
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Finding spatially conserved residues in protein structure

Permalink
https://escholarship.org/uc/item/9q2194x0

Author
Chuang, Jer-Yee John

Publication Date
2005
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9q2194x0
https://escholarship.org
http://www.cdlib.org/


Finding Spatially Conserved Residues in Protein Structure

Alignments
2"

by

Jer-Yee John Chuang

THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

BIOLOGICAL AND MEDICAL INFORMATICS

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA SAN FRANCISCO

/– ^ -

Author:
º

Z
º

--" " Date: ■ is/ºces■

Approved by:
g ■

-ºf...; |<= Date:
G|E|2005

&azºr. Date: 4//5/2005
(Z.

&... 6. zºº Due 2/5/2009



UCSF
University of California, San Francisco
OFFICE OF ADMISSION AND REGISTRAR (OAR)

PRINT: CWvan A Jer-Yee,
Last name, S First Middle

Grºe / & "3&c. & Aegie■ informakes 4 5 § - €7–7 7.3. S
school/major "

I student number

Instructions: State request and give your reasons in detail. Use back of petition if necessary. Obtain signature approvals as
directed by deputy. File petition with Registrar.

Univeristy Registrar,

I wish to petition to leave my academic program (PhD program in Biological and

Medical Informatics) with a terminal Masters of Science degree. I have fulfilled all the

requirements for the MS, and have gotten the approval of both my academic adviser and

program chair.

_*:
-*º 7 -)

c
_*

students signature. . < _-).
-

Date: */ (7/05
-

/ 2.
D DEAN: . / 2 C. STUDENTAFFAIRs.

D ADVISOR: D CURRICULAR AFFAIRS:

D INSTRUCTOR: (2 | D GRADUATE DIVISION:

Tººl■ .X(THESIS/DISS. CHAIR VMWG) ( 44 vº-E_P
l G|CEcºwpfiles\sa\studipet

revorºooo



Copyright 2005

by

Jer-Yee John Chuang



Abstract

With the wealth of protein structures determined in recent structural genomics initiatives,
the task of identifying and characterizing functional residues will be of increasing
importance. Traditional approaches relying on sequence conservation analysis are
insufficient, as sequence conservation does not imply structure conservation. In this

study, we describe the implementation and testing of an algorithm to efficiently identify
spatially conserved amino acid residues from a set of aligned protein structures. The

algorithm was applied to several diverse sets of proteins, including cAMP binding
proteins and triosephosphate isomerases. In the former set, our algorithm was able to
recover not only residues identified via traditional surface matching methods, but also an
important conserved hydrophobic residue not apparent from the multiple sequence
alignment. In the latter set, we compared our results with those from mutagenesis
experiments. Our algorithm's performance in identifying functionally significant
residues was comparable, but had the additional benefit of being automated. Lastly, we
demonstrated two further applications of our method: as a quantitative measure of

alignment quality to supplement traditionally reported RMSD values and as a technique
for characterizing information redundancy when used in conjunction with leave-one-out
testing.
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Abbreviations

cAMP. cyclic AMP

CAP: catabolite activator protein
CDD: NCBI conserved domain database

CoC: conservation of conservation database

DHFR: dihydrofolate reductase

HCN: hyperpolarization-activated cyclic nucleotide-modulated channels

MAV: Multalign Viewer tool in Chimera

MSA: multiple sequence alignment

NQ: neighborhood query

PBC: phosphate binding cassette

PDB: protein data bank

PKA: protein kinase A

RMSD: root mean square distance

SFLD: structure-function linkage database

TIM: triosephosphate isomerase



Chapter 1: Introduction

As the structures of more proteins become available, automating annotation of protein

function using structure becomes increasingly important. For enzymes, a superfamily

classification system is particularly useful. This system is based on conservation of a

partial chemical reaction amongst superfamily members and presupposes a tight coupling

between conserved functional and conserved structural characteristics [1]. Frequently,

these conserved structural characteristics are a small number of key active site residues

that directly participate in the enzymatic reaction. These residues are subject to strong

evolutionary constraints [2] and have been demonstrated to be sufficient for use as a

template in assigning superfamily membership [3]. Significant efforts have been made

on automated identification of active sites in proteins. These techniques run the gamut

from mathematical data mining [4], to structural motif matching [5], to spatial clustering

and averaging of residues bound to a ligand [6]. For enzymes with identical functions, it

may possible to identify many if not all active site residues from a multiple sequence º

alignment (MSA). However, sequence conservation does not imply structure

conservation, and we postulate that it is the conserved structural features of a structure

that give rise to function.

Furthermore, studies on enzyme catalysis highlight the fact that the catalytic elements in

an active site need to be precisely positioned for optimal catalysis, and this often requires

a transient reorganization of the active site or more distal regions of the protein [7]. An

excellent example of this was described in dihydrofolate reductase (DHFR) by Agarwal

and coworkers [8]. In their study, they combined kinetic measurements from multiple

mutation experiments and molecular dynamics simulations to characterize the

conformational change of a 14-residue loop distal to the active site upon substrate

binding. Movement of the loop was shown to facilitate the hydride transfer between the

substrate and cofactor. A similar example is provided by triosephosphate isomerase

(TIM), which also has a movable loop. In this case, the motion of the loop is more

pronounced and controls access to the active site in a lid-like fashion upon substrate



binding [9]. Identification of spatially conserved residues throughout the entire protein

structure, and not only in the active site, would be most useful.

Most studies that examine the entire protein for conserved residues perform the search

only on the sequence level. For instance, Li and coworkers used a combination of an

MSA and mutual information' to predict residues responsible for enzyme-substrate
specificity in protein kinases [10]. This is understandable, as sequences are far more

plentiful and easier to obtain than structures. However, the number of structures

available is increasing rapidly. Additionally, structural characteristics such as the

movable loop discussed above cannot be identified solely from sequence analysis. There

may also be spatially conserved residues that are not conserved in the MSA. Hence, it

would make more sense to integrate both sequence and structure information when

identifying spatially conserved residues, and we propose such a method.

'Mutual information is defined as the relative entropy between the joint distribution and the product
distribution.



Chapter 2: The voxelGrid Algorithm

2.1 Basic Algorithm

voxelGrid is an algorithm that identifies spatially conserved amino acid residues in

proteins. At its simplest, it is a residue counting algorithm over a set of aligned

structures. The algorithm begins by first reading in a set of aligned structures then

overlaying a voxel grid’ (Figure 2.1). It then examines each voxel, counting up the
number of residues contributed by each structure. Voxels that contain a residue of the

same type from every structure are saved. By nature of residing in the same voxel, these

residues are in proximity and therefore spatially conserved.

Figure 2.1: Example of a voxel grid overlaid on a set of aligned structures

From Figure 2.1, it is evident that there are two key parameters that can be varied: the

size of each voxel (i.e., the granularity of the grid) and the position of the grid in space

(i.e., offset). Care must be taken in defining both. The size of a voxel determines the

* A voxel grid is a 3D rectangular grid, where each cell is called a voxel. A voxel is the generalization of a
pixel from 2D to 3D (i.e. square pixels in 2D become cubic voxels in 3D).

:



scope of what is considered spatially conserved. For example, the voxels in Figure 2.1

are much too large and are shown for visual representation only. A more thorough

discussion of the effect of voxel size is provided later in Section 2.3.2.1. The position of

the grid is also important, since depending on the placement of the grid, it may

unintentionally separate a cluster of spatially conserved residues. To overcome this, the

voxelGrid algorithm may be run multiple times, each with a different grid offset. We

keep track of the list of conserved residues for each run. By taking the union of all these

lists and removing duplicate entries, we arrive at a “complete” list of all spatially

conserved residues for the set of aligned structures. Furthermore, we observe that

voxelGrid is much more efficient than computing the inter-residue distances among all

structures. Given M structures of N residues each, our algorithm scales as O(M*N)
compared to O(M*N*) for the latter.

The above discussion highlights the basic voxelGrid algorithm. The subsequent sections

in this chapter will cover its implementation and execution. In addition, we discuss the

effects of voxel size, grid placement, and the quality of the input structure alignments on

voxelGrid performance. Finally, we conclude this chapter with an example of how

voxelGrid can be used as a quantitative measure of structure alignment quality in addition
to traditional RMSD values.

2.2 Implementation and Enhancements

2.2.1 Code base and platforms

The voxelGrid algorithm was coded in C++ and has been successfully built on Windows

and Linux platforms. We recommend compiling with the “-static’ flag to increase

portability. C++ was chosen as the language for performance considerations and to
utilize an existing C++ library for parsing PDB [11] files. Briefly, the voxelGrid

algorithm class hierarchy is:



voxelGrid(main) <- Voxel(class) <- VoxStruct(class) {- VoxResidue(class)

Voxel: a voxel in our grid

VoxStruct: a single protein structure
VoxResidue: a single residue in a protein structure

We begin by reading in the set of aligned structures. To reduce the complexity of the

calculations, the hydrogen atom coordinates are ignored, and each residue is only

represented by its centroid (however, the coordinates of all atoms are still preserved). In

addition, no adjustment is made for the molecular weight of each type of atom in

computing these whole-residue centroids. The minimum and maximum centroid
coordinates in each dimension across all of the structures define the boundaries of our

voxel grid. The residues in each structure are binned into the corresponding voxels. If
two residues from the same structure map into the same voxel, we issue a warning
message. Once the residues have been binned, we can then examine each voxel for

identical residues from each structure. If so, we have found a spatially conserved residue

(i.e., a “hit’) and write it to an output file. :

Python scripting was used to repeatedly run the voxelGrid algorithm with varying offsets

to the voxel grid. This is necessary since the grid may be placed such that it inadvertently

cuts through a cluster of spatially conserved residues. An additional Python script was

used to merge all the output files into two script files for visualization in Chimera [12]: a

script that displays the conserved residues found by voxelGrid and another that draws the

voxels enclosing those residues (examples of these scripts can be found in the Appendix).

