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Abstract

Topics in Signature, Directed Chain SDEs and Applications in Machine Learning

by

Ming Min

Stochastic analysis, stochastic processes and machine learning of dynamical systems

have depicted strong connection in many aspects. This thesis aims to study such re-

lationship from two directions. The first direction is using signature and deep learn-

ing techniques to propose efficient algorithm learning Mean Field Games with common

noises. The second direction deploy the distributional invariance property of directed

chain stochastic differential equations to design a novel time series generator with excel-

lent simulation ability.

In the first part, we introduce signature, borrowed from Rough Paths theory, as an

efficient feature extraction technique and propose a novel algorithm to address the curse

of dimensionality issue.

In the second part, we propose an application of signature. In the problem of learn-

ing Mean Field Games with common noises, traditional algorithms admit a nested loop

structure due to the appearance of individual and common noises. Our proposed al-

gorithm (Sig-DFP), utilize the universality property of signatures, has only single loop,

which improves the efficiency from quadratic to linear in both time and space complexity.

In the third part, we first study smoothing property of directed chain stochastic

differential equations via partial Malliavin calculus, and then propose a novel generative

adversarial network based time series generator. We also point out the independence

issue of this directed chain generator, and solve it via branching scheme.
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Chapter 1

Introduction

1.1 Motivation

The emergence of machine learning has increasingly great impact to scientific re-

search. With strong power, machine learning techniques (Deep Learning, Reinforcement

Learning, Gaussian Process, Kernel Methods etc.) have been applied to solve scientific

computing problems successfully that were difficult to solve in the past. As an essential

field of machine learning, dynamical system analysis is naturally closely connected to

stochastic processes and stochastic analysis, which are important components of theo-

retical probability that plays an important role as the theoretical support of machine

learning algorithms.

On one hand, stochastic analysis provide numerous applications to propose and exam

novel machine learning methods for dynamical systems. Recurrent neural networks, neu-

ral differential equations and reinforcement learning have been applied to solve Stochastic

Control and Mean Field Game (MFG) problems; Gaussian Process have been imple-

mented in pricing American option that is also known as free boundary problem; Solving

high dimensional parabolic partial differential equations, which is equivalent to a cor-
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Introduction Chapter 1

responding high dimensional stochastic control problem, has draw great attentions in

recent years and are solved by deep backward stochastic differential equations(BSDE)

algorithm; In [63], deep neural network is used to approximate the Radon-Nikodym

derivative in the problem of systemic risk measures to find the optimal Q-measure.

On the other hand, stochastic analysis and theory provides many well studied mod-

els that turns out to be excellent machine learning algorithms. Rough paths theory

introduces neural rough differential equations(neural RDE) as an extension of neural or-

dinary differential equations(neural ODE) to simulating the dynamical system; signature,

a crucial object from Rough paths theory, can be treated as an efficient feature extraction

tool for time series; stochastic differential equations inspired researchers to develop neural

SDE, again an extension of neural RDE and neural ODE, to better simulate dynamical

systems with high volatility such as stock prices. Indeed, the mentioned deep BSDE

solver is supported by the BSDE theory designed as pure probabilistic object.

The machine learning algorithms of dynamical system and stochastic analysis depicts

strong bond as shown in the above examples. In this thesis, we follow this idea as our

backbone. Firstly, we introduce Rough paths theory in its lightest version and signature.

We then point out that signature suffers the curse of dimensionality and propose our

novel convolutional neural network based algorithm to address this problem.

Secondly, we investigate another application of signature: In learning Mean Field

Games with common noises, all existing algorithms suffer from the quadratic complexity

issue because of the appearance of both individual and common noises. With the favor

of signature, we propose a linear complexity algorithms for learning MFG with common

noises.

Thirdly, we theoretically study smoothing property of directed chain stochastic dif-

ferential equations(directed chain SDE) via partial Malliavin calculus. Driven by the

distribution invariance property of directed chain SDE, we design a novel time series

2



Introduction Chapter 1

generator named after directed chain GAN and justify its superiority by both synthetic

and real world datasets.

1.2 Originality, Contribution Summary and Open Ques-

tions

The content of this thesis is either my original work with collaborators, or relevant

prior or concurrent work included for reference.

1. The partial content of Chapter 2 is the result of a collaboration with Dr. Tomoyuki

Ichiba, and has previously appeared in [121] entitled as “Convolutional Signature

for Sequential Data”.

2. The content of Chapter 3 comes from the collaboration with Dr. Ruimeng Hu, and

has previously appeared in [119] entitled as “Signatured Deep Fictitious Play for

Mean Field Games with Common Noises”.

3. The content of Chapter 4 is the result of a collaboration with Dr. Tomoyuki

Ichiba, Ruimeng Hu and has previously appeared in [83] entitled as “Smoothness

of Directed Chain Stochastic Differential Equations” and [120] entitled as “Directed

Chain Generative Adversarial Networks”.

In ”Convolutional Signature for Sequential Data“, we proposed a algorithm (CNN-

Sig) to address the well known curse of dimensionaly issue in using signature as feature

map for high-dimension time series data. Our technique considers using convolutional

layer and is purely data-driven. We examined the feasibility of our algorithms on several

high-dimension datasets, including NLP dataset of IMDB reviews.

3
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In “Signatured Deep Fictitious Play for Mean Field Games with Common Noises”,

we took advantage of the universality property of signatures and fictitous play scheme

to designed a novel algorithm (Sig-DFP) for solving Mean Field Games with common

noises. Our algorithm dramatically improves the complexity by one order, quadratically

to linearly, and is tested on multiple cases, including heterogeneous extended form Mean

Field Games.

In “Smoothness of Directed Chain Stochastic Differential Equations”, we proved the

existence and smoothness of the density of directed chain SDEs via partial Malliavin

Calculus. Based on these results, we derived partial differential equations associated

with directed chain SDEs.

In “Directed Chain Generative Adversarial Networks”, we proposed a time series

generator based on the idea of directed chain SDEs and showed its advantage through

several experiments. Using the previous theoretical work as a toolbox, we proved the

expressiveness and dependence decay property of the propsed generator.

Building upon our works, we list two open questions as our future research directions.

1. From the results of smoothness of directed chain SDEs, can we generalize the results

to the solutions of stochastic differential game problem built on directed chain

system proposed in [59]? If the answer is positive, we may use partial differential

equation approach (eg. master equations) to solve the game problem, instead of

probabilisitc approach used in [59]. There still exists some gaps between our work

and the game problem in [59]. The infinite player game problem admits solution

of the form that each player has dependence on all the players to infinite along the

direction of the chain. However, our approach is suitable for the case that the each

player has dependence only on a bounded number of his/her neighborhoods. The

difficulty here is how to extend our approach from finite to infinite dependences.

4
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2. Data privacy has become a common concern along with the development of artificial

intelligence. One open problem inspired by directed chain SDEs is that can we use

it as a time series generator to address data privacy problems? For instance, what

is the performance of using directed chain SDEs to generate fake healthy data?

Can we protect users data if the directed chain SDEs generator is embedded into

the machine learning application pipelines? The answers to these questions could

drive widespread applications of directed chain SDEs.

5



Chapter 2

Signature

2.1 Signature and Geometric Rough Paths

Let us introduce some backgrounds in order to explain the signature method, following

[115]. Given a Banach space E with a norm ∥ · ∥, we define the tensor algebra

T ((E)) := {(ai)i≥0 : ai ∈ E⊗i for every i} (2.1)

associated with the sum + and with the tensor product ⊗ defined by

(ai)i≥0 + (bi)i≥0 := (ai + bi)i≥0, (ai)i≥0 ⊗ (bi)i≥0 := (ci)i≥0,

where the jth element cj :=
∑j

k=0 ak ⊗ bj−k is the convolution of the first j elements of

(ai)i≥0 and (bi)i≥0 in T ((E)). Similarly, let us define its subset

T (E) := {(ai)i≥0 : ai ∈ E⊗i and ∃N ∈ N such that ai = 0 ∀i ≥ N} (2.2)

6



Signature Chapter 2

of T ((E)) for those with finite number of non-zero elements. Note that T (E) ⊂ T ((E)) .

Also, we shall consider the truncated tensor algebra of order m ∈ N, i.e.,

Tm(E) := {(ai)mi=0 : ai ∈ E⊗i for ∀i ≤ m}, (2.3)

which is a subalgebra of T ((E)). Then as we shall see, the signatures and the m-th order

truncated signatures lie in these spaces T ((E)) and Tm(E), respectively.

Now with E := Rd and the usual Euclidean norm ∥·∥, we shall define the space

Vp([0, T ], E) of the d-dimensional continuous paths of finite p-th variation over the time

interval [0, T ] and the signatures of the paths in Vp([0, T ], E).

Definition 2.1.1 (The space of finite p-variation paths) Fix p ≥ 1 and the inter-

val [0, T ] . The p-variation of a d-dimensional path X : [0, T ] → E := Rd is defined

by

∥X∥p :=

(
sup

Dn⊂[0,T ]

n−1∑
i=0

∥Xti+1
−Xti∥p

)1/p

.

Here, the supremum is taken over all the possible partitions of the form Dn := {ti}1≤i≤n

of [0, T ] with 0 = t0 < t1 < · · · < tn ≤ T , n ≥ 1 . X is said to be of finite p-variation, if

∥X∥p < ∞. We denote the set of continuous paths X : [0, T ] → E of finite p-variation

by Vp([0, T ], E).

We use the supremum norm ∥·∥∞ for continuous functions on [0, T ] , i.e., ∥f∥∞ :=

supx∈[0,T ]|f(x)|. It can be shown that if we equip the space Vp([0, T ], E) with the norm

∥X∥Vp([0,T ],E) := ∥X∥p + ∥X∥∞, then Vp([0, T ], E) is a Banach space. Now the signature

and truncated signature are defined as follows.

Definition 2.1.2 (Signatures) The signature S(X) of a path X ∈ Vp([0, T ], E), p ≥ 1

7



Signature Chapter 2

is defined by S(X) := (1, X1, X2, ...) ∈ T ((E)), where the k-th element

Xk :=

∫
· · ·
∫
0<t1<···<tn<T

dXt1 ⊗ · · · ⊗ dXtn ∈ E⊗k (2.4)

is the k-fold, iterated integral for k ≥ 1, if the iterated integrals are well defined.

The truncated signature is naturally defined as Sm(X) := (1, X1, X2, ..., Xm) ∈ Tm(E)

for every m ≥ 1 including the 0-th term S0(X) = 1 .

Remark 2.1.3 The integrals in (2.4) depend on the nature of the paths. Here are some

typical examples:

1. If X is of 1-variation path, then the integrals (2.4) of the signature can be understood

as the Stieltjes integral;

2. If X is of p-variation path with 1 < p < 2, then it can be defined in the sense of

Young (e.g., see [114]).

3. If X is a Brownian motion, then we can use the Itô integral or the Stratonovtich

integral. As we will explain later, when extending from a Brownian motion path or

a semimartingale to a geometric rough path, we choose the Stratonovitch integral

rather than the Itô integral.

Example 2.1.4 (Smooth paths and piece-wise linear paths) For p ≥ 1 the path

space Vp([0, T ], E) contains the smooth functions and the piece-wise linear functions. We

give the following two examples of paths in Vp([0, T ], E), as shown in Figure 2.1. In its

left panel, we plot the smooth path Xt = (t, (t − 2)3), t ∈ [0, 4]. In its right panel, we

represent the discrete data: daily AAPL adjusted close stock price from Nov 28, 2016 to

Nov 24, 2017 by interpolating the path linearly between each successive two days. The

first 2 degree signatures X1 and X2 of these two paths in (2.4) are calculated and given

in Table 2.1.

8
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X (t, (t− 2)3) AAPL
X1 (4, 16) (1, 65.52)

X2

(
8 32
32 128

) (
0.5 31.17
34.00 2123.3

)
Table 2.1: The corresponding signatures for the smooth path (t, (t − 2)3) and the
piece-wise linear path of the augmented AAPL adjusted price in Figure 2.1, respec-
tively.

(a) Smooth path (b) Piecewise linear path

Figure 2.1: Examples of Vp([0, T ], E), p ≥ 1: (a) Plot of a smooth path
Xt = (t, (t − 2)3), t ∈ [0, 4]. (b) Plot of linear interpolation of daily AAPL adjusted
close stock price from Nov 28, 2016 to Nov 24, 2017.

Geometric Rough Paths and Linear Functionals

Here we introduce rough paths and geometric rough paths briefly, following [114, 115,

64]. Denote by ∆T the simplex {(s, t) ∈ [0, T ]2 : 0 ≤ s ≤ t ≤ T}, set E = Rd and hence

T n(Rd) =
⊕n

k=0(Rd)
⊗
k the truncated tensor algebra.

Definition 2.1.5 (Multiplicative Functional) Let X : ∆T → T n(Rd), with n ≥ 1 as

an integer. For each (s, t) ∈ ∆T , Xs,t denotes the image of (s, t) under the mapping X,

and we write

Xs,t = (X0
s,t,X

1
s,t, . . . ,X

n
s,t) ∈ T n(Rd).

The function X is called a multiplicative functional of degree n in Rd if X0
s,t = 1 for all

9
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(s, t) ∈ ∆T and

Xs,u ⊗Xu,t = Xs,t, ∀s, u, t ∈ [0, T ], s ≤ u ≤ t, (2.5)

which is called Chen’s identity.

Rough paths will be defined as a multiplicative functional with extra regularization con-

ditions.

Definition 2.1.6 (Control) A control function on [0, T ] is a continuous non-negative

function ω on the simplex ∆T which is supper-additive in the sense that

ω(s, u) + ω(u, t) ≤ ω(s, t) ∀ 0 ≤ s ≤ u ≤ t ≤ T.

It is easy to see that ω(t, t) = 0 for any control ω. In the following, we use the notation

x! = Γ(x+ 1), where Γ(·) is the Gamma function and x is a positive real number.

Definition 2.1.7 Let p ≥ 1 be a real number and n ≥ 1 be an integer. Denote ω : ∆T →

[0,+∞) as a control and X : ∆T → T n(Rd) as a multiplicative functional. Then we say

that X has finite p-variation on ∆T controlled by ω if

∥Xi
s,t∥ ≤ ω(s, t)

i
p

β( i
p
)!

∀i = 1, . . . , n, ∀(s, t) ∈ ∆T , (2.6)

where ∥ · ∥ is the tensor norm induced by the norm on Rd. We will call that X has finite

p-variation in short if there exists a control ω such that (2.6) is satisfied.

Note that in (2.6), β is a constant depending only on p. We are now ready to define

the rough paths.

Definition 2.1.8 (Rough Path) Let p ≥ 1 be a real number. A p-rough path in Rd

is a multiplicative functional of degree ⌊p⌋ with finite p-variation. The space of p-rough

paths is denoted by Ωp(Rd).

10
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Given a continuous path X : [0, T ] → Rd with bounded p-variation, one can construct a

⌊p⌋-rough path X with X1
s,t = Xt −Xs for any s ≤ t. In particular, truncated siganture

S⌊p⌋(X) ∈ T ⌊p⌋(Rd) is a p-rough path. The following fundamental theorem of rough paths

allows us to make extension of a p-rough path,

Theorem 2.1.9 (Extension Theorem, [114]) Let p ≥ 1 be a real number and n ≥ 1

an integer. Denote X : ∆T → T n(Rd) as a multiplicative functional with finite p-variation

controlled be a control ω. Assume that n ≥ ⌊p⌋, then there exists a unique extension of

X to a multiplicative functional ∆T → T ((Rd)) which possesses finite p-variation.

More precisely, for every m ≥ ⌊p⌋ + 1, there exists a unique continuous function

Xm : ∆T → (Rd)
⊗
m such that

(s, t) → Xs,t =
(
1,X1

s,t, . . . ,X
⌊p⌋
s,t , . . . ,X

m
s,t, . . .

)
∈ T ((Rd))

is a multiplicative functional with finite p-variation controlled by ω. By this we mean that

∥Xi
s,t∥ ≤ ω(s, t)

i
p

β( i
p
)!

∀i ≥ 1, ∀(s, t) ∈ ∆T . (2.7)

Signature can be seen as an extension of rough path, and its factorial decay property

follows by (2.7). The control function is related to p-variation of path. Given that

x ∈ Vp([0, T ],Rd), S⌊p⌋(x) is a p-rough path and one candidate for its control function is

ω(s, t) =

⌊p⌋∑
i=1

sup
D⊂[s,t]

∑
k

∥xitk+1
− xitk∥

p/i, (2.8)

where the norm is the tensor norm induced by Euclidean norm in Rd.

Let S⌊p⌋(Ω1) = {S⌊p⌋(x) : x ∈ Ω1(Rd)}, and Y be a p-rough path. We call Y a

p-geometric rough path if Y is in the closure of S⌊p⌋(Ω1) under p-variation metric, where

11
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p-variation metric is given by

dp-var(X,Y) :=

(
sup
D

∑
ti∈D

∥Xti,ti+1
−Yti,ti+1

∥p
)1/p

, X,Y ∈ Ωp(Rd). (2.9)

Instead of T ((E)) in (2.1), the p-rough paths and the geometric p-rough paths are

objects in T ⌊p⌋(E) in (2.3) for some real number p (≥ 1). The Extension Theorem 2.1.9

stated above implies that there exists a continuous unique lift from T ⌊p⌋(E) to T ((E)).

This lift is made in an iterated integral, and consequently, it gives us the signature of

rough paths.

We denote the space of the p-rough paths by Ωp. The space GΩp of the geometric

p-rough paths is defined by the p-variational closure (cf. [115] Chapter 3.2) of S⌊p⌋(Ω1).

For a path X : [0, T ] → Rd with the bounded p-variation, the truncated signature belongs

to the space of the p-rough paths, i.e., S⌊p⌋(X) ∈ Ωp. If X is of bounded 1-variation,

then the truncated signature belongs to the space of the geometric p-rough paths, i.e.,

S⌊p⌋(X) ∈ GΩp for any p (≥ 1).

It is manifested that the signature enjoys many nice properties. For example, signa-

ture characterizes paths up to tree-like equivalence [13] that are parametrization invari-

ant. Here is a precise statement.

Proposition 2.1.10 (Parametrization Invariance, Lemma 2.12 of [108]) Denote

X : [0, T ] → Rd a path with bounded variation and ψ : [0, T ] → [0, T ] a reparametrization

of the time parameter. If we define X̃ by X̃t := Xψ(t), then each term in S(X̃) is equal

to the corresponding term in S(X), i.e. S(X̃) = S(X).

Moreover, if there exists a monotone increasing dimension in the path with bounded

variation or geometric rough path, we can get rid of tree-like equivalence [13, 71, 108].

Also, it is easy to specify one path among the parametrization invariance by adding
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timestamps. In other words, provided that an extra time dimension included, signature

characterize geometric rough path uniquely. Another useful fact from rough path theory

[39, 114] is that signature terms enjoy a factorial decay as the depth increases, which

makes truncating signature reasonable. The following remark shows an example of the

factorial decay for bounded 1-variation paths.

Remark 2.1.11 (Factorial Decay, Proposition 2.2 of [115]) Let X : [0, T ] → Rd

be a continuous path with bounded 1-variation, then for every k ≥ 1

∥∥∥∥∥∥
∫

· · ·
∫

0≤t1<···<tk≤T

dXt1 ⊗ · · · ⊗ dXtk

∥∥∥∥∥∥ ≤ ∥X∥k1
k!

, (2.10)

where ∥ · ∥ is the tensor norm.

All these properties motivate us to use the signature as a feature map in Data Science.

We shall then define the linear forms on the signatures.

For simplicity, let us fix E = Rd, and let {ei}di=1 ({e∗i }di=1, respectively) be a basis of

Rd (a basis of the dual space (Rd)∗ of Rd, respectively). For every n ∈ N and indexes

(i1, . . . , in) ∈ {1, . . . , d}n, (e∗i1 ⊗ · · · ⊗ e∗in) can be naturally extended to (E∗)⊗n with the

basis (e∗I = e∗i1 ⊗· · ·⊗ e∗in), and we call I = i1 · · · in a word of length n. The linear actions

of (E∗)⊗n on E⊗n extends naturally a linear mapping (E∗)⊗n → T ((E))∗ by

e∗I(a) := e∗I(an), (2.11)

for every word I and every element a = (a0, a1, . . . , an, . . . ) ∈ T ((E)).

Let A∗ be the collection of all words of length n for all n ∈ N. Then {e∗I}I∈A∗ forms

a basis of T (E∗) = T ((Rd)∗). Let I, J ∈ A∗ be two words of lengths m and n with

I = i1 · · · im and J = j1 · · · jn, respectively. We say a permutation σ in the symmetric

13
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group Gm+n of {1, . . . ,m + n} is a shuffle of {1, . . . ,m} and {m + 1, . . . ,m + n}, if

σ(1) < · · · < σ(m) and σ(m + 1) < · · · < σ(m + n). We denote the collection of all

shuffles of {1, . . . ,m} and {1, . . . , n} by Shuffles(m,n).

Definition 2.1.12 (Shuffle Product) For every pair I = i1 · · · im, J = j1 · · · jn of

words of length m and n, the shuffle product e∗I � e∗J of e∗I and e∗J is given by

e∗I � e∗J :=
∑

σ∈Shuffles(m,n)

e∗(kσ−1(1)···kσ−1(m+n))
, (2.12)

where k1 · · · km+n = i1 · · · imj1 · · · jn.

Denote T ((Rd))∗ as the space of linear forms on T ((Rd)) induced by T ((Rd)∗). The

shuffle product between f, g ∈ T ((Rd))∗ denoted by f � g can be defined via natural

extension of (2.12), by the bi-linearity of �. It can be shown that T ((Rd))∗ is an alge-

bra equipped with shuffle product and element-wise addition restricted to the geometric

rough path space S(Vp([0, T ],Rd)), see Theorem 2.15 of [115]. The following proposition

motivates us to use the signature as a feature map.

Proposition 2.1.13 (Universal Approximation) Fix p ≥ 1, a continuous function

f : Vp([0, T ],Rd) → R of finite p-variation, and a compact subset K of Vp([0, T ],Rd). If

S(x) is a p-geometric rough path for each x ∈ K, then for every ϵ > 0, there exists a

linear form lϵ ∈ T ((Rd))∗, such that

sup
x∈K

|f(x)− ⟨lϵ, S(x)⟩| < ϵ. (2.13)

Proof: The proof follows directly from the uniqueness of signature transform for

geometric rough paths and the Stone-Weierstrass theorem. See [113] and Theorem 4.2

14
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in [7] for more details.

Remark 2.1.14 (A curse of dimensionality) By Definition 2.1.2, the truncated sig-

nature Sm(X) has a total of dm :=
∑m

k=0 d
k = (dm+1 − 1)/(d− 1) many terms for

m ≥ 0. The signature transform is an efficient feature reduction technique, when we

have the d dimensional path sampled with high frequency in time. However, when the di-

mension d is large, the number of signature terms to be computed increases exponentially

fast and makes the signature not easily applicable in practice.

To our best knowledge at this time, only [91] and [141] introduce new algorithms

of calculating the kernel of the signatures and [143] discuss the application of the ker-

nel methods to fix this high dimensional problem. We introduce Convolutional Neural

Network (CNN) to solve this problem in Section 2.3.

2.2 Classification via Signature

Before we discuss the convolutional neural network in Section 2.3, we consider the

application of the signatures to classification problems. In classification problems, we

estimate the probability of an object belonging to each class. This estimation problem

for the sequential data classification can be solved via the signature.

