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Ozone-Induced Oxidative Stress,
Neutrophilic Airway Inflammation,
and Glucocorticoid Resistance
in Asthma
Chioma Enweasor1, Cameron H. Flayer2 and Angela Haczku1*

1 UC Davis Lung Center, University of California, Davis, CA, United States, 2 Center for Immunology and Inflammatory
Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School,
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Despite recent advances in using biologicals that target Th2 pathways, glucocorticoids
form the mainstay of asthma treatment. Asthma morbidity and mortality remain high due to
the wide variability of treatment responsiveness and complex clinical phenotypes driven by
distinct underlying mechanisms. Emerging evidence suggests that inhalation of the toxic air
pollutant, ozone, worsens asthma by impairing glucocorticoid responsiveness. This review
discusses the role of oxidative stress in glucocorticoid resistance in asthma. The underlying
mechanisms point to a central role of oxidative stress pathways. The primary data source
for this review consisted of peer-reviewed publications on the impact of ozone on airway
inflammation and glucocorticoid responsiveness indexed in PubMed. Our main search
strategy focused on cross-referencing “asthma and glucocorticoid resistance” against
“ozone, oxidative stress, alarmins, innate lymphoid, NK and gd T cells, dendritic cells and
alveolar type II epithelial cells, glucocorticoid receptor and transcription factors”. Recent
work was placed in the context from articles in the last 10 years and older seminal research
papers and comprehensive reviews. We excluded papers that did not focus on respiratory
injury in the setting of oxidative stress. The pathways discussed here have however wide
clinical implications to pathologies associated with inflammation and oxidative stress and in
which glucocorticoid treatment is essential.

Keywords: asthma, oxidative stress, air pollution, ozone, glucocorticoid resistance, IL-17A, neutrophils
INTRODUCTION: ASTHMA PHENOTYPES, GLUCOCORTICOID
RESISTANCE, AND OXIDATIVE STRESS

Asthma is a highly heterogenous disease that can be classified into subsets by a number of different
categories. Establishment of the appropriate subsets determines treatment approaches (1, 2).
According to severity, asthma has mild, moderate, and severe forms (3–5). Asthma severity
worsens during exacerbations associated with oxidative stress, the most common causes of which
are viral respiratory infections and indoor/outdoor air pollution, including exposure to O3 (6–11).
Severe asthma is often more difficult to treat than the moderate or mild form of the disease (12, 13).
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https://www.frontiersin.org/articles/10.3389/fimmu.2021.631092/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.631092/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.631092/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.631092/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:haczku@ucdavis.edu
https://doi.org/10.3389/fimmu.2021.631092
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.631092
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.631092&domain=pdf&date_stamp=2021-02-26


Enweasor et al. Ozone, Oxidative Stress, Glucocorticoid Responsiveness, Asthma
According to the predominant inflammatory cell type in the
airways, asthma can be classified as eosinophilic, neutrophilic,
mixed, or paucigranulocytic (3–5). Airway epithelial damage
leads to oxidative stress, release of pro-inflammatory mediators
and influx of both eosinophils and neutrophils (10).
Neutrophils are the predominant inflammatory cells in severe
asthma exacerbations (2, 5, 14). These cells are poorly
controlled by glucocorticoids (15). Whether a causative
allergen can be identified, asthma is also categorized as either
allergic or non-allergic (16). Allergic (atopic) asthma is
characterized by increased levels of IgE, eosinophilia, exhaled
nitric oxide (NO), and Th2-type cytokines (16). Such “Th2
high” asthma can generally be treated with glucocorticoids and
biologicals targeting the Th2 cytokine pathways (17).
Approximately half of asthmatics however suffer from “Th2
low” asthma in which these pathogenic features cannot be
identified. Thus, although Th2 low asthma patients are often
resistant to corticosteroids, they cannot benefit from biologic
treatment targeting the Th2 pathway either (18, 19). Especially
in Th2 low asthma, corticosteroid resistance (the inability to
increase FEV1 by 15% after a 7-day course of oral
corticosteroids at 20 mg/day) (20) remains a significant
clinical problem that continues to increase asthma morbidity
and mortality (21–23).

The underlying molecular pathways of glucocorticoid
resistant asthma are complex and generally associated with
impaired expression and function of the glucocorticoid
receptor (GR). GR-a, the classical glucocorticoid receptor
isoform (24–27) has a dominant-negative inhibitor, GR‐b, that
does not bind corticosteroids. Overexpression of GR‐b is due to
abnormal activation of proinflammatory signaling pathways
with emerging evidence for a contribution of oxidative stress
(8, 10, 28–31). Oxidative stress is defined as an imbalance
between reactive oxygen species and the capability of the
biological system to detoxify the reactive intermediates or to
repair the damage caused by oxidative free radicals (32, 33).