We now discuss three enhancements to the basic voxelGrid algorithm: residue groups,

neighborhood query, and side-chain centroids. Only neighborhood query is enabled by

default, though each of these can be enabled/disabled on the voxelGrid command line

(Section 2.3.1.1).



2.2.2 Residue groups

We wanted to extend the comparison of residues within a voxel to include not only those

that are identical but those that belong to the same group (e.g., polar, hydrophobic, etc.).

Residue groups allow for matching residue substitutions in the structural alignment. This
is particularly useful when it is known that the structures have diverse sequences, and
voxelGrid returns few hits.

Residue groups were implemented through an optional plain text file (named

“residueGroups’ that is placed in the same directory as the voxelGrid executable). This

file contains user-defined groups described with the standard three-letter amino acid

codes. These groups do not have to be based on chemistry (can be whatever the user
defines), and not every amino acid must belong to a group. Furthermore, group
membership is not mutually exclusive, so an amino acid may belong to multiple groups.

Comments are allowed and preceded by ‘H’. An example of a “residueGroups' file is

given in the Appendix. If the “residueGroups’ file does not exist, then voxelGrid

automatically uses the default setting of 20 groups which tests for amino acid identity.

2.2.3 Neighborhood Query (NQ)

As the voxelGrid algorithm examines each voxel, there will be instances when it finds
that the voxel contains a residue from all but one of the structures. This is not too

surprising, since that structure may not be well aligned with the others such that its

residue lies in an adjoining voxel. Alternatively, our voxel grid may unintentionally

separate a cluster of spatially conserved residues. To account for these possibilities,

voxelGrid should be able to look in the neighboring voxels for a residue from the missing
structure and associate it with the current voxel.

Neighborhood Query Algorithm:

NQ is an expensive operation since it needs to look in the 26 adjacent voxels. Hence, it

should only be used in limited situations, such as when the voxel being examined is

missing exactly one structure. If so, then:



1. In the neighboring voxels, determine the residues from the missing structure.

2. For each residue, if inclusion in the reference voxel will satisfy the residue
threshold (see Section 2.3.1.1) then keep, else discard this residue. Observe that if

inclusion of the residue will not satisfy the residue threshold, it will not be output

anyway.

3. For each remaining residue, compute the pairwise Euclidean distance to all the

residues in the reference voxel. Select the residue closest to an existing residue in
the reference voxel, and report it as a NQ hit. This is in contrast to voxel hits,

those hits that are found without NQ'
-

To get an idea of how NQ works, consider the following example using an alignment of
four structures (Figure 2.2). For simplicity, we focus on a single voxel shown here with
polar residues from three different structures (yellow, cyan, and magenta). NQ identifies
residues from the fourth structure (white) in adjacent voxels. The closest residue has
been colored red and is selected by NQ for this voxel. .

.

Figure 2.2: Example of neighborhood query

* For this study, all hits reported are voxel hits unless otherwise specified as NQ hits.



It should be noted that NQ assumes nothing about the correctness of the structure

alignments. It will not solve the case where the voxel has a residue from each structure,

but one of the residues is incorrect (i.e., due to misalignment, the correct residue is in an

adjacent voxel). Rather, NQ allows us to deal with poor alignments that contain a single

outlier. Additionally, the grid is overlaid on the structure alignments prior to examining

the voxels, and therefore, the grid’s placement affects which voxels NQ is performed on.

For instance, the grid may be placed such that some voxels are missing more than one

structure. Since NQ allows at most one missing structure, NQ will not be performed on

those voxels. Lastly, when merging the output files from multiple voxelGrid runs, we

discard the NQ hit if an identical voxel hit exists from another run.

It should be observed that NQ is not the same as simply running voxelGrid multiple times

using different grid offsets. NQ is able to recover residues farther away than random

offsetting alone. Consider Figure 2.3, which shows the residues from an alignment of

three structures (numbered 1-3). We have simplified the voxel representation to 1D for

illustration purposes.

3
-.

!
voxel size

Figure 2.3: Difference between random offsetting and NQ

The dotted red box shows the starting voxel location. Random offsetting allows the

voxel grid to shift by at most the size of one voxel (Section 2.3.1.1), allowing us to

recover the third residue (dotted green box). However, if the third residue were located

farther out (the ‘3’ colored blue instead of green), then random offsetting would not be

able to recover it. If random offsetting were to position the voxel to include the blue

colored ‘3’, the first two residues would be excluded. In contrast, NQ is able to recover

the third residue at either location.



2.2.4 Side-chain centroid

By default, voxelGrid computes the centroids of whole residues. Alternatively, the

centroid could be calculated based on only the residue side-chain, yielding the side-chain

centroid. This option can be enabled with a flag on the voxelGrid command line (see

Section 2.3.1.1). When this option is enabled, the backbone atoms of a residue are
excluded from the centroid calculation.

We compared the two centroid calculation methods using a set of four aligned structures

and varying voxel sizes (Table 2.1). A more detailed guide to interpreting voxelGrid

results is given in Section 2.3.1.2. For now it suffices to note that the values given in the
‘Whole-Residue’ and ‘Side-Chain’ columns are the number of voxel and NQ hits found

by voxelGrid (reported as voxel/NQ). We observed that the two methods performed
comparably. Using whole-residue centroids yields slightly more voxel hits, while side

chain centroids reduce the number of NQ hits. This is probably because the structures

were aligned using alpha carbons (i.e., Co.). Hence, the backbone will be aligned better
than the side chains.

Voxel Size Step Size Whole-Residue Side-Chain
N=2.00 0.26 24/23 22/22
N=2.25 0.30 27/35 25/31
N=2.50 0.33 3 1/56 29/35
N=2.75 0.375 35/67 31/43
N=3.00 0.40 41/83 37/63

Table 2.1: Comparison of whole-residue and side-chain centroids



2.3 Running voxelGrid

2.3.1 Quick start

2.3.1. 1 Understanding voxelGrid command line flags:

Running voxelGrid without any or with an incorrect number of parameters yields a

summary of command line parameters and usage:

voxelCrid, written by Jer-Yee John Chuang (chuang Ggmail.com)

Usage: voxelGrid. exe xVox y Vox zVox [–r <xOff yoff zoff->] [-sc] [-xnq] [–t
strThr resThr] file1 [file2 . . . ]

Explanation:
xVox y Vox zVox voxel size in xyz
—r xOff yoff zoff fix grid at these offsets (default: random)
- SC use side-chain centroid (default: whole-residue)
-xnq disable neighborhood query (default: enabled)
—t strºThr res"Thr set structure/residue thresholds (default: # files)
file1 file2 . . . first PDB file, second PDB file,

At minimum, voxelGrid must be provided with a set of aligned structures and the voxel .
size. If a set of aligned structures is not available, it can be obtained in a variety of ways,

such as through structure alignment web servers (see Section 2.4.2). voxelGrid assumes

default values for all other parameters not specified via flags on the command line. This

is what is meant when we use the phrase running voxelGrid with ‘default settings’ later in

this study. Note that residue groups can be specified is a separate “residueGroups' file.

It is useful to briefly discuss each of the flags used by voxelGrid. The “-sc’ flag instructs

voxelGrid to compute side-chain centroids, overriding the default use of whole-residue

centroids. The “-xnq’ flag disables NQ in voxelGrid, resulting in faster performance at

the cost of search sensitivity (i.e., no NQ hits).

The “-r' flag is used to fix the grid at a particular offset. By default, the grid is randomly

offset from the structure alignment; otherwise, repeated runs of voxelGrid will give the
same results. The size of this offset is at most the size of one voxel and is determined for

10



each dimension independently. However, there are two instances where it is desirable to

fix the grid at a known location. The first is for reproducibility of results. Using the

same aligned structures, voxel size, and grid offset will always yield the same list of

spatially conserved residues. The second instance is when we want to perform a search

of the structure space by overlaying a grid then systematically shifting the grid in each

dimension independently (see Section 2.3.2.3).

The “-t' flag is used to redefine the structure and residue thresholds. Basically, these two

parameters define the criteria for a voxel hit in voxelGrid. Given a voxel, both thresholds

need to be satisfied in order to be considered a voxel hit (i.e., the residues in the voxel are

spatially conserved). The structure threshold specifies the minimum number of structures

that must be present in a voxel. Likewise, the residue threshold specifies the minimum

number of residues that belong to the same residue group that must be present in a voxel.

By default, we use the most conservative setting: both equal to the number of structures

being examined. This means that for a voxel to be considered a voxel hit, (i) it must have

at least one residue from every structure, and (ii) the residue group with the largest

representation has as many members as the number of structures. Finally, note that

relaxing the structure threshold does not affect the NQ algorithm. The NQ algorithm

only considers voxels that are missing exactly one structure, which may not be the same

as (stri■ hr-1).

A brief example may help to clarify the usage of the “-t' flag. Consider running

voxelGrid on an alignment of four structures and without a “residueGroups' file (i.e.,

default of 20 residue groups corresponding to amino acid identity). In some voxel, we

observe a residue from each structure and the following makeup: Arg, Arg, Asp, Glu.
This voxel will not be returned as a voxel hit since it satisfies the structure but not the

residue threshold (it only has two residues in the same group: Arg). It is true that we

have residues from each structure, but we are looking for spatial conservation of identical

residues. If we truly wanted this voxel to be counted as a voxel hit, then there are two

ways to rectify this. The simplest is to relax the residue threshold from four to two.