On a probability space (Ω,F ,P) consider k classes, class 1, class 2, . . . , class k, and

n paired independent data (xi, yi)1≤i≤n, where each xi : [0, T ] → Rd is the path data

and the corresponding label yi ∈ {1, . . . , k} is the class which xi belongs to. We assume

that the labels y1, . . . , yn are sampled from a common distribution and the conditional

probability P(xi ∈ · | yi) of xi, given the class yi, is a common probability distribution for

i = 1, 2, . . . , n. Since we often observe the path dataset at discrete time stamps and we

use piece-wise linear interpolations to connect among them, it is reasonable to assume
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that each path x in the dataset is of bounded 1-variation. Hence, its signature S(xi) is

a geometric 1 rough path.

Definition 2.2.1 (Classification problem) Our sequential classification problem is stated

as follows: given training data (xi, yi)1≤i≤n, derive a classifier g for predicting the labels

for unseen data (x, y). Let pj(x) := P(y = j|x) for j = 1, . . . , k. Our goal is to estimate

these conditional probability pj(x) by p̂j(x) for the path x of bounded 1-variation and

classify x in the class argmaxj p̂j(x) for j = 1, . . . , k as accurate as possible.

Since the signature S(x) of x determines the path x uniquely, it is reasonable to

consider the signature S(x) and a nonlinear continuous function g : T ((Rd)) → [0, 1]k,

such that

g(S(x)) = (p̂1(x), . . . , p̂k(x))
T , (2.14)

where p̂j’s are estimator of pj’s, subject to
∑k

j=1 p̂j(x) = 1. Here, T represents the

transpose of the vector.

For practical use, we use the truncate signature transforms, thanks to the factorial

decay property (Remark 2.1.11) of the signature. With the truncation depth m, we

obtain the estimate

g(Sm(x)) = (p̂1(x), . . . , p̂k(x))
T , (2.15)

where g : Tm(Rd) → [0, 1]k is a nonlinear continuous function, and then the predicted

label is given by

ŷ = argmax
j

p̂j(x). (2.16)

Definition 2.2.2 (Signature Classifier) We call h : T ((Rd)) → [0, 1] of the form

(2.14) a signature classifier, where T ((Rd)) is the tensor algebra and h is a nonlinear

continuous function. Naturally, a truncated signature classifier of degree m ∈ N is h :

Tm(Rd) → [0, 1] of the form (2.15).
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In the simple case with only 2 classes, class 0 and class 1, we consider the following

concentration inequalities for classification via signature. We first restate the classifica-

tion problem for the two classes. Suppose we have the pairwise, independent, identically

distributed samples (X1, Y 1), . . . , (Xn, Y n) where Y i ∈ {0, 1} and X i ∈ V1([0, T ],Rd).

Let h : V1([0, T ],Rd) → {0, 1} be a classifier. The training error R̂n(h) and the true error

R(h) are defined by

R̂n(h) =
1

n

n∑
i=1

I(Y i ̸= h(X i)) , and R(h) = P(Y ̸= h(X)). (2.17)

Here, I(·) is the indicator function. Correspondingly, R(h) = P(Y ̸= I(h(X) > 0.5))

and R̂n(h) =
1
n

∑n
i=1 I(Y

i ̸= I(h(X i) > 0.5)). We shall see that R̂n(ĥ) := infh∈H R̂n(h)

is close to R(h∗) := infh∈HR(h), where H is the collection of the signature classifiers and

we assume that h∗ ∈ H. Denote the set

E := {sup
h∈H

|R̂n(h)−R(h)| ≤ ϵ}

to be the event that the training error R̂n(h) is close to the true error R(h) for all

classifiers h ∈ H in the range of ε, given a fixed ε > 0.

From now on, we assume H is a compact set of truncated signature classifiers of degee

m equipped with metric ρ. The following definition comes from [147].

Definition 2.2.3 (δ-net and covering number) A set H is called a δ-net for (H, ρ)

if for every h ∈ H, there exists π(h) ∈ H such that ρ(h, π(h)) < δ. The smallest

cardinality of a δ-net for (H, ρ) is called the covering number

N(H, ρ, δ) := inf{|H| : H is a δ-net for (H, ρ)}. (2.18)

In our case, we may take the uniform norm ρ, for example. Indeed, by the Ascoli-
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Arzelà theorem, we only need H to be equicontinuous to make it compact, and hence

Nδ := N(H, ρ, δ) is always finite for any δ > 0. Let Hδ be a δ-net of H with cardinality

Nδ.

Theorem 2.2.4 For every ϵ > 0, ϵ0 > 0, there exist δ > 0 and a corresponding finite

covering number Nδ, such that

P(sup
h∈H

|R̂n(h)−R(h)| > ϵ) ≤ 2Nδ e
−2nϵ + ϵ0. (2.19)

Proof: Take a δ-net Hδ of H with cardinality Nδ. By the Markov inequality and

the definition of the covering number, we have

P( sup
h∈Hδ

(R̂n(h)−R(h)) > ϵ) ≤ e−tϵE[ sup
h∈Hδ

et(R̂n(h)−R(h))]

≤ Nδe
−tϵ sup

h∈Hδ

E[et(R̂n(h)−R(h))].

Since R̂n(h) is the sum (2.17) of independent random variables, by Hoeffding’s inequality

[78], we have e−tϵE[et(R̂n(h)−R(h))] ≤ e−2nϵ for h ∈ Hδ, t ≥ 0 and n ≥ 1. Hence, for every

n ≥ 1 and δ-net Hδ of H, we have

P( sup
h∈Hδ

(R̂n(h)−R(h)) > ϵ) ≤ Nδe
−tϵ sup

h∈Hδ

E[et(R̂n(h)−R(h))] ≤ Nδe
−2nϵ.

By a similar argument, we also have P(suph∈Hδ
(R(h)− R̂n(h)) > ϵ) ≤ Nδe

−2nϵ for every

n ≥ 1 and δ-net Hδ of H.

Combining the above two inequalities, we obtain that for every n ≥ 1 and δ-net Hδ

of H

P( sup
h∈Hδ

|R̂n(h)−R(h)| > ϵ) ≤ 2Nδe
−2nϵ.

By approximating the supremum over H by the supremum over the sets Hδ with cardi-
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nality Nδ, that is,

P(sup
h∈H

|R̂n(h)−R(h)| > ϵ) = lim
δ→0

P( sup
h∈Hδ

|R̂n(h)−R(h)| > ϵ),

we conclude (2.19) that for any ϵ0 > 0, there exits a δ > 0,

P(sup
h∈H

|R̂n(h)−R(h)| > ϵ) < P( sup
h∈Hδ

|R̂n(h)−R(h)| > ϵ) + ϵ0

≤ 2Nδe
−2nϵ + ϵ0.

By Theorem 2.2.4, the event E holds with high probability provided that n is sufficiently

large. On the set E , we have by definitions

R(h∗) ≤ R(ĥ) ≤ R̂n(ĥ) + ϵ ≤ R̂n(h∗) + ϵ ≤ R(h∗) + 2ϵ. (2.20)

Thus, it follows that |R(ĥ) − R(h∗)| ≤ 2ϵ on the set E . Thus, on E , the best empirical

signature classifier ĥ is close to the best true signature classifier h∗ as in (2.20). The

connection between signature classifier and general classifier can be constructed by the

uniqueness of the signature transform.

This covering number Nδ in Definition 2.2.3 plays an essential role here. The study

of the covering number N(H, ρ, δ) for the compact set H of the truncated signature

classifiers is still in progress. If we can quantify this number, then the number of training

samples n needed for fixed error can be calculated from (2.19).

Example 2.2.5 (GARCH time series) We give an example of two classes of time

19



Signature Chapter 2

series, {xn}Nn=1, generated by GARCH(2,2) model. The time series are given by

xnk = σkϵk,

σ2
k = w +

2∑
i=1

αix
n
k−i +

2∑
j=1

βjσ
2
k−j,

where w > 0, αi ≥ 0, βj ≥ 0 and ϵk’s are I.I.D. standard normal distributed. Denote

α = (α1, α2) and β = (β1, β2). 2 classes of GARCH time series are generated by setting

parameters in Table 2.2.

class w α β
1 0.5 (0.4, 0.1) (0.7, 0.5)
2 0.2 (0.8, 0.5) (0.4, 0.1)

Table 2.2: Parameters for GARCH(2,2) time series.

For paths xn generated by the first row parameters in Table 2.2, we label yn = 1 (class

1), for the rest paths xn generated by the second row parameters in Table 2.2, we label

them by yn = 2 (class 2). Thus, we generate paired data {(xn, yn)}Nn=1.

Remark 2.2.6 It is important to note that we cannot directly apply Proposition 2.1.13

here, because this p(x) may not be continuous in x. Intuitively, it is better to add non-

linearity on classifier h(·). The experiment in Section 2.3.3 verifies this intuition.

In practice, the signature classifier (2.15) and its truncation (2.16) can be applied to

find the classification model g(·) to estimate ŷ in other contexts. In Section 2.3.3, we

shall apply the logistic regression to Example 2.2.5, and the result shows that the use of

the truncated signature to classify this GARCH(2,2) time series is significantly efficient.
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2.3 Convolutional Signature for High Dimensional

Sequential Data

The main goal of this section is to introduce the Convolutional Signature (CNN-

Sig) model. As we have seen in Remark 2.1.14, the truncated signature suffers from the

exponential growth of the number dm of terms, when the dimension d is large, and in this

case both space and time complexity increase dramatically. We will use Convolutional

Neural Network (CNN) to reduce this exponential growth to at most linear growth.

CNN has been mostly used in analyzing visual imagery, where it takes advantage of

the hierarchical patterns in image and assembles complex patterns by focusing on many

small pieces of the picture. Convolutional layer convolves the input data with a small

rectangular kernel, and the output data can be masked with an activation function. As

there are some patterns between channels of a path, this motivates us to consider the

signature with CNN to address the high dimensional problem.

Before introducing the CNN-Sig model, we shall explain that the signature transform

can be viewed as a layer in the deep neural network model.

2.3.1 Signature as a Layer

Signature transform can be viewed as a layer in deep neural networks and this is

firstly proposed in [86]. In the background of Python package signatory [88], signature

transform takes input tensor of shape (b, n, d), corresponding to a batch of size b of paths

in Rd with n observing points at times {tj}nj=1, and returns a tensor of shape (b,dm) or a

stream like tensor of shape (b, n,dm), where dm is defined in Remark 2.1.14. Usually it

omits the first term 1 of the signature transform. Since the signature is also differentiable

numerically with respect to each data points, the backpropagation calculation is available.
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In this way, the signature can be viewed as a layer in neural network.

2.3.2 Convolutional Signature Model

CNN, which has been proved to be a powerful tool in computer vision, is an efficient

feature extraction technique. This idea has been used in [111] as well as the “Augment”

module [88] (but only 1D CNNs are used). There are two cases of using 1D CNNs. The

first case is to extract new sequential features of original paths and then paste them to the

original path as extra dimensions. This method is not helpful in the high dimensional

case and causes extra difficulty. The second case is that we use extracted sequential

features directly from the 1D CNN. It works as a dimension reduction technique but the

challenge is that it causes loss of information.

With the favor of the 2D CNN, we are able to reduce the number of signature features

and capture all information in the original path at the same time. Since the convolution

here is different from the convolution concept in mathematics, we define it and present

Example 2.3.2 to show the computational details for those who are not so familiar with

CNN.

Definition 2.3.1 (2D Convolution) Let ∗ be an operation of element-wise matrix mul-

tiplication and summation between two matrices of the same shape, that is,

A ∗B =
m∑
i=1

n∑
j=1

ai,jbi,j, (2.21)

where A := (ai,j)1≤i≤m,1≤j≤n and B := (bi,j)1≤i≤m,1≤j≤n of the same size. Suppose the

input tensor is M := (Mi,j)1≤i≤I,1≤j≤J , a kernel window K := (ki,j)1≤i≤m,1≤j≤n and a

stride window (s, t). The output O := (op,q) of 2D convolution is given by

op,q := (Mi,j)1+(p−1)s≤i≤m+(p−1)s,1+(q−1)t≤j≤n+(q−1)t ∗K. (2.22)

22



Signature Chapter 2

The shape of the output O depends on how we treat the boundary specifically and

does not play a crucial role here.

Example 2.3.2 (2D Convolution) Let us consider a tensor M := (Mi,j)1≤i,j≤5 and a

kernel window K := (ki,j)1≤i,j≤3,

M :=



2 1 0 2 0

0 1 2 2 1

0 0 0 1 1

2 0 0 2 2

0 2 0 1 1


, and K :=


0 1 0

1 0 −1

−1 −1 −1

 , respectively,

and a stride window (1, 1). The output will be a 3×3 tensor, denoted by O = (oij)1≤i,j≤3,

where each element oi,j of O is given by the element-wise multiplication and summation

of

M̃ i,j := (Mk,ℓ)i≤k≤i+2,j≤ℓ≤j+2

and K, i.e., oi,j = M̃ i,j ∗K for 1 ≤ i, j ≤ 3. For example,

o11 =


2 1 0

0 1 2

0 0 0

 ∗


0 1 0

1 0 −1

−1 −1 −1

 = 2 · 0 + 1 · 1 + 0 · 0 + · · ·+ 0 · (−1) = −1,

o12 =


1 0 2

1 2 2

0 0 1

 ∗


0 1 0

1 0 −1

−1 −1 −1

 = 1 · 0 + 0 · 1 + 2 · 0 + · · ·+ 1 · (−1) = −2,
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o13 =


0 2 0

2 2 1

0 1 1




0 1 0

1 0 −1

−1 −1 −1

 = 1, o21 =


0 1 2

0 0 0

2 0 0




0 1 0

1 0 −1

−1 −1 −1

 = −1,

and so on. Therefore, the output O is given by

O =


−1 −2 1

−1 −1 −1

0 −5 −3

 .

The Convolutional Signature model uses the 2D CNN before the signature transform,

and the structure of the convolutional signature model can be described in Figure 2.2.

The convolution is implemented in channels. Since the signature is efficient in the time

direction, we do not have to convolute the time direction.

Figure 2.2: Convolutional neural network and signature transform connected by Φ.
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Number of Features

Suppose c (≤ d) is an integer such that d is divisible by c and let us fix the ratio

γ = d/c ∈ N. For the sake of simplicity of explanations, we set the number of features

with kernel window of size (1×c) and stride (1×c). We illustrate our idea in the following

example.

Example 2.3.3 Let us consider a tensor M := (Mi,j)1≤i≤5,1≤j≤4 and 2 kernel windows

K1 := (k1i )1≤i≤2, K2 := (k2i )1≤i≤2,

M :=



2 1 0 2

0 1 2 2

0 0 0 1

2 0 0 2

0 2 0 1


, K1 :=

(
−1 1

)
and K2 :=

(
1 2

)
.

By using a stride window (1, 2), we calculate the output O = {O1, O2} with Ol =

(oli,j)1≤i≤5,1≤j≤2, l = 1, 2. The computation is done in the same way as in Example

2.3.2: o11,1 = (2, 1) ∗ (−1, 1) = −2 + 1 = −1, o12,2 = (2, 2) ∗ (−1, 1) = −2 + 2 = 0,

o21,1 = (2, 1) ∗ (1, 2) = 2 + 2 = 4, o22,2 = (2, 2) ∗ (1, 2) = 2 + 4 = 6. Therefore, the output

O is given by

O1 =



−1 2

1 0

0 1

−2 2

2 1


, O2 =



4 4

2 6

0 2

2 4

4 2


.

In this example, since K1 and K2 are linear independent, we fully recover the input M

given K1, K2 and output O.
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Notice that since the first term in signature transform is always 1, we can omit that,

in order to save the computational memory. As shown in Figure 2.2, we start from one d-

dimensional path with length L, by using such a convolutional layer, and we are resulted

in c paths with each of d/c-dimensional. Then we augment each path with extra time

dimension and apply signature transform to each path truncated at depth m, which gives

us the number of features

Nf := c · (d/c+ 1)m+1 − d/c− 1

d/c+ 1− 1
=

(γ + 1)m+1 − γ − 1

γ2
· d (2.23)

many features by concatenating all c filters. These features can be used in any following

neural network model. For example, a fully connected neural network in the simplest

case, or a recurrent neural network (RNN) if we compute the sequence of the signature

transform.

The number Nf of features grows linearly in d by increasing c linearly and fixing γ.

Instead of optimizing this Nf by setting γ = argminNf directly, we can think γ as a

hyperparameter to be tuned to avoid overfitting problem. It can be easily seen that by

setting γ = 1, we reach a minimum of Nf when m ≥ 3. However, lower γ will give us

higher c, which increase the number of parameters in the CNN step. We consider the

sum Nf + ( d
γ
)2 of number of features and the number of parameters in CNN. Moreover,

we can add a multiplier α to the second term, and then define a regularized number on

γ,

Nα(γ) :=
(γ + 1)m − 1

γ2
· (γ + 1) · d+ α · d

2

γ2
. (2.24)

We can select a large real positive number α. This will help us avoid the overfitting

problem, when we are concerned about that the CNN layer fits the original paths too

well and it sacrifices the prediction power.
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One-to-one Mapping

Under the setup in Section 2.3.2, we can generalize Example 2.3.3 and prove such a

convolutional layer preserves all information of the original path. Suppose that {ki}ci=1

are all c convolutional kernels with ki = (ki1, . . . , k
i
c) for i = 1, . . . , c. Denote the square

matrix

K :=


k11 . . . k1c
...

...
...

kc1 . . . kcc

 .

Let the original path be x = (xt1 , . . . , xtn)
T, xtj =

(
x1tj , . . . , x

d
tj

)
and the output path

{x̃i}ci=1, where x̃i = (x̃t1,i, . . . , x̃tn,i)
T with x̃tj ,i =

(
x̃1tj ,i, . . . , x̃

γ
tj ,i

)
, 1 ≤ i ≤ c. The CNN

layer can be represented in equation as

K ·
(
xlc+1
tj

, . . . , x
(l+1)c
tj

)T
=
(
x̃ltj ,1, . . . , x̃

l
tj ,c

)T
, 1 ≤ l ≤ γ, 1 ≤ j ≤ n. (2.25)

Lemma 2.3.4 If K is of full rank, then this CNN layer is a one-to-one map.

Proof: Since K is square and of full rank, it is invertible.

(
xlc+1
tj

, . . . , x
(l+1)c
tj

)T
= K−1 ·

(
x̃ltj ,1, . . . , x̃

l
tj ,c

)T
, 1 ≤ l ≤ γ, 1 ≤ j ≤ n.

If follows that the original path x can be fully recovered by x̃ := {x̃i}ci=1.

We denote the CNN layer transform as K : V1([0, T ],Rd) → V1([0, T ],Rd/c+1)c. Here,

plus 1 in the dimension (d/c)+1 comes from the time dimension we add to each convoluted

paths.

In accordance with practical case, we consider approximating functions with domain

in a subspace of V1([0, T ],Rd) that is observed at finite time stamps and connected by
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linear interpolation between consecutive points. More precisely, define

V1
D([0, T ],Rd) := {x ∈ V1([0, T ],Rd) : there exist n ∈ N and 0 = t0 < · · · < tn = T

such that x(t) =
ti − t

ti − ti−1

x(ti−1) +
t− ti−1

ti − ti−1

x(ti)

for ti−1 ≤ t ≤ ti, i = 1, . . . , n}.

(2.26)

Suppose f : V1
D([0, T ],Rd) → R is the continuous function we need to estimate. Then we

have the following theorem.

Theorem 2.3.5 (Approximation by the CNN-Sig model) Let K be a compact set

in V1
D([0, T ],Rd). Suppose that f is Lipschitz in K. For any ϵ > 0 there exist a CNN

layer K, an integer m, and a neural network model Φ such that

sup
x∈K

|f(x)− Φ ◦ Sm ◦K(x)| < ϵ.

Proof: For every x ∈ V1
D([0, T ],Rd), we rewrite f(x) as a function of x̃ = {x̃i}ci=1 in

(2.25):

f(x) = f(K−1(x̃)) = f ◦K−1(x̃) =: h(x̃). (2.27)

It follows that h = f ◦ K−1 is a continuous function. Since S(x̃i) is a geometric rough

path and characterize the path x̃i uniquely for each 1 ≤ i ≤ c, there exists a continuous

function ĥ : (T (R))c → R such that

h(x̃) = ĥ(S(x̃1), . . . , S(x̃c)).

The existence follows from the compactness and that the signature map is continuous

and one-to-one. Moreover, since f is Lipschitz, we have that h is Lipschitz and hence ĥ
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is also Lipschitz. The compactness of K implies that the image of S ◦K is also compact,

hence h(x̃) can be approximate arbitrarily well be truncated signatures up to a uniform

truncation depth m for all data in the set K. The existence of such m is induced by the

proof of [119, Lemma 4.1] and Lipschitz property. That is, there exists an integer m,

such that

sup
x∈K

|ĥ(S(x̃1), . . . , S(x̃c))− ĥ(Sm(x̃1), . . . , S
m(x̃c))| ≤

ϵ

2
. (2.28)

This ĥ is not necessarily linear, because there might be some dependence among

{x̃i}ci=1, but it can be approximated by a neural network model arbitrarily well. A wide

range of Φ can be chosen. For example, a fully connected shallow neural network with

one wide enough hidden layer and some activation function would work, see [65], [48].

That is, there exists Φ such that

sup
x∈K

∣∣∣Φ(Sm(x̃1), . . . , Sm(x̃c))− ĥ(Sm(x̃1), . . . , S
m(x̃c))

∣∣∣ ≤ ϵ

2
. (2.29)

By combining (2.27), (2.28), (2.29) together, we get the desired result.

In the CNN-Sig model, the CNN layer can be understood as data dependent encoder

which help us find the best way of encoding original path to several lower dimensional

paths. On one hand, a large c will result in overfitting problem of CNN layer. On the

other hand, small c will produce large number of features for Φ, and then Φ may has

the overfitting problem. This tradeoff can be balanced by minimizing Nα(γ) in equation

(2.24). Thus, although the choice of c does not affect the universality of the model, it

could help with resolving the overfitting problem.

Remark 2.3.6 When we do experiments of the CNN-Sig model, this model works even

better compare to plain signature transform of original path on testing data, it is because

the CNN-Sig model reduces the number of features and thus overcome the overfitting
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problem better than direct signature transform.

Moreover, the signature transform can be performed in a sequential way. Then we

can choose a RNN model (GRU or LSTM) for Φ. Some other candidates for Φ can be

Attention model like Transformer, 1d-CNN and so on, which might help us get better

predictions. Thus, this CNN-Sig model is quite flexible and can be incorporated with

many other well developed deep learning model as Φ, which depends specifically on

the task. In practice, we can use a different stride size to allow some overlap during

convolution and reduce the number of filters. The one-to-one mapping property may be

lost in this case if we choose small number of filters, but it results in less overfitting.

Another alternative is that we can also convolute over time dimension, provided that

correlation over time is of importance to the sequential data.

2.3.3 Experiments

In this section, several results of the experiments are provided for the purpose of

exhibiting the performance of the signature classifier and the CNN-Sig model. Sections

2.3.3 and 2.3.3 show that the signature classifier can be a nice candidate for the time

series classification problem. In sections 2.3.3 and 2.3.3, we apply the CNN-Sig model to

high-dimensional tasks, including the standard high-dimension datasets, approximation

of maximum-call European payoff and sentimental analysis.

