 

Product N r RMSE Bias NME(%) NMB(%) 

Boulder Site – NDACC 

CrIS 

TROPOMI 

26 0.37 1.69e+18 2.88e+17 31.91 15.03 

26 0.44 9.35e+17 1.53e+17 25.30 7.99 

Pasadena Site – TCCON 

CrIS 

TROPOMI 

44 

44 

0.74 

0.88 

7.23e+17 

5.74e+17 

-5.90e+17 

-4.75e+17 

23.98 

20.07 

-23.98 

-19.31 

Lamont Site – TCCON 

CrIS 

TROPOMI 

44 

44 

0.85 

0.87 

2.65e+17 

2.71e+17 

-6.54e+16 

-9.77e+16 

7.68 

7.79 

-3.03 

-4.52 

Park Falls Site – TCCON 

CrIS 

TROPOMI 

29 

29 

0.82 

0.81 

1.69e+17 

1.90e+17 

-2.49e+16 

-4.94e+16 

6.20 

6.59 

-1.26 

-2.49 

 

 

2.4.2.2 Aircore/Satellite (Vertical) 

There were two dates for which Aircore retrieved vertical profiles for the period of this study, 

these were August 12, 2020 and September 15, 2020. Since the fires ignited with higher intensity 

during September, the profile retrieved in September 15, 2020 contained an elevated smoke 

plume (Figure 4), while for 08/12 there was no clear evidence of a smoke plume (figure not 

shown). This is consistent with the Boulder NDACC site (similar location) as 9/15 shows 

enhanced columns ~ 2e+18 molec/cm2 that both satellites capture well (Figure 3). CrIS, 

TROPOMI, and the corresponding Aircore CO column estimates all show similar values for this 

day (Table 4), with Aircore estimates being slightly lower. This could be due to AirCore starting 
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measuring at altitude, and also due to time differences as Aircore profiles are launched in the 

morning versus the afternoon overpass of S-NPP and S5-P. 

 

Figure 4 shows that CrIS Aks for this day and location have high sensitivity in the lower free-

troposphere, which decreases rapidly close to the surface. This is consistent with other studies 

that have observed peak-averaging kernels at lower altitudes, in our case at around 700 hPa. 

(K.W. Bowman et al. 2006; Malina et al. 2022; Mettig et al. 2022; Fu et al. 2016). The Aircore 

profile exhibits a CO enhancement at approximately 300-400 hPA (7-9 km). Most of the 

averaging kernels have some degree of sensitivity in this region, but it is above the altitude of 

peak sensitivity. This results in the Aircore plume being smoothed out vertically after applying 

the CrIS averaging kernels, losing the layered structure and showing enhancements compared to 

the CrIS prior throughout the free troposphere. The CO concentrations obtained from CrIS are 

higher than those from the prior (Figure 4). However, they tend to favor the placement of plumes 

at lower altitudes due to the larger magnitude of the averaging kernels at those altitudes. It’s 

important to mention that while the CrIS column retrievals show clear enhancements (that are 

similar to TROPOMI) corresponding to the arrival of smoke plumes, they struggle to capture the 

right vertical profile due to insufficient DOFs. In conclusion, the vertical profile retrieval can 

struggle when placing vertical layers if that information is not contained in the prior, but 

nevertheless, the column enhancement is properly captured. Considering TROPOMI's enhanced 

sensitivity across the vertical distribution of carbon monoxide (CO), particularly near the surface, 

and CrIS's high sensitivity in the lower and middle free troposphere but reduced effectiveness 

near the surface, using a ratio of CrIS to TROPOMI column measurements emerges as a 
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promising method for determining the vertical placement of CO and other gases and aerosols 

associated to smoke. This approach capitalizes on the strengths of both instruments. 

 

Figure 4: Left panel: vertical profiles derived from balloon-borne Aircore measurements and the corresponding co-

located vertical profile from CrIS. The CrIS co-located profile’s volume mixing ratio (VMR) is depicted in blue, 

while the VMR of Aircore is represented in red. The CrIS prior values are shown in black, and the green line 

displays the Aircore vertical profile after applying the CrIS's Averaging Kernels. Right panel: This plot depicts each 

row of a 67x67 Averaging Kernel matrix, selected from CrIS, based on specific geographic criteria (latitude: 40.14; 

longitude: -104.14). Each line represents the AK values for one of the 67 pressure levels, plotted against the 

corresponding pressure values.  

 

Table 4: This table compares the column data from TROPOMI and CrIS for the location of AirCore launch. It then 

applies the averaged Kernels of CrIS and TROPOMI to AirCore to get the smoothed column 

Type TROPOMI CrIS 

Satellite 2.08e+18 2.09e+18 

AirCore (Smooth) 1.83e+18 1.76e+18 

 

 

2.5 Conclusions and future directions 

To understand the differences in how CrIS and TROPOMI detected carbon monoxide levels 

during the 2020 wildfires, we have created a spatiotemporal satellite synergy assessment 

framework. This framework also evaluates how satellite measurements compare against ground-

based references during such events. We examine spatial, temporal, and vertical scenarios to 

highlight their differences. The key findings of our framework are outlined as follows. 
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Spatial disparities between CrIS and TROPOMI satellite retrievals were highlighted when 

comparing CO columns near the Megafire's source in the Western U.S with those from the 

central and eastern regions. While there was a good correlation between TROPOMI and CrIS 

measurements at a distance, there were noticeable inconsistencies when the satellites were closer 

to the fire. This would support earlier studies that found that while CrIS showed higher 

sensitivity to the middle troposphere, TROPOMI was better able to observe the entire column 

(Johnson et al. 2023; Malina et al. 2022).  

 

A significant difference in average CO concentrations between the Western U.S. and the Central 

and Eastern regions was found during periods of high Fire Radiative Power (FRP). Particularly 

in the first three weeks of September, TROPOMI consistently reported higher concentrations 

than CrIS in the Western U.S., suggesting substantial smoke presence near the surface where 

CrIS has lower sensitivity. Meanwhile, the Central and Eastern U.S. presented closely tracked 

daily averages between CrIS and TROPOMI, indicating a similar capture of smoke transport 

through the free-troposphere by both instruments. Interestingly, both CrIS and TROPOMI 

measurements exhibited a delay relative to FRP, with the CO peak appearing a few days after the 

peak FRP days, likely due to smoke accumulation and retrieval timing. The delay in peak CO 

levels was more pronounced in CrIS retrievals, appearing 1-2 days later than TROPOMI's, likely 

associated to smoke being transported towards higher altitudes as time progressed. Future work 

could evaluate if models driven by FRP emissions can represent this delay or not.  
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Validation of satellite products was accomplished through a spatiotemporal comparison with 

FTIR measurements from TCCON and NDACC. Most sites demonstrated strong agreement, as 

indicated by NMBs and NMEs typically falling below 24% and 32%, respectively. This 

evaluation evidenced the ability of TROPOMI to effectively capture the majority of the CO 

column, particularly close to the ground when comparing such retrieval to CrIS, which reported 

lower column concentrations due to being less sensitive at lower altitudes. Although the satellites 

were successful in detecting changes in CO columns at Pasadena, they were biased low, which is 

in line with previous research (Sha et al. 2021). Due to limited ground-based data due to the 

nearby Bobcat fire and COVID-19 restrictions, validation was difficult between September 9 and 

22 over Pasadena. Despite these obstacles, satellites continued to collect critical data.  