-

:

*

*

º

| 1



Alternatively, we can use a residueGroups' file and define a polar group" that includes
the three residue types above (Arg, Asp, Glu). Now, the residue threshold is satisfied

(four residues in the same group). More importantly, by using residue groups, we have

changed from looking for spatially conserved identical residues to looking for spatially

conserved polar residues.

2.3.1.2 Interpreting voxelGrid output:

The voxelGrid output from a single run is a plain text file containing all the residues that

were identified as spatially conserved. As discussed previously, it is advisable to run

voxelGrid repeatedly with different grid offsets, and then merge the results using a

separate script. This returns the number of voxel and NQ hits found across all the

merged runs. These are the numbers that are reported in our analysis, usually in the

format (voxel/NQ). Consider the example given in Table 2.2. Here, voxelGrid has been
run at three different voxel sizes for three datasets. Datasets 1 and 2 have both their

voxel and NQ hits reported (as voxel/NQ), whereas Dataset 3 only has its voxel hits

reported. Unless otherwise noted in this study, pairs of numbers separated by a ‘■ ’ are

always voxel/NQ hits.

Voxel Size DataSet 1 DataSet 2 DataSet 3
N=2.50 17/14 18/7 23
N=2.75 2 1/21 26/9 27
N=3.00 28/29 35/8 38

Table 2.2: Example of results from using voxelGrid analysis on a dataset

Observe that in Dataset 2, the number of NQ hits decreases from N=2.75 to N=3.00.

This is normal, as the number of NQ hits does not necessarily increase with increasing

voxel size. In addition to the number of voxel and NQ hits, two readable output files

(example can be found in the Appendix) are created by voxelGrid. These can be used to
visualize the results in Chimera.

"See the Appendix for an example of a residueGroups' file that defines a polar group.

.

12



2.3.2 Performance considerations

2.3.2.1 Effect of voxel size:

The size of a voxel determines the scope of what is considered spatially conserved.
There is no single best value, since this depends on the alignment quality of the set of
structures being examined. For well-aligned structures, smaller voxel sizes are better as

they yield higher resolution (i.e., fewer false positives). On the other hand, if the

alignment is poor, then larger voxels should be used. We note that although voxelGrid

does allow non-cubic voxels, we only considered cubic ones in this study.

As a rule of thumb, voxelGrid should be executed for a small number of runs using
random offsetting at several voxel sizes. Two factors should be considered when

examining the results:

1. Number of hits: If 20% of the protein is being pulled back as hits, then obviously

the voxel size should be decreased. The actual percentage cutoff is subjective.

For well-studied systems, it should be large enough to recover known conserved
functional residues.

2. Residue double-counting: For larger voxel sizes, it is possible that multiple

residues from the same structure are mapped into the same voxel. When this

happens, voxelGrid will write a warning message into the output file and specify
for each structure, the number of residues that have been ‘double-counted’. This

double-counting is undesirable as it makes it difficult to interpret which residue

should be correctly associated with the others in the voxel. Ideally, only one

residue per structure maps into the same voxel. Although some double-counting

is unavoidable as the voxel size is increased, it should be kept to a minimum (just

a few residues).

* The alignment quality also depends on the conformational flexibility of the structures. For simplicity, we
will not consider that aspect in our study.

13



Residue conservation histogram:

In addition to containing the list of spatially conserved residues identified, the voxelGrid

output file also contains a residue conservation histogram. This histogram reflects the

distribution of all voxels that satisfy the structure threshold criteria. It provides an

indirect way to assess the effect of voxel size on performance. Each bin in the histogram

corresponds to the maximum number of residues in any of the residue groups. Hence, the

bins range from zero up to the number of structures in the set of alignments.

Consider the following example. Suppose we run voxelGrid on an alignment of four

structures and obtain a residue conservation histogram of [006 33]. This means that 12
voxels satisfied the structure threshold. Each of these 12 voxels contained at least one

residue from each of the four structures. There were three voxels that contained four

residues in the same residue group, and another three voxels that contained three residues

in the same residue group. Six other voxels only contained two residues in the same

residue group.

Note that the number of elements in this histogram may exceed the number of voxel hits

since it may contain voxels that satisfy the structure threshold but fail to satisfy the

residue threshold criteria. We ran voxelGrid using random offsetting and default settings

10 times for varying voxel sizes on an alignment of four structures (~230 residues each).

Since we are using random offsetting, we averaged the residue conservation histograms

from these runs. The value of the structure and residue thresholds is four (i.e., the

number of structures). Results are presented in Figure 2.4.

Voxel Size Residue Conserv. Histogram (Avg. over 10 runs)

i .
Figure 2.4: Effect of voxel size on the residue conservation histogram
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We observed that for voxel sizes less than N=2.0, there are only a few residues found.

Between N=2.0 and N=3.0, we found 7-15 residues. With systematic offsetting (Section

2.3.2.3), this number will increase. So, in practice this is roughly a good number of

residues to examine (less than 10% of our structure). Lastly, note that the residue

conservation histogram is affected by the use of residue groups. However, this does not

change the total number of voxels that satisfy the structure threshold. It only affects the

distribution of these voxels within the residue conservation histogram. Consider the

following example. On a particular voxelGrid run without residue groups (i.e., identity),

we obtained 19 voxels that satisfy our structure threshold. Running it again with residue

groups, we obtain the same 19 voxels, but the conservation histogram has shifted to the

right ([0,3664 ) → [0 06 3 10 J). This makes sense since identity is most restrictive,

and the use of residue groups relaxes this constraint.

2.3.2.2 Effect of random offsetting:

Random offsetting randomly positions the voxel grid on top of the set of aligned protein

structures and computes the results. Since there will be variation in the number of hits

found from random grid offsetting, we performed a box plot analysis with respect to the

number of random runs. This tells us something about the distribution of voxel and NQ

hits. For each setting of number of runs (10, 30, 50, 100), we run voxelGrid 30 times.

Hence, for the 10 runs setting, voxelGrid is executed for a total of 300 times. The results

are displayed in Figure 2.5.
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Figure 2.5: Boxplot analysis of random offsetting

In Figure 2.5, each pair of columns is the distribution of voxel and NQ hits for that

number of runs (i.e., 10R and 10P are for the voxel and NQ hits from 10 runs

respectively). As more of the structure space is sampled through the increased number of

runs, more hits are recovered, and the number of voxel hits begins to plateau (and its

deviation diminishes). The limit is the “actual” number of spatially conserved residues in

our set of alignments. The continual rise in NQ hits is a consequence of the multiple

possibilities in selecting a nearest neighbor in the NQ algorithm. Depending on the

location of the voxel boundaries, NQ may choose different residues as the ‘closest to the

unrepresented structure.

2.3.2.3 Systematic vs. random grid offsetting:

As an alternative to sampling the alignment space using random offsets, a systematic

search can be performed. Systematic offsetting is more rigorous, as it systematically and

independently shifts the voxel grid in each dimension by a finite step for each voxelGrid

run. We compared the two grid offsetting methods by running voxelGrid roughly the

j
º
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same number of times using both methods, on the same set of aligned structures and with

the same voxel size. We could not perform exactly the same number of runs since

systematic offsetting required an equal number of steps (see Section 2.3.2.4) in each

dimension, resulting in a cubed number (i.e., 2°–8, 3°–27, etc.). Here, we have used four

structures and N=2.5 as the voxel size for the comparison in Table 2.3.

Grid Offset Num Runs Voxel/NQ Hits
Random 10 22.4/27.2 (Avg. from column 1 in boxplot in Fig. 2.5)

Systematic 8 25/28
Random 30 27.5/37.5 (Avg. from column 3 in boxplot in Fig. 2.5)

Systematic 27 28/31
Random 50 29.2/42.4 (Avg. from column 5 in boxplot in Fig. 2.5)

Systematic 64 28/41
Random 100 30.8/50.3 (Avg. from column 7 in boxplot in Fig. 2.5)

Systematic 125 27/49
Systematic 216 29/45
Systematic 512 3 1/56
Systematic 1331 3 1/55
Systematic 2197 32/64

Table 2.3: Comparison of systematic vs. random grid offsetting

For random offsetting results, we have taken the average from the corresponding column
in the boxplot presented in Figure 2.5. This gives us the average number of hits we

would expect voxelGrid to find for that number of runs. For less than 125 runs, we

observe that random offsetting seems to perform just as well as systematic offsetting.

However, the results for random offsetting are averages, which imply that some runs did

better and others worse. This is somewhat undesirable, since we really want an accurate

count for the number of hits, not just an average.

For systematic offsetting, we actually do slightly worse going from 64 to 125 runs, losing

one voxel hit. This is simply a consequence of the nature of sampling. For greater than

125 runs, however, the number of voxel hits returned by systematic offsetting increases

monotonically. Unlike random offsetting whose result is an average, the number of hits

returned by systematic offsetting is fixed and hence, preferable. However, it is useful to

.
*
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run voxelGrid several times using random offsetting to determine a few suitable voxel

sizes (see Section 2.3.2.1 for discussion) at which to perform the systematic offsetting.

2.3.2.4 Granularity of systematic sampling:

The granularity of the systematic sampling is determined by the combination of the voxel

size and the step size. The latter affects the number of times voxelGrid is run. The more

runs we perform, the better our sampling of the structure space, and hence, the more

complete our list of spatially conserved residues. From Table 2.3, it appears that 512

runs seems like a good number of runs to perform as it is roughly equivalent in

performance to 2197 runs. To verify this, we tested an additional two datasets. We

performed voxelGrid analysis using residue identity and a voxel size of N=2.5. Our
results are summarized in Table 2.4, with the number of structures in each dataset

appearing in parentheses. Dataset 1 is the one used in Table 2.3.