Classification of GARCH Time Series

The generalized autoregressive conditional heteroskedasticity (GARCH) process is

usually used in econometrics to describe the time-varying volatility of financial time

series [14, 58]. GARCH provides a more real-world context than other models when

predicting the financial time series, compare to other time series model like ARIMA. We
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apply logistic regression to Example 2.2.5, i.e. the goal is to estimate g(Sm(x)) = (p̂0, p̂1)

in (2.15), where

log
p̂1

1− p̂1
= ⟨l, Sm(x)⟩, (2.30)

subject to p̂0+ p̂1 = 1, l is a linear functional on Tm(Rd) to be chosen such that the cross

entropy

E(l) = −
N∑
i=1

(yi log p̂i + (1− yi) log(1− p̂i)) (2.31)

is minimized, and we predict labels by ŷi = argmaxi p̂i. 500 samples are generated for

each class and we use 70% of each class as training data and 30% of each as testing

data. By using m = 4, we get training accuracy 96.4% and testing accuracy 97.0%. The

confusion matrix is given below in Table 2.3.

XXXXXXXXXXXXTrue
Predicted

0 1

0 343 7
1 18 332

XXXXXXXXXXXXTrue
Predicted

0 1

0 147 3
1 6 144

Table 2.3: Training (left) and testing (right) confusion matrics.

Classification of Directed Chain Discrete Time Series

In the study of mean-field interaction and financial systemic risk problems, [51] pro-

pose a countably many particle system of diffusion processes, coupled through an infi-

nite, chain-like directed graph, and discuss a detection problem of mean-field interactions

among diffusive particles. In Remark 4.5 of [51], a discrete time analogue of the mean-

reverting diffusions on the directed chain is also proposed.

We shall discuss a classification problem of such time series data partially observed
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from the directed chain graph. More specifically, we analyze an identically distributed

time series data {Xn}n≥1 and {X̃n}n≥1 parametrized by a, u ∈ [0, 1] and defined recur-

sively by

Xn = aXn−1 + (1− a)(uX̃n−1 + (1− u)E[Xn−1]) + εn, n ≥ 1, (2.32)

where we assume that X0 = X̃0 = 0 for simplicity, the distribution of {Xn, n ≥ 0} is

identical with that of {X̃n, n ≥ 0} and εn, n ≥ 1 are independent, identically distributed

standard normal random variables, independent of {X̃n}n≥1. The parameter u ∈ [0, 1]

measures how much Xn depends on its neighborhood and 1− u measures how much Xn

depends on the common distribution. X and X̃ have the same distribution with the

moving average representation:

Xn =
∑

0≤l≤k≤n−1

(
k

l

)
ul(1− a)lak−lϵn−k,l,

X̃n =
∑

0≤l≤k≤n−1

(
k

l

)
ul(1− a)lak−lϵn−k,l+1, n ≥ 1,

(2.33)

where {εn,k, n, k ≥ 0} is an independent, identically distributed array of standard normal

random variables.

Suppose that our only observation is {Xn}n≥1, but both {X̃n}n≥1 and u are hidden

to us. Our question is that given the access to {Xn}n≥1 generated by different u, can we

determine their classes?

In this part, we first set the default parameters and generate training and testing

paths according to (2.33). First we initial some parameters: a = 0.5, u = 0.2 or 0.8

for classification task, N = 100 is the time steps, 1/N is the variance of ϵ.In order to

generate paths, we generate a n × (n + 1) matrix E of the error terms ϵ, and then pick

the column we need for each n. The summation takes time O(N2) and we have to range
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n from 1 to N . The time complexity is the order of O(N3). We simulate 2000 training

paths and 400 testing paths for this task.

Method 1: Logistic Regression In this method, we use 2000 training paths: 1000

for u = 0.2 and 1000 for u = 0.8. Calculating the signature transform of these paths,

augmented with time dimension, up to degree 9, we build a Logistic Regression model

on the signatures of training data and test this model, see equation (2.30).

The result is shown in Table 2.4. We observe that signature does capture useful

features for u in these special time series.

Training Acc Testing Acc
0.7465 0.7375

Table 2.4: Training accuracy and testing accuracy on Logistic regression.

Method 2: Deep Neural Network We build a Neural Network model in order to get

a better result. We use 4 hidden layers with 256, 256, 128, 2 units respectively. For first 3

layers, we use ”ReLu” as activation function, for last layer, we use ”Softmax” activation

function as the approximated probability values. After training for 20 epochs, the result

is shown in Table 2.5.

Training Acc Testing Acc
0.8930 0.8925

Table 2.5: Training accuracy and testing accuracy on NN.

This 4 layer neural network model produces better accuracy than logistic regression.

The reason follows Remark 2.2.6. Logistic regression trains a linear classifier, but it

cannot be used to estimate p(·) efficiently, because p(·) is not continuous in x. This DNN

model add nonlinearity to h(·),s and hence works better.
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High Dimensional Time Series

Signature is an efficient tool as a feature map for high frequency sequential data

to reduces the number of features. However, the number of signature terms increases

exponentially as dimension (or channels in the language of PyTorch) increasing. In

Section 2.3, we proposed the CNN-Sig model to address this problem. We test our model

by applying it in both regression and classification problem.

Experiments - Regression Problem for Maximum-Call Payoff

We investigate our model on a specific rainbow option, high-dimension European type

maximum call option. In other words, we want to use our CNN-Sig model to estimate

the payoff

max
1≤k≤d

((Xk
T −K)+),

where T is terminal time, K is strike price, superscript k represents the k-th coordinate

of this d-dimension path. If Xk
T is smaller than K for all 1 ≤ k ≤ d, this payoff is zero.

Otherwise the payoff would be the maximum of (Xk
T −K) over those k satisfies Xk

T ≥ K.

Result of this experiment may motivate us to use CNN-Sig model in high dimensional

optimal stopping problem from financial mathematics.

Because of the limitation of exponential growth in the number of features, we use

lower d = 6, 10, 12, 20 to compare the performance between plain signature transform

and CNN-Sig model. Then we apply this model to test its performance with higher

dimension d = 50.

We generate 1000 training paths and 1000 testing paths for cases of d = 6, 10, 12,

and generate 3000 training paths and 1000 testing paths for case d = 20. All stock price

paths follows Black-Scholes model.

For all 4 cases, we consider m = 4 as the signature depth. For Φ in the CNN-Sig
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Sig+LR CNN-Sig
Training Testing Training Testing

d MAE R2 MAE R2 MAE R2 MAE R2

6 (γ = 2) 0.001 1.000 0.101 0.538 0.020 0.986 0.030 0.972
10(γ = 2) 0.000 1.000 0.124 0.806 0.033 0.988 0.062 0.962
12(γ = 2) 0.000 1.000 0.153 0.821 0.048 0.981 0.111 0.924
20(γ = 1) 0.000 1.000 0.225 0.838 0.177 0.916 0.203 0.892

Table 2.6: Training and testing mean absolute error(MAE) and R2 for the direct
signature transform plus linear regression (Sig+LR) and the CNN-Sig model with Φ
as a fully connected neural network.

model, we use the same structure, 2 fully connected layers followed by ReLu activation

function and then a fully connected layer. We did not apply any technique for avoiding

overfitting problem in the CNN-Sig model to make this comparison fair. The result for

comparison is shown in Table 2.6. We can see that for all these 4 cases, the CNN-Sig

model beat direct signature transform. Since the CNN-Sig model reduce the number of

features, it can help avoid overfitting problem compare to Sig+LR. We produce the QQ

plots for training and testing results of the CNN-Sig model, see Figure 2.3.

For d = 50, where the plain Sig+LR becomes not applicable, we use the same CNN-

Sig structure as lower d cases for training. The training MAE is 0.206 with R2 =

0.982 and testing MAE is 0.751 with R2 = 0.797. The QQ plot of training and testing

results is in Figure 2.4. In this experiment, we show that CNN-Sig algorithm could be a

good candidate in the high dimensional regression problem where plain signature is not

applicable. But since CNN-Sig will add non-linearity here, we are not able to price this

option in the same way as [7]. This will be left as our future research.

Experiments - Classification

We apply the CNN-Sig model to different high dimensional times series from [9] and

[135]. As suggested in [135], all experiments are compared with a benchmark model

ROCKET [49]. The results are evaluated over 5 independent trials and listed in Table
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2.7. ROCKET is known to be a fast and accurate classification method, the experiment

results show that the CNN-Sig model is competitive and fast after a model selection

procedure via k-fold cross validation.1

Datasets ROCKET CNN-Sig
PEMS-SF 0.810(0.014) 0.817(0.010)
JapaneseVowels 0.960(0.002) 0.940(0.017)
FingerMovement 0.500(0.01) 0.514(0.034)
FaceDetection 0.597(0.004) 0.553(0.001)
PhonemeSpectra 0.035(0.002) 0.152(0.006)
MotorImagery 0.620(0.007) 0.524(0.05)
Heartbeat 0.729(0.011) 0.723(0.017)
Training Time 353.5 209.1

Table 2.7: Testing accuracy, standard deviation and total training time (s) for all high
dimensional time series datasets.

Sentiment Analysis by Signature

In Natural Language Processing (NLP), text sentence can be regarded as sequential

data. A conventional way to represent words is using high dimensional vector, which is

called word embedding. These kind of word embedding is usually of 50, 100, 300 dimen-

sion. Using plain signature transform becomes extremely difficult because of these high

dimensions. We apply our CNN-Sig model to address this problem. The dataset we use

is IMDB movie reviews, [116].

This IMDB dataset contains 50,000 movie reviews, each of them is labelled by either

”pos” or ”neg”, which represent Positive for Negative respectively. The IMDB dataset

is split into training and testing evenly. For training part, we use 17500 samples for train-

ing the model, and use the other 7500 samples as validation dataset. A 100-dimension

word embedding GloVe 100d [131] is used as the initial embedding, this high dimension

1All experiments are trained on a server with Intel Core i9-9820X (3.30GHz) and four RTX 2080 Ti
GPUs
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restricts us to use plain signature transform. In our model, by setting γ to be small,

we use 1 convolutional 2d layer to reduce the dimension from 100 to c paths with each

of γ + 1 dimensional augmented by extra time dimension. The architecture is shown in

Figure 2.5.

The result is shown in Table 2.8 and the testing accuracy has been improved to 86.9%

which is higher than the result in [143] (83%) and Bidirectional LSTM (Bi-LSTM) with

2 hidden layers (0.846%). Moreover, CNN-Sig is a more efficient structure compare to

Bi-LSTM in terms of training time and GPU memory usage.

Bi-LSTM CNN-Sig
Accuracy 0.846(0.013) 0.869(0.002)
Memory 6.8 1.3
Time 401.5 292.5

Table 2.8: Testing accuracy, GPU memory usage(Gb) during training and total train-
ing time(s) on IMDB dataset.

We believe that the CNN-Sig model is a good candidate for feature mapping and easy

to be embraced into more complex models. By applying more complicated structure,

such as using attention model for Φ and a sliding window, e.g., see [122], for calculating

a sequential signature transform, the accuracy can be improved.
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(a) train d=6 (b) test d=6

(c) train d=10 (d) test d=10

(e) train d=12 (f) test d=12

(g) train d=20 (h) test d=20

Figure 2.3: QQ plot for training and testing result for lower dimensional regression
with d = 6, 10, 12, 20 using the CNN-Sig model.
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(a) d=50 (b) d=50

Figure 2.4: QQ plot for training and testing result for regression task with d = 50
using CNN-Sig model.

Figure 2.5: Convolutional Signature neural network model for IMDB dataset.
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Signatured Deep Fictitious Play for

Mean Field Game with Common

Noises

3.1 Background

Stochastic differential games study the strategic interaction of rational decision-makers

in an uncertain dynamical system, and have been widely applied to many areas, including

social science, system science, and computer science. For realistic models, the problem

usually lacks tractability and needs numerical methods. With a large number of play-

ers resulting in high-dimensional problems, conventional algorithms soon lose efficiency

and one may resort to recently developed machine learning tools [79, 74, 72]. On the

other hand, one could utilize its limiting mean-field version, mean-field games (MFGs),

to approximate the n-player game for large n (e.g., [75]). Introduced independently in

[81, 106], MFGs study the decision making problem of a continuum of agents, aiming to

provide asymptotic analysis of the finite player model in which players interact through

40



Signatured Deep Fictitious Play for Mean Field Game with Common Noises Chapter 3

their empirical distribution. In an MFG, each agent is infinitesimal, whose decision can

not affect the population law. Therefore, the problem can be solved by focusing on the

optimal decision of a representative agent in response to the average behavior of the

entire population and a fixed-point problem (cf. equation (3.5)). The MFG model has

inspired tremendous applications, not only in finance and economics, such as system risk

[32], high-frequency trading [99] and crowd trading [27], but also to population dynamics

[1, 54, 2] and sanitary vaccination [82, 56], to list a few. For a systematical introduction

of MFGs, see [23, 29, 30].

In MFGs, the random shocks to the dynamical system can be from two sources: id-

iosyncratic to the individual players and common to all players, i.e., decision-makers

face correlated randomness. While MFGs were initially introduced with only idiosyn-

cratic noise as seen in most of the literature, games with common noise, referred to as

MFGs with common noise, have attracted significant attention recently [104, 31, 4, 68].

The inclusion of common noise is natural in many contexts, such as multi-agent trading in

a common stock market, or systemic risk induced through inter-bank lending/borrowing.

In reality, players make decisions in a common environment (e.g., trade in the same stock

market). Therefore, their states are subject to correlated random shocks, which can be

modeled by individual noises and a common noise. In this modeling, observing the state

dynamics will be sufficient, and one does not need to observe the noises. These applica-

tions make it crucial to develop efficient and accurate algorithms for computing MFGs

with common noise.

Theoretically, MFGs with common noise can be formulated as an infinite-dimensional

master equation, which is the type of second-order nonlinear Hamilton-Jacobi-Bellman

equation involving derivatives with respect to a probability measure. Therefore, direct

simulation is infeasible due to the difficulty of discretizing the probability space. An

alternative way of solving MFGs with common noise is to formulate it into a stochas-
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tic Fokker-Planck/Hamilton-Jacobi-Bellman system, which has a complicated form with

common noise, forward-backward coupling, and second-order differential operators. The

third kind of approaches turns it into forward backward stochastic differential equations

(FBSDE) of McKean-Vlasov type (cf. [30, Chapter 2]), which in general requires con-

vexity of the Hamiltonian. For all three approaches, the common assumption is the

monotonicity condition that ensures uniqueness. Regarding simulation, existing deep

learning methods fix the sampling common noise paths and then solve the corresponding

MFGs, which leads to a nested-loop structure with millions of simulations of common

noise paths to produce accurate predictions for unseen common shock realizations. Then

the computational cost becomes prohibitive and limits the applications to a large extent.

In this paper, we solve MFGs with common noise by directly parameterizing the

optimal control using deep neural networks in spirit of [73], and conducting a global

optimization. We integrate the signature from rough path theory, and fictitious play

from game theory for efficiency and accuracy, and term the algorithm Signatured Deep

Fictitious Play (Sig-DFP). The proposed algorithm avoids solving the three aforemen-

tioned complicated equations (master equation, Stochastic FP/HJB, FBSDE) and does

not have uniqueness issues.

Contribution. We design a novel efficient single-loop deep learning algorithm, Sig-

DFP, for solving MFGs with common noise by integrating fictitious play [17] and Signa-

ture [115] from rough path theory. To our best knowledge, this is the first work focusing

on the common noise setting, which can address heterogeneous MFGs and heterogeneous

extended MFGs, both with common noise.

We prove that the Sig-DFP algorithm can reach mean-field equilibria as both the

depth M of the truncated signature and the stage n of the fictitious play approaching

infinity, subject to the universal approximation of neural networks. We demonstrate its

convergence superiority on three benchmark examples, including homogeneous MFGs,
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heterogeneous MFGs, and heterogeneous extended MFGs, all with common noise, and

with assumptions even beyond the technical requirements in the theorems. Moreover,

the algorithm has the following advantages:

1. Temporal and spacial complexity are O(NLp + Np2) and O(NLp), compared to

O(N2L) (for both time and space) in existing machine learning algorithms, with N as

the sample size, L as the time discretization size, p = O(nM0 ), n0 as the dimension of

common noise.

2. Easy to apply the fictitious play strategy: only need to average over linear func-

tionals with O(1) complexity.

Related Literature. After MFGs firstly introduced by [81] and [106] under the

setting of a continuum of homogeneous players but without common noise, it has been

extended to many applicable settings, e.g., heterogeneous players games [105, 102] and

major-minor players games [80, 127, 34]. A recent line of work studies MFGs with com-

mon noise [32, 12, 4, 25]. Despite its theoretical progress and importance for applications,

efficient numerical algorithms focusing on common noise settings are still missing. Our

work will fill this gap by integrating machine learning tools with learning procedures from

game theory and signature from rough path theory.

Fictitious play was firstly proposed in [17, 18] for normal-form games, as a learning

procedure for finding Nash equilibria. It has been widely used in the Economic literature,

and adapted to MFGs [26, 15] and finite-player stochastic differential games [79, 74, 72,

148].

Using machine learning to solve MFGs has also been considered, for both model-based

setting [33, 136, 112] and model-free reinforcement learning setting [69, 142, 5, 57], most

of which did not consider common noise. Existing machine learning methods for MFGs

with common noise were studied in [132], which have a nested-loop structure and require

millions of simulations of common noise paths to produce accurate predictions for unseen
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common shock realizations.

3.2 Mean Field Games with Common Noise

We first introduce the following notations to precisely define MFGs with common

noise. For a fixed time horizon T , let (Wt)0≤t≤T and (Bt)0≤t≤T be independent n- and n0-

dimensional Brownian motions defined on a complete filtered probability space (Ω,F ,F =

{Ft}0≤t≤T ,P). We shall refer W as the idiosyncratic noise and B as the common noise

of the system. Let FB
t be the filtration generated by (Bt)0≤t≤T , and Pp(Rd) be the

collection of probability measures on Rd with finite pth moment, i.e., µ ∈ Pp(Rd) if

(∫
Rd

∥x∥p dµ(x)
)1/p

<∞. (3.1)

We denote by M([0, T ];P2(Rd)) the space of continuous FB-adapted stochastic flow of

probability measures with the finite second moment, and by H2([0, T ];Rm) the set of all

F -progressively measurable Rm-valued square-integrable processes.

Next, we introduce the concept of MFGs with common noise. Given an initial dis-

tribution µ0 ∈ P2(Rd), and a stochastic flow of probability measures µ = (µt)0≤t≤T ∈

M([0, T ];P2(Rd)), we consider the stochastic control

inf
(αt)0≤t≤T

E[
∫ T

0

f(t,Xt, µt, αt) dt+ g(XT , µT )], (3.2)

where dXt = b(t,Xt, µt, αt) dt+ σ(t,Xt, µt, αt) dWt

+ σ0(t,Xt, µt, αt) dBt, (3.3)

with X0 ∼ µ0. Here the representative agent controls his dynamics Xt through a Rm-

dimensional control process αt, and the drift coefficient b, diffusion coefficients σ and

44



Signatured Deep Fictitious Play for Mean Field Game with Common Noises Chapter 3

σ0, running cost f and terminal cost g are all measurable functions, with (b, σ, σ0, f) :

[0, T ]× Rd × P2(Rd)× Rm → Rd × Rd×n × Rd×n0 × R, and g : Rd × P2(Rd) → R.

Note that since µ is stochastic, (3.2)–(3.3) is a control problem with random coeffi-

cients.

Definition 3.2.1 (Mean-field equilibrium) The control-distribution flow pair α∗ =

(α∗
t )0≤t≤T ∈ H2([0, T ];Rm), µ∗ ∈ M([0, T ];P2(Rd)) is a mean-field equilibrium to the

MFG with common noise, if α∗ solves (3.2) given the stochastic measure flow µ∗, and

the conditional marginal distribution of the optimal path Xα∗
t given the common noise B

coincides with the measure flow µ∗:

µ∗
t = L(Xα∗

t |FB
t ), (3.4)

where L(·|F) is the conditional law given a filtration F .

We remark that, with a continuum of agents, the measure µ∗ is not affected by a

single agent’s choice, and the MFG is a standard control problem plus an additional

fixed-point problem. More precisely, denote by α̂µ the optimal control of (3.2)–(3.3)

given the stochastic measure flow µ ∈ M([0, T ];P2(Rd)), then µ∗ is a fixed point of

µt = L(X α̂µ

t |FB
t ). (3.5)

MFGs without common noise: Note that with σ0 ≡ 0, (3.2)–(3.3) is a MFG without

common noise, and the flow of measures µt becomes deterministic.

Extended MFGs: In extended mean field games, the interactions between the rep-

resentative agent and the population happen via both the states and controls, thus the

functions (b, σ, σ0, f, g) can also depend on L(αt|FB
t ).
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3.3 Fictitious Play

The Signatured Deep Fictitious Play (Sig-DFP) algorithm is built on fictitious play,

and propagates conditional distributions µ = {µt}0≤t≤T ∈ M([0, T ];P2(Rd)) by signa-

tures. This section briefly introduces these two ingredients.

In the learning procedure of fictitious play, players myopically choose their best re-

sponses against the empirical distribution of others’ actions at every subsequent stage

after arbitrary initial moves. When [26, 27] extended it to mean-field settings, the empiri-

cal distribution of actions is naturally replaced by the average of distribution flows. More

precisely, let µ̄(0) ∈ M([0, T ];P2(Rd)) be the initial guess of µ∗ in (3.4), and consider the

following iterative algorithm: (1) take µ̄(n−1) ∈ P2(Rd) as the given flow of measures

in (3.2)–(3.3) for the n-th iteration, and solve the optimal control in (3.2) denoted by

α(n); (2) solve the controlled stochastic differential equation (SDE) (3.3) for Xα(n)
and

then infer the conditional distribution flow µ(n) = L(Xα(n)|FB
t ); (3) average distributions

µ̄(n) = n−1
n
µ̄(n−1) + 1

n
µ(n) and pass µ̄(n) to the next iteration. If µ(n) converges and the

strategy corresponding to the limiting measure flow is admissible, then by construction,

it is a fixed-point of (3.5) and thus a mean-field equilibrium.

3.4 The Sig-DFP Algorithm

We introduce two shorthand notations: if x is a path indexed by t ∈ [0, T ], then

x := (xt)0≤t≤T denotes the whole path and xs:t := (xu)s≤u≤t denotes the path between s

and t.
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3.4.1 Propagation of Distribution with Signatures

With the presence of common noise, existing algorithms mostly consider a nested-loop

structure, with the inner one for idiosyncratic noise W and the outer one for common

noise B. More precisely, if one works with N idiosyncratic Brownian paths {W k}Nk=1

and N common Brownian paths {Bk}Nk=1, then for each Bj, one needs to simulate N

paths {X i,j}Ni=1 defined by (3.3) over all idiosyncratic Brownian paths and solve the

problem (3.2) associated to Bj. This requires a total of N2 simulations of (3.3). With

a sufficiently large N , µt = L(Xt|FB
t ) is approximated well by 1

N2

∑N
i,j=1 δXi,j

t
1ω(0,j) with

ω0,j ∈ Ω corresponding to the trajectory Bj. The double summation is of O(N2) which

is computationally expensive for large N .

We shall address the aforementioned numerical difficulties by signatures. The key

idea is to approximate µt by

µt ≡ L(Xt|FB
t ) = L(Xt|S(B̂t)) ≈ L(Xt|SM(B̂t)),

with B̂t = (t, Bt), (3.6)

where the equal sign comes from the unique characterization of signatures S(B̂) to the

paths B0:t, and the approximation is accurate for large M due to the factorial decay

property of the signature. The last term is then computed by machine learning methods,

e.g., by Generative Adversarial Networks (GANs). In addition, if the agents interact via

some population average subject to common noise: µt = E[ι(Xt)|FB
t ], the approximation

in (3.6) can be arbitrarily close to the true measure flow for sufficiently large M . The

following lemma gives a precise statement.