The common causes of oxidative stress potentially linked to
glucocorticoid resistance in asthma are summarized in Table 1.
Amongst the environmental causes our review is focused on
inhalational exposure to the toxic air pollutant, ozone (O3) as it
was found to be a significant contributor to respiratory illness.
Specifically, O3 induces airway hyperreactivity in mouse models
of asthma (6, 86, 87, 89, 91, 98–107), in Th2 low asthma in rhesus
macaques (94, 108) and in healthy human subjects and patients
with asthma and COPD (6, 7, 59, 109–116). Ground-level
(tropospheric) O3 is generated by the action of sunlight’s UV
rays from precursors (mostly air pollutants containing
hydrocarbons, volatile organic compounds [VOC] and
nitrogen oxides emitted during fossil fuel combustion). In
cities with high O3 levels people had an over 30% increased
risk of dying from lung disease (117) and children playing
outdoor sports had a three times greater chance of developing
asthma (118, 119).

Against O3-induced inflammatory injury, the lung mounts
immuno-protective mechanisms such as production of the
Frontiers in Immunology | www.frontiersin.org 2
epithelial-cell derived collectin, surfactant protein D (SP-D)
(101). Constitutive expression of this molecule in airway
epithelial cells is promoted by glucocorticoid dependent
transcription (120–122). O3-induced oxidative stress not only
destroys the biologically active tertiary molecular structure of SP-
D (91, 123–125) but it also diminishes glucocorticoid
responsiveness and SP-D expression in airway epithelial cells
in vivo and in vitro (122). Below we discuss the potential
significance of O3-induced oxidative stress in glucocorticoid
responsiveness in asthma.
TABLE 1 | Common causes of oxidative stress linked to glucocorticoid
resistance in asthma.

Environmental exposures
⚬Allergen exposure (8, 34, 35)

⚬Infections

▪bacterial (36–39)

▪fungal (34)

▪viral:

•influenza (40–43),

•RSV (44–47)

•Rhinovirus (14, 48–52)

•COVID-19 (53–56)
⚬Inhalation of toxic indoor and outdoor air pollutants (57)

•O3 (7, 58–60)

•Diesel exhaust (7)

•Wildfire smoke (59, 61–63)

•Tobacco smoke (30)

•Comorbidities

⚬Obesity (64)

⚬Microbiome dysbiosis (65, 66)

⚬Psychosocial stress (67–72)

⚬Circadian rhythm disturbance (Shift work/jet lag) (73–81)
Cellular pathologies

⚬Cancer (82, 83)

⚬Endoplasmic reticulum stress (84)

⚬Mitochondrial dysfunction (85)
Molecular abnormalities

⚬NRF2 pathway dysfunction (29, 86, 87)

•Decreased expression and function of antioxidant enzymes (eg:
superoxide dismutase and catalase) (31, 35)

⚬Decreased concentration of antioxidant scavenger molecules

•Glutathione (84)

•Surfactant protein A and D (88–91)

⚬Deficiency of nonenzymatic/nutritional antioxidants (92)

•vitamin A, C (92), E, beta-carotene

•selenium

•phytochemicals (66)

•lycopene and lutein, resveratrol, flavonoids (64, 93)

•secoisolariciresinol digluconate (94)

⚬Increased production of reactive oxygen/nitrogen species (eg: ROS, RNS)
(31, 35)

•Proinflammatory signaling cascade (NF-kB, AP-1, PI3K) (58, 95–97)
O3, ozone; RSV, respiratory syncytial virus; ROS, reactive oxygen species; RNS, reactive
nitrogen species; NF-kB, nuclear factor kappa B; AP-1, activator protein 1; PI3K,
phosphoinositide 3 kinase.
February 2021 | Volume 12 | Article 631092
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O3-INDUCED AIRWAY INFLAMMATION
AND GLUCOCORTICOID RESISTANCE

O3 exposure results in accumulation of reactive oxygen species
(ROS) most likely through lipid peroxidation processes of the
pulmonary surfactant phospholipids (60) and cell membranes
(126–128). ROS in turn rapidly activate the release of alarmins
IL-1b, IL-6, IL-23, IL-33, TNF-a, and TSLP (Figure 1A) leading
to a cascade of proinflammatory changes in structural and
immune cells in the respiratory mucosal tissue (106, 116, 122,
129, 131–136). Activation of the RORgt proinflammatory
signaling pathway leads to mRNA transcription of the IL-17A
and IL-22 genes (Figure 1B) (131, 137–146). The IL-1 family of
cytokines together with IL-17A and IL-22 induce influx and
activation of neutrophils (129, 130). IL-33 has also been
implicated in O3 -induced airway inflammation (106, 129,
132–136). IL-33 transcription as well as release is upregulated
by O3 in the lung in a time dependent manner (106, 134). In the
absence of IL-33 or the IL-33 receptor (ST2) acute O3-exposure
induced epithelial cell injury with protein leak and myeloid cell
recruitment and inflammation were enhanced (134). While E-
cadherin and zonula occludens 1 and reactive oxygen species
Frontiers in Immunology | www.frontiersin.org 3
expression in neutrophils and airway hyperreactivity were
diminished in knockout mice. The enhancement of neutrophil
influx was abolished by administration of recombinant IL-33
suggesting a protective role of IL-33 in O3-induced epithelial
barrier injury in mice.