 

Evaluation using balloon-borne measurements during a lofted smoke plume confirmed 

consistency between TROPOMI and CrIS CO columns for lofted plumes. However, analysis of 

CrIS retrieved vertical profiles and those derived from balloon-borne measurements after 

applying CrIS averaging kernels showed inconsistencies, with a tendency of CrIS to place 

plumes at lower altitudes. This suggests challenges in accurate vertical layer placement, although 

the overall column enhancement is captured. As TROPOMI captures the entire column, using a 

ratio of CrIS to TROPOMI columns might more effectively determine vertical placement. 

 

The assessment of accuracy and differences among satellite CO products provides valuable 

information that contributes to the advancement of applications. In this study, the observed 

discrepancies in sensitivity lay the groundwork for further investigations using multi-satellite 

synergies to evaluate air quality models beyond just CO, but extending it to other compounds 
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present in smoke. Examining the vertical placement of plumes is crucial, as it plays a significant 

role in the accurate estimation smoke impacts. Previous research has already highlighted the 

substantial uncertainties in models resulting from inaccuracies in estimating injection height 

(Thapa et al. 2022) and smoke thickness (Ye et al. 2022), underscoring the necessity for 

comprehensive studies utilizing multiple satellite datasets. In light of the results of the present 

study, additional investigation that involves comparisons between the vertical placement 

information and additional measurements, such as TROPOMI aerosol layer height data, smoke 

height data obtained from airborne field campaigns, and active satellite retrievals like CALIPSO, 

has the potential to improve the precision of vertical estimations. This study also establishes the 

basis for evaluating the potential of synergistic utilization of CrIS and TROPOMI in estimating 

CO concentrations in the lower troposphere, creating a capability that neither instrument can 

achieve independently. TROPOMI and CrIS embody the actual essence of synergy, as they 

demonstrate the ability to generate a combined outcome that exceeds the sum of their individual 

parts. 
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Chapter 3 Contributions of 2020 wildfires to western U.S. air 

pollution 

3.1 Abstract 

The 2020 wildfire season had devastating consequences for infrastructure, ecosystems, and 

public health across the western U.S. Smoke produces particulate matter (PM2.5; particles smaller 

than 2.5 µm in diameter) that may present heightened health risks compared to other sources of 

PM2.5. We used the GEOS-Chem atmospheric chemical transport model coupled with a satellite-

derived fire emissions inventory to evaluate the concentrations attributable to fires in the western 

U.S. in 2020, compared to the previous five years. Our research found that including GFAS was 

crucial for accurately assessing the impact of wildfires through validation with data from the 

AQS and IMPROVE databases.  We found enhanced correlation in Washington and Montana 

showing high R2 values of 0.63 and 0.45, respectively, in the AQS data analysis. Bias analysis 

indicated a neutral model performance for PM2.5 concentrations under 25 μg/m3, while higher 

concentrations saw reduced bias with fire data inclusion. For the IMPROVE dataset, the model 

correlations were notable in Washington, Oregon, and Montana, with R2 values of 0.57, 0.48, 

and 0.42, respectively, and the model's bias decreased for larger PM2.5 concentrations.  The 2020 

fires emitted 328 million tons of PM2.5 across the western U.S., which is equivalent to the total 

emissions of the previous three years combined. California's case stood out as it contributed to 

18% of the total emissions released by all the Western states combined over the six-year period, 

with this amount being produced solely in 2020. Our analysis revealed that in 2020, certain areas 

witnessed more than 40 days where the levels of pollutants surpassed the 24-hour air quality 

limit of 35 μg/m³ set by the EPA. This threshold represents the regulatory limit set by the EPA 

serving as a standard to assess and regulate air quality and protect public health. Cumulatively, 
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the western U.S. saw exposure levels of 492 million person-days in 2020, where exposure is 

defined as the days when a cell was above 35 μg/m³ of PM2.5. The term 'persons' represents the 

cumulative number of individuals affected within the areas covered by these cells.  

The year 2020 emerged as an extraordinary period in terms of air quality, with combined 

exposure to fire-related PM2.5 concentrations surpassing the total exposure of the previous five 

years. Our study indicates that the frequency and geographical spread of days exceeding the 

EPA's air quality thresholds were greater in 2020 than in prior years, particularly in the western 

U.S., where some regions endured unhealthy air quality levels for over 40 days. This 

unprecedented situation highlights the importance of implementing measures to protect 

communities from exposure, particularly in light of the events of the past six years. 

 

Keywords: Wildfires, air pollution, exposure, smoke. 
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3.2 Introduction 

The 2020 wildfire season in the western U.S. damaged over 10,000 structures and endangered 

nearby communities (National Interagency Fire Center 2020). Approximately 4.2 million acres 

were burned in California over the course of 2020 Field (Cal Fire 2023), along with 1.1 million 

acres and .84 million acres burned in Oregon and Washington, respectively (Northwest 

Interagency Coordination Center 2021). The complex wildfires that formed in 2020 surpassed 

the previous largest wildfire events of 2017 and 2018 (Masri et al. 2021). In California, the fires 

claimed the lives of 91 people (Stephens et al. 2021) and exposed millions of people to degraded 

air quality (Higuera and Abatzoglou 2021). During periods of peak fire activity in Oregon, 

Washington, and California, PM2.5 levels on wildfire days surpassed those on days without 

wildfires by a factor of five (Zhou et al. 2021).  Certain counties in these three states witnessed 

exceptionally elevated PM2.5 concentrations during wildfires. For example, between September 

14 and September 17, 2020, Mono County in California observed consecutive days with PM2.5 

concentrations surpassing 500 µg/m3 (Zhou et al. 2021). To very high and high concentrations 

are defined as annual average PM2.5 concentrations exceeding 25 and 10 µg/m³, respectively 

(Lim et al. 2020). Thus, levels exceeding 500 µg/m³ during wildfires are significantly higher and 

represent a severe pollution event with heightened health risks. 
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Western U.S. wildfires have been increasing in frequency and size. A study revealed compelling 

evidence that fire events in regions of the United States during the 2000s were up to four times 

the size, triple the frequency, and more widespread compared to the previous two decades 

(Iglesias, Balch, and Travis 2022). The increase in frequency and size of fires is due to several 

factors, including drought conditions, changes in land use (Kumar et al. 2022), and fire 

management techniques (Romero-Lankao and Smith 2014).  For instance, in 2015, during an 

extreme drought year (Marlier et al. 2017), 688,000 hectares burned in Oregon and Washington, 

while wildfires consumed over 3.6 million hectares in the western United States. Among the 

major causes of the 2020 wildfire events was the abnormally prolonged and severe drought that 

occurred in the region starting from 2012 (Keeley and Syphard 2021). The drought was one of 

the most severe in the region, starting in 2012 and lasting 3–5 years in California (Robeson 2015; 

Jacobsen and Pratt 2018).  