Lemma 3.4.1 Suppose µt = E[ι(Xt)|FB
t ] where ι : Rd → R is a measurable function.

View µt as µ(t, B0:t) with µ : Vp([0, T ],Rn0+1) → R continuous for some p ∈ (2, 3), and
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let K ⊂ Vp([0, T ],Rn0+1) be a compact set, then for any ϵ > 0, there exist a positive

integer M and a linear functional l ∈ T ((Rn0+1))∗, such that

sup
t∈[0,T ]

sup
B̂∈K

|µt − ⟨l, SM(B̂0:t)⟩| < ϵ. (3.7)

Proof: See Appendix A.1 for details due to the page limit.

With all the above preparations, we now explain how the approximation to µ =

{µt}0≤t≤T using signatures is implemented. Given N pairs of idiosyncratic and com-

mon Brownian paths (W i, Bi) and assume αt in (3.3) is already obtained (which will be

explained in Section 3.4.2), we first sample the optimized state processes (X i
t)0≤t≤T , pro-

ducing N samples {X i}Ni=1. Then the linear functional l in Lemma 3.4.1 is approximated

by implementing linear regressions on {SM(B̂i
0:t)}Ni=1 with dependent variable {ι(X i

t)}Ni=1

at several time stamps t, i.e.,

l̂ =argmin
β

∥y −Xβ∥2, (3.8)

y = {ι(X i
t)}Ni=1, X = {SM(B̂i

0:t)}Ni=1.

In all experiments in Section 3.5, we get decent approximations of µ on [0, T ] by consid-

ering only three time stamps t = 0, T
2
, T . Note that such a framework can also deal with

multi-dimensional ι, where the regression coefficients become a matrix.

The choice in (3.8) is mainly motivated by Lemma 3.4.1 stating l is a linear func-

tional, and by the probability model underlying ordinary linear regression (OLS) which

interprets that the least square minimization (3.8) gives the best prediction of E[y|X] re-

stricting to linear relations. There are other benefits for choosing OLS: Once l̂ is obtained

in (3.8), the prediction for unseen common paths is efficient: µt(ω̃) ≈ ⟨l̂, SM(B̂0:t(ω̃))⟩ for

any ω̃ and t. Moreover, it is easy to integrate with fictitious play: averaging µ
(n)
t from
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different iterations, commonly needed in fictitious play, now means simply averaging l̂(n)

over n. Next, we analyze the temporal and spatial complexity of using signatures and

linear regression as below.

Temporal Complexity: Suppose we discretize [0, T ] into L time stamps: 0 = t0 ≤ t1 ≤

. . . ≤ tL = T , and simulate N paths of W,B and Xt. The simulation cost is of O(NL).

For computing the truncated signature SM(B̂) of depth M , we use the Python package

Signatory [89], yielding a complexity of O(NLp) where p = (n0+1)M+1−1
n0

= O(nM0 ). Note

that one can choose a large N and reuse all sampled common noise paths B for each

iteration of fictitious play, thus the computation of SM(B) is done only once, and SM(B̂0:t)

is accessible in constant time for all t. The linear regression1 (or Ridge regression) takes

time O(Np2). Thus, the total temporal complexity is of O(NLp+Np2), which is linear in

N given2 p≪ N . Comparing to the nested-loop algorithm, where the cost of simulating

SDEs is O(N2L) and computing conditional distribution flows takes time O(N2L), we

claim that our algorithm reduced the temporal complexity by a factor of the sample size

N by using signatures.

Spatial Complexity: In fictitious play, one may choose to average all past flow of

measures µ(n) as the given measures in (3.2)–(3.3) for the current iteration. Using signa-

tures simplifies it to average l̂(n). To update it between iterations, one needs to store the

current average which costs O(p) of the memory. Combining O(NL) and O(NLp) for

storing SDEs and truncated signatures, the overall spacial complexity is O(NLp). The

complexity of the nested-loop case is again O(N2L), which we reduce by a factor of N .

We conclude this section by the following remark: For the general case µt = L(Xt|FB
t ),

though the linear regression is no longer available, the one-to-one mapping between µ

and S(B̂) persists. Therefore, one can train a Generative Adversarial Network (GAN,

1We use the Python package scikit-learn [130] to do the linear regression.
2M is usually small due to the factorial decay property of the signature. For n0 not large, we have

p ≪ N .
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Figure 3.1: Flowchart of one iteration in the Sig-DFP Algorithm. Input: idiosyncratic
noise W , common noise B, initial position X0 and measure flow µ̂(n−1) from the last
iteration. Output: measure flow µ̂(n) for the next iteration.

[67]) for generating samples following the distribution µ by taking truncated signatures

as part of the network inputs.

3.4.2 Deep Learning Algorithm

Having explained the key idea on how to approximate µ efficiently, we describe the

Sig-DFP algorithm in this subsection. The algorithm consists of repeatedly solving (3.2)–

(3.3) for a given measure flow µ using deep learning in the spirit of [73], and passing the

yielded µ to the next iteration by using signatures. The flowchart of the idea is illustrated

in Figure 3.1. Consider a partition π of [0, T ] : 0 = t0 < · · · < tL = T , denote by µ̂(n−1)

the given flow of measures at stage n, the stochastic optimal control problem (3.2)–(3.3)

50



Signatured Deep Fictitious Play for Mean Field Game with Common Noises Chapter 3

is solved by

inf
{αk}N−1

k=0

1

N

N∑
i=1

(L−1∑
k=0

f(tk, X
i
k, µ̂

(n−1)
k (ωi), αik)∆k

+ g(X i
L, µ̂

(n−1)
L (ωi))

)
, (3.9)

where X i
k+1 = X i

k + b(tk, X
i
k, µ̂

(n−1)
k (ωi), αik)∆k

+ σ(tk, X
i
k, µ̂

(n−1)
k (ωi), αik)∆W

i
k

+ σ0(tk, X
i
k, µ̂

(n−1)
k (ωi), αit)∆B

i
k, (3.10)

where we replace the subscript tk by k to simplify notations, and let ∆k = tk+1 − tk,

∆W i
k = W i

tk+1
−W i

tk
, ∆Bi

k = Bi
tk+1

− Bi
tk
. Here, we use the superscript i to represent

the ith sample path and µ̂
(n−1)
k (ωi) to emphasize the stochastic measure’s dependence on

the ith sample path of B up to time tk. The control αk is then parameterized by neural

networks (NNs) in the feedback form:

αik := αφ(tk, X
i
k, µ̂

(n−1)
k (ωi);φ), (3.11)

where αφ denotes the NN map with parameters φ, and searching the infimum in (3.9)

is translated into minimizing φ. The yielded optimizer φ∗ gives αi,∗k , with which the

optimized state process paths {X i,∗}Ni=1 are simulated and its conditional law L(X∗|FB),

denoted by µ(n), is approximated using signatures as described in Section 3.4.1. This

finishes one iteration of fictitious play. Denote by µ̃(n) the approximation of µ(n), we then

pass µ̃(n) to the next iteration via updating µ̂(n) = 1
n
µ̃(n) + n−1

n
µ̂(n−1) by averaging the

coefficients in (3.8).

We summarize it in Algorithm 1, with implementation details deferred to Appendix A.2.

Note that the simulation of X i,(n) and JB(φ, µ̄
(n−1)) uses the equations (A.6) and (A.5)
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Algorithm 1 The Sig-DFP Algorithm

Input: b, σ, σ0, f, g, ι and X
i
0, (W

i
tk
)Lk=0, (B

i
tk
)Lk=0 for i = 1, 2, . . . , N ; Nround: rounds for

FP;
B: minibatch size; Nbatch: number of minibatches.
Compute the signatures of B̂i

0:tk
for i = 1, . . . , N , k = 1, . . . , L;

Initialize µ̂(0), φ;
for n = 1 to Nround do
for r = 1 to Nbatch do
Simulate the rth minibatch of X i,(n) using µ̂(n−1) and compute JB(φ, µ̂

(n−1));
Minimize JB(φ, µ̂

(n−1)) over φ, then update αφ;
end for
Simulate X i,(n) with the optimized α∗

φ, for i = 1, . . . , N ;

Regress ι(X
i,(n)
0 ), ι(X

i,(n)
L/2 ), ι(X

i,(n)
L ) on SM(B̂i

0:0), S
M(B̂i

0:tL/2
), SM(B̂i

0:tL
) to get l(n);

Update l̄(n) = n−1
n
l̄(n−1) + 1

n
l(n);

Compute µ̂(n) by µ̂
(n)
k (ωi) = ⟨l̄(n), SM(B̂i

0:tk
)⟩, for i = 1, 2, . . . , N, k = 1, . . . , L;

end for
Output: the optimized α∗

φ and l̄(Nround).

in Appendix A.2, respectively.

Theorem 3.4.2 (Convergence analysis) Let (α∗,µ∗) be the mean-field equilibrium in

Definition 3.2.1, α(n) be the optimal control, and µ(n) be the measure flow of the optimized

state process after the nth iteration of fictitious play, and µ̃(n) be the approximation by

truncated signatures. Under Assumption A.3.1 and sup
t∈[0,T ]

E[W2
2 (µ̃

(n)
t , µ

(n)
t )] ≤ ϵ, we have

sup
t∈[0,T ]

E[W2
2 (µ̃

(n)
t , µ∗

t )] +

∫ T

0

E|α(n)
t − α∗

t |2 dt

≤ C(qn sup
t∈[0,T ]

E[W2
2 (µ

(0)
t , µ∗

t )] + ϵ),

for some constants C > 0 and 0 < q < 1, where W2 denotes the 2-Wasserstein metric.

Moreover, if we consider a partition of [0, T ] : 0 = t0 < · · · < tL = T , and define

π(t) = tk for t ∈ [tk, tk+1) with ∥π∥ = max1≤k<L |tk − tk−1|, then
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Theorem 3.4.3 (Convergence in discrete time) Let µ
(n)
tk

be the conditional law of

the discretized optimal process X
(n)
tk

after the nth iteration of fictitious play (cf. (3.10)),

and µ̃
(n)
tk

be the approximation by truncated signatures. Under Assumption A.3.1 and

sup
0≤k≤L

E[W2
2 (µ̃

(n)
tk
, µ

(n)
tk

)] ≤ ϵ, one has

sup
t∈[0,T ]

E[W2
2 (µ̃

(n)
π(t), µ

∗
t )] +

∫ T

0

E|α(n)
π(t) − α∗

t |2 dt

≤ C(qn sup
0≤k≤L

E[W2
2 (µ

(0)
tk
, µ∗

tk
)] + ϵ+ ∥π∥),

for some constants C > 0 and 0 < q < 1, where α
(n)
tk

= α̂(tk, Xtk , Ytk , µ̃
(n−1)
tk

), and (Xt, Yt)

solves (A.9) with µ replaced by µ̃
(n−1)
tk

.

The proofs of Theorems 3.4.2 and 3.4.3 are given in Appendix A.3 due to the page

limit.

Remark that the Sig-DFP framework is flexible. We choose to solve (3.2)-(3.3) by

direct parameterizing control policies αt for the sake of easy implementation and the

possible exploration of multiple mean-field equilibria. If the equilibrium is unique, with

proper conditions on the coefficients b, σ, σ0, f and g, one can reformulate (3.2)-(3.3) into

McKean-Vlasov FBSDEs or stochastic FP/HJB equations, and solve them by fictitious

play and propagating the common noise using signatures.

3.5 Experiments

In this section, we present the performance of Sig-DFP for three examples: homo-

geneous, heterogeneous, and heterogeneous extended MFGs. A relative L2 metric will

be used for performance measurement, defined for progressively measurable random pro-
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cesses as

L2
R(x, x̂) :=

√√√√E[
∫ T
0
∥xt − x̂t∥2 dt]

E[
∫ T
0
∥xt∥2 dt]

, (3.12)

where x is a benchmark process and x̂ is its prediction. We shall use stochastic gradient

descent (SGD) optimizer for all three experiments. Training processes are done on a

server with Intel Core i9-9820X (10 cores, 3.30 GHz) and RTX 2080 Ti GPU, and training

time will be reported in Appendix A.2. Implementation codes are available at https:

//github.com/mmin0/SigDFP.

Data Preparation. For all three experiments, the size of both training and test

data is N = 215, and the size of validation data is N/2. We fix T = 1 and discretize [0, 1]

by tk = k
100
, k = 0, 1, . . . , 100. Initial states are generated independently by X i

0 ∼ µ0,

with µ0 = U(0, 1) as the uniform distribution. The idiosyncratic Brownian motions W

and common noises B are generated by antithetic variates for variance reduction, i.e., we

generate the first half samples (W i, Bi) and get the other half (−W i,−Bi) by flipping.

Benchmarks. The examples below are carefully chosen with analytical benchmark

solutions. Due to the space limit, we provide the details in Appendix A.4.

Linear-Quadratic MFGs. We first consider a Linear-Quadratic MFG with common

noise proposed in [32], formulated as below:

inf
α
E
{∫ T

0

[
α2
t

2
− qαt(mt −Xt) +

ϵ

2
(mt −Xt)

2

]
dt

+
c

2
(mT −XT )

2

}
, (3.13)

where dXt = [a(mt −Xt) + αt] dt

+ σ(ρ dBt +
√
1− ρ2 dWt). (3.14)
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Here mt = E[Xt|FB
t ] is the conditional population mean, ρ ∈ [0, 1] characterizes the

noise correlation between agents, and q, ϵ, c, a, σ are positive constants. The agents have

homogeneous preferences and aim to minimize their individual costs. We assume q ≤ ϵ2

so that the Hamiltonian is jointly convex in state and control variables, ensuring a unique

mean-field equilibrium.

Training & Results. αφ is a feedforward NN with two hidden layers of width 64. The

truncated signature depth is chosen at M = 2. The model is trained for 500 iterations

of fictitious play. The optimized state process X̂ and its conditional mean m̂ generated

by test data are shown in Figures 3.2a and 3.2b. The minimized cost after each iteration

computed using validation data is given in Figure 3.2c, where one can see a rapid con-

vergence to the benchmark cost. During the experiments, we notice a slow convergence

speed when using the average of m(n) in (3.14). This is because the initial guess m(0) is

in general far from the truth. Therefore, for the first half of iterations, we simply use the

previous-step result m(n−1). The learning rate is set as 0.1 for the first half and 0.01 for

the second half of training. The relative L2 errors for test data are listed in Table 3.1.

Table 3.1: Relative L2 errors on test data for the LQ MFG.

SDE Xt Control αt Equilibrium mt

L2
R 0.0031 0.0044 0.058

Mean-Field Portfolio Game. Our second experiment is performed on a heteroge-

neous MFG proposed by [105], where the agent’s preference is different, characterized by

a type vector ζ which is random and drawn at time 0. They all aim to maximize their

exponential utility of terminal wealth compared to the population average:

sup
π

E
[
− exp

(
−1

δ
(XT − θmT )

)]
, (3.15)
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Figure 3.2: Panels (a) and (b) give three trajectories ofXt, mt = E[Xt|FB
b ] (solid lines)

and their approximations (dashed lines) using different (X0,W,B) from test data.
Panel (c) shows the minimized cost computed using validation data over fictitious
play iterations. Parameter choices are: σ = 0.2, q = 1, a = 1, ϵ = 1.5, ρ = 0.2, c = 1,
x0 ∼ U(0, 1).

where the dynamics are

dXt = πt(µ dt+ ν dWt + σ dBt), X0 = ξ. (3.16)

Here m represents the conditional mean mt := E[Xt|FB
t ], and ζ = (ξ, δ, θ, µ, ν, σ) is

random.

Training & Results. We use truncated signatures of depth M = 2 and a feedforward

NN πφ with 4 hidden layers3 to approximate π. We train our model with 500 iterations

of fictitious play. The learning rate starts at 0.1 and is reduced by a factor of 5 every 200

rounds. The relative L2 errors evaluated under test data are listed in Table 3.2. Figure

3.3 compares X and m to their approximations, and plots the maximized utilities.

Table 3.2: Relative L2 errors on test data for MF Portfolio Game.

SDE Xt Invest πt Equilibrium mt

L2
R 0.068 0.035 0.085

Mean-Field Game of Optimal Consumption and Investment. Our last ex-

3Since agents are heterogeneous characterized by their type vectors ζ, πφ takes (ζ, t,Xt,mt) as inputs.
Hidden neurons in each layer are (64, 32, 32, 16).
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Figure 3.3: Panels (a) and (b) give three trajectories of Xt, mt = E[Xt|FB
b ]

(solid lines) and their approximations (dashed lines) using different (X0,W,B)
from test data. Panel (c) shows the maximized utility computed us-
ing validation data over fictitious play iterations. Parameter choices are:
δ ∼ U(5, 5.5), µ ∼ U(0.25, 0.35), ν ∼ U(0.2, 0.4), θ ∼ U(0, 1), σ ∼ U(0.2, 0.4),
ξ ∼ U(0, 1).

periment considers an extended heterogeneous MFG proposed by [102], where agents

interact via both states and controls. The setup is similar to [105] except for including

consumption and using power utilities. More precisely, each agent is characterized by a

type vector ζ = (ξ, δ, θ, µ, ν, σ, ϵ), and the optimization problem reads

sup
π,c

E
[∫ T

0

U(ctXt(Γtmt)
−θ; δ) dt+ ϵU(XTm

−θ
T ; δ)

]
, (3.17)

where U(x; δ) = 1
1− 1

δ

x1−
1
δ , δ ̸= 1, Xt follows

dXt = πtXt(µ dt+ ν dWt + σ dBt)− ctXt dt, (3.18)

and X0 = ξ. Here Γt = expE[log ct|FB
t ] and mt = expE[logXt|FB

t ] are the mean-field

interactions from consumption and wealth.

Training & Results. For this experiment, we use truncated signatures of depthM = 4.

The optimal controls (πt, ct)0≤t≤1 are parameterized by two neural networks πφ and cφ,
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each with three hidden layers.4 Due to the extended mean-field interaction term Γt,

we will propagate two conditional distribution flows, i.e., two linear functionals l̄(n), l̄
(n)
c

during each iteration of fictitious play. Instead of estimating mt,Γt directly, we estimate

E[logXt|FB
t ],E[log ct|FB

t ] by ⟨l̄(n), S4(B0:t)⟩, ⟨l̄(n)c , S4(B0:t)⟩ and then take exponential to

get mt,Γt. To ensure the non-negativity condition of Xt, we evolve logXt according to

(A.22) and then take exponential to get Xt. For optimal consumption, cφ is used to

predicted log ct and thus exp cφ gives the predicted ct. With 600 iterations of fictitious

play and a learning rate of 0.1 decaying by a factor of 5 for every 200 iterations, the

relative L2 errors for test data are listed in Table 3.3. Figure 3.4 compares X and

m to their approximations, and plots the maximized utilities. Plots of πt, ct, Γt =

expE(log ct|FB
t ) are provided in Appendix A.5.

Table 3.3: Relative L2 errors on test data for Optimal Consumption and Investment MFG.

Invest πt Consumption ct mt Γt

L2
R 0.1126 0.0614 0.0279 0.0121
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Figure 3.4: Panels (a) and (b) give three trajectories of Xt and mt = expE(logXt|FB
t )

(solid lines) and their approximation (dashed lines) using different (X0,W,B)
from test data. Panel (c) shows the maximized utility computed us-
ing validation data over fictitious play iterations. Parameter choices are:
δ ∼ U(2, 2.5), µ ∼ U(0.25, 0.35), ν ∼ U(0.2, 0.4), θ, ξ ∼ U(0, 1), σ ∼ U(0.2, 0.4),
ϵ ∼ U(0.5, 1).

4Due to the nature of heterogeneous extended MFG, both αφ and cφ take (ζt, t,Xt,mt,Γt) as inputs.
Hidden neurons in each layer are (64, 64, 64).
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Comparison with the nested algorithm. We run both Sig-DFP and the nested algo-

rithm for the training data size of (INP, CNP)= (24, 24), (26, 26) (28, 28), where INP

means the number of individual noise paths and CNP means the number of common

noise paths. From the comparisons of running time, memory, and relative L2 errors in

Tables 3.4 and 3.5, one can see that the accuracy is mainly affected by the size of (INP,

CNP) used for training the neural network. Sig-DFP has the advantage of reducing

memory request and running time, which allows it to use a larger size of data, e.g., (INP,

CNP)= (215, 215), to produce much better accuracy. The quadratic growth of memory

in the nested algorithm, evidenced by the first three columns of data in Tables 3.4 (least

squares growth rate ≈ 2), makes us unable to run the nested algorithm beyond (28, 28)

in our current computing environment due to its high demand for memory.

Table 3.4: Running time (hours) and Memory (GBs) comparisons between Sig-DFP
and the nested algorithm for different (INP, CNP)’s. INP = # of individual noise
paths, CNP = # of common noise paths, and NA = Not Available due to high demand
for memory.

(INP, CNP) (24, 24) (26, 26) (28, 28) (212, 212) (215, 215)

Nested Algorithm (0.09, 2.1) (0.46, 4.1) (4.3, 43.5) NA NA
Sig-DFP (0.09, 1.9) (0.1, 2.0) (0.17, 2.3) (0.33, 4.8) (1.3, 27)

Table 3.5: The comparisons of relative L2 errors on (π, c) between Sig-DFP and the
nested algorithm for different (INP, CNP)’s. INP = # of individual noise paths, CNP
= # of common noise paths, and NA = Not Available due to high demand for memory.

(INP, CNP) (24, 24) (26, 26) (28, 28) (212, 212) (215, 215)

Nested Algorithm (53%, 44%) (36%, 41%) (79.4%, 16.2%) NA NA
Sig-DFP (85.8%, 48.1%) (43.3%, 44.9%) (49%, 43%) (18%, 38%) (11%, 6%)

Table 3.6: The comparisons of running time (hours) for different signature depth M
and dimension n0 using (INP, CNP)= (215, 215) .

(n0, Depth M) (1, 1) (1, 2) (1, 3) (1, 4) (5, 1) (5, 2) (5, 3) (5, 4)

Running Time (hours) 1.2 1.2 1.2 1.3 1.2 1.3 1.5 2.6

Comparisons of running time for different signature depth M and dimension n0. We

59



Signatured Deep Fictitious Play for Mean Field Game with Common Noises Chapter 3

choose the data size (INP, CNP)= (215, 215) and compare the running time for different

(n0,M)’s in Table 3.6. ChoosingM = 1, 2, 3, 4 yield the relative L2 errors of controls (π, c)

as (15.9%, 9.5%), (11.4%, 6.3%), (11.4%, 6.3%) and (11.3%, 6.1%) for n0 = 1, respectively.

Note that, compared to M = 1, taking M = 2 improves the accuracy significantly but

not M = 3, 4. This is because the curves of log(ct) and log(X∗
t ) are approximately

either linear or quadratic in t, as shown in Figure A.1 in Appendix A.5 after taking a

logarithm, which implies that the signatures of depthM = 2 will be sufficient to produce

good accuracy. We remark that Sig-DFP has no difficulty computing high-dimensional

problems, evidenced by the running time of n0 = 5 cases in Table 3.6. We focus on one-

dimensional problems since, to our best knowledge, the closed-form non-trivial solutions

only exist in one-dimensional cases, which can serve as the benchmark solutions. More

details about n0 = 5 are given in Appendix A.6.
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Chapter 4

Directed Chain SDEs

4.1 Background

4.1.1 Directed Chain SDE and Smootheness

The main objective of this chapter is to study the existence and regularity of the

densities of the directed chain stochastic differential equations (DC-SDEs), and propose

a deep learning based time series generator based on the idea of directed chain SDEs.