Activated neutrophils in the airway mucosal tissue will release
more ROS. Release of alarmins and influx of inflammatory cells
into the airways are the pathological hallmark of severe asthma
exacerbations (2, 5, 10, 14). In the healthy lung, the primary
inflammatory cells recruited to the airways following O3

inhalation are the neutrophilic granulocytes (147, 148). These
cells appear in the airways within minutes and accumulate in
significant numbers as early as 1–2 h after exposure (89, 106,
149). In healthy human subjects exposed to O3 under
experimental conditions, a significant airway neutrophilia was
associated with a decrease in lung function (7, 147, 150)
indicating the pathological significance of these cells.
Interestingly, when O3 exposure is combined with allergic
sensitization in mouse models, asthmatic non-human primates
(rhesus macaques) and in allergic human subjects, a marked
influx of both eosinophilic and neutrophilic granulocytes is
observed (10, 94, 101, 106). While neutrophilia in healthy
A

B C

E

D

FIGURE 1 | Oxidative stress leads to impaired GR function through proinflammatory signaling. (A) Ozone inhalation generates ROS inducing release of alarmins
through lipid peroxidation and proinflammatory activation of immune cells in the respiratory mucosal tissue. (B) IL-1b, IL-6, and IL-23 activate the RORgt
proinflammatory signaling pathway that leads to mRNA activation of the IL-17A and IL-22 genes. The IL-1 family of cytokines and the related IL-33 together with
IL-17A and IL-22 induce influx and activation of neutrophils (129, 130). In turn, activated neutrophils in the airway mucosal tissue will release more ROS.
(C) Proinflammatory signaling activates NF-kB that in turn inhibits expression and function of the GR. Diminished GR function further activates NF-kB forming a
vicious proinflammatory cycle. (D) The GR uses non-canonical transactivation of the surfactant protein D gene (sftpd) through STAT3. GR function impairment in
alveolar type II epithelial cells leads to inhibition of the immunoprotective SP-D. (E) NF-kB inhibits expression of the GR and interferes with GR function through a.)
inhibition of GR nuclear translocation b.) steric hindrance of nGRE binding, and c.) interference with transcription factor “tethering”.
February 2021 | Volume 12 | Article 631092

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Enweasor et al. Ozone, Oxidative Stress, Glucocorticoid Responsiveness, Asthma
volunteers could be attenuated by fluticasone propionate (147),
studies on mice (107), dogs (151) rhesus macaques (152), and
asthma patients (153, 154) showed controversial results on the
effectiveness of glucocorticoids in inhibiting O3-induced
exacerbation of asthmatic airway inflammation. Because
asthmatic patients respond to O3 with an enhanced airway
neutrophilic influx compared with non-asthmatic controls
(155), the observation that neutrophils are poorly responsive to
glucocorticoids (15) raises a serious concern related to asthma
treatment. Indeed, recent studies demonstrated that O3 impaired
the effects of glucocorticoid treatment in a mouse model of
allergen-induced asthma in vivo as well as in human cell lines
and primary epithelial cells in vitro (58, 122, 156). What are the
underlying molecular mechanisms of O3-induced glucocorticoid
resistant neutrophilic airway inflammation in asthma?
ROLE OF ARYL HYDROCARBON
RECEPTOR (AHR) SIGNALING, IL-17A,
AND IL-22 IN GLUCOCORTICOID
RESISTANT ASTHMA

The AhR is an intracellular, small molecule ligand-activated
transcription factor that regulates gene expression of
inflammation-related genes for myeloid and structural cells.
AhR is a sensor of xenobiotic chemicals (such as aromatic
hydrocarbons) or endogenous indole derivatives [such as
kynureine (157)]. AhR mediates environmental signals and is
involved in cell differentiation, cell adhesion, mucus and cytokine
production (158–160). Upon ligand binding, the AhR complex
translocates into the nucleus and heterodimerizes with AhR
Nuclear Translocator (ARNT) to induce gene transcription.
AhR is an important activator of the genes encoding
cytochrome P450 and the cytokines IL-17A and IL-22. The
effects of AhR on cell differentiation (including Th17 or Treg
polarization) depend on the nature of the ligand and the local
cytokine milieu (161, 162).