 

In 2020, five of the six most significant events occurred within a span of two months, 

specifically in August and September. A study tracing back to 1860 revealed that since 2000, 

California has witnessed eighteen of the twenty most devastating fires in terms of both casualties 

and property damage. (Cal Fire 2023; Keeley and Syphard 2021). Larger wildfires will continue 

to catalyze ecosystem changes, changing climate, and exposing populations to its emissions 

(Coop et al., 2020). As wildfire trends continue to evolve, regions previously unaffected by 

severe smoke pollution might begin to face such conditions (Marlier et al. 2022).  
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In addition to consequences for atmospheric greenhouse gas concentrations (Jerrett, Jina, and 

Marlier 2022) and natural ecosystems (Albery et al. 2021; Roces‐Díaz et al. 2022; Halofsky, 

Peterson, and Harvey 2020), fires also contribute to trace gas and aerosol concentrations 

(Andreae 2019; Voulgarakis and Field 2015). In the western U.S., wildfires have reversed 

decades of improvement in other air pollution sources (McClure and Jaffe, other citations). Fine 

particulate matter (PM2.5; particles smaller than 2.5 microns) can adversely impact human health. 

In particular, high levels of PM2.5 can irritate the lungs, weaken immune function, and increase 

susceptibility to respiratory infections due to exposure (Thangavel, Park, and Lee 2022). 

Exposure to fire-specific PM2.5 (“smoke PM2.5”) has been linked to the worsening of asthma, 

chronic obstructive pulmonary disease, cardiovascular disease, and an increased risk of mortality 

(Jia Coco Liu et al. 2016; Reid et al. 2016). Vulnerable groups are more prone to develop 

respiratory and cardiovascular disorders due to PM2.5 exposure from wildfires. The elderly, 

children, and those living in poverty, will be most sensitive to the risks associated with PM2.5 

exposure from wildfires (Delfino et al. 2009; Sutherland et al. 2005; Youssouf et al. 2014). 

These groups can exhibit increased vulnerability due to preexisting health conditions, 

particularly among those aged 65–99 years (Delfino et al. 2009). Additionally, smaller airways, 

especially in young children (0-4 years), play a significant role in heightening susceptibility and 

leading to increased respiratory admissions during wildfires. Individuals with lower 

socioeconomic status may also encounter additional challenges when adapting to wildfire smoke 

exposure (Liu et al. 2017). 

 

Smoke from wildfires produces particulate matter that may possess greater health risks than 

equivalent doses of PM2.5 from the ambient. (Kim et al. 2018; Wegesser, Pinkerton, and Last 
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2009; Aguilera et al. 2021). This increased toxicity can be attributed to factors like inflammation 

and altered pulmonary activity (Migliaccio et al. 2013). Wildfire PM2.5 may be more toxic 

because of a highly carbonaceous composition (Adetona et al. 2016; Wu, Jin, and Carlsten 2018) 

or to higher concentration of polar organic compounds (Verma et al. 2009), which can lead to 

enhanced lung inflammation and oxidative stress compared to urban particles (Karthikeyan, 

Balasubramanian, and Iouri 2006; Williams, Franzi, and Last 2013; Aguilera et al. 2021).  

Furthermore, wildfire smoke can cover vast distances and go beyond geographical borders., 

meaning that even populations in areas without active fires can experience smoke-related effects 

(Black et al. 2017). Thus, estimating PM2.5 concentrations in unmonitored areas and 

distinguishing between wildfire and non-wildfire PM2.5 is imperative for accurate public health 

assessments. 

 

Current methodologies for estimating PM2.5 concentrations in unmonitored areas typically 

involve the use of extensive data and computationally intensive modeling techniques and may 

face challenges in distinguishing fire-specific PM2.5 from other sources, such as traffic and 

industrial emissions Field (Aguilera et al.,(Aguilera et al. 2023). Numerous techniques have been 

documented to estimate PM2.5 in unmonitored regions and to estimate fire-specific emissions. For 

instance, statistical methods have been used to isolate wildfire-specific PM2.5 from other sources 

of emissions (Aguilera et al. 2023). Other studies have implemented regression analyses (Hoek 

et al. 2008) and machine learning for predicting PM2.5 fluctuations (Di et al. 2019; Reid et al. 

2021; Childs et al. 2022; Reid et al. 2015). Alternative approaches have combined traditional 

data (Cleland et al. 2020) and amalgamated traditional and untraditional information, such as 

data from private pollution sensors, mobile devices, social media insights, and internet activity 
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(Burke et al. 2022). Other approaches have utilized remotely-sensed information  (Al-Hamdan et 

al. 2014) and chemical transport models (Zhang et al. 2020; Jia Coco Liu et al. 2017). 

 

Prior research examining the 2020 wildfires has identified significant surges in PM2.5 emissions 

Field (Albores et al.,(Albores et al. 2023). These findings have been reinforced, suggesting that 

the wildfires intensified the effects of short-term PM2.5 exposure  (Zhou et al. 2021). Yet, when it 

comes to the detailed examination of the fire-specific contribution to PM2.5 pollution in the 

western U.S. from 2006 to 2020, comprehensive studies, remain scarce (Aguilera et al. 2023). 

While previous studies have laid important groundwork, significant gaps remain in model-based 

fire-specific research. Research using modeling has provided estimates of fire-specific PM2.5 

concentrations in the Western U.S. between 2004 and 2009, identifying an impact on an 

estimated 46 million people (Liu et al. 2017). However, these studies highlighted areas for 

improvement, such as the inclusion of daily AQS validation and comprehensive exposure 

assessments. Additionally, while some studies have aimed at enhancing model outputs, they 

often omitted important ground-based rural datasets like IMPROVE (Zhang et al. 2020). 

Contrastingly, other research utilized coarser Geos-Chem models, refining them with monitoring 

station data (Zhang et al. 2023), a method that differs from our nested model simulation 

approach. Our research is designed to address these gaps by providing a comprehensive analysis 

of 2020's fire-specific PM2.5 emissions. We extend our analysis to a more recent timeframe 

(2015-2020), covering the broader western U.S. region with a nested grid simulation that 

includes validation data for both rural and urban areas. Our study aims to enrich the 

understanding of the broader implications of wildfires on air quality, addressing the 
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shortcomings of contemporary studies in quantifying the extensive impact of fire-specific PM2.5 

emissions.  

We use the GEOS-Chem chemical transport model to examine the influence of western U.S. 

fires on air quality from 2015 to 2020. Our research aimed to answer three questions. First, what 

is the significance of the 2020 wildfire season in comparison to the previous five years? Second, 

what discrepancies exist between modeled data and monitoring stations, highlighting the impact 

of GFAS inclusion? And third, to what extent was the population affected by high levels of 

PM2.5 caused by the wildfires?  Our study measures the frequency and geographic range of days 

exceeding EPA air quality thresholds, particularly in the western US, aiming to provide insights 

on exposure to help mitigate risks under future extreme events, like the 2020 wildfires. 