Step Size || Num Runs | DataSet 1 (4) || DataSet 2 (6) || DataSet 3 (11)
1.3 8 25/28 17/3 40/4
1.0 27 28/31 17/3 42/3

0.83 64 28/41 17/3 42/3
0.6 125 27/49 18/3 42/4
0.5 216 29/45 18/3 42/4

0.33 512 3 1/56 19/4 42/4
0.25 1331 3 1/55 19/5 43/6
0.2 2197 32/64 19/4 44/10

Table 2.4: Effect of step size on voxelGrid performance

We observed that performing 512 runs does appear sufficient. This translates to seven

steps along each axis (i.e., the cube root of 512 is eight evaluations). The step size then

for seven equally sized steps could be approximated as the integer part of stepSize=

voxelSize/7. We have rounded the step size to approximate values in Table 2.4. For all

of the voxelGrid analyses done in the following chapters, we performed 512 runs using

systematic offsetting, where an appropriate step size is computed using the preceding
formula.
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2.3.2.5 Parallelization:

We observed that each voxelGrid run is self-contained and does not use results from any

previous voxelGrid run. This makes the algorithm easily parallelizable. Multiple

voxelGrid runs could be executed simultaneously on either a single or multiple

processors. In the end, the output files are simply merged together into a single result.

The only caveat is that the output files being merged must be created from running

voxelGrid using the same set of aligned structures and at the same voxel size. Otherwise,

it would not make sense to merge the results.

2.4 Dependence of voxelGrid Algorithm on Alignment Quality

2.4.1 Considerations

The goal of voxelGrid is to identify spatially conserved residues. One of the limitations

of our algorithm, and any algorithm that examines a set of structural alignments, is the

quality of that set of alignments. Despite the plethora of structure alignment algorithms,

there is really no way around this limitation since structure alignments are not unique.

There is no one correct alignment given a set of structures (unless they are all the same

structure!). At minimum, an algorithm that examines these structure alignments should

be robust to small variations in the alignment quality, voxelGrid handles this through the

use of voxels. However, even with voxels, serious misalignments can lead to poor

results. Given a set of structures, possibilities for generating an alignment include:

1. We know some of the functional residues (e.g., active site residues) and choose to

align the structures based on these. This will most likely lead to a reasonably

‘correct' alignment.

2. We do not know any functional residues and perform a structural alignment using one

of the many publicly available web servers (see Section 2.4.2). These alignments are

not necessarily ‘correct’ and can be misleading. However, within in the same fold
class, we expect that residues important for function are conserved. Additionally,

:
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some algorithms allow for the inclusion of a multiple sequence alignment to assist the
structure alignment process.

3. We know the ligand that a set of receptors bind. We can get an alignment of the
receptors by aligning the ligand.

In our testing of voxelGrid on multiple datasets, we tested the first two situations, and the

next section briefly discusses the structure alignment tools that we used.

2.4.2 Preparation of alignments

In this study, we performed structure alignments using either public web servers or the

molecular visualization package Chimera. Structure alignment web servers are an

excellent choice when no functional residues are known for the set of structures being

aligned. We have compared six of these web servers as an example of using voxelGrid in

Section 2.4.3. We note that most servers only perform pairwise alignments (i.e., are

limited to two structures at a time). However, some servers (such as CE-MC [13] and

MultiProt [14]) are able to perform multiple structure alignments. An example of the

query form used by one of these servers is given in Figure 2.6.

*in--... ºr º- ºrMultiProf . º.
* * * -* -ººº

*4 - t ** rº

PDB IDs separated by a space. T(e.g. I■ in ºrbl 4 1834 1rhga,
Upload zip file of pdb structures: — e. |
Accuracy (in Angstroms): 3—
Sequence Order: Yes & No ■ º

Submit Query Clear |

* for NMR:mucture; only the first model is considered "

Figure 2.6: Example of structure alignment web server (MultiProt)

The structures may be specified as PDB IDs or uploaded. It is recommended that a chain

be specified in addition to the PDB ID. The final alignment is returned as a single PDB

file. This file must be unpacked, since voxelGrid expects that the aligned structures each
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reside in a separate file. The Appendix contains additional notes specific to the
processing of output from specific web servers.

Chimera may be used as an alternative to using structure alignment web servers. The
PDB files for the structures of interest should be first downloaded from the PDB.

If some of the functional residues for this set of structures are known:

Some online databases contain lists of conserved functional residues across a superfamily
or family. One such example is the Structure Function Linkage Database (SFLD) [15].
A structure alignment can be done in Chimera using the match command on these
residues. However, the residues must be totally conserved across all the structures. The
aligned structures are then written back out as individual PDB files".

If no functional residues for this set of structures are known:
In the absence of known functional residues, an MSA can be used in Chimera to assist

with the structure alignment. The MSA can be built using any of the numerous publicly
available sequence alignment programs (such as ClustalX [16]). Alternatively, several
online databases offer curated sequence alignments, including several based on structural
alignments (e.g., S4 [17], CDD [18]). The structure alignment was then performed using
the MSA and the Multalign Viewer (MAV) tool in Chimera (Figure 2.7). The MAV tool
automatically associates a sequence in the MSA with a structure if their sequences can be
aligned without too many mismatches. Residues to be used for aligning the structures
can then be selected manually (shown as pink highlighted columns), or if none are
selected, the full sequence is used.

"See Appendix for note specific to writing PDB files in Chimera on Windows platforms.

-
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Figure 2.7: Multalign Viewer tool in Chimera

We refined this alignment through a ‘bootstrapping' process where a MSA is created

from the structure alignment using the Match->Align tool in Chimera. This MSA is then

fed back into the MAV tool to align the structures. This back and forth process between

the two tools is repeated for a few iterations. The aligned structures are then written back
out as individual PDB files.

2.4.3 Example: Comparison of structure alignment web servers

Curiously, although the performance of voxelGrid is dependent on the quality of the set

of structural alignments, it could also be used to measure that quality. Traditionally, the

quality of structural alignments is reported as a single RMSD value, quantifying the

overall alignment quality. However, RMSD is a value averaged across the entire

structure and reveals nothing about the alignment of key residues. We can use voxelGrid

º
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to supplement reported RMSD values. The quality of structural alignments is correlated

with the number of hits voxelGrid returns at a particular voxel size. A larger number of
hits at smaller voxel sizes indicate higher quality alignments. Since we expect more

residues to be found with increasing voxel size, matches made in large voxels are not as
significant as those made in smaller voxels.

We considered a pairwise alignment between two diverse proteins from the enolase

superfamily (2MNR and 4ENL) using six structure alignment web servers. From visual
inspection, the alignments looked very similar. We downloaded each set of alignments

then performed voxelGrid analysis (512 runs, residue groups, default settings). The
results are summarized in Table 2.5 and plotted in Figure 2.8.

Alignment Algorithm Voxel Hits (voxel size=1.0/1.5/2.0/2.5)
CE [19] 16 / 39 / 94 / 160

Dalilite [20] 21 / 42 / 89 / 164
Fast [21] 16 / 44 / 88 / 173
K2 [22] 15 / 46/91 / 160

MultiProt 19 / 56 /92 / 160
Superpose [23] 9 / 4.1 / 82 / 148

Table 2.5: Using voxelGrid to compare structure alignment web servers

Superpose clearly performed the worst, but there does not appear to be a clear winner

from the remaining five. Without examining exactly which residues were aligned, these
five seemed to perform equally well. However, we preferred MultiProt and CE' since
they had the added benefit of supporting multiple structure alignments.

In the subsequent chapters, we will discuss the application of voxelGrid to two datasets:

cAMP binding proteins and TIM proteins. Two additional datasets (enolase superfamily
and DHFR) were examined but will not be discussed. The techniques used for the

analyses of those two are similar to and better illustrated by the cAMP binding and TIM
datasets.

'Actually, the multiple structure version of the CE server is called CE-MC, but it uses the same algorithm.
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Figure 2.8: Graph of Table 2.5

º>

1/

T
■ º

º
º

*

~

-
–

J
-1

24



Chapter 3: Example: the cAMP Binding Proteins

3.1 Introduction to cAMP Binding Proteins

cAMP binding proteins are allosteric proteins responding to cAMP. The structure change
subsequent to binding depends on hydrophobic interactions with an adenine ring of
cAMP. An excellent study of the architecture and function of this binding domain was

recently done by Berman and coworkers [24]. In this work, they used surface matching
to identify 11 highly conserved residues (Figure 3.1), many of which lie in the conserved

phosphate binding cassette (PBC). In addition, they have identified a single hydrophobic
residue that cannot be predicted from an MSA but is spatially conserved. Instead of

lining up nicely in a column in the MSA, the residue lies scattered across the multiple
sequences (colored red Figure 3.1). This residue was only identified after tedious visual

inspection of a multiple structure alignment. To truly appreciate how difficult this would
be, consider Figure 3.2. Additionally, this residue was identified as significant as it seals

the hydrophobic pocket in which the adenine ring resides.

£2 £3 B4 PBC

1CX4: ------- II - - E - I ------- ALVTN-KP º Aº —Y ----------------

INE6: ------- | V - C - F- V ------- AALLMN-PFAA - Y ----------------

2CGP: ....... II - Cº-º-V ------- LGLFEEGQERSA R -----------
1943 :

- - - - - - - II - - Y- V - - - - - - - ICLLTRG-RRTA R -------------.

Figure 3.1: MSA of four cAMP binding proteins. The conserved hydrophobic residue and
the residues identified via surface matching by Berman et al. are colored colored red and
orange respectively. Figure adapted from from [24].