There are a number of potential mechanisms through which
AhR may contribute to glucocorticoid resistance either as a
promoter or as an inhibi tor . First , g lucocort icoid
responsiveness of airway neutrophilia is regulated by the
circadian clock molecule BMAL1 (Brain and Muscle ARNT-
Like 1 or aryl hydrocarbon receptor nuclear translocator-like
protein 1 [ARNTL]) (163, 164). BMAL1 function is strongly
affected by environmental stressors (165) that can be mediated
by AhR: Following agonist-induced activation, AhR enters the
nucleus, where it can form a heterodimer with BMAL1 impairing
its normal transcriptional activities (166) and promoting
glucocorticoid resistance. Second, AhR interferes with the
action of NF-kB, a pro-inflammatory transcription factor and
antagonist of glucocorticoid action (see discussion below). For
example, NF-kB induces AhR expression, but AhR then
regulates NF-kB signaling (159) thereby enabling the
glucocorticoid action. Third, by interacting with the function
of other transcription factors, AhR promotes IL-22 (RORgt), IL-
Frontiers in Immunology | www.frontiersin.org 4
10, and IL-21 (cMaf) as well as aiolos and its own expression
(through STAT3). Through aiolos, AhR inhibits expression of
IL-2 (159), an inducer of glucocorticoid resistance (167). Thus,
on the one hand AhR promotes Th17 cell differentiation, on the
other, it induces Th17 cell plasticity into IL-10 producing
protective Tr1 cells. While both IL-17A and IL-22 can elicit
airway neutrophilia, IL-22 can also play a protective role when
produced during epithelial or tissue damage. Recently, chronic
ozone exposure induced lung inflammation, airway
hyperresponsiveness and tissue remodeling was reported to be
associated with increased tryptophan and lipoxin A4 (activators
of AhR), and recruitment of IL-17A and IL-22-expressing cells. T
cell-specific AhR deletion enhanced lung inflammation
indicating that O3 exposure activates AhR, to control airway
inflammation by reduction of IL-22 expression (168).

IL-17A has been identified as a central player in the
pathogenesis of severe asthma exacerbations (169). In human
severe asthma patients high levels of IL-17A were found in
induced sputum and bronchial biopsies (170). IL-6, the cytokine
most prominently induced by O3 in the lung (89, 171), and IL-23
(131) directly activate ROR-gt leading to IL-17A expression upon
O3 inhalation (Figure 1B). IL-17A signaling controls neutrophilic
airway inflammation (172) mainly through stimulating the release
of IL-8 and other pro-neutrophilic factors in the airways (131,
137–146) (Figure 1B). The importance of this cytokine in O3

exposure-induced exacerbation of allergic airway inflammation
was supported in a mouse model in which significant inhibition of
IL-17A gene expression by the combined targeting of p38 MAPK
activation and oxidative stress was critical in synergistically
attenuating airway hyperresponsiveness, eosinophilic and
neutrophilic inflammation (107).

IL-17A was also implicated in glucocorticoid resistant asthma
(169, 173). For instance, Th17 cells, the main cellular source of
this cytokine, were refractory to inhibition with glucocorticoids
in asthma, especially, when IL-17A and IL-22 were co-expressed
in these cells (169). Increased counts of dual-positive Th2/Th17
cells detected in the BAL fluid of severe asthma patients, were
resistant to dexamethasone-induced cell death (169).
Glucocorticoid resistance of IL-17 producing cells may be
elicited by an elevated expression level of the mitogen-activated
protein-extracellular signal-regulated kinase 1 (MEK1) as the
MEK-ERK1/2 signaling pathway was shown to interfere with
glucocorticoids (174). In a mouse model of airway inflammation,
co-administration of dexamethasone with an anti-IL-17A
monoclonal antibody significantly inhibited pro-neutrophilic
cytokines and the p38 MAPK, NF-kB signaling pathway and
reversed O3-induced glucocorticoid insensitivity (144).