 

3.3 Data and Methods 

3.3.1 GEOS-Chem Configuration  

We use the GEOS-Chem chemical transport model v12.7.0 to perform a nested grid simulation 

across western North America at 0.25◦ × 0.3125◦ resolution from 2015-2020, covering a 

longitude range from -126 to -99.75 degrees and a latitude range from 30 to 51 degrees. We 

conducted an aerosol-only simulation, which utilizes stored monthly average concentrations of 

OH, NO3, O3, and total nitrate from a prior full-chemistry simulation as well as production and 

loss rates for H2O2. Following a one-year model spin up, we first simulated global boundary 

conditions at a 4◦ × 5◦ resolution for 72 vertical levels before running the nested grid 

simulations.  
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Global inventories, ship emissions, dust, and sea salt retrievals were used as inputs in the GEOS-

Chem model run, while keeping anthropogenic emissions constant over time. This approach also 

involved processing a variety of data files and inventories to accurately simulate atmospheric 

conditions. The model utilized data from multiple sources, such as NH3 sources, as well as 

aerosol and chemical components like PM2.5 and DMS, along with lightning data. Our approach 

was configured in agreement on previous studies that estimated PM2.5 using offline aerosol data 

(Marvin et al. 2023). Modifications were made to allow the use of the version v12.7.0 of Geos-

chem as recommended by Melissa Sulprizio and Robert Yantosca  

(https://github.com/geoschem/geos-chem). 

 

Several satellite-based fire emissions inventories are available at global scales (T. Liu et al. 

2020). These inventories use different approaches to estimate fire emissions, including the 

"bottom-up" approach based on burned area and the "top-down" approach based on fire radiative 

power (T. Liu et al. 2020). In this study, we used the GFAS top-down fire emissions inventory 

available at 0.1◦ ×0.1◦ resolution. GFAS has several benefits over other fire emissions 

inventories. It is available without an extended lag time, includes plume injection heights (Rémy 

et al. 2017), and has performed well in prior modeling simulation studies in the western U.S. 

(Carter et al. 2020) GFAS uses satellite-based Fire Radiative Power (FRP) retrievals from the 

MODIS instruments onboard the Terra and Aqua satellites (Kaiser et al. 2012). It converts FRP 

observations from MODIS instruments into fuel consumption using a linear relationship 

(Kaufman et al. 2003). Emissions are then derived using land-use-dependent conversion factors. 

GFAS uses MODIS aerosol optical depth (AOD) to determine scaling factors for emissions of 

OC, BC, PM2.5, and other species. It corrects for cloud cover gaps and filters spurious FRP 
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observations of volcanoes, gas flares, and other industrial activity (Kaiser et al. 2012). Since the 

previously mentioned factors can lead to missing data, GFAS employs a method called 

persistence to fill in these gaps. This involves using the previous day's observed FRP values until 

new data is available. However, this approach might result in an overestimation of fire duration. 

Such overestimation is particularly evident in areas frequently covered by clouds or where the 

variability of fires over time is significant (Di Giuseppe et al. 2018; Kaiser et al. 2012).  

 

We perform two model simulations from 2015-2020 with and without the inclusion of fire 

emissions. The difference between the two simulations provides the fire-specific contribution to 

surface PM2.5. Since Goes-Chem does not produce PM2.5 concentrations as a direct output, we 

obtained PM2.5 by summing selected components of an aerosol simulation as described in 

Equation 1. We use surface modelling estimates in the first three-dimensional level as the input 

to our measurements.   

 

Equation 1 displays the components of our PM2.5 estimation. NH4 refers to ammonia; NIT to Inorganic nitrates; 

SO4 to Sulfate; BCPO refers to Hydrophobic black carbon aerosol; BCPI refers to Hydrophilic black carbon 

aerosol; OCPO to Hydrophilic organic carbon aerosol; OCPI to Hydrophilic organic carbon aerosol; DST1 to Dust 

aerosol, Reff = 0.7 microns; DST2 to Dust aerosol, Reff = 1.4 microns; SALA to Fine (0.01-0.05 microns) sea salt 

aerosol. (K.E. Knowland, C.A. Keller, and R. Lucchesi 2020) 

𝐏𝐌𝟐. 𝟓 =  𝐍𝐇𝟒 + 𝐍𝐈𝐓 + 𝐒𝐎𝟒 + 𝐁𝐂𝐏𝐎 + 𝐁𝐂𝐏𝐈 + 𝐎𝐂𝐏𝐎 + 𝐎𝐂𝐏𝐈 + 𝐃𝐒𝐓𝟏 + 𝐃𝐒𝐓𝟐 + 𝐒𝐀𝐋𝐀 

 

 

3.3.2 Observational Datasets Used for Model Validation  

We compare simulated PM2.5 to surface-level station measurements derived from the Air Quality 

System (AQS) and the Interagency Monitoring of Protected Visual Environments database 

(IMPROVE) network. The AQS data reports daily 24-hour average PM2.5 concentrations across 
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Western US states. Since the AQS measurements provide limited data in rural areas, thus, we 

include stations from the IMPROVE network. This network provides information in remote 

areas, with measurements every three days. Although IMPROVE sites employ a filter-based 

method like the Federal Reference Method (FRM) for measuring PM2.5 mass concentrations, it's 

important to note that their data is generated at a lower temporal resolution, with measurements 

available only every three days. This data collection approach, while valuable, introduces some 

uncertainties into the dataset. These uncertainties, coupled with the less frequent data updates, 

can affect the accuracy and timeliness of PM2.5 concentration information when compared to 

data obtained from AQS. Nonetheless, these sites fill in spatial gaps that the AQS system (Gantt 

et al. 2020). 

 

We filter AQS and IMPROVE sites that were present throughout the entire six-year at least 50% 

of days during the fire season (May 1 to November 1). The extensive time frame chosen for the 

season's definition was shaped by the exceptionally active and long-lasting 2020 fire season in 

California. This season, considered one of the most destructive on record, began early in April 

and extended late into November (Cal Fire 2023).  To compare surface-level station 

measurements against our simulated PM2.5 concentrations, we match measurements of the 

stations with the grid cells that correspond spatially and temporally in our modeled data and 

average data from multiple stations within the same GEOS-Chem grid cell. Geos-Chem was 

validated against both datasets, with AQS providing daily measurements and IMPROVE data 

collected every three days. Since station measurements include all emissions sources, we 

compare to the all-source PM2.5  which integrates emissions data from GFAS as well as various 

non-wildfire sources.  
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3.3.3 Population-Level Exposure  

We estimate population-level exposure over the EPA’s 'Unhealthy' air quality benchmark of 35 

µg/m3 (Environmental Protection Agency 2016) using 2020 population estimates derived from 

the Gridded Population of the World (GPW v4) database (Center For International Earth Science 

Information Network-CIESIN-Columbia University 2018). This database uses the areal-

weighting method to disperse non-spatial population figures onto individual grid cells based on 

geospatial administrative boundary data at a resolution of 30 arc-seconds (Lloyd, Sorichetta, and 

Tatem 2017). We calculate the number of “person-days,” which represents the product of the 

number of individuals exposed to concentrations meeting or exceeding this threshold daily 

within each grid cell.  Furthermore, within these grids, we pinpointed locations where the state 

frequently observed daily PM2.5 concentrations exceeding 35 µg/m3, highlighting the most 

affected areas during our observation period. 