Given a filtered probability space (Ω,F , (Ft)t≥0,P), the directed chain McKean-Vlasov

stochastic differential equation (or directed chain SDE for short) for a pair (Xθ
· , X̃·) of

N -dimensional stochastic processes considered here is of the form

Xθ
t = θ +

∫ t

0

V0(s,X
θ
s ,Law(X

θ
s ), X̃s) ds+

d∑
i=1

∫ t

0

Vi(s,X
θ
s ,Law(X

θ
s ), X̃s) dB

i
s, (4.1)

for t ≥ 0 with the distributional constraint

[Xθ
t , t ≥ 0] := Law(Xθ

t , t ≥ 0) = Law(X̃t, t ≥ 0) =: [X̃t, t ≥ 0],
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where Vi, i = 0, 1, . . . , d are some smooth coefficients, B· := (B1
· , . . . , B

d
· ) is a standard d-

dimensional Brownian motion independent of the initial state Xθ
0 = θ and of X̃·, and X

θ
0

is independent of X̃0. Throughout the section, [ξ] denotes the law of a generic random

element ξ. Here each coefficient Vi in (4.1) depends on time s, the value Xθ
s , its law

Law(Xθ
s ) =: [Xθ

s ] and the other X̃s of the pair for s ≥ 0. The law [Xθ
· ] depends on the

law [X̃·] through (4.1) and they are the same marginal law. We show that the above

directed chain SDE has a unique weak solution in section 4.2.

This kind of directed chain structure was firstly proposed by [52] in a simpler form.

Schematically, it can be written as an infinite chain of stochastic equations for (X1,·, X2,·, . . .):

dX1,t = b(t,X1,t, F1,t) dt+ dB1,t,

dX2,t = b(t,X2,t, F2,t) dt+ dB2,t

...

dXi,t = b(t,Xi,t, Fi,t) dt+ dBi,t,

...

(4.2)

where Fi,t := uδXi+1,t
+ (1 − u)µi,t is the mixture distribution term of the measure-

dependent drift coefficient b with the marginal law µi,t := Law(Xi,t) of Xi,t for t ≥ 0 ,

δXi+1,t
is the Dirac measure at Xi+1,t, a fixed constant u ∈ [0, 1] measures the common

amount of dependency of Xi,· on its neighborhood value Xi+1,·, and B1,·, B2,·,... are in-

dependent standard Brownian motions. We assume also that the initial value Xi,0 is

independent of Bi,·, and Xi+1,· and Bi,· are independent for i = 1, 2, . . .. In particular,

the drift b in [52] has the following form b(t, x, µ) :=
∫
R b̃(t, x, y)µ(dy) with some Lipschitz

continuous function b̃. See also Figure 4.2 in section 4.4.

The stochastic processes on infinite graphs including the directed chain structure have

drawn many attentions recently. Stochastic Differential Games on the directed chain have
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been studied in [59] and on the extended version of random directed networks in [61] as

well as on the general random graph (e.g., [101]). [100] discuss the Markov random field

property over both finite and countably infinite graph with local interactions through

the drift coefficients. Another related topic is the Graphon particle system. There are a

sequence of works in Graphon Mean Field Games, [10, 21, 22] just to name a few. [11]

introduced the uniform-in-time exponential concentration bounds related to the graphon

particle system and its finite particle approximations. Here, we are interested in the

existence and smoothness of the density of directed chain SDE (4.3)-(4.4). It should

be emphasized here that in this problem, we need notions of derivatives in the space of

measures, which is used frequently in the theory of Mean Field Games.

In most cases, Malliavin calculus is a foundation to analyze the smoothness of the

density of stochastic differential equations. It has been widely used in investigating

the density of diffusions [95], [97], [98] and then applied into many different scenarios.

The authors in [36] use Malliavin calculus to derive smoothing properties of solution

to stochastic differential equations with jumps. The smoothing properties of McKean-

Vlasov SDEs have been studied in [44], which is closely related to our purpose. However,

because of the appearance of the auxiliary process X̃, the crucial step making connections

between the Malliavin derivative and the first order derivative of the state process fails,

please see Question 4.3.3 for the detail. To our best knowledge, we did not find any

works studying the smoothness property of such weak solutions of stochastic differential

equations.

For the purpose of resolving this problem and utilizing the Malliavin derivatives,

we should frozen the auxiliary process X̃. This inspired us to consider another closely

related, well-developed tool, partial Malliavin calculus. Partial Malliavin calculus is first

introduced by [93] for the constant case, where the projections are taken on a fixed Hilbert

subspace, and applied to prove some regularity results in Non-linear Filtering theory.
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Another work developing the partial Malliavin calculus is [84], by which the authors

were able to complete the proof of some results in [117] on the long-time asymptotic of

the stochastic oscillatory integrals. We mainly adopt the framework from a later work

by Nualart and Zakai [129], where the projection is taken on a family of the subspace

which is defined as the orthogonal complement to the subspaces generated by X̃ in (4.1).

We remark that our method is potentially applied to analyze the smoothness property

of weak solutions of stochastic differential equations in a general setting.

4.1.2 Directed Chain Generative Adversarial Networks

Generative models are important to overcome the limitation of data scarcity, privacy,

and costs. In particular, medical data are not easy to get, use or share, due to privacy;

and financial time series data are inadequate due to their nonstationarity nature. Times-

series generative models, instead of seeking to learn the governing equations from real

data, aim to discover and learn data automatically, and output new data that plausibly

can be drawn from the original dataset. Some existing infinite-dimensional generative

adversarial networks (GANs) (e.g., [87, 109]) showed successful performance in unimodal

time series datasets. However, many real-world phenomena are multimodal distributed,

e.g., data describing the opinion divergence in a community [144], the interspike interval

distribution [138], and the oscillators’ natural frequencies [139]. All these bring the

necessity of developing new generative models for multimodal time series data.

In this project, we develop a novel time-series generator, named directed chain GANs

(DC-GANs), motivated by the formulation of DC-SDEs introduced above and in [53].

The drift and diffusion coefficients in DC-SDEs depend on another stochastic process,

which we call the neighborhood process, with distribution required to be the same as the

SDEs’ distribution. Different from other GANs, which only use real data in discrimina-
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tors, our proposed algorithm naturally takes the dataset as the neighborhood process,

giving generators access to data information. This feature enables our model to out-

perform the state-of-the-art methods on many datasets, particularly for the situation of

multimodal time-series data.

Contribution. We propose a generator for multimodal distributed time series based

on DC-SDEs (cf. Definition 4.5.1), and prove that our model can handle any distribution

that Neural SDEs are capable of generating (see Theorem 4.5.2). To train the generator,

we propose to use a combination of two types of discriminators: Sig-WGAN [125] and

Neural CDEs [90].

We notice that data generated immediately from DC-GANs can be correlated, and

propose an easy solution by walking along the directed chain in the path space for further

steps (see Theorem 4.5.4). Combining branching the chain with different Brownian noises

enables our model to generate unlimited independent fake data.

We test our algorithms in four different experiments and show that DC-GANs provide

the best performance compared to existing popular models, including SigWGAN [125],

CTFP [50], Neural SDEs [87], and TimeGAN [149].

Related Literature. Neural ordinary differential equations (Neural ODEs), intro-

duced by [38], use neural networks to parameterize the vector fields of ODEs and bring

a powerful tool for learning time series data. Later, significant effort has been put into

improving Neural ODEs, e.g., [133, 150, 118, 77]. In fact, incorporating mathematical

concepts into the Neural ODEs framework can provide the capability of analyzing and

justifying its validity, leading to a deeper understanding of the framework itself. For

example, [110] and [145] generalized the idea to neural stochastic differential equations

(Neural SDEs), providing adjoint equations for efficient training. By integrating rough
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path theory [115], [90] proposed neural controlled differential equations (Neural CDEs)

and [123] proposed neural rough differential equations for modeling time series. Other

examples integrating profound mathematical concepts include using higher order kernel

mean embeddings to capture information filtration [137], and solving high dimensional

partial differential equations through backward stochastic differential equations [76], to

name a few.

The closely related model to ours is the Neural SDEs by [87], which uses the Wasser-

stein GAN method to train stochastic diffusion evolving in a hidden space and gains

great success in simulating time series data. Other successful GANs models for time-

series data include [47, 146, 50, 87, 109]; see [16] for a recent review. Note that we find in

the numerical experiments that the performances of Neural SDEs are limited in simulat-

ing multimodal distributed time series, e.g., as shown in Figure 4.1 from the stochastic

opinion dynamics (Example 1 in Section 4.5.2).

To our best knowledge, [53] initiated the study of the SDE system on the directed

chains, followed by [62, 60] for the analysis of stochastic differential games on such chains

with (deterministic and random) interactions. Later on, more complicated graph struc-

tures are studied beyond directed chains. For example, [100] analyzed particle behaviors

where the interaction only happens between neighborhoods in an undirected graph, and

proved Markov random fields property and constructed Gibbs measure on path space

when interactions appear only in drift; [103] considered stochastic differential games on

transitive graphs; [28] studied games on a graphon which has infinitely many nodes. De-

spite numerous extensions, we find that the directed chain structure, although simple

but rich enough for generating multimodal time series.

From another viewpoint, DC-SDEs can be understood as the reverse direction of

mimicking theorems [70]. The idea of “mimicking” is that for a general SDE (even with

path-dependence features), one can construct a Markovian one to mimic its marginal
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distribution; see [19] for details on mimicking aspects of Itô processes including the

distributions of running maxima and running integrals. DC-SDEs work in the reverse

direction: they can produce marginal distributions that are generated by Markovian

SDEs (see Theorem 4.5.2 for a detailed statement). The benefit of using DC-SDEs, in

particular in machine learning, is to have a more vital fitting ability by embedding data

into a slightly more complicated system.
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Figure 4.1: Marginal distributions of real data (blue) and generated data (red) from
Example 1 (Stochastic opinion dynamics) at t ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1} in Sec-
tion 4.5.2. Figures (a)–(f) are generated by Neural SDEs, and Figures (g)–(l) are
generated by DC-GANs. One can see from Figures (e) and (f) that Neural SDEs fail
to capture the bimodal distribution.

This chapter is structured as follows: In section 4.2, we first introduce the differenti-

ation in the space of measures and multi-index notation in section 4.2.1, and then prove

the existence, uniqueness and some regularity results on the solutions of generalized di-

rected chain SDEs in Propositions 4.2.2-4.2.3. In section 4.3, we prepare the notions of

the partial Malliavin calculus and give the Kusuoka-Stroock process for the proof of our

smoothness of densities, which will be stated in section 4.4. Our proofs follows the idea

in [44], where we first derive integral by parts formulae for the directed chain SDEs via

the partial Malliavin derivatives, instead of the Malliavin derivatives, as in [44]. The

main result is stated in Theorem 4.4.11 with some applications in section 4.4. Finally,
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we introduce our DC-GANs algorithm in detail and experiments results in Section 4.5.

4.2 Preliminaries and Directed Chain SDEs

In this section, we first prepare some notations and the notion of differentiation in

P2, where P2 is the space of all measures with finite second moments, and then establish

the weak solutions of directed chain SDEs.

4.2.1 Notations and Basic Setup

To be consistent with the reference [44], we use [ξ] to denote the law of a random

variable ξ. Rather than the directed chain SDE of the type given in [52], we consider

the SDE in a more general setup, allowing the diffusion coefficients non-constant. Given

a probability space (Ω,F ,F = (Ft)t≥0,P), the directed chain McKean-Vlasov SDE (or

directed chain SDE for short) is of the form

Xθ
t = θ +

∫ t

0

V0(s,X
θ
s , [X

θ
s ], X̃s) ds+

d∑
i=1

∫ t

0

Vi(s,X
θ
s , [X

θ
s ], X̃s) dB

i
s, (4.3)

with the constraint [Xθ
t , t ≥ 0] = [X̃t, t ≥ 0], (4.4)

where Bs := (B1
s , . . . , B

d
s ) is a standard d dimensional Brownian motion and X̃s ∈ L2(Ω×

[0, T ],RN) is an adapted random process independent of all the Brownian motions Bi, i =

1, . . . , d and initial state Xθ
0 ≡ θ.

In particular, the abstract directed chain system (4.3)-(4.4) takes initial pair (Xθ
0 , X̃0)

as input, and produces output (Xθ
· , X̃·) as the solution on a probability space (Ω,F ,P).

We emphasize the Brownian motion B is independent of (Xθ
0 , X̃·) and the direction of

directed chain system is determined by this independence property.
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Moreover, we assume that V0, Vi : [0, T ]× RN × P2(RN)× RN → RN , where P2(RN)

is the set of measures on RN with finite second moments for i = 1, 2, . . . , d. We equip

P2(RN) with the 2-Wasserstein metric, W2. For a general metric space (M,d), we define

the 2-Wasserstein metric on P2(M) by

W2(µ, ν) = inf
Π∈Pµ,ν

(∫
M×M

d(x, y)2Π( dx, dy)

)1/2

,

where Pµ,ν denotes the class of measures on M ×M with marginals µ and ν.

We denote Lp norm on (Ω,F ,P) by ∥·∥p, p ≥ 1 and for every t ≥ 0, we also introduce

the space Spt of continuous F adapted process φ on [0, t], satisfying

∥φ∥Sp
t
=
(
E sup
s∈[0,t]

|φs|p
)1/p

<∞.

Let us introduce more notations in accordance with [44]. We will write θ = δx if

the initial state of this SDE is a fixed real vector x ∈ RN . We use Ck,k,kb,Lip (R+ × RN ×

P2(RN)×RN ;RN) for the class of functions that are k-times continuously differentiable

with bounded Lipschitz derivatives in the the last three variables, where the notion of

derivatives with respect to measure is adopted from P.-L. Lions’ lecture notes at the

Collège de France, recorded in a set of notes [24], very well exposed in [35] and also

adopted by [44]. A precise definition for Ck,k,kb,Lip (R+ × RN × P2(RN) × RN ;RN) will be

given in Definition 4.2.1.

Differentiability in P2(RN). Lion’s notion of differentiability with respect to measure

of functions U : P2(RN) → R is to define a lifted function U ′ on the Hilbert space

L2(Ω′;RN) over probability space (Ω′,F ′,P′), where Ω′ is a Polish space and P′ is an

atomless measure, such that U ′(X ′) = U([X ′]) for X ′ ∈ L2(Ω′;RN) and [X ′] = [X].

Thus, we are able to express the derivative of U w.r.t. measure µ = [X] term as the
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Fréchet derivative of U ′ w.r.t. X ′ whenever it exists, which can be written as an element

of L2(Ω′;RN) by identifying L2(Ω′;RN) and its dual. This gradient in a direction γ′ ∈

L2(Ω′;RN) is given by

DU ′(X ′)(γ′) = ⟨DU ′(X ′), γ′⟩ = E′[DU ′(X ′) · γ′
]
,

where E′ is the expectation under P′. By [24, Theorem 6.2], the distribution of this

gradient depends only on the measure µ, exists uniquely and can be written as

∂µU(µ,X
′) := DU ′(X ′) = ξ(X ′) ∈ L2(Ω′;RN).

This definition of the derivative with respect to measure can be extended to higher

orders by thinking of ∂µU(µ, ·) : P2(RN) × RN → RN as a function, and the derivative

is well defined for each of its components as in the following. For each µ ∈ P2(RN),

there exists a unique version of such function ∂µU(µ, ·) which is assumed to be a priori

continuous (see the discussion in [44]).

Multi-index. To get a more general result, we extend the derivatives to higher order.

For a function f : P2(RN) → RN , we can apply the above discussion straightforwardly

to each component f = (f 1, . . . , fN). Then the derivatives ∂µf
i, 1 ≤ i ≤ N takes values

in RN , and we denote (∂µf
i)j : P2(RN)×RN → R for j = 1, . . . , N . For a fixed v ∈ RN ,

we are able to differentiate P2 ∋ µ 7→ (∂µf
i)j(µ, v) ∈ R again to get the second order

derivative. If the derivative of this mapping exists and there is a continuous version of

P2(RN)× RN × RN ∋ (µ, v1, v2) 7→ ∂µ(∂µf
i)j(µ, v1, v2) ∈ RN ,
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then it is unique. It is natural to have a multi-index notation ∂
(j,k)
µ f i := (∂µ(∂µf

i)j)k to

ease the notation. Similarly, for higher derivatives, if for each (i0, . . . , in) ∈ {1, . . . , N}n+1,

∂µ(∂µ . . . (∂µ︸ ︷︷ ︸
n times

f i0)i1 . . . )in

exists, we denote this ∂αµf
i0 with α = (i1, . . . , in) and |α| = n. Each derivative in µ is a

function of an extra variable with ∂αµf
i0 : P2(RN)× (RN)n → R. We always denote these

variables, by v1, . . . , vn, i.e.,

P2(RN)× (RN)n ∋ (µ, v1, . . . , vn) 7→ ∂αµf
i0(µ, v1, . . . , vn) ∈ R.

When there is no confusion, we will abbreviate (v1, . . . , vn) to v ∈ (RN)n, so that

∂αµf
i0(µ,v) = ∂αµf

i0(µ, v1, . . . , vn),

and use notation

|v| := |v1|+ · · ·+ |vn|,

with | · | the Euclidean norm on RN . It then makes sense to discuss derivatives of the

function ∂αµf
i0 with respect to variables v1, . . . , vn.

If, for some j ∈ {1, . . . , N} and all (µ, v1, . . . , vj−1, vj+1, . . . , vn) ∈ P2(RN)× (RN)n−1,

RN ∋ vj 7→ ∂αµf
i0(µ, v1, . . . , vn) ∈ R

is l-times continuously differentiable, we denote the derivatives ∂
βj
vj ∂

α
µf

i0 , for βj a multi-

index on {1, . . . , N} with |βj| ≤ l. Similar to the above, we will denote by β the n-tuple

71



Directed Chain SDEs Chapter 4

of multi-indices (β1, . . . , βn). We also associate a length to β by

|β| := |β1|+ · · ·+ |βn|,

and denote #β := n. Then we denote by Bn the collection of all such β with #β = n,

and B := ∪n≥1Bn. Again, to lighten the notation, we use

∂βv ∂
α
µf

i(µ,v) := ∂βnvn · · · ∂β1v1 ∂
α
µf

i(µ, v1, . . . , vn).

The coefficients V0, . . . , Vd : [0, T ] × RN × P2(RN) × RN → RN depend on a time

variable, two Euclidean variables as well as the measure variable. So whether the order

of taking derivatives matters is a question. Fortunately, a result from [20, Lemma 4.1]

tells us that derivatives commute when the mixed derivatives are Lipschitz continuous.

However, it should be emphasized that we could not interchange the order of ∂µ and ∂v,

since the coefficients would not depend on the extra variable v before taking derivatives

with respect to measure.

Definition 4.2.1 (Ck,k,kb,Lip) We have the following definitions:

(a) We use ∂x, ∂̃ to denote the derivative with respect to the second and fourth Euclidean

variables in V0, Vi’s, respectively.

(b) Let V : R+ × RN × P2(RN) × RN → RN with components V 1, . . . , V N : R+ ×

RN × P2(RN) × RN → R. We say V ∈ C1,1,1
b,Lip([0, T ] × RN × P2(RN) × RN ;RN) if

the following is true: for each i = 1, . . . , N , ∂µV
i, ∂xV

i and ∂̃V i exist. Moreover,

assume the boundedness of the derivatives for all (t, x, µ, y, v) ∈ [0, T ] × RN ×

P2(RN)× RN × RN ,

|∂xV i(t, x, µ, y)|+ |∂̃V i(t, x, µ, y)|+ |∂µV i(t, x, µ, y, v)| ≤ C.
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In addition, suppose that ∂µV
i, ∂xV

i and ∂̃V i are all Lipschitz in the sense that for

all (t, x, µ, y, v), (t, x′, µ′, y′, v′) ∈ [0, T ]× RN × P2(RN)× RN × RN ,

∣∣∂µV i(t, x, µ, y, v)− ∂µV
i(t, x′, µ′, y′, v′)

∣∣ ≤
C(|x− x′|+ |y − y′|+ |v − v′|+W2(µ, µ

′)),∣∣∂xV i(t, x, µ, y)− ∂xV
i(t, x′, µ′, y′)

∣∣ ≤ C(|x− x′|+ |y − y′|+W2(µ, µ
′)),∣∣∂̃V i(t, x, µ, y)− ∂̃V i(t, x′, µ′, y′)

∣∣ ≤ C(|x− x′|+ |y − y′|+W2(µ, µ
′)),

and V i, ∂µV
i, ∂xV

i and ∂̃V i all have linear growth property,

|V i(t, x, µ, y)|+ |∂xV i(t, x, µ, y)|+ |∂µV i(t, x, µ, y, v)|+ |∂̃V i(t, x, µ, y)|

≤ CT
(
1 + |x|+ |y|+W2(µ, µ0) + |v|

)
for some fixed measure µ0 ∈ P2(RN), and CT is a constant that depends only on T .

(c) We write V ∈ Ck,k,kb,Lip ([0, T ] × RN × P2(RN) × RN ;RN), if the following holds true:

for each i = 1, . . . , N , and all multi-indices α, γ̃ and γ on {1, . . . , N} and all β ∈ B

satisfying |α|+ |β|+ |γ|+ |γ̃| ≤ k, the derivative

∂γx ∂̃
γ̃∂βv ∂

α
µV

i(t, x, µ, y,v)

exists and is bounded, Lipschitz continuous, and satisfies the linear growth condi-

tion.

(d) We write h ∈ Ck,kb,Lip([0, T ]×RN ×RN ;RN), if the mapping h does not depend on a

measure variable and all the other conditions are satisfied in (c).
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4.2.2 Solutions of Directed Chain SDEs

The existence and uniqueness of weak solutions of directed chain SDEs are given

in Proposition 4.2.2. The constraint (4.4) plays an essential role here to govern the

uniqueness.

Proposition 4.2.2 Suppose that Vi, i = 0, 1, . . . , d are Lipschitz in the sense that for

every T > 0, there exists a constant CT such that

sup
i

|Vi(t, x1, µ1, y1)−Vi(t, x2, µ2, y2)| ≤ CT (|x1−x2|+ |y1−y2|+W2(µ1, µ2)), 0 ≤ t ≤ T.

(4.5)

With the same constant CT , let us also assume that Vi’s have at most linear growth, i.e.

sup
0≤t≤T

|Vi(t, x, µ, y)| ≤ CT (1 + |x|+ |y|+W2(µ, µ0)) (4.6)

where µ0 ∈ P2(RN) is fixed. Then there exists a unique weak solution to the directed

chain stochastic differential equation (4.3)-(4.4).

The proof is similar to the proof for [52, Proposition 2.1] with a little generaliza-

tion. Because of the appearance of the neighborhood process, we cannot expect a strong

solution of the directed chain SDEs (4.3) (cf. Proposition 2.1 of [52]).