While Th17 cells were identified as the main producers of IL-
17A, O3-induced asthma exacerbation in mice did not show T
cell activation or migration of T cells into the lung prior to the
O3- prompted neutrophil influx (106). These results implied that
Th17 cells don’t participate in IL-17A release in the early phases
of the O3-response. Mathews et al. proposed that the source of
IL-17A in response to acute O3 exposure is the gd T cell (140). In
addition, innate lymphoid cells were shown to be essential and
sufficient to elicit development of O3-induced neutrophilia (106)
February 2021 | Volume 12 | Article 631092
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and the ensuing airway hyperresponsiveness in mice. These
studies suggest the importance of innate immune players in
O3-induced IL-17A pathways. Interestingly, when compared
with Th2 cells ILC2s were found to be relatively steroid
resistant in severe asthmatics (51, 156), although they were
responsive to steroids in eosinophilic respiratory conditions
(175). Increased IL-17A expression was associated with a
reduction in GR-a but induced expression of GR‐b in
asthmatic airway epithelial cells indicating that the steroid
insensitivity in severe asthmatics may be a result of a
reciprocal regulation of GR-a and GR-b by IL-17 cytokines.
Thus, in addition to Th cells, both IL-17A and IL-22 can be
produced by ILC3, gd T and NK cells, after stimulation with IL-
1b, TGF-b, IL-6, or IL-23 and the transcription factor RORgt
(168). Figure 1B illustrates that IL-17A-mediated neutrophilia in
response to oxidative stress feeds back to a vicious cycle by
releasing additional ROS into the lung tissue. Further,
neutrophils have high constitutive GR‐b expression that may
help them resist apoptosis in response to corticosteroid
treatment (25). Taken together, oxidative stress-induced IL-
17A contributes to glucocorticoid resistance due to an
increased activation of phosphokinase signaling pathways,
reduction of GR-a, increase of GR-b in IL-17A producing
innate immune and T cells thereby promoting neutrophilia.
ROLE OF THE GLUCOCORTICOID
RECEPTOR (GR) IN O3-INDUCED
GLUCOCORTICOID RESISTANCE

Glucocorticoids have significant anti-inflammatory,
immunosuppressive and immunomodulatory effects and remain
the mainstay of asthma treatment (176). A subset of patients
however is refractory to glucocorticoids (12, 177, 178), making
their asthma difficult to control (179). Glucocorticoid insensitivity in
rare cases, can be a primary genetic trait, but more commonly, it is
acquired during inflammatory exacerbations (176). Constitutive GR
expression is essential for an adequate glucocorticoid action.
Corticosteroid insensitivity can be mediated by decreased function
and expression of the GR. Expression of the GR gene (NR3C1) is
regulated by complex transcriptional and post translational
processes that are modified by airway inflammation (169, 180, 181).

How does the GR work? Glucocorticoids go through the cell
membrane and bind to the GR that rearranges the stable GR-
heat-shock protein (HSP)90 complex into an activated
glucocorticoid-GR complex that translocates to the nucleus
(Figure 1E). When two of these complexes form homodimers,
they bind to specific glucocorticoid response elements (GRE) in
the DNA sequence. GRE are located in the promoter regions of
glucocorticoid-responsive genes (176). After the recruitment of
co-activators or co-repressors, the GR modulates the rate of
gene transcription by transactivation or transrepression.
Transactivation is triggered by GRE which acts in “trans”, i.e.,
intermolecularly (this may be considered the opposite of “cis”-
acting i.e., intramolecular). On the other hand, transrepression
(i.e., inhibition) is the activity of a second transcription factor
Frontiers in Immunology | www.frontiersin.org 5
through protein-protein interaction [reviewed by (182, 183)]
(Figure 1E). The repressed molecule is usually a transcription
factor whose function is to up-regulate gene transcription.
Transrepression was first observed in the action of the GR to
inhibit the transcriptional promoting activity of the
proinflammatory transcription factors AP-1 and NF-kB.
Transactivation and transrepression are both important in
mediating the anti-inflammatory effects of glucocorticoids.
Transactivation GRE up-regulates anti-inflammatory genes
such as the NF-kB inhibitor IkBa, the AP-1 inhibitor
glucocorticoid-inducible leucine zipper (GILZ) and IL-10. In a
mechanism called “tethering” the GR can also interact with other
transcription factors (NF-kB, AP-1, signal transducers, and
activators of transcription [STAT] or CAAT Enhancer Binding
Protein (C/EBP)], and modulate activation of target genes in a
monomeric form (184–186). The activated monomeric GR binds
to HDAC (histone deacetylase) and interferes with the activation
of the kB responsive element (kB-RE) by p65 and p50
heterodimer subunits of NF-kB. Although the main function
of HDACs is to modify histones and chromatin structure, HDAC
isoforms can have different regulatory functions in the cytoplasm
and nucleus. For instance, HDAC1 is considered to be a
transcriptional co-activator (187). On the other hand,
impairment of HDAC2 function is implicated in corticosteroid
resistance of asthmatic and COPD patients (58, 97). Oxidative
stress can lead to the reduction of HDAC2 via activation of
phosphoinositide 3 (PI3K). PI3K induces nitric oxide levels in
the asthmatic airways that further hinders the functional ability
of HDAC2, as reported in asthmatic smokers (178). Moreover,
treatment with theophylline, a medication that restores HDAC2
activity, glucocorticoid sensitivity is also restored (178).