 

3.4 Results 

3.4.1 Fire emissions  

As expected, PM2.5 fire emissions were at least 189.7 Million Tons higher in 2020 than in the 

previous five years (Table 5). With daily concentrations averaging above 70 µg/m3, the 2020 

levels exceeded the previous high average daily peaks observed during the fire season of 2017, 

which were around 51 µg/m3 (Figure B2). Compared to the 2015-2019 period, 2020 had higher 

fire activity in Arizona, Oregon, Colorado, Wyoming, and California (Table 5). Furthermore, we 

observe that major anomalies occur across the coastal states (Figure 5). 
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Table 5: summarizes annual fire emissions at the state level (see Table B1 for percentage contributions). Total 2020 

emissions in the western US were 328 Million tons of PM2.5 which represents about 57% of the emissions released 

from 2015-2019. The emissions generated in 2020 were equivalent in magnitude to the three years preceding that 

year. In California and Colorado, 2020 PM2.5 emissions were 162.7, and 59.6 Million Tonnes, respectively, which 

was higher than the sum of the five precedent years (157.8 and 23.0 million Tonnes). In California, the 2020 

emissions constituted 18% of the total emissions released in the western U.S. over the six-year duration.  
2015 2016 2017 2018 2019 2020 

Arizona 3.25 8.36 8.78 5.32 6.47 12.11 

California 31.17 24.3 44.7 45.3 12.2 162.7 

Colorado 0.91 4.3 2.2 13.8 1.8 59.7 

Idaho 24 16.0 18.4 9.1 5.0 7.7 

Montana 12.9 6.7 39.4 4.2 2.4 3.3 

Nevada 0.21 1.6 4.2 9.6 0.7 3.2 

New Mexico 0.77 3.1 1.9 4.7 1.8 4.4 

Oregon 17.67 9.0 27.5 16.8 6.6 45.9 

Utah 0.93 3.0 7.4 12.6 1.7 4.8 

Washington 43.15 3.1 15.1 8.8 3.8 8.2 

Wyoming 0.69 9.5 1.1 8.5 0.9 16.2 

Total 135.65 88.9 170.6 138.5 43.5 328.2 

 

 

Figure 5: Annual average emissions of GFAS. The leftmost figure displays the average of the sum of all the daily 

emissions for each year for the years 2015-2019. Figure in the center displays the sum of all the daily emissions of 

2020, and figure in the right displays the difference of both figures. 
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3.4.2 GEOS-Chem Simulation Results 

Figure 6 shows the geographic distribution of annual average PM2.5 concentrations based on 

GEOS-Chem simulations with and without the inclusion of fire emissions for the 2015 to 2019 

average and 2020. The simulations without fires show similar spatial patterns and magnitude 

across the years, but significant discrepancies arise with the inclusion of fire emissions. Fire-

specific PM2.5 in 2015-2019 and 2020 show high concentrations of fires in the coastal areas and 

Colorado (2020).  

 

 

 

Figure 6: displays PM2.5 concentrations product of the modeling using Geos-Chem. The upper row displays the 

annual average of the daily concentrations for 2020. And the lower row corresponds to the mean of the average daily 

concentrations estimated by GEOS-Chem.  The left columns correspond to the simulation without the inclusion of 

the fire inventory, the center columns correspond to the concentration including the emissions of the fire inventory, 

and the right columns correspond to the subtraction of the modelled results using the fire inventory, minus the 

modelled results without the fire inventory.  
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3.4.3 GEOS-Chem Validation 

We validate the GEOS-Chem model outputs across spatial and temporal dimensions in both 

urban and rural areas using the AQS and IMPROVE datasets and examine the effects of 

integrating wildfire data. We assess the correlation of daily averages over time for individual and 

aggregated stations. In our analysis, we assessed bias by comparing the GEOS-Chem model's 

PM2.5 concentrations to measurements from AQS and IMPROVE datasets; station data within 

the same grid cell were averaged. To quantify the bias, we subtracted the GEOS-Chem values 

from the measurements in both AQS and IMPROVE datasets. This approach allowed us to 

directly evaluate the differences between the model's predictions and the observed data, 

providing valuable insights into the model's performance in estimating PM2.5 concentrations. We 

note that some states have more concentrated stations than others (Table B2).  

 

The GEOS-Chem model displays limited concurrence with AQS measurements without the 

inclusion of fire emissions. As shown in Figure 7, the incorporation of fire emissions improved 

the estimations by orders of magnitude in many locations. Correlations in coastal areas tend to be 

lower than inland areas, even with the inclusion of fire emissions. Figure B2 shows a time series 

of average daily measurements for station measurements and GEOS-Chem simulations. Fire 

emissions are needed to replicate the peak values in 2015, 2017, 2018, and 2020 

 

Washington and Montana show the highest correlations across the sites in their territory, with R2 

coefficients of 0.63 and 0.45 respectively, with the shortcoming of having 12 and 13 stations 

respectively (Table B2). We also find that California, where most fires occurred, displayed an 
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average R2 >0.21 (Table B2) across all stations and all years, for All-Source concentrations 

relative to the 65 AQS stations that were matched to the GEOS-Chem simulations.  

 

In Figure 8, we estimate the bias of our modelled concentrations with and without fire emissions 

relative to AQS measurements. We organize the data into subgroups based on observed PM2.5 

concentrations, following previous approaches (Wilkins et al. 2018). The data indicates that at 

concentrations lower than <25 μg/m3, both datasets exhibit a neutral bias. However, at 

concentrations exceeding 25 μg/m3, the inclusion of fire emissions leads to a reduction in bias. It 

is important to mention that Figure 8 displays the effect of biases without accounting for outliers 

below and above the first and third percentile. Interestingly, in 2020, there were few days where 

measurements larger than >150 μg/m3 were observed (Figure B4). 

 

 

Figure 7: Correlation of 2015-2020 daily concentrations for each of the AQS monitoring stations when compared to 

GEOS-Chem. This figure showcases the location of each of the AQS stations analyzed in this study, and colors 

representing each of the locations with the R2 value corresponding to the correlation of the daily measurements of 

the station that correspond in space and time to the measurements from the model for the fire season between April 

1st, and November 1st. We filter to locations that existed across the 6 years of study, and that had at least 50% of the 

measurements for date period in each year.   
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Figure 8: This figure showcases the bias estimation of the modelled PM2.5 concentrations relative to the AQS station 

measurements for model runs with and without the inclusion of the GFAS inventory. The measurements are sub 

grouped by particle size.  

 

We also compare the modelled PM2.5 with the IMPROVE stations. Similar to AQS, Figure 5 

shows that considering all sources improves model estimation correlation coefficients with 

station measurements from IMPROVE. To conduct a comparison between IMPROVE and Geos-

Chem, the model was sampled at a 3-day interval, aligning with the temporal frequency of 

IMPROVE measurements. IMPROVE stations provide better spatial coverage in rural areas, 

allowing insights in some areas more affected by fires. We find there is a notable correlation 

between R2 values and the states of Washington, Oregon, and Montana, these states demonstrate 

the strongest correlations with R2 values of 0.57, 0.48, and 0.42, respectively (Table B4). 

Interestingly, the observed correlations between the states of Washington and Oregon and the Air 

Quality System (AQS) are comparable. 
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When comparing GEOS-Chem concentrations and IMPROVE data, we see a decrease in bias for 

larger concentrations (Figure 10) compared to AQS data (Figure 8). This supports the idea that 

trends at IMPROVE sites tend to correlate better in wildfire-prone areas due to the proximity to 

fires in rural locations and the smaller contribution of background PM2.5 sources (McClure and 

Jaffe 2018). 