Motivated by the Berman study, we wanted to investigate whether voxelGrid is able to

automatically identify this hydrophobic residue. More importantly, we are seeking to

identify the broader class to which this hydrophobic residue belongs; residues that are

spatially conserved but do not line up in an MSA. We began by first examining the same

four structures used in [24] and then extending our analysis to include additional cAMP

binding structures.
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Figure 3.2: Why visual inspection of structural alignments is so difficult! An alignment of four
cAMP binding structures, showing the conserved hydrophobic residue (colored red in Figure 3.1)
labeled in the lower right hand corner.

3.2 Analysis of Four Representative cAMP Binding Structures

3.2.1 Preparation of dataset and results

The first step was to prepare a set of structural alignments of the four proteins. As

discussed in Chapter 2, this can be done through (i) web-based structure alignment

servers or directly in Chimera with either (ii) a list of known conserved residues or (iii)

an MSA. We investigated each of these three options. To simplify the alignment

process, we only considered chain A from each of the proteins:

Four representative structures: 1CX4: A, 1.NE6: A, 2CGP: A, 1949: A

1. CE-MC alignment web server:

We used the web-based form for submission of our four proteins of interest.
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2. Five conserved residues:

The Berman study identified five totally conserved residues via surface matching
(see Figure 3.1). For reference, these five residues in 1CX4 are: G305, G349,

E350, R359, A361. Using Chimera, we based our structure alignment on these.

3. Bootstrapping using an MSA:

A sequence alignment of cAMP binding proteins was obtained from the S4

database. Only three of our four structures associated with sequences in this
alignment (1Q49 did not). Using the MAV and the Match->Align tools in
Chimera, we bootstrapped these and aligned 1049 manually using the five
residues above. Three iterations were performed. Parameters for the MAV and

the Match->Align tools for pruning and residue-residue cutoff were 3.0 A and 5.0

A respectively. The alpha carbon trace of this alignment is shown in Figure 3.3.
Each structure is represented by a different color, and selected key residues are
labeled.

Figure 3.3: Alignment of cAMP structures via bootstrapping

* Recall from Section 242 that the MAV tool in Chimera automatically associates each structure with a
sequence in the MSA if possible.

27



We performed the voxelGrid analysis using residue groups, default settings”, and
systematic offsetting at varying voxel sizes. The results are summarized in Table 3.1.

We observe that alignments done using either the five conserved residues or

bootstrapping performed comparably. However, the CE-MC alignment is of poorer
quality".

Voxel Size | Step Size CE-MC Five Residues Bootstrap
N=2.00 0.26 3/28 22/20 24/23
N=2.25 0.30 4/34 25/25 27/35
N=2.50 0.33 8/39 3 1/33 3 1/56
N=2.75 O.375 12/45 33/71 35/67
N=3.00 0.40 17/71 45/97 41/83

Table 3.1: Comparison of alignment methods for 4 representative cAMP binding structures

3.2.2 Analysis

We searched the output from each of the three methods and did not find among the voxel
hits the hydrophobic residue identified by Berman and coworkers. However, observe that

TYR397 is too far from the corresponding residue in the other three structures (Figure
3.4). Instead, it was found as a hit in all three methods if we consider the adjoining voxel
containing TYR397 (i.e., via NQ). Surprisingly, the residue was found at N=2.0 and
onwards for CE-MC, compared to N=2.25 and onwards for the other two methods.

"Recall from Section 2.3.1.1 that default settings imply: whole-residue centroids, NQ enabled, and
structure and residue thresholds set equal to the number of aligned structures.
"Recall from Section 2.43 that a larger number of hits at smaller voxel sizes indicates higher quality
alignments.
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Figure 3.4: Hydrophobic residue of interest (CE-MC alignment with N=2.0)

In addition to this conserved hydrophobic residue, voxelGrid identified other residues as

being spatially conserved. We screened this list for all the conserved residues identified

via surface matching in the Berman study. We were able to recover all but one of these

residues (directly below the 33 strand label at the top of Figure 3.1). This demonstrates

that voxelGrid can be used to identify spatially conserved residues. Furthermore, it is

able to do so even in instances where the overall structural alignment is of low quality.

This is particularly encouraging as it confirms that our method is not tied to any one

structure alignment algorithm.

3.3 Analysis of Broad Set of cAMP Structures

We extended the above analysis on four representative structures to include additional

cAMP binding structures identified in [24]. This combined set consisted of 20 proteins.

We excluded four proteins that did not associate with the same S4 alignment used above,

leaving us with 16 proteins, partitioned into three groups:

CAP group: 2CGP: A, 1CGP: A, 1.J59: B, 1RUN: B, 1RUO: B., 1LB2: A,

1G6N: B, 1HW5: A, 1 I5Z: B, 1 I6X: A

PKA group: 1CX4 : A, 1.NE6: A, 1.NE4: A, 1RGS: _

HCN group: 1043 : A, 1050: A
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We investigated how similar these structures were both (i) within the same and (ii) across

different groups.

3.3.1 Preparation of dataset

We prepared the 16 structures using the same procedure outlined in Section 3.2.1. The

only difference was the use of the CE-MC alignment web server on each of the three

groups separately.

3.3.2 Results and analysis

How similar are structures within the same group?

We used the CE-MC alignment web server on each of the three aforementioned groups.
Visual inspection of the alignments within each group indicated that the structures were

quite similar. We performed voxelGrid analysis at varying voxel sizes, using default
settings and identity (to avoid pulling back too many hits). The number of structures in

each group is given in parentheses after the group name in Table 3.2. For the HCN

group, the two structures aligned so well (pulling back -89% of the protein), based on

results at N=1.5, that results using larger voxel sizes would be meaningless (hence

skipped).

Voxel Size | Step Size CAP (10) PKA (4) HCN (2)
N=1.50 0.20 61/19 21/46 168/11
N=1.75 0.24 80/20 26/55

-

N=2.00 0.26 97/19 36/55
-

Table 3.2: Comparison of cAMP structures within groups

On the whole, the structures within each group are very similar, given that we are still

pulling back this many hits using identity and small voxel sizes. The PKA group was the

most diverse, while the HCN group was the most similar. Since the structures aligned so

well within each group, it was not necessary for us to use the other two alignment

methods. The similarity within groups also explains why Berman et al. were able to
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choose one member each from CAP and HCN and two members from PKA as

representative structures.

How similar are structures across different groups?

We approached this in the same manner as we did previously for the four representative
StructureS.

1. CE-MC alignment web server:

The CE-MC server limited our submission to 15 structures, so 1050 was

arbitrarily excluded.

2. Five conserved residues:

In order to manually align the set of structures in Chimera, we used the five

conserved residues to add the remaining 12 structures to the existing alignment of

four representative structures. The resulting alignment is shown in Figure 3.5.
For simplicity, only the five conserved residues used in alignment and the
conserved hydrophobic residue are shown. The alignment quality appears to be
good.
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Figure 3.5: Five conserved residues and conserved hydrophobic residue
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3. Bootstrapping using an MSA:

We used the same S4 alignment as before. Since 1Q49 did not associate

previously, neither did 1950 which is from the same group (HCN). Using the

MAV and the Match->Align tools in Chimera, we bootstrapped the remaining 14
structures that did associate and aligned the remaining two structures manually
using the five residues determined above. Three iterations were performed.

Parameters for the MAV and the Match->Align tools for pruning and residue
residue cutoff were 3.0 A and 4.0 A respectively.

We performed the voxelGrid analysis using residue groups, default settings, and
systematic offsetting at varying voxel sizes. The results are summarized in Table 3.3.

We observe that bootstrapping gave a slightly better alignment than using the five
conserved residues. Not surprisingly, CE-MC once again gave the poorest alignment, but
performed better than before. The improved performance is probably a result of the
increase in information provided by the addition of structures.

Voxel Size Step Size CE-MC Five Residues Bootstrap
N=2.50 0.33 17/14 18/7 23/8
N=2.75 0.375 2 1/21 26/9 27/14
N=3.00 0.40 28/29 35/8 38/20

Table 3.3: Comparison of alignment methods for a broad set of cAMP binding structures

Unlike previously, we are not looking for the conserved hydrophobic residue identified

by Berman and coworkers. In fact, voxelGrid will not be able to identify it in this set of

alignments. The reason is that NQ only works when the voxel is missing exactly one

structure. From Figure 3.5, we observe that the hydrophobic residue can be in one of two

locations depending on whether it is an Arg or a Tyr in the respective structure.
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3.4 Measuring Information Redundancy

We already know that the structures within each group are very similar to one another,

which implies that there is information redundancy. To test this hypothesis, we

performed leave-one-out testing on our set of 16 structures by leaving out each of the

four representative structures, one at a time. If there is information redundancy within

each group, then deletion of one structure should have negligible effect. We performed

voxelGrid analysis with a fixed voxel size of N=2.5, using both residue groups and

default settings. The results are summarized in Table 3.4.

Voxel Size # Structures Alignment # of Runs Voxel/NQ
N=2.5 15 (no 1050) CE-MC 1331 (Step: 0.25) 18/16
N=2.5 15 (no 1CX4) Bootstrap 1331 (Step: 0.25) 27/7
N=2.5 15 (no ln.E6) Bootstrap 1331 (Step: 0.25) 25/10
N=2.5 15 (no 2CGP) Bootstrap 1331 (Step: 0.25) 25/7
N=2.5 15 (no 1050) Bootstrap 1331 (Step: 0.25) 25/21
N=2.5 16 Bootstrap 1331 (Step: 0.25) 25/7

Table 3.4: Measuring information redundancy in the broad set using leave-one-out testing

As expected, the deletion of any one of the representative structures has almost no effect

on the number of voxel hits when compared with all 16 structures. Deleting 1 NE6,

2CGP, or 1043 has no effect, whereas deleting 1CX4 results in a small increase.