GR expression levels are regulated by transcriptional and post
translational mechanisms such as kinase-dependent
phosphorylation as well as by homologous ligand down-
regulation (by GR agonists) that can be significantly modified
by increased NF-kB expression during O3-induced oxidative
stress (180). Phosphorylation-dephosphorylation is also
important in the function of the transcription regulator
enzyme, RNA polymerase II. The GR inhibits transcription
activation through dephosphorylating RNA polymerase II (188).

Enhanced expression of NF-kB in the nuclear fraction of
immune cells paralleled with an impairment of GR nuclear
translocation, DNA binding and a decrease in the expression of
GR (70). Mutual transrepression has been demonstrated between
the GR and NF-kB as well as AP-1. In the highly inflamed airways
during oxidative-stress related asthma exacerbation excessive NF-
kB and AP-1 activation could be responsible for impaired GR
function (27, 176, 189–191). NF-kB not only hinders GR nuclear
translocation and directly interferes with GRE-mediated gene
transactivation but it can also indirectly “tether” to the GR
transcription complex. Importantly, while GR expression is
ubiquitous, it is differentially regulated in individual cell types
(192). For example cell type-specific increases in NF-kB, in airway
epithelial and dendritic cells (Figures 1C, D), upon O3 inhalation,
may significantly inhibit GR expression and modulate allergic
airway inflammation [reviewed in (72)].
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Glucocorticoid resistance linked to oxidative stress through
defective nuclear translocation and GRE binding (Figure 1E)
(reviewed by Spiers et al. (28, 193, 194). That nuclear
translocation of the GR is susceptible to highly pro-oxidative
environments was shown by a cultured, fluorescently labeled
chimeric GR. Okamoto and colleagues (193) demonstrated that
nuclear translocation of GR following acute dexamethasone
treatment was impaired in the presence of hydrogen peroxide.
This effect was reduced by administration of exogenous
antioxidants or by replacing serine for a redox-sensitive
cysteine residue. The dissociation of heat shock proteins from
the cytosolic GR is also impaired in a pro-oxidative environment,
indicating that there may be multiple pathways involved in the
cellular response to glucocorticoids (193, 194). Thus, a balanced
oxidative state is critical for normal function of the GR.

GR function is also reduced when the molecule is
phosphorylated. For example, the proinflammatory signaling
molecule, p38MAPK can phosphorylate the GR that blocks
nuclear translocation and the ability to bind to DNA leading to
decreased ability of the GR to regulate transcription of anti-
inflammatory genes (178). Similarly, activation of the MEK-
ERK1/2 pathway was shown to antagonize the inhibitory action
of glucocorticoids in Th17 cells (174).

Additional mechanisms involve increased expression of GRb,
an isomer of GRa that suppresses the ability of GRa to bind to
GRE and induce anti-inflammatory genes. Increase in GRb is
caused by a rise in pro-inflammatory cytokines or through super-
antigen such as staphylococcus enterotoxin-induced activation
of T lymphocytes (176). Reduced GR expression was reported in
asthmatic and COPD patients with insensitivity to corticosteroid
treatment (189–191). GR expression can be reduced by
homologous ligand down-regulation (upon administration of
GR agonists) or other pathways such as transrepression of the
GRa isoform by NF-kB in the inflamed tissue (27). It is unclear
whether low levels of GR mRNA are due to suppression of
promoter activation, decreased mRNA stability, or both (27)
during oxidative stress. Importantly, the expression and function
of the human GR is distinct from other species. For example, it is
unclear whether transrepression of the GRa by NF-kB plays a
role in corticosteroid resistance in mice as existence of the
dominant negative GRb isoform [responsible for glucocorticoid
resistance (195)] could not be demonstrated in these rodents.
Ligand-induced GR down regulation is seen in various tissues
and cell types except in T cells (27) suggesting that innate
immune and tissue cells may be more susceptible for
glucocorticoid resistance. Further studies are still needed to
identify the cell types ultimately responsible for mediating the
effects of corticosteroid insensitivity in the lung.
AIRWAY EPITHELIAL CELL FUNCTION IS
CONSTITUTIVELY REGULATED BY
ENDOGENOUS GLUCOCORTICOIDS

Alveolar type II epithelial cells are the major source of pulmonary
surfactant, as well as the immunoprotective lung collectins,
Frontiers in Immunology | www.frontiersin.org 6
surfactant protein (SP)-A and SP-D. SP-D, a glucocorticoid-
dependent airway epithelial cell product is critical in the
maintenance of pulmonary immune homeostasis (196–203).
Individual susceptibility to the effects of O3 exposure suggests that
inflammatory responsiveness is genetically regulated (204). This is
supported by strain dependence of the inflammatory response to O3

observed in mice (205–207). A failure of protective immune
mechanisms likely plays an important role in shaping the O3

effects in the lung. A differential ability of Balb/c and C57BL/6
mice to respond to allergen (208) or O3 (89), was inversely
proportionate to the amount of SP-D in the lung of these mouse
strains (89, 209). Further, when compared to wild-type C57BL/6
mice, the naturally low SP-D producer Balb/c or the SP-D knockout
(C67BL/6) animals displayed increased susceptibility to and a
prolonged recovery period from airway inflammation after
allergen or O3 exposure (89, 210–212).