 

Upon analyzing a time-series and comparing its measurements over the years, an interesting 

pattern was observed, as depicted in Figure B4. The inclusion of all sources simulated 

concentrations tends to be much larger than the emissions observed by the stations during the 

peak of the fires. In September 2020, the all-sources model overestimated station measurements 

by 60 ug/m3, which contrasted with the comparison of All-Sources modeled concentration 

versus AQS data. A possible explanation of this issue could be the use of persistence when FRP 

data was not available during GFAS estimations, due to very thick smoke (Ye et al. 2022).  

 

The significance of using fire inventories in rural areas is demonstrated in Figure B5. It is 

noticeable that when the GFAS inventory was included, R2 improved from 0 to 0.21, which 

contrasts with Figure B3, where we saw an increase in R2 from 0.12 to 0.47 when comparing 

AQS data with Geos-Chem.  
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Figure 9: Correlation of 2015-2020 third-day concentrations for each of the IMPROVE monitoring stations when 

compared to GEOS-Chem. This figure showcases the location of each of the IMPROVE stations analyzed in this 

study, and colors each of the locations with the R2 value corresponding to the correlation of the third-day 

measurements of the station that correspond in space and time to the measurements from the model for the fire 

season between April 1st, and November 1st. We filter to locations that existed across the 6 years of study, and that 

had at least 50% of the measurements for date period in each year.   

 

 

 

 

Figure 10: Showcases the bias estimation of the modeled PM2.5 concentrations relative to the IMPROVE station 3-

day measurements for model runs with and without the inclusion of the GFAS inventory. The measurements are sub 

grouped by particle size. 
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3.4.4 Population exposure 

We estimate population exposure using the concentrations of fire-specific PM2.5, thus 

minimizing the potential for exposure misclassification bias which refers to the difficulty in 

discerning between emissions that come from a fire versus emissions that come from any other 

source in the background (Jia C. Liu et al. 2015; Lassman et al. 2017). We assess the number of 

days that exceed the EPA's designated benchmark for 'Unhealthy Air Quality’ to map the 

distribution of days that exceeded the threshold for the six-year period (Figure 11). We found 

that the western U.S., particularly California, had the largest area of exceedances over this 

threshold attributable to fires. The product of the number of days and area exceeding this 

threshold was higher in 2020 than any prior year, and was 1.74 times higher than the second 

largest year (2017) (Table B3). In 2020, the contribution of wildfires only exceeded the EPA 

threshold for over 40 days in various regions.  

 

We estimate the number of days that populations in the western U.S. were exposed to PM2.5 

above the 35 ug/m3 unhealthy air quality threshold (Table 6). California, which has the largest 

population and was most affected by fire pollution, had 347 million person-days. This represents 

the same amount of exposure as all the other states combined with all the years combined 

between 2015 and 2020. Nevada and Colorado experienced 5.3 and 14.1 times more exposure 

when compared to the previous five years combined. Across the western U.S., the population 

exposure in person days from 2020 was 492 million person-days, which is higher than the 489.1 

million of person days exposed in the prior five years combined.  
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Table 6: displays the person-days of exposure that each state experienced during the six-year period. To estimate 

such number, we use smoke-specific PM2.5 emissions, and select the grid cells that exceeded the 35 ug/m3 EPA 

Standard, on each day. Then we calculate the number of days that each grid-cell was above the EPA Standard for 

each year and multiply it times the population in each of the grid cells. We then organize it by state. State area and 

population influence these results so it is recommended to consider table B5 in the appendix which includes 

population and area for each state.    

    

 
2015 2016 2017 2018 2019 2020 

California 16.0 35.4 59.7 140.0 8.3 347.2 

Oregon 4.8 0.8 16.7 15.9 2.4 27.0 

Washington 19.7 0.6 60.7 50.7 1.4 51.7 

Idaho 6.0 5.4 8.3 3.3 0.8 8.0 

Montana 5.0 0.6 5.5 3.4 0.1 2.6 

Wyoming 0.3 0.2 0.1 0.5 0.0 0.6 

Nevada 0.8 0.2 0.5 1.2 0.1 14.8 

Utah 0.0 0.3 1.1 8.3 0.0 0.8 

Colorado 0.1 0.1 0.4 2.1 0.1 39.0 

New Mexico 0.0 0.4 0.0 0.2 0.0 0.1 

Arizona 0.1 0.2 0.4 0.1 0.4 0.5 

Total 52.7 43.9 153.3 225.6 13.6 492.0 
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Figure 11: Map of the distribution of days that exceeded the EPA Standard. This figure displays the locations in the 

Western US that exceeded the EPA Standard of 35 µg/m3. The color of each location refers to the number of days 

that each site was above the EPA standard on a given year.  

 

3.5 Discussion 

3.5.1 Summary of Results 

The level of PM2.5 fire emissions in 2020 exceeded the levels observed in the last five years. The 

primary cause for this was wildfires. However, it is important to note that GFAS, which was 

used in the analysis, does not differentiate between wildfires and other types of fires, such as 

prescribed burns or agricultural burning. Across the western U.S., this amounted to 328 million 

tons, which is equivalent to the combined emissions of the three preceding years. The states of 

Oregon and California were particularly affected. For instance, California's emissions in 2020 

accounted for 18% of the total emissions of all the states in the western U.S. over a six-year 

period.   
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When comparing modeled PM2.5 concentrations with and without fire emissions, a significant 

difference emerges, highlighting the relevance of fires. Incorporating fire emissions into the 

model proved crucial to achieve greater accuracy across various sites. The reason why there are 

discrepancies between the model and observations is that there are multiple sources of data that 

are not accounted for, especially in rural areas where other emission inventories are harder to 

retrieve. This is especially important for rural areas, as we found significant differences in 

correlation coefficients when comparing our No Fire and All Source results to AQS and 

IMPROVE, highlighting the need for improved data inputs in these regions. 

 

Given the relevance of the 2020 fire season, it is critical to use fire inventories to understand 

exposure patterns so health implications and broader societal impacts of wildfires can be 

assessed. This study shows that in 2020, the number of days and locations that exceeded the 

EPA’s designated threshold surpassed previous years in many locations in the western U.S., with 

some regions experiencing unhealthy air quality levels for more than 40 days. California, for 

example, had 347 million person-days of exposure over the 35 μg/m³ threshold in 2020. This 

figure is record-breaking as it represents the total exposure of all western states together from 

2015 to 2020.  Taken together, the western U.S. registered an exposure of 492 million person-

days in 2020, slightly edging out the total of 489.1 million person-days of exposure over the 

preceding five years. 
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3.5.2 Limitations  

This study has identified several sources of uncertainty, which may present opportunities for 

future research. The first set of uncertainties pertains to PM2.5 estimation, the second set to 

validation, and the third set to exposure. Firstly, there are uncertainties regarding the way PM2.5 

emissions were calculated.  One challenge of using GFAS as an input to GEOS-Chem is its 

potential inability to comprehensively capture fire emissions, especially in areas with dense 

smoke (Ye et al. 2022). There is a tangible risk that satellite algorithms may misinterpret 

extremely dense plumes as cloud cover. It's important to note that this study is based on the 

GEOS-Chem model v12.7.0, which, despite being generally reliable, has certain biases and 

limitations. Due to conducting an aerosol-only run, reliance on archived mean output may create 

biases. Furthermore, uncertainties in factors such as wildfire plume transport can further impact 

the accuracy of our estimates of state-level pollution. 