Proof: Let us first assume boundedness on all coefficients, i.e.

sup
i

|Vi(t, x1, µ1, y1)−Vi(t, x2, µ2, y2)| ≤ CT ((|x1−x2|+ |y1−y2|+W2(µ1, µ2))∧1). (4.7)

We shall evaluate the Wasserstein distance between two probability measures µ1, µ2

on the space C([0, T ],RN) of continuous functions, namely
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Dt(µ1, µ2) := inf

{∫
( sup
0≤s≤t

|Xs(ω1)−Xs(ω2)|2 ∧ 1) dµ(ω1, ω2)

}1/2

(4.8)

for 0 ≤ t ≤ T , where the infimum is taken over all the joint measure µ on C([0, T ],RN)×

C([0, T ],RN) such that their marginals are µ1, µ2, and the initial joint distribution is

θ ⊗ θ, the initial marginals are θ. Here, Xs(ω) = ω(s), 0 ≤ s ≤ T is the coordinate map

of ω ∈ C([0, T ],RN). DT (·, ·) defines a complete metric on M(C([0, T ],RN)), which gives

the weak topology to it.

Given the distribution m = Law(X̃) ∈ M(C([0, T ],RN)) of X̃ that is independent of

B and X0, it is well known that the following stochastic differential equation

dXm
t = V0(t,X

m
t ,mt, X̃t) dt+

d∑
i=1

Vi(t,X
m
t ,mt, X̃t) dB

i
t (4.9)

has a unique solution, based on the Lipschitz and linear growth condition on coefficients.

Since X̃ is independent of Brownian motion B, we can only expect the solution exists in

weak sense.

Define a map Φ : M(C([0, T ],RN)) → M(C([0, T ],RN)) by Φ(m) := Law(Xm
· ). We

shall find a fixed point m∗ for the map Φ such that Φ(m∗) = m∗ to show the uniqueness

of the solution in the weak sense.

Assume m1 = Law(X̃1) and m2 = Law(X̃2), then by rewriting (4.9) we have

Xmi
t = θ +

∫ t

0

V0(t,X
mi
t ,mi,t, X̃

i
t) ds+

d∑
i=1

∫ t

0

Vi(t,X
mi
t ,mi,t, X̃

i
t) dB

i
s, i = 1, 2.

Note that here we fix the initial state to be the same θ for both Xm1 and Xm2 . Let m

be a joint distribution of m1,m2 and Em be the expectation under m. Under the stronger
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assumption (4.7),

Em
[
sup
0≤s≤t

(Xm1
s −Xm2

s )2
]

≤ 2Em
[
sup
0≤s≤t

∫ s

0

(
V0(v,X

m1
v ,m1,v, X̃

1
v )− V0(v,X

m2
v ,m2,v, X̃

2
v )
)2

dv

]
+ 2d

d∑
i=1

Em
[
sup
0≤s≤t

∫ s

0

(
Vi(v,X

m1
v ,m1,v, X̃

1
v )− Vi(v,X

m2
v ,m2,v, X̃

2
v )
)2

dv

]
≤ 2d+3(d+ 1)CTEm

[
sup
0≤s≤t

∫ s

0

(
(Xm1

v −Xm2
v )2 +W2(m1,v,m2,v)

2 + (X̃1
v − X̃2

v )
2
)
∧ 1 dv

]
≤ C · Em

[ ∫ t

0

sup
0≤v≤s

(Xm1
v −Xm2

v )2 ∧ 1 ds

]
+ C

∫ t

0

W2(m1,s,m2,s)
2 ∧ 1 ds

+ C · Em
[ ∫ t

0

sup
0≤v≤s

(X̃1
v − X̃2

v )
2 ∧ 1 ds

]
= C

∫ t

0

Em
[
sup

0≤v≤s
(Xm1

v −Xm2
v )2 ∧ 1

]
ds+ C

∫ t

0

W2(m1,s,m2,s)
2 ∧ 1 ds

+ C

∫ t

0

Em
[
sup

0≤v≤s
(X̃1

v − X̃2
v )

2 ∧ 1
]
ds (4.10)

where we replace 2d+3(d+ 1)CT by C. Note that by construction,

W2(m1,s,m2,s)
2 ∧ 1 ≤ Ds(m1,m2)

2.

By taking infimum over all m such that its marginals are m1,m2, the third term in

(4.10) is bounded by

C

∫ t

0

Ds(m1,m2)
2 ds.

Hence we get

Dt(Φ(m1),Φ(m2))
2 ≤ C

∫ t

0

Ds(Φ(m1),Φ(m2))
2 ds+ 2C

∫ t

0

Ds(m1,m2)
2 ds.
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Then by applying Gronwall’s lemma, we get

Dt(Φ(m1),Φ(m2))
2 ≤ 2CeCT

∫ t

0

Ds(m1,m2)
2 ds. (4.11)

For every m ∈ M(C([0, T ],RN)), let m1 = m, m2 = Φ(m), we get by iterating (4.11),

DT (Φ
(k+1)(m),Φ(k)(m)) ≤

√
(2CTeCT )k

k!
DT (Φ(m),m), ∀k ∈ N. (4.12)

This implies that {Φ(k)(m), k ∈ N} forms a Cauchy sequence converging to a fixed

point m∗. This m∗ is the weak solution to directed chain SDE (4.3)&(4.4). To relax the

bounded condition (4.7) to (4.5), we can first cut [0, T ] to small time intervals such that

the bounded assumption is satisfied on each interval, and establish the uniqueness on

each interval and finally paste them together.

Proposition 4.2.3 (Regularity) If θ ∈ L2(Ω), the solution of directed chain SDE

(4.3)-(4.4) satisfies

∥Xθ∥S2
T
≤ C(1 + ∥θ∥2),

where C = C(T ), under the assumption of Proposition 4.2.2.

Proof: The proof follows from a similar procedures as [52, Proposition 2.2].

4.2.3 Flow Property

In the last part of this section, we discuss the flow property of directed SDEs in-

formally. After establishing the solution to the exact directed chain SDE (4.3), we also

consider the process X
x,[θ]
· that satisfies

Xx,[θ]
· = x+

∫ ·

0

V0(s,X
x,[θ]
s , [Xθ

s ], X̃s) ds+
d∑
i=1

∫ ·

0

Vi(s,X
x,[θ]
s , [Xθ

s ], X̃s) dB
i
s, (4.13)
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where x ∈ RN is a fixed initial point and X̃· is the neighborhood process satisfying the

constraints (4.4), i.e., Law(X̃·) = Law(Xθ
· ) = [Xθ

· ]. Note that X
x,[θ]
· in (4.13) is strongly

solvable with pathwise uniqueness, given the unique, weak solution (Xθ
· , X̃·, B·) as in

Proposition 4.2.2.

Proposition 4.2.4 (Regularity) Under the assumption in Proposition 4.2.2, for every

θ ∈ L2(Ω), T > 0 and p ≥ 2, there exists a constant C = C(T, p) such that the solution

of (4.13) satisfies

∥Xx,[θ]∥Sp
T
≤ C(1 + ∥θ∥2 + |x|).

Proof: The proof follows from the Burkholder-Davis-Gundy inequality and Propo-

sition 4.2.3, which is also satisfied by X̃.

For the explanation purpose, we will add a superscript θ̃ such that Xx,θ,θ̃
t := Xx,θ

t

and X̃ θ̃
t := X̃t to emphasize the neighborhood process start at θ̃, independent of θ. This

notation is only used in this subsection. Thus, with the notation B0
t ≡ t, t ≥ 0, (4.13) is

read as

X
x,[θ],θ̃
t = x+

d∑
i=0

∫ t

0

Vi(s,X
x,[θ],θ̃
s , [Xθ

s ], X̃
θ̃
s ) dB

i
s, t ≥ 0. (4.14)

For different initial points x, x′ and the corresponding solutions X
x,[θ],θ̃
· and X

x′,[θ],θ̃
· ,

we have the following estimate: there exists a constant C > 0 such that

E
[
sup
t≤s≤T

∣∣Xx,[θ],θ̃
s −Xx′,[θ],θ̃

s

∣∣2] ≤ C|x− x′|2

again by the Lipschitz continuity and the Burkholder-Davis-Gundy inequality. By the

pathwise uniqueness of X
x,[θ],θ
· , given the pair (Xθ

· , X̃
θ̃
· ), it follows

Xx,[θ],θ̃
s

∣∣∣∣
x=θ

= Xθ
s , 0 ≤ s ≤ T. (4.15)
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Now, with some abuse of notations, we denote by X
t,x,[θ],θ̃
· the solution to (4.14) with

X
t,x,[θ],θ̃
t = x, denote by (X t,θ

· , X̃ t,θ̃
· ) the solution to (4.3) with (X t,θ

t , X̃ t,θ̃
t ) = (θ, θ̃). It

follows from (4.15) that by the strong Markov property, for 0 ≤ t ≤ s ≤ r ≤ T , we have

the flow property

(Xs,X
t,x,[θ],θ̃
s ,[Xt,θ

s ],X̃t,θ̃
s

r , Xs,Xt,θ
s

r , X̃s,X̃t,θ̃
s

r ) = (X t,x,[θ],θ̃
r , X t,θ

r , X̃ t,θ̃
r ). (4.16)

We close section 4.2 at this point. After the introduction of the partial Malliavin

derivatives, we will revisit the directed chain SDE and study the regularities of its deriva-

tives.

4.3 Partial Malliavin Calculus

In this section, we will briefly review the Malliavin calculus, following [128], and

introduce the partial Malliavin derivatives for our problem.

Malliavin Calculus. Let H := L2([0, T ],Rd) be the Hilbert space equipped with the

norm ∥ · ∥H , where we define Gaussian process, and S be the set of smooth functionals

of the form

F (ω) = f

(∫ T

0

h1(t) · dBt(ω), . . . ,

∫ T

0

hn(t) · dBt(ω)

)
,

where f ∈ C∞
p (Rn;R) and

∫ T
0
hi(t) · dBt =

∑d
j=1

∫ T
0
hji (t) dB

j
t .

Then the Malliavin derivative of F , denoted by DF ∈ L2(Ω;H) is given by:

DF =
n∑
i=1

∂if

(∫ T

0

h1(t) · dBt(ω), . . . ,

∫ T

0

hn(t) · dBt(ω)

)
hi. (4.17)

As stated in [128], because of the isometry L2(Ω× [0, T ];Rd) ≃ L2(Ω;H), we are able
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to identify DF with a process (DrF )r∈[0,T ] taking values in Rd. Moreover, the set of

smooth functionals, denoted by S, is dense in Lp(Ω) for any p ≥ 1 and D is closable

as operator from Lp(Ω) to Lp(Ω;H). We define D1,p as the closure of the set S within

Lp(Ω;Rd) with respect to the norm

∥F∥D1,p =
(
E|F |p + E∥DF∥pH

) 1
p .

The higher order Malliavin derivatives are defined similarly, denoted by D(k)F , which

is a random variable with values in H⊗k defined as

D(k)F :=
n∑

i1,...,ik=1

∂(i1,...,ik)f

(∫ T

0

h1(t) · dBt(ω), . . . ,

∫ T

0

hn(t) · dBt(ω)

)
.

We define Dk,p to be the closure of the set of smooth functions S with respect to the

norm:

∥F∥Dk,p =
(
E|F |p +

k∑
j=1

E∥D(j)F∥pH
) 1

p .

The Malliavin derivative is also well defined for the general E-valued random vari-

ables, where E is some separable Hilbert space, and we writeD1,p(E) to be the closure of S

under some appropriate metric with respect to E. We will use notation D1,∞ = ∩p≥1D
1,p.

The adjoint operator of D is introduced as follows.

Definition 4.3.1 (Definition 1.3.1, [128]) We denote by δ the adjoint of the operator

D. That is, δ is an unbounded operator on L2(Ω;H) with values in L2(Ω) such that

1. The domain of δ, denoted by Dom δ, is the set of H-valued square integrable random

variables u ∈ L2(Ω;H) such that

∣∣E[⟨DF, u⟩H ]
∣∣ ≤ c∥F∥2
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for all F ∈ D1,2, where c is some constant depending on u.

2. If u belongs to Dom δ, then δ(u) is the element of L2(Ω) characterized by

E[Fδ(u)] = E[⟨DF, u⟩H ]

for any F ∈ D1,2.

4.3.1 Partial Malliavin Calculus

The following remark motivate us to use partial Malliavin calculus.

Remark 4.3.2 Because of the appearance of a neighborhood process X̃·, we propose the

following problem. We shall remark that almost everything satisfied by the McKean-

Vlasov SDE in [44] is also satisfied by our directed chain SDE. However, we cannot

directly apply their approach to argue the existence, contituity and differentiability of

the density function of X
x,[θ]
t . The reason is that a key step connecting the Malliavin

derivative and ∂xX
x,[θ]
t , which is defined in (4.13), may not hold in our case, i.e., in

general, the identity

∂xX
x,[θ]
t = DrX

x,[θ]
t σ⊤(σσ⊤)−1

(r,Xx,[θ]
r , [Xθ

r ], X̃r)∂xX
x,[θ]
r (4.18)

does not hold for any r ≤ t. Thus, we cannot directly make use of the integration by

parts formulae in [44], and hence, we cannot argue the smoothness of X
x,[θ]
t .

Question 4.3.3 How can we make connections between the first order derivative ∂xX
x,[θ]
t

and the Malliavin derivatives similar to (4.18), which would render us to apply integration

by parts formula?
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To address Question 4.3.3, we consider the partial Malliavin derivative in [129]. Let

G := σ({X̃ti ,∀ti ∈ QT}) be the sigma algebra generated by the neighborhood process at

all rational time, where QT = Q ∩ [0, T ] denote the collection of all rational numbers in

[0, T ]. Thanks to the continuity of X̃, considering all rational time stamps is equivalent to

considering the whole time interval [0, T ], i.e. G = σ(X̃s, 0 ≤ s ≤ T ). We associate to G

the family of subspaces defined by the orthogonal complement to the subspace generated

by {DX̃ti(ω), ti ∈ QT}, i.e.,

K(ω) = ⟨DX̃ti(ω), ti ∈ QT ⟩⊥.

Since G is generated by countably many random variables, we say it is countably

smoothly generated. Then the family

H := {K(ω), ω ∈ Ω}

has a measurable projection by this countably smoothness of G. We define the partial

Malliavin derivative operator as DH.

Definition 4.3.4 (Definition 2.1, [129]) We define the partial derivative operator

DH : D1,2 → L2(Ω,H)

as the projection of D on H, namely, for any F ∈ D1,2,

DHF = ProjH(DF ) = ProjK(ω)(DF )(ω).

This operator, similar to D, admits an identification with a process (DH
r )r∈[0,T ]. For

the higher order Malliavin derivative DH,(j) : D1,2 → L2(Ω,H⊗j), we can defined it in an
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iterative manner, that is

DH,(j+1)F = ProjH(DDH,(j)F ).

Moreover, we define the norm associated with DH by

∥F∥
D

k,p
H

=
(
E|F |p +

k∑
j=1

E∥DH,(j)F∥pH
) 1

p ,

where DH,(j) is defined as

DH,(j)F = ProjH(D
(j)F ) = ProjK(ω)(D

(j)F )(ω).

Now we have the important fact that DHX̃t = 0. This is because X̃t is G measurable

and hence equivalently

DX̃t ∈ ⟨DX̃ti , ti ∈ QT ∪ {t}⟩; t ∈ [0, T ]. (4.19)

Then the projection ofDX̃t on to the orthogonal complement of ⟨DX̃ti , ti ∈ QT∪{t}⟩

must be zero. Similar to the common Malliavin calculus, we have an adjoint operator of

DH, which is denoted by δH, as well as the integration by parts formula for the partial

Malliavin calculus.

Definition 4.3.5 (Definition 2.3, [129]) Set Dom δH = {u ∈ L2(Ω;H) : ProjHu ∈

Dom δ}. For any u ∈ Dom δH, set δH(u) = δ(ProjHu).

Following Definition 4.3.4 and 4.3.5, we have integration by parts formula for DH

and δH

E[⟨h,DHF ⟩] = E[⟨ProjHh,DF ⟩] = E[FδH(h)]. (4.20)
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Kusuoka-Stroock Processes In order to derive the differentiability of the density

function, we mimic the procedure in [44] and need to develop the integration-by-parts

formulae introduced in the works of [96] and [94]. Kusuoka-Strook process is an important

tool to analysis of stochastic differential equations with many applications, see [45, 42,

43, 46] for example.

Definition 4.3.6 (Definition 2.8 in [44]) Let E be a separable Hilbert space and let

r ∈ R, q,M ∈ N. We denote by Kq
r(E,M) the set of processes Ψ : [0, T ]×RN×P2(RN) →

DM,∞(E) satisfying the following:

1. For any multi-indices α,β, γ satisfying |α|+ |β|+ |γ| ≤M , the function

[0, T ]× RN × P2(RN) ∋ (t, x, [θ]) 7→ ∂γx∂
β
v ∂

α
µΨ(t, x, [θ], v) ∈ Lp(Ω)

exists and is continuous for all p ≥ 1.

2. For any p ≥ 1 and m ∈ N with |α|+ |β|+ |γ|+m ≤M , we have

sup
v∈(RN )#β

sup
t∈(0,T ]

t−r/2
∥∥∥∥∂γx∂βv ∂αµΨ(t, x, [θ], v)

∥∥∥∥
D

m,p
H (E)

≤ C (1 + |x|+ ∥θ∥2)q

In our discussion, we do not consider the differentiability of the processX with respect

to the initial state of its neighborhood X̃. This above definition of Kq
r(E) is almost the

same as the definition in [44, Definition 2.8], except for the norm. The reason is that we

only care about the existence and smoothing properties of the density function of Xx,[θ]

and have to use the partial Malliavin calculus. We remark that although the norms are

different, all the regularity results under the norm ∥ · ∥Dk,p also holds under our norm

∥ · ∥
D

k,p
H

because of the Hölder’s inequality. To get the smoothness of density functions

of a process start from a fixed initial point, we use Kq
r(R,M) as the class of Kusuoka-
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Stroock processes which do not depend on a measure term. By [44, Lemma 2.11], if

Ψ ∈ Kq
r(E,M), then Φ(t, x, y) := Ψ(t, x, δx, y) ∈ Kq

r(E,M).

4.4 Smoothness of Directed Chain SDEs

4.4.1 Regularities of Solutions of Directed Chain SDEs

For the purpose of establishing the integration by parts formulae for the directed

chain SDEs and applying the results in [44, Theorem 6.1], we only need to check all the

regularities conditions with respect to parameters (θ, x) contained in [44, Section 3].

Proposition 4.4.1 (First-order derivatives) Suppose that V0, . . . , Vd ∈ C1,1,1
b,Lip(R+ ×

RN × P2(RN)× RN ;RN). Then the following statements hold:

1. There exists a modification of Xx,[θ] such that for all t ∈ [0, T ], the map x 7→ X
x,[θ]
t

is P-a.s. differentiable. We denote the derivative by ∂xX
x,[θ] and note that it solves

the following SDE

∂xX
x,[θ]
t = IdN +

d∑
i=0

∫ t

0

{
∂Vi(s,X

x,[θ]
s , [Xθ

s ], X̃s)∂xX
x,[θ]
s

}
dBi

s (4.21)

for every t ∈ [0, T ].

2. For all t ∈ [0, T ], the maps θ 7→ Xθ
t and θ 7→ X

x,[θ]
t are Fréchet differentiable in

L2(Ω), i.e. there exists a linear continuous map DXθ
t : L2(Ω) → L2(Ω) such that

for all γ ∈ L2(Ω),

∥Xθ+γ
t −Xθ

t −DXθ
t (γ)∥2 = o(∥γ∥2) as ∥γ∥2 → 0,

and similarly for X
x,[θ]
t . These processes satisfy the following stochastic differential
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equations

DXx,[θ]
t (γ) =

d∑
i=0

∫ t

0

[
∂Vi(s,X

x,[θ]
s , [Xθ

s ], X̃s)DXx,[θ]
s (γ)

+ ∂̃Vi(s,X
x,[θ]
s , [Xθ

s ], X̃s)DX̃s(γ)

+DV ′
i (s,X

x,[θ]
s , Xθ

s , X̃s)(DXθ
s (γ))

]
dBi

s, (4.22)

DXθ
t (γ) = γ +

d∑
i=0

∫ t

0

[
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)DXθ

s (γ) + ∂̃Vi(s,X
θ
s , [X

θ
s ], X̃s)DX̃s(γ)

+DV ′
i (s,X

θ
s , X

θ
s , X̃s)(DXθ

s (γ))

]
dBi

s (4.23)

where V ′
i is the lifting of Vi. Moreover, for each x ∈ RN , t ∈ [0, T ], the map

P2 ∋ [θ] 7→ X
x,[θ]
t ∈ L2(Ω) is differentiable. So, ∂µX

x,[θ]
t (v) exists and it satisfies

the following equation

∂µX
x,[θ]
t (v) =

d∑
i=0

∫ t

0

{
∂Vi
(
s,Xx,[θ]

s , [Xθ
s ], X̃s

)
∂µX

x,[θ]
s (v)

+ ∂̃Vi
(
s,Xx,[θ]

s , [Xθ
s ], X̃s

)
∂µX̃s(v)

+ E′
[
∂µVi

(
s,Xx,[θ]

s , [Xθ
s ], X̃s, (X

v,[θ]
s )′

)
∂x(X

v,[θ]
s )′

]
+ E′

[
∂µVi

(
s,Xx,[θ]

s , [Xθ
s ], X̃s, (X

θ′

s )
′)∂µ(Xθ′,[θ]

s )′(v)

]}
dBi

s, (4.24)

where (Xθ′
s )

′ is a copy of Xθ
s on the probability space (Ω′,F ′,P′). Similarly, ∂x(X

v,[θ]
s )′

is a copy of ∂xX
v,[θ]
s and ∂µ(X

θ′,[θ]
s )′ = ∂µ(X

x,[θ]
s )′

∣∣
x=θ′

. Finally, the following repre-

sentation holds for all γ ∈ L2(Ω):

DXx,[θ]
t (γ) = E′[∂µX

x,[θ]
t (θ′)γ′]. (4.25)
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3. For all t ∈ [0, T ], X
x,[θ]
t , Xθ

t ∈ D1,∞. Moreover, DH
r X

x,[θ] =

(
DH,j

r (Xx,[θ])i
)

1≤j≤N
1≤i≤d

satisfies, for 0 ≤ r ≤ t

DH
r X

x,[θ]
t = σ

(
r,Xx,[θ]

r , [Xθ
r ], X̃r

)
+

d∑
i=0

∫ t

r

(
∂Vi(s,X

x,[θ]
s , [Xθ

s ], X̃s)D
H
r X

x,[θ]
s

)
dBi

s,

(4.26)

where σ
(
r,X

x,[θ]
r , [Xθ

r ], X̃r

)
is the N × d matrix with columns V1, . . . , Vd.

Proof:

1. The SDE of Xx,[θ] satisfies a classical SDE with adapted coefficients, by [92, Theo-

rem 7.6.5] there exists a modification of X
x,[θ]
t which is continuously differentiable

in x, and the first derivative satisfies (4.21).

2. The maps θ 7→ Xθ
t and θ 7→ X

x,[θ]
t are Fréchet differentiable by [37, Lemma 4.17].

Then (4.22) and (4.23) follow from direct computation.