In addition, O3-induced exacerbation of Th2-type airway
inflammation in allergen challenged mice was associated with the
appearance of abnormal, lower order oligomeric molecular
formations of SP-D. Interestingly, in asthmatic rhesus macaques,
O3 induced de-oligomerization of SP-D was restored by treatment
with a flaxseed derivative anti-oxidant (94). Thus, oxidative damage
can cause conformational change in the SP-D molecule resulting in
a potential loss of its immunoprotective function (91, 213).
Glucocorticoids were shown to be necessary for expression of SP-
D in epithelial cells (120, 121, 214, 215). Interestingly however, there
is no glucocorticoid response elements in the promoter region of the
SP-D gene (sftpd). This DNA region however contains an
evolutionarily conserved STAT3/6 response element in a
prominent proximal location. IL-4/IL-13 (activators of STAT6) as
well as IL-6 (activator of STAT3) directly upregulated SP-D
synthesis in airway epithelial cells in vitro and in mice in vivo (89,
210). Between SP-D and the STAT3/6-activating IL-6 (89) as well as
Th2 cytokines IL-4/IL-13 (216), respectively, negative regulatory
feedback mechanisms were identified. In these, inflammatory
transcriptional signaling by STAT3/6 would upregulate SP-D
synthesis and release. In turn, increased amounts of this protein
in the airways would suppress further inflammation through
inhibition of proinflammatory cytokine transcription. Lastly, there
are indications that STAT3 can be directly phosphorylated by H2O2

(the molecular product of O3 when mixed in water) in airway
epithelial cells in vitro (217). O3 and glucocorticoid treatment had
antagonistic effects on SP-D expression and function in the lung,
with O3 inhibiting glucocorticoid-induced sftpd transcription in vivo
in mice and in vitro, in human airway epithelial cell cultures. These
results indicated that glucocorticoids sustain vital functions in
airway epithelium such as SP-D production, aimed at promoting
immune homeostasis. This function is directly perturbed by O3-
induced oxidative stress.
ANTIOXIDANT APPROACH FOR
ASTHMA TREATMENT

As we discussed, there is a marked role for oxidative stress in
asthma, especially in severe exacerbations associated with
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glucocorticoid resistance. Although this fact has been well
established, and according to a WHO estimate, more than 80%
of the Earth’s inhabitants used Traditional Medicine/
Complementary and Alternative Medicine (TCAM) for their
primary healthcare needs (218), a large variety of nutritional,
pharmacological, and environmental antioxidant clinical
approaches to asthma treatment have been controversial and
generally disappointing (33).

Emerging evidence from experimental models shows that
successful targeting of oxidative stress in asthma is dependent
on activation of NRF2 (Nuclear factor-erythroid 2 related factor
2). NRF2 is an ubiquitous master transcription factor that works
through antioxidant response elements (AREs) to induce
antioxidant enzyme and cytoprotective protein mRNA
expression. Under baseline, “unstressed” conditions, the Kelch-
like ECH-associated protein 1 (Keap1) inhibits cellular NRF2 in
the cytoplasm and promotes its proteasomal degradation. NRF2
is activated by diverse stimuli such as oxidants, pro-oxidants,
antioxidants, and chemopreventive agents (219). NRF2 induces
cellular rescue pathways against oxidative injury, abnormal
inflammatory and immune responses, apoptosis, and
carcinogenesis (219). In a mouse model of asthma Sussan and
colleagues used cell-specific activation of NRF2 in club cells of
the airway epithelium and found a significantly reduced allergen-
induced airway hyperresponsiveness, inflammation, mucus, Th2
cytokine secretion, oxidative stress, and airway leakiness and
increased airway levels of tight junction proteins zonula
occludens-1 and E-cadherin on the epithelial cell surface.
Pharmacological activation of NRF2 during allergen challenge
reduced allergic inflammation and airway hyperresponsiveness
(220). Administration of the ROS inhibitors, N-acetyl cysteine or
apocynin in a mouse model, had no effect on acute injury and
lung inflammation but GR-1 antibody depletion of neutrophils
significantly reduced ROS production in neutrophils, epithelial
cells, interstitial macrophages, and eosinophils (134). In the same
study, administration of IL-33 attenuated, while absence of IL-
33/ST2 signaling enhanced O3-induced airway inflammation
and oxidative stress, and diminished zonula occludens-1 and
E-cadherin expression highlighting the complex role this
cytokine plays during lung injury (134).