 

Second, our validation approach could create uncertainties because GEOS-Chem output cells are 

relatively coarse when compared to the station point location. This could pose challenges during 

the process of matching station data. Because averaging was applied to sites located within the 

same grid cell, a potential source bias may be introduced. Furthermore, uncertainty could be 

introduced due to the rigorous filtering of AQS and IMPROVE data, particularly our stringent 

criteria, which included a focus on common stations over a six-year span and the requirement for 

at least 50% data coverage during the fire season. This threshold was chosen based on 183 days 

for AQS and 60 days for IMPROVE, considering sites available for the entire six years. 

Consequently, if there was a site with less than 50% data coverage in one of the years, it would 



 63 

have been excluded from the analysis over the six-year period. There might also be issues with 

the use of the IMPROVE network data due to its lower temporal resolution. 

 

Thirdly, there may be uncertainties regarding exposure estimates. Challenges may arise from the 

regridding of cells during interpolation processes. Moreover, it should be noted that the GPW v4 

database utilizes administrative boundaries as a basis for estimating population figures which 

may result in disregarding micro-level population distributions which could be particularly 

relevant at relatively coarse GEOS-Chem grid cell interpolations.  Lastly, the use the current 

'Unhealthy' benchmark might not perfectly encapsulate health risks across diverse populations.  

 

3.5.3 Implications and future work 

The research findings highlight the significance of fire inventories in climate models. However, 

addressing the uncertainties in these models necessitates enhancing the accuracy of these 

inventories. One way to achieve this is by improving the accuracy of top-down retrievals through 

better satellite sensors and through more accurate algorithms, which could be particularly biased 

during large combustion events like wildfires.  

 

To attain better models, superior instruments are needed to validate our measurements. Therein 

lies an opportunity to implement regulatory quality sensors, especially in remote locations. This 

study also emphasizes the need to increase the frequency of IMPROVE measurements and the 

spatial distribution of such retrievals.  
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Another important interrogative that comes out of this research is whether exposure 

disproportionately affected vulnerable populations more than other groups, particularly those 

who spend their time outdoors or those who face difficulties in adapting to wildfire smoke 

exposure due to their socioeconomic disadvantage. For instance, it has been documented that 

agricultural regions in the Central Valley and Central Coast may be highly vulnerable to future 

increases in fire-specific PM2.5 concentrations (Marlier et al. 2022). Similarly, socioeconomic 

disparities can make a significant difference in how individuals experience and respond to 

wildfire-related pollution (Liu et al. 2017). The potential environmental justice implications of 

wildfire-related pollution are evident in the disparities in both exposure and adaptation.  

 

3.6 Conclusions 

This study critically examines the 2020 wildfires that occurred in the western United States, 

highlighting their unprecedented impact compared to the previous five years. In 2020, the 

exposure to fire-specific PM2.5 concentrations significantly exceeded that of the prior five years 

combined. Our research utilized the GFAS inventory, which played an essential role in 

accurately assessing the impact of wildfires. This was validated through comparison with AQS 

and IMPROVE databases. 

In 2020, the magnitude of wildfires that occurred was unprecedented, leading to a massive 

emission of 328 million tons of PM2.5 in the western United States. This amount was equivalent 

to the total emissions of the previous three years, clearly highlighting the severity of the 

situation. California played a significant role in this, contributing to 18% of the total emissions 

from all western states over six years, but solely in 2020. During this year, population exposure 
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was also unprecedented, with some areas experiencing over 40 days when pollutant levels 

surpassed the EPA's 24-hour air quality limit of 35 μg/m³.  

Our study provides valuable insights into the severity of the 2020 wildfire season compared to 

the previous five years, and the potential health risks associated with exposure to high PM2.5 

levels. Our findings also highlight the discrepancies between modeled and monitored data, 

particularly with the inclusion of GFAS. Moreover, our research emphasizes the need for precise 

and comprehensive data to help shape effective environmental and public health policies amidst 

increasing wildfire frequency and intensity. By analyzing days exceeding EPA air quality 

thresholds in the western U.S., we have identified vital information that can help mitigate health 

risks in future extreme wildfire events. Our study paves the way for future research aimed at 

understanding the impact of fire-specific emissions, their relevance, and how to adapt to the 

constantly changing climate. 
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4 Overarching conclusion 

 
This dissertation provided an in-depth exploration of the 2020 wildfires in the United States, 

employing unique approaches using a multi-satellite synergy and a chemical transport model. 

These approaches were crucial in uncovering changes in atmospheric composition due to the 

wildfires and their impacts on population exposure. 

 

Central to this study was the use of CrIS and TROPOMI satellite data to analyze carbon 

monoxide (CO) emissions. This analysis highlighted the spatial variability in CO concentrations, 

a discovery made possible through the synergistic application of data from both satellites. 

Notably, TROPOMI data indicated higher CO values near fire sources, signifying a significant 

contribution of surface-level concentrations to the total atmospheric CO. This finding was 

validated through comparisons with ground-based measurements from TCCON and NDACC, as 

well as vertical profiles from AirCore, confirming the satellite data's accuracy and reliability. 

 

Additionally, the application of the GEOS-Chem model to analyze PM2.5 emissions from the 

wildfires revealed their impact. The unprecedented emissions of 328 million tons of PM2.5, 

particularly with California as a major contributor, represent a marked increase from previous 

years. This aspect of the research not only quantified the emissions but also shed light on the 

prolonged exposure of populations to harmful air quality with potential adverse public health 

implications. 

 

Further research is necessary in several areas, particularly in integrating satellite data within 

modeling frameworks. This exploration could reveal if using satellite data to adjust fire 
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inventories improves the GEOS-Chem simulations, potentially aligning them more closely with 

station retrievals and improving their accuracy and reliability. Furthermore, there is an 

opportunity to integrate advanced satellite retrieval methods as inputs into top-down inventories. 

This method would utilize sophisticated satellite data to enhance the accuracy of modeling and 

analytical processes. The potential benefits of leveraging data from multiple satellites for 

improved model accuracy and more precise fire emission assessments are also worth 

investigating. Such an approach, especially with enhanced vertical estimations, may offer a 

pathway to more accurate emissions estimates. 

 

This study highlights the need to integrate advanced tools and datasets for a comprehensive 

understanding of wildfires, which is crucial for adapting to climate change. 

 
 



 68 

Appendices 

Appendix A 

 

Figure A 1: Regridding approach used to obtain TROPOMI measurements with the resolution equivalent to CrIs. To 

homogenize TROPOMI, to CrIS resolution, we performed a weighted average of the pixels of TROPOMI that fall 

inside a CrIS Pixel using a square filter.    
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Figure A 2: Example of TROPOMI (left) and CrIS (right) and retrievals for the same swath. 

 

 

 

 

Figure A 3: Comparison of daily averages for the Western Central and Eastern regions of CrIS and TROPOMI using 

0.25 degree resolution (top row) and 0.7 degree resolution (bottom row).  The left column shows the West, the 

central column shows the central U.S. and the rightmost column shows the Eastern.  The top row shows high-

resolution measurements from CrIS at a resolution of 0.25, and the bottom row shows low resolution of CrIS. 
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Appendix B 

Table B1: Percentage of fire PM2.5 emissions relative to the 2015-2020 total. The sum of the values in each state 
equals 100%.    