However, the structures within each group are not identical and do contribute some

unique information. This is illustrated by the case where we only have the four

representative structures (i.e., Table 3.1, N=2.50, 31 hits). Hence, moving from 16

structures down the four representative structures increases the number of voxel hits from

25 to 31 (i.e. we are comparing the last row of Table 3.4 with the middle row of Table

3.1).

If we perform leave-one-out testing with only the four representative structures, removal

of any one results in a significant increase in the number of hits (Table 3.5). Again, this

is consistent with our observation that these four structures are significantly different
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from one another. The inclusion of more structures makes the identification of spatially
conserved residues more robust, but at the cost of increased noise. The use of fewer but

representative structures decreases the noise yielding better signal.

Voxel Size Step Size/#runs | Voxel/NQ Hits (3) | Voxel/NQ Hits (4)
N=2.5 (no lex4.pdb.) 0.33/512 40/81 3 1/56
N=2.5 (no lne6.pdb.) 0.33/512 37/100 31/56
N=2.5 (no 2cgp.pdb.) 0.33/512 52/96 3 1/56
N=2.5 (no la43.pdb.) 0.33/512 51/90 3 1/56

Table 3.5: Measuring information redundancy in the representative set using leave-one-out testing.
The number of structures is given in parentheses.

In this chapter, we have demonstrated using voxelGrid on a set of cAMP binding

proteins. We have illustrated its usefulness in conjunction with leave-one-out testing to
characterize information redundancy in a set of aligned structures. More importantly,

even when the set of structures was not well aligned, the algorithm was still able to

identify spatially conserved residues. This included the conserved hydrophobic residue

and the residues identified via surface matching by Berman et al. However, we do not

know if the other residues found in addition to these are functionally significant. In the

following chapter, we examine this question in a set of triosephosphate isomerase

proteins by comparing voxelGrid's results against other computational predictions and

experimental results.
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Chapter 4: Example: the TIM Proteins

4.1 Introduction to TIM Proteins

The triosephosphate isomerase (TIM) proteins represent the canonical example of (3/o)s

barrel architecture, the most common fold among protein catalysts. The barrel

architecture is composed of eight repeated units of a single strand-loop-helix-turn motif

(Figure 4.1). The strands form the core of the barrel with helices surrounding it. The

active sites of all known (B/o)s barrel enzymes have been identified in the B->o loops

[25]. There is also a loop which operates like a flap that moves upon ligand binding.

This leads to an open and a closed conformation for TIM crystal structures.

Figure 4.1: Barrel architecture of TIM protein (1YPI from yeast)

In a recent study, Silverman and coworkers [26] performed mutagenesis experiments on

nearly half of the residues in the yeast TIM protein in an attempt to elucidate all

functional residues. They concluded that mutations in either the central core of the 3

barrel or the 3-strand stop motifs would significantly reduce catalytic activity and

provided a list of these residues. Motivated by their study, we performed voxelGrid
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analysis on a diverse set of TIM proteins. We first analyzed the TIM structures in the

open and closed conformations separately. Later we combined the two sets together in

the same alignment for analyses. The goal was to compare our list of spatially conserved

residues against other computational predictions and experimental results. For the

former, we used the Conservation of Conservation (CoC) database [27], and for the latter,
the results from Silverman et al..

4.2 The Open and Closed Conformations

As discussed above, the TIM proteins adopt either the open or the closed conformation

depending on the presence of a bound ligand. We were not sure how significantly the

conformation change would affect the overall structure. If it were significant, voxelGrid

would find few if any spatially conserved residues using the combination of open and

closed structures. Hence, we decided to consider each conformation separately.

4.2.1 Preparation of dataset and results

We began by examining the 43 SWISSPROT [28] sequences (i.e., species) used in the

study by Silverman et al... We only identified 18 unique structures, since many of the

SWISSPROT sequences do not have an associated structure. Two of these structures,
1YPI and 7TIM, are both yeast TIM proteins" and exhibit the open and closed
conformations, respectively. We assigned each of the remaining 16 structures to either

the open or the closed conformation group by visual inspection of the movable loop

region in its alignment with 1 YPI and 7TIM. This gave us the following groups:

Closed (11 structures):
1AMK : _, 1AW1: A, 1B9B: A, 1BTM: A, 1.LYX: A, 1MO0: A, 1.NEY: A, 1TCD: A, 1TPH: 1

2BTM : A, 7TIM: A

'' Both 1 YPI and 7TIM are 249 amino acids in length.
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Open (7 structures):
1AW2 : A, 1HTI: A, 1TRE: A, 1YDV: A, 1YPI: A, 3TIM: A, 6TIM: A

We then used the CE-MC alignment web server to align the structures within each of

these groups. The alignments were then downloaded then run through voxelGrid using
systematic offsetting with default settings. The results are presented in Table 4.1, and a

ribbon representation of the alignments is presented Figure 4.2.

Figure 4.2: Alignment of TIM structures (each a different color) and viewed from the side. Both
conformations are shown (left: open, right: closed). For reference, the conformation labels are
located just beside the movable loop.

Voxel Size Residues Step Size Open Voxel/NQ | Closed Voxel/NQ
N=2.0 Identity. 0.26 50/4 41/4
N=2.5 Identity 0.33 53/3 42/4
N=2.0 Group 0.26 100/29 88/2]
N=2.5 Group 0.33 117/40 99/24

Table 4.1: Comparison of TIM structures within open and closed conformations
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4.2.2 Analysis

We observed that the alignment quality is actually quite good, even when we used

identity for residue matching. The number of hits is comparable at N=2.0 and N=2.5

voxel sizes, and roughly doubles when we used residue groups. Indeed, the structures

within each group are quite similar. We have mapped the spatially conserved residues

found by voxelGrid onto the two yeast TIM proteins, 1 YPI and 7TIM (Figure 4.3).

Again, for reference, l YPI and 7TIM belong to the open and closed conformation groups

respectively.

Looking into barrel
Looking into barrel

Figure 4.3: Conserved residues found by voxelGrid mapped onto TIM structures (left:1YPI, right:
7TIM). Residues found at voxel size N=2.0 appear in yellow while additional ones found at N=2.5
appear in green.

The highlighted regions indicate the spatially conserved residues identified by voxelGrid

(using residue groups). We observed that the highlighted sets are very similar, including

a number of the turn regions (i.e., ■ strand stop motifs) and the ■ barrel core. This is

consistent with the findings of Silverman et al. (discussed in more detail in Section 4.5).

In the next section, we will combine the open and closed groups and look for spatially

conserved residues across the entire set of proteins. However, notice that this will

automatically exclude any movable residues such as those in the movable loop region.
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4.3 Analysis of a Diverse Set of TIM Proteins

4.3.1 Preparation of dataset

Unlike previously in Section 4.2.1, we will forego the use of structure alignment web

servers, and instead perform our alignment in Chimera with the assistance of an MSA.

There are two reasons for this. First, the web servers usually limit the number of

structures that can be aligned concurrently. Second, we wanted to demonstrate not only

how a sequence alignment can be used to supplement a structural alignment but how the

two are fundamentally different, even though both are representations of similarity across

multiple proteins.

We used a S4 alignment for bootstrapping of the cAMP dataset. S4 alignments include

information from structural alignments. It is useful to consider the more common

scenario: where we have no prior knowledge from other sources about our structures.

We want to see if voxelGrid is able to identify interesting spatially conserved residues,

despite starting from a structurally uninformed MSA. In this case, we constructed an

MSA of the 18 structures by loading their sequences into ClustalX and aligning them

using default parameters. The result is shown in Figure 4.4.

Figure 4.4: Multiple sequence alignment of TIM sequences using ClustalX
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From the multitude of solid-colored bands and asterisks” above the columns, we observe
that this is a good (though not necessarily correct) alignment. We will use this MSA as

the starting point for bootstrapping our TIM structures in Chimera.

We loaded this MSA into the MAV tool in Chimera and bootstrapped for three iterations.

Parameters for the MAV and the Match->Align tools for pruning and residue-residue

cutoff were 3.0 A and 1.5 A respectively. After this procedure, the aligned structures had

pairwise RMSD values below 0.63 and were written out into separate files.

4.3.2 Results

We ran voxelGrid using systematic offsetting with default settings on the aligned

structures. We first tried two voxel sizes using either identity or residue groups. The

results are presented in Table 4.2. Again, we observed that using residue groups pulls

back roughly twice the number of hits when compared to identity. In addition, roughly

60-75% of the residues identified earlier in Table 4.1 are found here. This implies that

the open and closed groups are quite similar: only a small fraction of residues is lost with

the addition of another group. The conformational change resulting from ligand binding

is probably localized to the movable loop region.

Voxel Size Residues Step Size Voxel/NQ Hits
N=2.0 Identity 0.26 32/1
N=2.5 Identity 0.33 37/8
N=2.0 Group 0.26 67/13
N=2.5 Group 0.33 85/27

Table 4.2: Results for combined set of TIM structures (open and closed conformations)

To get a sense of which residues are the most spatially conserved, we reduced the voxel

size and reran voxelGrid using default settings and residue groups. The results are

presented in Table 4.3 and shown on structures in Figure 4.5.

* ClustalX's notation for indicating residue conservation in that column.
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Figure 4.5: Conserved residues found by voxelGrid mapped onto representative TIM structures (red:

Looking into barrel

1YPI, blue: 7TIM). Residues found at voxel size N=1.0 appear in yellow while additional ones found
at N=1.5 appear in green.