In a different study, activation of NRF2 decreased the viability
of the wild-type but not of the NRF2-deficient ILC2s resembling
the pro-apoptotic effect of glucocorticoids albeit without the
involvement of caspase 3-dependent apoptosis or necroptosis. In
mice NRF2 activation decreased the number of pulmonary ILC2s
and eosinophils suggesting NRF2 activation as a potential
alternative strategy for steroid-resistant allergic inflammation
(29). Lack of NRF2 in the lung exacerbates oxidative insults
including supplemental respiratory therapy (e.g., hyperoxia,
mechanical ventilation), cigarette smoke, allergen, virus,
bacterial endotoxin and other inflammatory agents (e.g.,
carrageenin), environmental pollution (e.g., particles, O3), and
bleomycin (219, 221). Bioinformatic studies elucidated
functional AREs and NRF2-directed genes that are critical
components of signaling mechanisms in pulmonary protection
by NRF2. Association of loss of function with promoter
Frontiers in Immunology | www.frontiersin.org 7
polymorphisms in NRF2 or somatic and epigenetic mutations
in KEAP1 and NRF2 has been found in cohorts of patients with
acute lung injury/acute respiratory distress syndrome or lung
cancer (219).

The role of non-enzymatic antioxidants was studied in a
multiple linear regression analysis that revealed significant
associations of vitamin C, vitamin E, beta-cryptoxanthin, lutein/
zeaxanthin, beta-carotene, and retinol with FEV1% in a large
population study (93). Since removal of ROS and RNS from the
cells by antioxidants could impair the action of NRF2, one might
speculate that antioxidant vitamin administration with
simultaneous NRF2 activation could be beneficial in oxidative
stress-induced asthma exacerbation, which is a highly
proinflammatory condition. To this effect, a dietary flaxseed
compound (LGM2605) a synthetic form of the lignan
secoisolariciresinol digluconate (SDG) was identified as both an
antioxidant and an activator of NRF2. SDG demonstrated strong
protective actions against different sources of oxidative damage
(222, 223) supporting the potential for antioxidant approaches for
asthma treatment. A cohort of asthmatic macaques from the
California National Primate Research Center was identified to
naturally develop airway hyperresponsiveness (224). These
animals display no overt airway inflammation or Th2 cell
activation and their peripheral blood mononuclear cells are
unresponsive to glucocorticoids (224). Thus, these animals
represent “Th2 low” glucocorticoid resistant asthmatic patients
and are therefore uniquely poised for investigation of novel
alternative or adjuvant approaches to glucocorticoid treatment.
A 7-days treatment with LGM2605 of these macaques
that received a single exposure to O3 or air (as control) not
only prevented the O3-induced exacerbation of airway
hyperresponsiveness but also significantly improved baseline
lung function (94). These studies highlight the significance of
oxidative stress in the effect of O3 on airway hyperresponsiveness
and support the idea that anti-oxidant treatment may be beneficial
in glucocorticoid resistant, Th2 low asthma.
CONCLUSIONS

Severe glucocorticoid resistant asthma continues to increase
morbidity and mortality despite the advent of new powerful
biological treatments that target proinflammatory cytokines.
Scientific and clinical evidence is emerging that alternative and
adjuvant therapeutic approaches could significantly contribute to
reducing and/or controlling severe asthmatic symptoms.
Harnessing antioxidant mechanisms may have a special
importance in this effort as oxidative stress has been clearly
demonstrated to worsen steroid resistance in severe asthma. The
pathways we discussed here are however widely applicable to
clinical conditions associated with inflammation and oxidative
stress and in which glucocorticoid treatment is essential. One
recent example of this is the wide variability of effectiveness
observed by dexamethasone treatment of severe COVID-19
patients (225–227). Our assessment of the literature raised a
number of interesting questions that require future clarifications.
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For example, what is the importance of the different cell types in
mediating glucocorticoid resistance in asthma? Does the nature
of oxidative stress depend on its etiology? What role do AhR-
related mechanisms play and how does transcriptional regulation
of the circadian clock figure into glucocorticoid responsiveness?
Is it possible to increase expression and the protective function of
molecules like SP-D? What are the effects of simultaneous
molecular targeting of oxidative stress, inflammation, and
NRF2 pathways? How feasible it is to translate experimental
data to human studies and ultimately to clinical application?
Greater understanding of how oxidative stress affects asthma and
steroid resistance may lead to novel therapies that could improve
the lives of millions.
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