Let us first rewrite the equation for DXθ
t (γ) in terms of the lifting V ′,

DXθ
t (γ) = γ +

d∑
i=0

∫ t

0

[
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)DXθ

s (γ) + ∂̃Vi(s,X
θ
s , [X

θ
s ], X̃s)DX̃s(γ)

+ E′[∂µV ′
i (s,X

θ
s , [X

θ
s ], X̃s, (X

θ′

s )
′)(D(Xθ′

s )
′(γ′))

]]
dBi

s. (4.27)

We then consider the equation that we are going to prove for ∂µX
θ′,[θ]
s (v), evaluated

at v = θ′′ and multiplied by γ′′ with both random variables defined on a probability
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space (Ω′′,F ′′,P′′). Then taking expectation with respect to P′′, we get

E′′[∂µXθ′,[θ]
t (θ′′)γ′′

]
=

d∑
i=0

∫ t

0

{
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)E′′[∂µX

θ′,[θ]
s (θ′′)γ′′]

+ ∂̃Vi(s,X
θ
s , [X

θ
s ], X̃s)E′′[∂µX̃sγ

′′]

+ E′′E′
[
∂µVi(s,X

θ
s , [X

θ
s ], X̃s, (X

θ′′,[θ]
s )′)∂x(X

θ′′,[θ]
s )′γ′′

]
+ E′[∂µVi(s,Xθ

s , [X
θ
s ], X̃s, (X

θ′

s )
′)E′′[∂x(X

θ′,[θ]
s )′(θ′′)γ′′]

]}
dBi

s.

(4.28)

Note that since (γ′′, θ′′) are defined on a separate probability space, we have

E′′[∂µX̃sγ
′′] = DX̃s(γ)

and

E′′E′[∂µVi(s,Xθ
s , [X

θ
s ], X̃s, (X

θ′′,[θ]
s )′)∂x(X

θ′′,[θ]
s )′γ′′

]
=

E′[∂µVi(s,X
θ
s , [X

θ
s ], X̃s, (X

θ′

s )
′)∂x(X

θ′,[θ]
s )′γ′].

Then the dynamic of E′′[∂µX
θ′,[θ]
t (θ′′)γ′′] reduces to

E′′[∂µXθ′,[θ]
t (θ′′)γ′′

]
=

d∑
i=0

∫ t

0

{
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)E′′[∂µX

θ′,[θ]
s (θ′′)γ′′]

+ ∂̃Vi(s,X
θ
s , [X

θ
s ], X̃s)DX̃s(γ)

+ E′[∂µVi(s,Xθ
s , [X

θ
s ], X̃s, (X

θ′

s )
′)
[
∂x(X

θ′,[θ]
s )′γ′ + E′′[∂x(X

θ′′,[θ]
s )′(θ′′)γ′′]

]}
dBi

s.

(4.29)

By (4.21), we can evaluate the equation at x = θ, multiply by x, and derive a
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dynamic of ∂xX
θ,[θ]
t γ. It can be seen that ∂xX

θ,[θ]
t γ +E′′[∂µX

θ′,[θ]
t (θ′′)γ′′] is equal to

γ +
d∑
i=0

∫ t

0

{
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)E′′[∂µX

θ′,[θ]
s (θ′′)γ′′] + ∂̃Vi(s,X

θ
s , [X

θ
s ], X̃s)DX̃s(γ)

+ E′[∂µVi(s,Xθ
s , [X

θ
s ], X̃s, (X

θ′

s )
′)
[
∂x(X

θ′,[θ]
s )′γ′ + E′′[∂x(X

θ′′,[θ]
s )′(θ′′)γ′′]

]}
dBi

s.

(4.30)

We observe that this dynamic is identical to the dynamic for DXθ
t (γ) in (4.27) and

hence they are identical by uniqueness. Similarly, by using this result for DXθ
t (γ)

and the same procedures, we are able to derive that E′′[∂µX
x,[θ]
t (θ′′)γ′′] is equal to

DXx,[θ]
t (γ). So (4.25) is proved. Moreover, ∂µX

x,[θ]
t (v) exists and satisfies equation

(4.24) by its definition.

3. We first deduce the Malliavin derivative for Xθ. Consider the Picard iteration given

by

Xθ,0
t = θ,

Xθ,k+1
t = θ +

d∑
i=0

∫ t

0

Vi(s,X
θ,k
s , [X̃k

s ], X̃
k
s ) dB

i
s,

where X̃k is a copy of Xθ,k independent of the Brownian motion and θ. We have

shown that such iteration induces a Cauchy sequence {Φ(k)(Law(Xθ,0
t )), k ∈ N} and

a weak solution of the directed chain SDE. Since V0, Vi are bounded continuously

differentiable, we have

DH,l
r [V j

i (s,X
θ,k
s , [X̃k

s ], X̃
k
s )] = ∂V j

i D
H,l
r Xθ,k

s ,

where we omit the arguments in Vi’s for notation simplicity. Note that |∂V j
i | ≤ K
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for some constant K > 0. We can then deduce that V j
i (s,X

θ,k
s , [X̃k

s ], X̃
k
s ) ∈ D1,∞

by [128, Proposition 1.5.5]. Moreover, the Ito integral

∫ t

0

V j
i (s,X

θ,k
s , [X̃k

s ], X̃
k
s ) dB

i
s, i = 1, . . . , d

belongs to D1,2 and for r ≤ t, we have

DH,l
r

[ ∫ t

0

V j
i (s,X

θ,k
s , [X̃k

s ], X̃
k
s ) dB

i
s

]
= V j

l (r,X
θ,k
r , [X̃k

r ], X̃
k
r )

+

∫ t

r

DH,l
r [V j

i (s,X
θ,k
s , [X̃k

s ], X̃
k
s )] dB

i
s.

On the other hand, the Lebesgue integral
∫ t
0
V j
0 (s,X

θ,k
s , [X̃k

s ], X̃
k
s ) ds is also in the

space D1,2 and have the dynamics

DH,l
r

[ ∫ t

0

V j
0 (s,X

θ,k
s , [X̃k

s ], X̃
k
s ) ds

]
=

∫ t

0

DH,l
r [V j

0 (s,X
θ,k
s , [X̃k

s ], X̃
k
s )] ds.

Therefore, the dynamic of DH,l
r [Xθ,k+1

t ] has exactly the form of (4.26) by the

chain rule of Malliavin derivative. Due to the reason that X̃k and Xθ,k has the

same distribution, by Doob’s maximal inequality and Burkholder’s inequality,

E[ sup
0≤s≤t

|DH,l
r Xθ,k

s |p] ≤ c1,

where c1 is a constant that depends only on K, d, p for p ≥ 2. Moreover, we define

a metric similar to (4.8) but raise the power to general p ≥ 1,

Dt,p(µ1, µ2) := inf

{∫
( sup
0≤s≤t

|Xs(ω1)−Xs(ω2)|p ∧ 1) dµ(ω1, ω2)

}1/p

.

Note that the weak convergence of Xθ holds under any metric Dt,p with p ≥ 2.
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We then have the following,

Dt(m
k+1,mk)2 ≤ c1

∫ t

0

Ds,p(Law(X
θ,k),Law(Xθ,k−1)) ds+ c2

∫ t

0

Ds(m
k,mk−1)2 ds,

by a similar approach as in the proof of Proposition 4.2.2, where c1, c2 are positive

constants depending on K, d, p and mk = Law(DH,l
r Xθ,k). By iteration, we get that

{mk, k ∈ N} forms a Cauchy sequence and has limit. We have now proved that

DH
r X

θ
t = σ

(
r,Xθ

r , [X
θ
r ], X̃r

)
+

d∑
i=0

∫ t

r

(
∂Vi(s,X

θ
s , [X

θ
s ], X̃s)D

H
r X

θ
s

)
dBi

s, (4.31)

and the solution of DH
r X

θ
t exists uniquely in the weak sense. In the iteration, it

can be easily proved by induction that Xθ,k ∈ D1,∞ and the sequence DH
r X

θ,k
t is

uniformly bounded in Lp(Ω;H) for p ≥ 2. Therefore, we have Xθ
t ∈ D1,∞. The

proof for X
x,[θ]
t is similar, we can set X

x,[θ],0
t = θ add another equation for X

x,[θ],k
t

into the above Picard iteration

X
x,[θ],k+1
t = x+

d∑
i=0

∫ t

0

Vi(s,X
x,[θ],k
s , [X̃k

s ], X̃
x,k
s ) dBi

s.

Then the procedures are the same as the deduction for DH
r X

θ.

For the purpose of more general applications, we want to make sure that the density

for directed chain SDE is at least second order differentiable, hence we need to extend

the above first order regularities to higher orders. Following [44], we provide a result for

general case, which characterize X
x,[θ]
t as a Kusuoka-Stroock process.

Theorem 4.4.2 Suppose V0, . . . , Vd ∈ Ck,k,kb,Lip ([0, T ] × RN × P2(RN) × RN ;RN), then

(t, x, [θ]) 7→ X
x,[θ]
t ∈ K1

0(RN , k). If, in addition, V0, . . . , Vd are uniformly bounded then
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(t, x, [θ]) 7→ X
x,[θ]
t ∈ K0

0(RN , k).

Note that [44, Proposition 6.7 and 6.8] can be extended our directed chain case, since

the coefficients Vi : [0, T ] × RN × P2(RN) × RN → RN in directed chain SDEs can be

written as a map of the form Ω× [0, T ]×RN ×P2(RN) ∋ (ω, t, x, µ) 7→ a(ω, t, x, µ) ∈ RN .

This is because the auxiliary dependence on the neighborhood in the coefficients can be

thought as the dependence on an initial state x, initial distribution µ and independent

Brownian motions, which are implied in the term ω. Moreover, we are able to take care

of the extra term with DX̃s due to the differentiability and regularity of Vi.

Similar to Proposition 4.4.1, each type of derivative (w.r.t. x, µ or v) of X
x,[θ]
t satisfies

a linear equation. We will introduce a general linear equation, derive some a priori Lp

estimates on the solution and then show that this linear equation is again differentiable

under some conditions in the next Lemma. Whenever we say ak, k = 1, 2, 3, we also

mean ã1.

Lemma 4.4.3 Let vr be one element of the tuple v = (v1, . . . , v#v) and Y x,[θ](v) solve

the following SDE

Y
x,[θ]
t (v) = a0 +

d∑
i=0

∫ t

0

{
ai1(s, x, [θ])Y

x,[θ]
s (v) + ãi1(s, x, [θ])Ỹs(v) + a2(s, x, [θ],v)

+ E′[ai3(s, x, [θ], θ′)(Y θ′,[θ]
s )′(v) +

#v∑
r=1

ai3(s, x, [θ], θ
′)(Y vr,[θ]

s )′(v)
]}

dBi
s,

(4.32)

where, for all i = 1, . . . , d, the coefficients (t, x, [θ],v) 7→ ak(t, x, [θ],v) are continuously
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in Lp(Ω) ∀p ≥ 1, k = 1, 2, 3 and

a0 ∈ RN ,

a1, ã1 : Ω× [0, T ]× RN × P2(RN) → RN×N

a2 : Ω× [0, T ]× RN × P2(RN)× (RN)#v → RN

ai3 : Ω
′ × Ω× [0, T ]× RN × P2(RN)× RN → RN×N .

In (4.32), (Y θ′,[θ])′ is a copy of Y x,[θ] on the probability space (Ω′,F ′,P′) where the initial

state is θ′. Similarly, (Y vr,[θ])′ is a copy of Y x,[θ] on the probability space (Ω′,F ′,P′) where

the initial state is v. Ỹ is the neighborhood process, which has the same law as Y θ and

independent with Brownian motion B. If we make the following boundedness assumptions

1. supx∈RN ,[θ]∈P2(RN ),v∈(RN )#v ∥a2(·, x, [θ],v)∥Sp
T
<∞,

2. a1, ã1 and a3 are uniformly bounded,

3. supx∈RN ,[θ]∈P2(RN ),v∈(RN )#v ∥a2(·, x, [θ],v)∥S2
T
<∞.

then we have the following estimate for C = C(p, T, a1, a3)

∥Y x,[θ](v)∥Sp
T
≤ C(|a0|+ ∥a2(·, x, [θ],v)∥Sp

T
+ ∥a2(·, x, [θ],v)∥S2

T
).

Moreover, we also get that the mapping

[0, T ]× RN × P2(RN)× (RN)#v ∋ (t, x, [θ],v) 7→ Y
x,[θ]
t (v) ∈ Lp(Ω)

is continuous.

Proof: Note that ∥Ỹ (v)∥Sp
T
= ∥(Y θ′,[θ]

s )′(v)∥Sp
T
since they have the same distribu-

tion. The rest proof is identical to [44, Lemma 6.7] by using Gronwall’s lemma and the
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Burkholder-Davis-Gundy inequality a couple times.

We now consider the differentiability of the generic process satisfying the linear equa-

tion in Lemma 4.4.3. To ease the burden on notation, we omit the (t, x, [θ]) in ak, and

write a3
∣∣
v=θ′

to denote ak(s, x, [θ], θ
′) for instance.

Proposition 4.4.4 Suppose that the process Y x,[θ](v) is as in Lemma 4.4.3. In addition

to the assumptions of Lemma 4.4.3, we introduce the following differentiability assump-

tions:

(a) For k = 1, 2, 3, all (s, [θ],v) ∈ [0, T ] × P2(RN) × (RN)#v and each p ≥ 1, RN ∋

x 7→ ak(s, x, [θ],v) ∈ Lp(Ω) is differentiable.

(b) For k = 1, 2, 3, all (s, [θ], x) ∈ [0, T ] × P2(RN) × RN and each p ≥ 1, (RN)#v ∋

v 7→ ak(s, x, [θ],v) ∈ Lp(Ω) is differentiable.

(c) For all (s, x,v) ∈ [0, T ]×RN × (RN)#v the mapping L2(Ω) ∋ θ 7→ a2(s, x, [θ],v) ∈

L2(Ω) is Fréchet differentiable.

(d) ak(s, x, [θ],v) ∈ D1,∞ for k = 1, 2, 3 and all (s, x, [θ],v) ∈ [0, T ]×P2(RN)×(RN)#v.

Moreover, we assume the following estimates on the Malliavin derivatives hold.

sup
r∈[0,T ]

E
[

sup
s∈[0,T ]

|DH
r ak(s, x, [θ],v)|p

]
<∞, k = 0, 1, 2, 3.

Then, for all t ∈ [0, T ] the following hold:

1. Under assumption (a), x 7→ Y
x,[θ]
t (v) is differentiable in Lp(Ω) for all p ≥ 1 and

∂xY
x,[θ]
t (v) :

Lp

= lim
h→0

1

|h|

(
Y
x+h,[θ]
t (v)− Y

x,[θ]
t (v)

)
,
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where the limit is taken in Lp sense, satisfies

∂xY
x,[θ]
t (v) =

d∑
i=0

∫ t

0

{
∂xa

i
1Y

x,[θ]
s (v) + ai1∂xY

x,[θ]
s (v) + ∂xa

i
2

+ E′
[
∂xa

i
3

∣∣
v=θ′

(Y θ′,[θ]
s )′(v) +

#v∑
r=1

∂xa
i
3

∣∣
v=vr

(Y θ′,[θ]
s )′(v)

]}
dBi

s;

2. Under assumption (b), v 7→ Y
x,[θ]
t (v) is differentiable in Lp(Ω) for all p ≥ 1 and

∂vY
x,[θ]
t (v) :

Lp

= lim
h→0

1

|h|

(
Y
x,[θ]
t (v + h)− Y

x,[θ]
t (v)

)

satisfies

∂vjY
x,[θ]
t (v) =

d∑
i=0

∫ t

0

{
ai1∂vjY

x,[θ]
s (v) + ãi1∂vj Ỹs(v) + ∂vja

i
2

+ E′
[
∂va

i
3

∣∣
v=vj

(Y vj ,[θ]
s )′(v)

]
+ E′

[
ai3
∣∣
v=vj

∂x(Y
vj ,[θ]
s )′(v)

+ ai3
∣∣
v=θ′

∂vj(Y
θ′,[θ]
s )′(v) +

#v∑
r=1

ai3
∣∣
v=vr

∂vj(Y
vr,[θ]
s )′(v)

]}
dBi

s.

3. Under assumption (a), (b) and (c), the maps θ 7→ Y
θ,[θ]
t (v) and θ 7→ Y

x,[θ]
t (v) are

Fréchet differentiable for all (x,v) ∈ RN × (RN)#v, so ∂µY
x,[θ]
t (v) exists and it

satisfies

∂µY
x,[θ]
t (v, v̂) =

d∑
i=0

∫ t

0

{
∂µa

i
1Y

x,[θ]
s (v) + ai1∂µY

x,[θ]
s (v, v̂) + ∂µã

i
1Ỹs(v) + ∂µa

i
2

+ ai1∂µỸs(v, v̂) + E′
[
∂µa

i
3(Y

θ′,[θ]
s )′(v) + ∂va

i
3(Y

v̂,[θ]
s )′(v) + ai3

∣∣
v=θ′

∂µ(Y
θ′,[θ]
s )′(v, v̂)

]
+ E′

[
ai3
∣∣
v=v̂

∂x(Y
v̂,[θ]
s )′(v) +

#v∑
r=1

ai3
∣∣
v=vr

∂µ(Y
vr,[θ]
s )′(v, v̂)

]}
dBi

s.
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Moreover, we have the representation, for all γ ∈ L2(Ω),

D
(
Y
θ,[θ]
t (v)

)
(γ) =

(
∂xY

x,[θ]
t (v)γ + E′′[∂µY x,[θ]

t (v, θ′′)γ′′
])∣∣∣∣

x=θ

.

4. Under assumption (d), Y
x,[θ]
t ∈ D1,∞ and DH

r Y
x,[θ]
t satisfies

DH
r Y

x,[θ]
t (v) =

(
aj1Y

x,[θ]
r + ãj1Ỹr + aj2 + E′[aj3(Y x,[θ]

s )′(v)
])

j=1,...,d

+
d∑
i=0

∫ t

0

{
DH

r a
i
1Y

x,[θ]
s (v) +DH

r ã
i
1Ỹs + ai1D

H
r Y

x,[θ]
s (v) + ãi1D

H
r Ỹs

+DH
r a

i
2 + E′[DH

r a
i
3

∣∣
v=θ′

(Y x,[θ]
s )′(v)

]}
dBi

s.

Moreover, the following bound holds:

sup
r≤t

E
[
|DH

r Y
x,[θ]
t (v)|p

]
≤ C sup

r≤t
E
[

sup
r≤t≤T

(
|DH

r a1|p + |DH
r ã1|p

)]
(4.33)

The limits in the above are taken in Lp sense. When we say k = 1, 2, 3 for the

assumptions, we also means ã1.

Proof: See Proposition 4.4.1 and [44, Proposition 6.8] for the proof.

We are now ready to prove Theorem 4.4.2.

Proof: [Proof of Theorem 4.4.2] The proof follows identically the proof of [44, The-

orem 3.2], where we apply Lemma 4.4.3 and Proposition 4.4.4.

4.4.2 Integration by Parts Formulae

Now we introduce some operators acting on the Kusuoka-Stroock processes. These

operators will be used later in the integration by parts formulae. We first make the

following common assumption on uniform ellipticity.
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Assumption 4.4.5 (Uniform Ellipticity) Let σ : [0, T ]×RN×P2(RN)×RN → RN×d

be given by

σ(t, z, µ, z̃) := [V1(t, z, µ, z̃), . . . , Vd(t, z, µ, z̃)].

We assume that there exists ϵ > 0 such that, for all ξ ∈ RN , z ∈ RN and µ ∈ P2(RN),

ξ⊤σ(t, z, µ, z̃)σ(t, z, µ, z̃)⊤ξ ≥ ϵ|ξ|2.

For a function Ψ : [0, T ] × RN × P2(RN) → Dn,∞, the following operators acting

on Kusuoka-Stroock processes in Kq
r(R, n) with multi-index α = (i) and (t, x, [θ]) ∈

[0, T ]× RN × P2(RN) are given by

I1(i)(Ψ)(t, x, [θ]) :=
1√
t
δH

(
r 7→ Ψ(t, x, [θ])

(
σ⊤(σσ⊤)−1

(r,Xx,[θ]
r , [Xθ

r ], X̃r)∂xX
x,[θ]
r

)
i

)
I2(i)(Ψ)(t, x, [θ]) :=

N∑
j=1

I1(j)

((
∂xX

x,[θ]
t

)−1

j,i
Ψ(t, x, [θ])

)
,

I3(i)(Ψ)(t, x, [θ]) := I1(i)(Ψ)(t, x, [θ]) +
√
t∂iΨ(t, x, [θ]),

I1
(i)(Ψ)(t, x, [θ], v1) :=

1√
t
δH

(
r 7→

(
σ⊤(σσ⊤)−1

(r,Xx,[θ]
r , [Xθ

r ], X̃r)

∂xX
x,[θ]
r (∂xX

x,[θ]
t )−1∂µX

x,[θ]
t (v1)

)
i
Ψ(t, x, [θ])

)
,

I3
(i)(Ψ)(t, x, [θ], v1) := I1

(i)(Ψ)(t, x, [θ], v1) +
√
t(∂µΨ)i(t, x, [θ], v1).

For a general multi-index α = (α1, . . . , αn), we inductively define

I1α := I1αn
◦ I1αn−1

◦ · · · ◦ I1α1
,

the definition of the other operators are analogue to I1α. The following Proposition follows

directly from our previous discussion and the definition of the Kusuoka-Stroock process.
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Proposition 4.4.6 If V0, . . . , Vd ∈ Ck,k,kb,Lip ([0, T ]× RN × P2(RN)× RN ;RN), Assumption

4.4.5 holds and Ψ ∈ Kq
r(R, n), then I1α(Ψ) and I3α(Ψ), are all well-defined for |α| ≤ (k∧n).

I2α(Ψ), I1
α(Ψ) and I3

α(Ψ) are well defined for |α| ≤ n ∧ (k − 2). Moreover,

I1α(Ψ), I3α(Ψ) ∈ Kq+2|α|
r (R, (k ∧ n)− |α|),

I2α(Ψ) ∈ Kq+3|α|
r (R, [n ∧ (k − 2)]− |α|),

I1
α(Ψ), I3

α(Ψ) ∈ Kq+4|α|
r (R, [n ∧ (k − 2)]− |α|).

If Ψ ∈ K0
r(R, n) and V0, . . . , Vd are uniformly bounded, then

I1α(Ψ), I3α(Ψ) ∈ K0
r(R, (k ∧ n)− |α|),

I2α(Ψ) ∈ K0
r(R, [n ∧ (k − 2)]− |α|),

I1
α(Ψ), I3

α(Ψ) ∈ K0
r(R, [n ∧ (k − 2)]− |α|).

From now on, the Integration by Parts Formulae (IBPF) follow in the same way as

[44, Sec 4.] by replacing D, δ by DH, δH and using integral by parts for this partial

Malliavin derivative.

Integration by parts formulae in the space variable are established in the following

Proposition.

Proposition 4.4.7 (Proposition 4.1, [44]) Let f ∈ C∞
b (RN ,R) and Ψ ∈ Kq

r(R, n),

then

1. If |α| ≤ n ∧ k, then

E
[
∂αx
(
f
(
X
x,[θ]
t

))
Ψ(t, x, [θ])

]
= t−|α|/2E

[
f
(
X
x,[θ]
t

)
I1α(Ψ)(t, x, [θ])

]
.
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2. If |α| ≤ n ∧ (k − 2), then

E
[
(∂αf)

(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
= t−|α|/2E

[
f
(
X
x,[θ]
t

)
I2α(Ψ)(t, x, [θ])

]
.

3. If |α| ≤ n ∧ k, then

∂αxE
[
f
(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
= t−|α|/2E

[
f
(
X
x,[θ]
t

)
I3α(Ψ)(t, x, [θ])

]
.

4. If |α|+ |β| ≤ n ∧ (k − 2), then

∂αxE
[
(∂βf)

(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
= t−(|α|+|β|)/2E

[
f
(
X
x,[θ]
t

)
I3α
(
(I2βΨ)

)
(t, x, [θ])

]
.