Voxel Size Step Size Voxel/NQ Hits
N=1.0 0.14 16/18
N=1.5 0.20 49/13
N=2.0 0.26 67/13
N=2.5 0.33 85/27

Table 4.3: Results for combined set of TIM structures (using residue groups)

4.3.3 Analysis: Comparison of sequence and structure alignments

In an MSA, the conserved residues appear in columns, while in a multiple structure

alignment, they are the residues found by voxelGrid. We can map these voxelGrid

residues onto the MSA for a combined view of residue conservation in both sequence and

structure space (Figure 4.6). Residues identified by voxelGrid have a green border

around them. Residues conserved in the MSA are shown in capital letters on the
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Figure 4.6: Combined view of residues conserved in sequence and structure
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consensus line beneath the residue numbers. The green and gold highlighting indicates

the location of secondary structure elements (strand and helix respectively).

From Figure 4.6, we can ask three key questions:

1. Are there spatially conserved residues that are not conserved in the MSA?

Yes. We observe that there are indeed multiple residues found by voxelGrid but

not identified as conserved in the MSA (i.e., lower case letters in the consensus

line). Note that voxelGrid residues are spatially conserved but need not be

identical (however, they must belong to the same residue group). The ones that

are not identical will obviously not be conserved in sequence. More interesting

are residues that are spatially conserved but do not align in the same column in

the MSA (e.g., the case with the conserved hydrophobic residue in cAMP binding

proteins). However, we do not find any such examples here.

Do all highly conserved sequence locations have voxelGrid identified residues?

No. This is expected since sequence conservation does not imply structural

conservation. This is compounded by the fact that we have two conformations

(open and closed). In the (■ 3/o)s barrel architecture, the region in unit 6 between

the 3 sheet and o helix is well conserved in sequence space but not identified by

voxelGrid. This is because that sequence represents the movable loop region of

the TIM proteins. Hence, this is one method of identifying movable regions:

short stretches conserved in sequence but not in structure.

We observed that residues 83-90 in the MSA represent another stretch of highly

conserved residues that is not well covered by voxelGrid. We suspected that this

may also be a movable region. The residues mapped into a turn region on the

opposite side from our previous movable loop. However, closer examination in
Chimera showed that it is a consequence of alignment drift and not an actual

movable loop.
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3. Is there a secondary structure bias for spatially conserved residues?

We counted up the number of voxelGrid residues that were in either strands or

helices (colored green and gold respectively in Figure 4.6). We used 1 YPI as the

reference structure and counted up the number of residues in each type of

secondary structure. We found a total of 46 residues in the strands and 133
residues in the helices. The results are summarized in Table 4.4.

2"Structure (total) N=1.0 N=1.5 N=2.5
Helix (133) 5 (3.8%) 13 (9.8%) 28 (21.0%)
Sheet (46) 5 (10.9%) 16 (34.8%) 25 (54.4%)

Neither (68) 6 (8.8%) 20 (29.4%) 29 (42.6%)
Total (1 YPI: 247) 16 (6.5%) 49 (19.8%) 82 (33.2%)

Table 4.4: Distribution of voxelGrid residues by secondary structure

We observed that the voxelGrid residues tend to lie in the strands, implying that

the strand regions are better aligned. Geometrically, this makes sense since the

core of a rigid structure is less prone to movement than the periphery.

4.4 Comparison of voxelGrid with CoC Predictions

The CoC database presents the conservation of residue positions in folds across protein
families, and residues with high CoC are universally conserved in every family of

homologous proteins that acquire a particular fold [27]. The CoC is a computational

prediction, and may be used to identify putative functional residues. We were interested

in comparing the predictions of CoC with voxelGrid.

When we queried CoC with 1YPI (yeast), the database returned 1AMK (Leishmania

mexicana) as the best hit. The CoC results on 1 AMK are reported based on two free

parameters: p-value and entropy cutoffs. We have chosen to use the ‘6 amino acid types'

setting, which roughly corresponds to residue groups in voxelGrid. Plots for these two

parameters with respect to residue number in 1AMK are shown in Figure 4.7.
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The entropy plot is not very informative, as it simply shows an oscillatory waveform with

eight peaks (corresponding to the eight repeated units of the TIM barrel). The p-value
plot is somewhat more informative. Using the least stringent settings (entropy: 0.9, p

value: 0.001) in the CoC database, we obtained 11 residues (colored yellow in Figure

4.8). Interestingly, the active sites of all known (■ 3/o)s barrel enzymes are located in the

B->o loops[25], but these may not be the same residues as those found by CoC.

lank lamk
intº -> *-ac numb-i tº tº unin-a-rºwn- p-value -- residue number tº eamuno-cº types

f

Figure 4.7: Entropy (left) and p-value (right) plots for 1AMK from the CoC database

CoC residues (yellow)

Closed Loop

Figure 4.8: CoC residues for 1AMK
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Since we already have an alignment between 1 AMK and 1 YPI (from Section 4.3), we
can map the CoC residue numbers listed for 1AMK onto 1 YPI, which allows us to

compare voxelGrid and CoC results:

1AMK: N11, K13, E65, L93, G94, H95, R99, C126, E167, G211, G234

1YPI: N10, K12, Q64, L93, G94, H95, R99, C126, E165, G209, G232

The l l CoC residues from 1 AMK are shown on the top line, while their corresponding
residues in 1YPI are below. We have colored the residues based on the resolution at

which we were able to pull back that residue in our voxelGrid analysis (Section 4.3): red

(N=1.0), green (N=1.5), blue (N=2.0), black (not found). Curiously E165 was not found

by voxelGrid. One possible explanation may be that the residue has moved, since 1 YPI

is open conformation while 1AMK is closed conformation.

4.5 Comparison of voxelGrid with Mutagenesis Results

4.5.1 Large scale mutagenesis of TIM residues

In their mutagenesis study, Silverman et al. [26] performed 109 unique mutations on the
yeast TIM protein and measured the resulting change in catalytic activity. The residues

that were mutated were chosen based on an examination of the MSA of 43 unique TIM
sequences from a wide range of species. The results are summarized in Table 4.5. Each

mutation is assigned to one of three categories based on the resulting decrease in apparent
kcal/KM relative to wild type. This table effectively identifies which residues in the TIM

protein are functionally significant. However, it should be noted that a few residues

appear in both ‘Not significant’ and ‘Intermediate' categories depending on the
substitution made. Furthermore, the range of values in the ‘Intermediate' category is
quite broad.

* * * *i■ .”
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Not significant' Intermediate Deficient"

R3A wg0F Y 164L 11.24v. 0.7 G87A 3.2 N213,\/N216A 130 G.228w 13300
T4A v9.1L Y164v. N35A 1 0 A201 L 3.8 G2 10,\ 150 G209-7 15000
v7L L93v. P166A A200L 1.0 H1851 3.8 G232A 180 D227L 22000

F liv 1109L T 177A F24.0L 1.1 L230 v 4.5 K 107A 210 R189M • 22000
S16A K1 120 P178A V24L 1 1 F6v. S 8 D225A 210 R189M/0227L *-22000
|20t T 113L A 181L 1243L 12 Q182A 6.3 Gºv 230
E37Q L125v D 183A D106A 12 G8V 6.3 F220L 250
v39L. 1127 v I 1841 192V 1.3 V36L 6.4 "wgov 3do
|40L T139 v | 188L 1244L 1.3 C1 2.5V. 13 G128A 340

|4 ov V142A F1911 L207 v 1.4 Al 16L 14 Y208F 1800
Y45F v14.3L 1206L C4.1V 16 G94A 20 G62V 2800

Y46L Q146L 1206V L204A 1.7 R205M 28 N 10, A 3500
S50L v150L Y208w 123L 18 V123L 39 A1 10L 4100
vs 1A v 1541. V226L 1127L 2.3 FSV 39 G122V 4900
V54L w 157F F229L diosa 2 3 v38L 39
v611 v 150L v23 1? G87L 24 A217L 57

As 3v. v 151 L G233A s?9,a 2.6 Q58v/TSQv 76
TV5V v162L $246L G120A 2.7 f229v, 76
w80L A 153v. D35n 27
183L Y 164F G 120L 2 8

Table 4.5: Results for mutagenesis of TIM residues (adapted from Silverman et al. [26])

The residue counts for the three groups listed in Table 4.5 are:

Not Significant: 58 (53 unique)

In Figure 4.9, we mapped the point mutations of Table 4.5 onto the structures of 1 YPI

(open) and 7TIM (closed). We observed that most of the mutations performed were in

the hydrophobic core, and that the majority of these had an effect (green and yellow in

the figure). This is probably what led Silverman and coworkers to conclude that ‘[i]n

contrast to the o/3 interface, residues in the central core of the 3 barrel are extremely

Intermediate: 54 (52 unique) Deficient: 4 (4 unique)

sensitive to substitution” [26]. However, we also observed that there are ‘Intermediates’

and one ‘Deficient’ residue outside of the core. This leads us to question how significant

residues in the core are compared to those not in the core. We will examine this question
in more detail in Section 4.5.3.
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Looking into barrel

Figure 4.9: Location of residues in mutagenesis experiment. Color coding based on residue
membership in Table 4.5: yellow (Deficient), green (Intermediate), purple (Not significant). Residues
not colored were not tested (i.e., not included in Table 4.5).