 
2015 2016 2017 2018 2019 2020 

Arizona 7.3 18.9 19.8 12.0 14.6 27.3 
California 9.7 7.6 14.0 14.1 3.8 50.8 
Colorado 1.1 5.2 2.7 16.6 2.2 72.2 
Idaho 29.9 20.0 22.9 11.3 6.3 9.6 
Montana 18.7 9.7 57.3 6.0 3.5 4.8 
Nevada 1.1 8.1 21.4 49.3 3.5 16.5 
New Mexico 4.6 18.6 11.6 28.1 10.8 26.4 
Oregon 14.3 7.3 22.2 13.6 5.4 37.2 
Utah 3.0 9.9 24.3 41.3 5.7 15.8 
Washington 52.6 3.7 18.4 10.7 4.6 10.0 
Wyoming 1.9 25.6 2.9 23.1 2.5 43.9 

 

 

 

Table B2: Statewide summary of the number of AQS stations, days of available data, and the correlation coefficient 

when compared to the corresponding GEOS-Chem grid cell for All-Sources and No-Fire.    

  
Number of 

Stations 
Product of number 

of stations times 
days 

Mean r2  
(No Fire) 

Mean r2  
(All Sources) 

Arizona 7 7577 0.02 0.03 
California 56 60359 0.02 0.21 
Colorado 4 4303 0.00 0.19 
Idaho 1 1096 0.01 0.65 
Montana 13 13908 0.02 0.45 
Nevada 7 7609 0.00 0.24 
New Mexico 4 4327 0.01 0.05 
North Dakota 7 7459 0.01 0.37 
South Dakota 4 4373 0.02 0.31 
Utah 5 5336 0.00 0.18 
Washington 10 10539 0.04 0.63 
Wyoming 6 6191 0.01 0.34 
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Table B3: Area-Days of exposure to levels above the 35 µg/m3 standard (in km2 x days). This table displays the 

area-days of exposure that each state experienced during the six-year period. To estimate such number we use 

smoke-specific PM2.5 concentrations, and select the grid cells that  exceeded the 35 µg/m3 EPA Standard, on each 

day. Then we calculate the number of days that each grid-cell was above the EPA Standard for each year and 

multiply it times the area of each of the grid cells. We then organize it by state.        
2015 2016 2017 2018 2019 2020 

california 9.83E+05 7.7E+05 1.1E+06 1.6E+06 1.5E+05 5.4E+06 

oregon 7.3E+05 1.3E+05 1.4E+06 9.8E+05 1.8E+05 2.0E+06 

washington 1.1E+06 3.8E+04 1.5E+06 1.5E+06 6.6E+04 1.3E+06 

idaho 8.8E+05 5.0E+05 1.1E+06 3.9E+05 1.5E+05 8.5E+05 

montana 2.2E+06 2.2E+05 1.6E+06 1.1E+06 5.9E+04 5.9E+05 

wyoming 1.2E+05 1.1E+05 5.8E+04 1.5E+05 1.3E+04 1.4E+05 

nevada 6.0E+04 3.0E+04 1.1E+05 3.6E+05 7.0E+04 8.7E+05 

utah 1.7E+04 2.7E+04 1.3E+05 2.1E+05 1.3E+04 2.0E+05 

colorado 2.4E+04 2.8E+04 7.0E+04 2.3E+05 1.6E+04 8.9E+05 

new mexico 0.0E+00 3.3E+04 2.4E+03 2.8E+04 4.0E+03 4.1E+04 

arizona 8.0E+03 4.4E+04 5.8E+04 2.4E+04 5.0E+04 1.2E+05 

 

  

 

 

 

 

 

 

Table B4:  State-wide summary of the number of IMPROVE stations, days of available data, and the correlation 

coefficient when compared to the corresponding GEOS-Chem grid cell for All-Sources and No-Fire.    

  
Number of 

stations 
Product of number of 

stations times days 
Mean r2  
(No Fire) 

Mean r2  
(All Sources) 

Arizona 11 3838 0.02 0.08 

California 18 6048 0.01 0.37 

Colorado 8 2815 0.01 0.14 

Idaho 2 668 0.01 0.39 

Kansas 1 360 0.01 0.02 

Montana 7 2395 0.02 0.42 

Nebraska 1 352 0.02 0.09 

Nevada 2 714 0.00 0.24 

New Mexico 6 2003 0.01 0.10 

North Dakota 2 709 0.01 0.39 

Oregon 6 2067 0.01 0.48 

South Dakota 2 725 0.02 0.27 

Texas 1 341 0.01 0.03 
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Utah 4 1405 0.01 0.06 

Washington 8 2781 0.01 0.57 

Wyoming 4 1367 0.02 0.35 
 

 

 

 

Table B5:  Summary of State Populations in Millions and Land Areas in Square Kilometres.  

  
Population Area  

Arizona 6.7 2.90E+05 

California 39 4.00E+05 

Colorado 5.4 2.70E+05 

Idaho 1.6 2.10E+05 

Kansas 2.9 2.10E+05 

Montana 1 3.80E+05 

Nebraska 1.9 2.00E+05 

Nevada 2.8 2.80E+05 

New Mexico 2.1 3.10E+05 

North Dakota 0.74 1.80E+05 

Oregon 4 2.50E+05 

South Dakota 0.85 1.96E+05 

Texas 27 6.80E+05 

Utah 2.9 2.10E+05 

Washington 7.1 1.70E+05 

Wyoming 0.58 2.50E+05 
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Figure B 1: Map of annual total GFAS emissions for 2015-2020 (in kg). 
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Figure B 2: We create daily time-series data for modeled PM2.5 by averaging values from the AQS monitoring 

stations within each GEOS-Chem cell. This process results in daily averages for the entire Western U.S. which are 

then averaged to obtain a daily average for the entire region. Additionally, to ensure data consistency, we include 

measurements from stations that provided data on at least 50% of days in each of the six years of the study period. 
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Figure B 3: We calculate the correlation between modeled PM2.5 and AQS station-based PM2.5 using average 

annual measurements for each year in the six-year period. This computation is based on matching days at each 

station and includes averaging data from multiple stations within the same GEOS-Chem grid cell. Each station 

location has six corresponding annual averages, encompassing measurements from both the monitor and GEOS-

Chem. This analysis includes all stations across the Western U.S. 
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Figure B 4: We create time-series data for modeled PM2.5 by averaging values from the IMPROVE monitoring 

stations within each GEOS-Chem cell. IMPROVE data is available every three days, hence we obtain daily model 

estimates every three days which are then averaged to obtain a single daily average for the entire region. To ensure 

data consistency, we include measurements from stations that provided data for at least 50% of the three-day 

measurements in each of the six years of the study period. 
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Figure B 5: We calculate the correlation between modeled PM2.5 and IMPROVE station-based PM2.5 using 

average annual measurements for each year in the six-year period. This computation is based on matching days at 

each station and includes averaging data from multiple stations within the same GEOS-Chem grid cell. Each station 

location has six corresponding annual averages, encompassing measurements from both the monitor and GEOS-

Chem. This analysis includes all stations across the Western U.S. 
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