4.5.2 Comparing mutagenesis results with CoC and voxelGrid

4.5.2.1 Mutagenesis results and voxelGrid

voxelGrid can be used to identify promising sites for mutagenesis. We wanted to know if

these residues were more likely to be functionally significant than those Silverman et al.
selected. For each voxel size, we classified the voxelGrid hits into one of the three

categories of Table 4.5 (or not tested). The result is presented in Table 4.6. A few

residues were counted twice, as they appeared both under both the ‘Not significant’ and

‘Intermediate' categories in Table 4.5. The number of unique hits is the number in

parentheses. By N=1.5, voxelGrid is able to find all four “Deficient’ residues. This is

promising, but voxelGrid also finds many residues not listed in Table 4.5. Ideally, we
would like to know if these have an effect when mutated.

(
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Group (# Residues) N=1.0 N=1.5 N=2.0 N=2.5
Deficient (4) 2 4 4 4

Intermediate (52) 4 15 21 26
Not Significant (53) 4 17 23 32

Not in Table 4.5 6 15 20 22

Total (109) 16 51(49) 68(66) 84(82)

Table 4.6: Breakdown of voxelGrid residues based on category in mutagenesis results

4.5.2.2 Mutagenesis results and the CoC:

We have colored the 11 CoC residues based on which group they belong to in Table 4.5:
red (Deficient), green (Intermediate), blue (Not significant), black (not tested). The

results are not particularly significant, as CoC only managed to identify one ‘Deficient’
residue.

1AMK: N11, K13, E65, L93, G94, H95, R99, C126, E167, G211, G234

1YPI: N10, K12, Q64, L93, G94, H95, R99, C126, E165, G209, G232

Compared to voxelGrid, CoC made far fewer predictions, but likewise identified many
residues not listed in Table 4.5.

4.5.3 Significance of residues inside and outside the hydrophobic core
One of the chief conclusions reached by Silverman and coworkers was that residues in

the central core of the 3 barrel are extremely sensitive to substitution. We investigated
whether this conclusion could also be extended to non-core residues by removing the
core (i.e., the strands) from the structure (Figure 4.10). This allowed us to see the non

core residues whose mutations had a significant effect on enzymatic activity. To our

surprise, there are quite a few (colored red or green in Figure 4.10), including one
‘Deficient’ residue (Arg 189).
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Looking into barrel

Figure 4.10: Left:yeast TIM proteins (1YPI and 7TIM) with hydrophobic core removed. Right:
same image with residues having values greater than 10 in Table 4.5 colored in red.

This leads us to consider what fraction of voxelGrid residues belonged to the core

compared the non-core and what fraction of each were found to be significant. The
results are summarized in Table 4.7. The number of core versus non-core residues for a

cell is separated by a ‘■ ’. The total number of residues for each cell is given in

parentheses.

Group Silverman et al. N=1.0 N=1.5 N=2.0 N=2.5
core/non (total)

Deficient 3/1 (4) 2/0 (2) 3/1 (4) 3/1 (4) 3/1 (4)
Intermediate 22/30 (52) 2/2 (4) 8/7 (15) || 9/12 (21) || 1 1/15 (26)

Not Significant 21/32 (53) 3/1 (4) 9/8 (17) || 13/10 (23) | 16/16 (32)
Not in Table 4.5

-
0/6 (6) 0/15 (15) || 0/20 (20) || 0/22 (22)

Total 109 16 51(49) 68(66) 84(82)

Table 4.7: Significance of core/non-core residues identified by voxelGrid

We observed that almost all of the residues in the core were mutated, but only a little

more than half of the mutations (25) significantly decreased enzymatic activity.

Additionally, it appears that more than half of the residues classified as ‘Intermediate’ are
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actually not in the core. If we assume that the mutagenesis study identified all
functionally important residues, then these residues comprise about 10%" of the protein.

voxelGrid does find a fair number of residues that were not mutated, all of which lie

outside the core. This is interesting since these are spatially conserved in the set of

structures we examined, but were deemed to be not conserved in the MSA analysis used

to select residues for mutagenesis. The discrepancy may lie in the difference in diversity

and number of sequences (or structures examined): 43 sequences compared to 18
StructureS.

Since we do not know the significance of residues that were not mutated, we cannot

conclude whether voxelGrid performs better than Silverman et al. in selecting functional

residues. Performance appears to be comparable, though voxelGrid also has the

advantage of being automated.

"The length of IYPI is 249 amino acids, so 25/249 is roughly 10%.
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Chapter 5: Conclusion

In this study, we have described and implemented an algorithm (voxelGrid) for

identifying spatially conserved residues. The algorithm is based on binning amino acid

residues into a voxel grid, and is therefore more efficient than traditional methods based

on inter-residue distance calculations. The structure alignments used in this study were

generated through web-based alignment servers, manual alignment of known functional

residues, or Chimera bootstrapping with an MSA. Although voxelGrid's performance

depends on the quality of the set of aligned structures, it was shown to be robust to

variations among these different alignment methods.

We have reported the results of voxelGrid analysis of two diverse sets of proteins: cAMP

binding family of proteins and TIM family of proteins. For cAMP binding proteins, we

were able to recover a conserved hydrophobic residue that was not apparent from

examining the multiple sequence alignment alone. This is an example of a spatially

conserved residue that is not conserved in the corresponding MSA. We extended this

type of comparative analysis of sequence and structure alignments to TIM family of

proteins, focusing on three key aspects:

1. Spatially conserved residues not conserved in the MSA

2. Residues conserved in the MSA but not spatially conserved in the multiple

structure alignment

3. Secondary structure bias in spatially conserved residues

Additionally, our results were comparable to that of a previous large-scale mutagenesis

study in identifying functionally significant residues in TIM proteins. Lastly, we

demonstrated two further applications of our voxelGrid method: as a quantitative

measure of structure alignment quality to supplement traditionally reported RMSD values

and as a technique for characterizing information redundancy in a set of aligned

structures when used in conjunction with leave-one-out testing.
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Proposed Future Work:

One of the shortcomings of a computational study such as we have described here is the

need to verify predictions experimentally. Unfortunately, there are few large-scale

mutagenesis studies done on a specific protein (or class of proteins). This presents a

dilemma as we are unable to assess the functional significance of the residues our

algorithm identifies. Even using the extensive mutagenesis study done by Silverman et

al., we identified 22 residues which were not tested. These residues are particularly

interesting as they are spatially conserved in the set of TIM structures we examined but

were deemed to be not conserved in the MSA analysis used to select residues for

mutagenesis. In the future, we hope to collaborate with experimentalists to test the

functional significance of these residues.

Even without experimental results, voxelGrid can still be a very powerful predictive tool.

One interesting application is to search the PDB for all ligands which have at least five

structures in the database that bind to it. For each ligand and its associated binding

structures, voxelGrid analysis can be used to identify the spatially conserved residues.

We hope this will provide insight in identifying the key residues responsible for binding

of a specific ligand.
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Appendix

From Section 2.2.2:

The “residueGroups' file should contain one group per line. Each line consists of the

residues’ three-letter abbreviations separated by spaces. Comment lines are allowed and

specified with a leading ‘H’ character. Example:

# residue groups
#

# polar (subset: acidic hydrophilic)
ASP GLU TYR
#

# polar (subset: basic hydrophilic)
ARG HIS LYS
#

# polar (subset: neutral)
ASN CYS GLN HIS SER THR TRP TYR
#

# polar
ASP GLU ARG HIS LYS ASN CYS GL.N SER THR TRP TYR
#

# non-polar/hydrophobic
ALA GLY ILE LEU MET PHE PRO TRP VAL

From Section 2.3.1:

Below is an example of the two script files for visualizing voxelGrid output in Chimera.

The first file is simply a series of commands for opening the structures used and

displaying only those residues found as hits. The second file is a Python script for

displaying the voxels that enclose the spatially conserved residues found as hits. Figure

A.1 shows an example of visualizing voxelGrid output in Chimera.

open 1cx4. pab
open 1ne 6. poib
open 1g2. 3. pob
open 2 cgp. polb
~show
# Real hits below
disp #0: 380. A #1: 354. A #2: 612. A #3: 103. A
disp #0: 305. A #1: 284. A #2: 548. A #3:33. A
# Predicted hits below
disp #0:397. A #1: 371. A #2: 632. A #3: 123. A
disp #0:348. A #1: 322. A #2:580. A #3: 70. A
disp #0:321. A #1: 300. A #2:564. A #3: 49. A



-----
File for drawing voxels enclosing residues found -----

import drawbox
drawbox. drawbox ( (81.214400, 55.360000, 12.413000), (83.464400, 57. 610000, 14. 663000))
drawbox. drawbox ( (81.214400, 66. 610000, 28. 163000), (83.464400, 68.860000, 30. 413000))
drawbox. drawbox ( (90.214400, 59. 860000, 23.663,000), (92.464400, 62. 110000, 25. 913000))
drawbox. drawbox ( (90.214400, 66. 610000, 25.913000), (92.464400, 68.860000, 28. 163000))
drawbox. drawbox ( (92.464400, 68. 860000, 16. 913000), (94.714400, 71. 110000, 19. 163000))

Figure A.1: Example of visualizing voxelGrid output in Chimera

From Section 2.4.2:

PDB files written by Chimera on Windows platform:

When using Chimera to write out PDB files on the Windows platform, it is necessary to

remove the return carriage (“M”) from the end of each line before passing the files to

voxelGrid. This additional step is not necessary on any other platform, and can be done

easily using the translate command: tr—d \r' & myStruct - mystruct_noctrlM

Multiple structure alignments returned by the CE-MC web server:

The CE multiple structure alignment web server returns PDB files with a non-standard

format. It was necessary to remove an extra column in the residue number field (which

should be columns 23-26). This was done using a simple Python script. Afterwards, we

still had to unpack the single PDB file into separate files for each structure.
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