Proof: We will start with proving the first result, and use the it to prove the rest.

1. First, we note that Equation (4.21) satisfied by ∂xX
x,[θ]
t and Equation (4.26) sat-

isfied by DH
r X

x,[θ]
t are the same except their initial condition. It therefore follows

from our discussion of partial Malliavin derivative that

∂xX
x,[θ]
t = DH

r X
x,[θ]
t σ⊤(σσ⊤)−1

(r,Xx,[θ]
r , [Xθ

r ], X̃r)∂xX
x,[θ]
r . (4.34)

Let us start with the assumption of |α| = 1, and the general desired result can be

obtained by repeat the following procedures iteratively. We are then allowed to

compute the followings for f ∈ C∞
b (RN ,R),
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E
[
∂x
(
f
(
X
x,[θ]
t

))
Ψ(t, x, [θ])

]
= E

[
∂f
(
X
x,[θ]
t

)
∂xX

x,[θ]
t Ψ(t, x, [θ])

]
=

1

t
E
[ ∫ t

0

∂f
(
X
x,[θ]
t

)
∂xX

x,[θ]
t Ψ(t, x, [θ]) dr

]
=

1

t
E
[ ∫ t

0

∂f
(
X
x,[θ]
t

)
DH

r X
x,[θ]
t σ⊤(σσ⊤)−1

(r,Xx,[θ]
r , [Xθ

r ], X̃r)

× ∂xX
x,[θ]
r Ψ(t, x, [θ]) dr

]
=

1

t
E
[ ∫ t

0

DH
r f
(
X
x,[θ]
t

)
σ⊤(σσ⊤)−1

(r,Xx,[θ]
r , [Xθ

r ], X̃r)

× ∂xX
x,[θ]
r Ψ(t, x, [θ]) dr

]
=

1

t
E
[
f
(
X
x,[θ]
t

)
δH

(
r 7→ Ψ(t, x, [θ])

×
(
σ⊤(σσ⊤)−1

(r,Xx,[θ]
r , [Xθ

r ], X̃r)∂xX
x,[θ]
r

))]
,

where we have applied partial Malliavin calculus integration by parts from Equation

(4.20) in the last equality. This proves the result for |α| = 1. By Proposition 4.4.6,

I1α(Ψ) ∈ Kq+2
r (R, (k∧n)−1) when |α| = 1. We can then repeat the above procedures

iteratively to get to desired result.

2. By the chain rule,

E
[
(∂if)

(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
=

N∑
j=1

E
[
∂xi
(
f
(
X
x,[θ]
t

))((
X
x,[θ]
t

)−1
)j,i

Ψ(t, x, [θ])

]

= t−1/2

N∑
j=1

E
[
f
(
X
x,[θ]
t

)
I1(j)

(((
X
x,[θ]
t

)−1
)j,i

Ψ(t, x, [θ])

)]
= t1/2E

[
f
(
X
x,[θ]
t

)
I2(i)(Ψ)(t, x, [θ])

]
,

where we apply the result in part 1 to the second equality. From Proposition 4.4.6,
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I2(i)(Ψ) ∈ Kq+3
r (R, (n ∧ (k − 2))− 1), so since |α| ≤ (n ∧ (k − 2)), the proof follows

from applying the same arguments for another |α| − 1 times.

3. By part 1 and direct computation,

∂ixE
[
f
(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
= E

[
∂ixf
(
X
x,[θ]
t

)
Ψ(t, x, [θ]) + f

(
X
x,[θ]
t

)
∂ixΨ(t, x, [θ])

]
= t−1/2E

[
f
(
X
x,[θ]
t

){
I1i (Ψ)(t, x, [θ]) +

√
t∂ixΨ(t, x, [θ])

}]
,

which proves the result for |α| = 1. Again, we have I3α(Ψ) ∈ Kq+2
r (R, (k ∧ n) − 1)

when |α| = 1. Then the proof follows from iterative implementation of the above

procedure.

4. This part follows from parts 2 and 3 directly.

Similar to the integration by parts in space variable, we can also derive integration

by parts in the measure variable as follows.

Proposition 4.4.8 (Proposition 4.2, [44]) Let f ∈ C∞
b (RN ,R) and Ψ ∈ Kq

r(R, n),

then

1. If |β| ≤ n ∧ (k − 2), then

E
[
∂βµ
(
f
(
X
x,[θ]
t

))
(v)Ψ(t, x, [θ])

]
= t−|β|/2E

[
f
(
X
x,[θ]
t

)
I1
β(Ψ)(t, x, [θ],v)

]
.

2. If |β| ≤ n ∧ (k − 2), then

∂βµE
[
f
(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
(v) = t−|β|/2E

[
f
(
X
x,[θ]
t

)
I3
β(Ψ)(t, x, [θ],v)

]
.
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3. If |α|+ |β| ≤ n ∧ (k − 2), then

∂βµE
[
(∂αf)

(
X
x,[θ]
t

)
Ψ(t, x, [θ])

]
(v) = t−(|α|+|β|)/2E

[
f
(
X
x,[θ]
t

)
I3
β

(
I2α(Ψ)

)
(t, x, [θ],v)

]
.

Proof: The proofs use the same idea as Proposition 4.4.7 and the Equation (4.34).

We now consider the integration by parts formulae for the derivatives of the mapping:

x 7→ E[f(Xx,δx
t )].

Let us introduce the following operator acting on Kq
r(R,M), the set of the Kusuoka-

Stroock processes do not depend on measure µ. For α = (i),

J(i)(Φ)(t, x) := I3(i)(Φ)(t, x, δx) + I3
(i)(Φ)(t, x, δx)

and for α = (α1, . . . , αn), Jα(Φ) := Jαn ◦ · · · ◦ Jα1(Φ).

Theorem 4.4.9 Let f ∈ C∞
b (RN ;R). For all multi-indices α on {1, . . . , N} with |α| ≤

k − 2,

∂αxE
[
f
(
Xx,δx
t

)]
= t−|α|/2E

[
f
(
Xx,δx
t

)
Jα(1)(t, x)

]
.

In particular, we get the following bound,

∣∣∂αxE[f(Xx,δx
t

)]∣∣ ≤ C∥f∥∞t−|α|/2(1 + |x|)4|α|

Proof: Since δx depends on x, we have

∂ixE
[
f
(
Xx,δx
t

)]
= ∂izE

[
f
(
Xx,δx
t

)]∣∣
z=x

+ ∂iµE
[
f
(
X
x,[θ]
t

)]
(v)
∣∣
[θ]=δx,v=x

,
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then for |α| = 1 the result yields by Proposition 4.4.7 and 4.4.8. The proof is completed

by repeating this procedure for another |α| − 1 times.

The following Corollary is useful for the smoothness of densities of directed chain

SDEs.

Corollary 4.4.10 Let f ∈ C∞
b (RN ;R), α and β are multi-indices on {1, . . . , N} with

|α|+ |β| ≤ k − 2. Then,

∂αxE
[
(∂βf)

(
Xx,δx
t

)]
= t−

|α|+|β|
2 E

[
f
(
Xx,δx
t

)
I2β(Jα(1))(t, x)

]
and I2β(Jα(1)) ∈ K4|α|+3|β|

0 (R, k − 2− |α| − |β|).

Proof: The proof follows from Theorem 4.4.9 and Proposition 4.4.7.

4.4.3 Smooth Densities

We are now ready to prove the main theorem of this section.

Theorem 4.4.11 We assume Assumption 4.4.5 holds and V0, . . . , Vd ∈ Ck,k,kb,Lip ([0, T ] ×

RN ×P2(RN)×RN ;RN). Let α, β be multi-indices on {1, . . . , N} and let k ≥ |α|+ |β|+

N + 2. Assume also the initial state for directed chain SDE is θ ≡ x, i.e. [θ] = δx.

Then the directed chain SDE (4.3) coincides with the alternative SDE (4.13). For all

t ∈ [0, T ], Xx,δx
t has a density p(t, x, ·) such that (x, z) 7→ ∂αx∂

β
z p(t, x, z) exists and is

continuous. Moreover, there exists a constant C which depends on T,N and bounds on

the coefficients, such that for all t ∈ (0, T ]

|∂αx∂βz p(t, x, z)| ≤ C(1 + |x|)4|α|+3|β|+3N t−
1
2
(N+|α|+|β|), x ∈ RN , z ∈ RN . (4.35)
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If V0, . . . , Vd are bounded, then the following estimate holds, for all t ∈ (0, T ]

|∂αx∂βz p(t, x, z)| ≤ Ct−
1
2
(N+|α|+|β|) exp

(
− C

|z − x|2

t

)
, x ∈ RN , z ∈ RN .

Proof: The proof is verbatim to Theorem 6.1 of [44] by applying our integration by

parts formulae established in Corollary 4.4.10 and Lemma 3.1 in [140].

Theorem 4.4.11 presents the smoothness result for Xx,δx
t and it can be generalized to

Xθ
t with an general initial distribution [θ].

Corollary 4.4.12 Suppose Assumption 4.4.5 holds and V0, . . . , Vd ∈ Ck,k,kb,Lip ([0, T ]×RN ×

P2(RN)×RN ;RN). Let θ be a random variable in RN with finite moments of all orders.

For any multi-index β on {1, . . . , N} such that k ≥ |β| + N + 2, we have that for all

t ∈ [0, T ], Xθ
t has a density pθ(t, ·) such that z 7→ ∂βz pθ(t, z) exists and is continuous.

Proof: The proof is done by taking expectation on both sides of the inequality (4.35)

with respect to the initial distribution θ and applying dominated convergence theorem,

where we use the assumption that θ has finite moments.

The above existence and smoothness results on the marginal density of a single

object can be extended to the joint distribution for any number of adjacent particles.

Namely, for a fixed integer m ≥ 1, we may construct the system of stochastic processes

(X̃0
· , X̃

1
· , X̃

2
· , . . . , X̃

m
· ) such that (X̃m−1

· , X̃m
· ) ≡ (Xθ

· , X̃·) in (4.1), and X̃ i
· depends on

the adjacent process X̃ i+1
· and Brownian motion B̃i

· , independent of X̃ i+1, in the same

fashion as of (Xθ
· , X̃·) in (4.1) for i = 0, . . . ,m− 1.

Corollary 4.4.13 Suppose Assumption 4.4.5 holds and V0, . . . , Vd ∈ Ck,k,kb,Lip ([0, T ]×RN ×

P2(RN) × RN ;RN) and θ has finite moments. Then the joint density of the process

(Xθ
· , X̃

1
· , X̃

2
· , . . . , X̃

m
· ) exists and is continuous at any t ∈ [0, T ], where X̃1

· ≡ X̃· and X̃
i
·

depends on X̃ i+1
· in the same fashion as of (Xθ

· , X̃·) in (4.1).
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Proof: We consider the process evolving in space R(m+1)N defined by

Y· := (X̃0
· , X̃

1
· , X̃

2
· , . . . , X̃

m
· )

and the neighborhood process Ỹ· := (X̃m+1
· , X̃m+2

· , . . . , X̃2m+1
· ). Now (Y·, Ỹ·) satisfies

the directed chain structure and it can be proved that this new directed chain SDE

structure Y· also satisfies Assumption 4.4.5. Hence the existence and continuity follow

from Theorem 4.4.11 and Corollary 4.4.12. In particular, if m = 1, the coupled process

Y· is defined by

Yt = Y0 +
2d∑
i=1

∫ T

0

V y
i (s, Ys,Law(Ys), Ỹs) dB

y,i
s ,

where the diffusion coefficients V y
i , i = 1, . . . , 2d are given by

V y
i :=


(
Vi(s,Xs,Law(Xs), X̃

1
s ),0

)T ∈ R2N , i = 1, . . . d,(
0, Vi−d(s, X̃

1
s ,Law(X̃

1
s ), X̃

2
s )
)T ∈ R2N , i = d+ 1, . . . 2d,

By is independent standard Brownian motions in R2d and 0 ∈ RN is a zero vector.

4.4.4 Markov Random Fields

The existence of density in Theorem 4.4.11 is closely related to the local Markov

property (or Markov random fields) of the directed chain structure. Here, we shall

elaborate the relation briefly. A similar topic has been studied by [100] on the undirected

graph with locally interactions only on the drift terms. Their approach is to apply a

change of measure under which the diffusion coefficients at one vertex of the undirected

graph do not depend on the diffusions at the other vertexes of the graph, in order to

get the factorization of the probability measure. Usually, this Markov property is only

discussed for the undirected graph or directed acyclic graph. The finite particle system
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Figure 4.2: This figure shows a finite cut of the infinite directed chain, i.e., Xk is
affected by Xk+1.

that approximates the directed chain structure discussed in [52] admits a loop structure

in the finite graph. More precisely, the finite system of n particles (X
(n)
1,· , . . . , X

(n)
n,· ) is

constructed in a loop of size n so that X
(n)
1,· depends on X

(n)
2,· , X

(n)
2,· depends on X

(n)
3,· , . . . ,

X
(n)
n−1,· depends on X

(n)
n,· and X

(n)
n,· depends on X1,·. However, when the size n of this loop

is forced to be infinity, i.e., n → ∞, we can then treat the dependence of the system

on any finite subgraph as the system on an acyclic graph [52, Section 3], as (4.2) in our

paper. An illustration is given in Figure 4.2.

Proposition 4.4.14 The directed chain SDEs described in (4.2) form a first order Markov

random fields, or we say it has the local Markov property.

We follow the notations and terminology in [107]. Given a directed graph G = (V,E)

with vertexes V and edges E, for a vertex ν ∈ V , let Xν denote the generic space of

vertex ν and pa(ν) ∈ V denote all of its parents. In the infinite directed chain case,

pa(Xk,·) = Xk+1,·.

Definition 4.4.15 (Recursive Factorization) Given a directed graph G = (V,E), we

say the probability distribution PG admits a recursive factorization according to G, if there

exists non-negative functions, henceforth referred to as kernels, kν(·, ·), ν ∈ V defined on

Xν ×Xpa(ν), such that ∫
kν(yν , xpa(ν))µν( dyν) = 1

and PG has density fG with respect to a product measure µ, which is defined on the
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product space
∏

ν∈V Xν by µν a measure defined on each Xν, where

fG(x) =
∏
ν∈V

kν(xν , xpa(ν)).

Proof: [Proof of Proposition 4.4.14] Thanks to the special chain-like structure, it can

be shown that the distribution of the chain satisfies the recursive factorization property,

where the existence and continuity of the kernel functions are given by Theorem 4.4.11

and Corollary 4.4.12. For it, on a filtered probability space, let us consider a system of

the directed chain diffusion Xi,t, i ∈ N, t ≥ 0 on the infinitely graph with the vertexes

N = {1, 2, . . .}. Firstly, the coupled diffusion (X1,·, X2,·) ≡ (Xθ
· , X̃·) satisfy the directed

chain stochastic equation and have a continuous density by Corollary 4.4.13 and we denote

this joint density by g(·, ·) : RN × RN → R. We then build the chain recursively by the

following rule: given Xk,·, initial state Xk+1,0 and Brownian motion Bk+1,· independent

of (X1,·, . . . , Xk,·, Xk+1,0), we construct Xk+1,· according to the distribution of (Xθ
· , X̃·).

Defining the kernel functions in the following way

kν(xν , xpa(ν)) :=

 g(xν , xpa(ν)), if ν = X1,

(g(xν))
−1g(xν , xpa(ν)), if ν = Xk, k ≥ 2,

i.e., the conditional density of Xk+1,t given Xk,t for k ≥ 2, proves the recursive factoriza-

tion property of the chain on any finite cut (X1,t, X2,t, . . . , Xm,t), ∀m ∈ N of the infinite

chain for any t ∈ [0, T ], as well as the local Markov property following from [107, Theo-

rem 3.27], which is also called the first order Markov random field in the context of [100].

This result can also be verified by a filtering problem build upon this directed chains

structure that we omit due to the page limitation.
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4.4.5 Relation to PDE

We have constructed the integration by parts formulae to argue that the density of

directed chain SDEs is smooth in section 4.4.2, which is also the tool for constructing

solutions to a related PDE problem. To ease notation, we will omit the time dependency

in coefficients of SDEs through this section, i.e. we will write V (X
x,[θ]
t , [Xθ

t ], X̃t) :=

V (t,X
x,[θ]
t , [Xθ

t ], X̃t). In particular, we are interested in the function

U(t, x, [θ]) = E[g(Xx,[θ]
t , [Xθ

t ])]

, t ∈ [0, T ], x ∈ RN for some sufficiently smooth function g. Here Xθ
· is the solution of

(4.3)-(4.4) with random initial θ and X
x,[θ]
t is the solution to (4.13) with deterministic

initial x. They depend on a neighborhood process X̃· with an independent initial random

vector θ̃. Recall the flow property (4.16) in section 4.2.3. It follows that for every

0 ≤ t ≤ t+ h ≤ T , x ∈ Rd,

U(t+ h, x, [θ]) = E[g(Xx,[θ]
t+h , [X

θ
t+h])] = E

[
U(t,X

x,[θ]
h , [Xθ

h])
]
.

Hence

U(t+ h, x, [θ])− U(t, x, [θ]) = U(t, x, [Xθ
h])− U(t, x, [θ])+

E
[
U(t,X

x,[θ]
h , [Xθ

h])− U(t, x, [Xθ
h])
]

= I − E[J ], (4.36)
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where we define I = U(t, x, [Xθ
h]) − U(t, x, [θ]) and J = U(t,X

x,[θ]
h , [Xθ

h]) − U(t, x, [Xθ
h]).

Applying the chain rule introduced in [37] to I and Ito’s formula to J , we have

I =

∫ h

0

E
[ N∑
i=1

V i
0 (X

θ
r , [X

θ
r ], X̃r)∂µU(t, x, [X

θ
r ], X

θ
r )i

+
1

2

N∑
i,j=1

[σσ⊤(Xθ
r , [X

θ
r ], X̃r)]i,j∂vj∂µU(t, x, [X

θ
r ], X

θ
r )i

]
dr,

J =

∫ h

0

N∑
i=1

V i
0 (X

x,[θ]
r , [Xθ

r ], X̃r)∂xiU(t,X
x,[θ]
r , [Xθ

h]) dr

+
1

2

∫ h

0

N∑
i,j=1

[σσ⊤(Xx,[θ]
r , [Xθ

r ], X̃r)]i,j∂xi∂xjU(t,X
x,[θ]
r , [Xθ

h]) dr

+

∫ h

0

d∑
j=1

N∑
i=1

V i
j (X

x,[θ]
r , [Xθ

r ], X̃r)∂xiU(t,X
x,[θ]
r , [Xθ

h]) dB
j
r .

For the meaning of the differential operator with respect to measure ∂µ appeared in

I, we refer to section 4.2.1. Then let us plug I, J into (4.36) and take expectation, divide

by h on both sides, and send h to 0, we will end up with a PDE of the form given below

(∂t − L)U(t, x, [θ]) = 0 for (t, x, [θ]) ∈ (0, T ]× RN × P2(RN),

U(0, x, [θ]) = g(x, [θ]) for (x, [θ]) ∈ RN × P2(RN),

(4.37)

where g : RN × P2(RN) → R and the operator L acts on smooth enough functions

F : RN × P2(RN) → RN defined by

LF (x, [θ]) =E
[ N∑
i=1

V i
0 (x, [θ], θ̃)∂xiF (x, [θ]) +

1

2

N∑
i,j=1

[σσ⊤(x, [θ], θ̃)]i,j∂xi∂xjF (x, [θ])

]

+ E
[ N∑
i=1

V i
0 (θ, [θ], θ̃)∂µF (x, [θ], θ)i +

1

2

N∑
i,j=1

[σσ⊤(θ, [θ], θ̃)]i,j∂vj∂µF (x, [θ], θ)i

]
.

(4.38)
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The expectation in the first line of (4.38) is taken with respect to the random variable

θ̃ due to the appearance of the neighborhood process in the difference J , while the the

expectation in the second line is taken with respect to the joint distribution of θ, θ̃, as an

application of the chain rule introduced in [37] to the difference I.

It is evidently that a proper condition for the initial g is needed for the existence of

the solution to PDE (4.37). Such a directed chain type SDE has not been considered

before, the closest work is related to the PDE associated with the McKean-Vlasov type

SDE. In [20], g is assumed to have bounded second order derivatives. The smoothness

on g is relaxed in [44]. In particular, they assume g belongs to a class of functions that

can be approximated by a sequence of functions with polynomial growth, and also satisfy

certain growth condition on its derivatives. Hence, they claim that g is not necessarily

differentiable. We shall emphasize that detailed discussion on the choice of assumptions

in g is beyond the scope of this paper, but we conjecture that some similar results should

also hold for our case and will include this in our future research.

4.5 Neural DC-SDEs as Generator for Time Series

Under the general setup, DC-SDEs can be of McKean-Vlasov type where the co-

efficients have distributions as inputs, corresponding to the n-coupled system having

mean-field interaction. In our proposed generator, it is sufficient to use the simple case

mentioned above, DC-SDE without the mean-field interaction, as in the following restated

definition.

Definition 4.5.1 (DC-SDEs, simple version) Fix a finite time horizon [0, T ] and a

filtered probability space (Ω,F , (Ft)t≥0,P). Let (X, X̃) with X, X̃ ∈ L2(Ω× [0, T ],RN) be
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a pair of square-integrable stochastic processes satisfying

Xt = ξ+

∫ t

0

V0(s,Xs, X̃s) ds+

∫ t

0

V1(s,Xs, X̃s) dBs, (4.39)

for t ∈ [0, T ], with the distributional constraint

Law(Xt, 0 ≤ t ≤ T ) = Law(X̃t, 0 ≤ t ≤ T ), (4.40)

where Law(·) stands for the distribution, V0 ∈ RN and V1 ∈ RN×d are smooth coefficients

satisfying Lipschitz and linear growth conditions, B is a standard d-dimensional Brownian

motion, and X0 := ξ, X̃ and B are assumed to be independent.

With the smoothness of the solution under certain additional conditions posed on

the coefficients (cf. [83]), we can derive a partial differential equation (PDE) for the

marginal densities of the solution. Then, the associated PDEs lead to the following

theorem: DC-SDEs have at least the same amount of flexibility as Neural SDEs.

Theorem 4.5.2 Under proper assumptions, for any Y that satisfies a system of Marko-

vian SDEs on [0, T ], there exists a unique solution to the DC-SDE (4.39) with constraints

(4.40), some V0 and non-degenerate coefficients V1, such that they have the same marginal

distributions for all t ∈ [0, T ]. Here by degenerate, we mean that Vi(t, x, x̃) := Vi(t, x), i ∈

{0, 1}, i.e., the coefficients have no dependence on neighborhood nodes at all.

We defer the proof of Theorem 4.5.2 to Appendix B.1.1.

Naturally, if V0 and V1 are known (or learned from data), one can take real data paths

as X̃ in (4.39) and straightforwardly generate paths of X that have the same distribution

as X̃ by the constraint (4.40). However, naively implementing this idea will lead to the

following potential problems.
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Problem 4.5.3 (Lack of Independence) The distribution of the generated sequence

crucially depends on the real data; Consequently, to avoid dependence, a single real path

can only be used once as X̃ to generate one path of X, and thus the number of the

generated sequence has to be the same as that of the training data set in one run.

Note that a qualified generator should also be able to generate unlimited independent

data that does not depend on the original one. Fortunately, both problems mentioned

above can be overcome by the idea behind the following theorem.

Theorem 4.5.4 Under mild non-degeneracy conditions, the correlation between training

data and generated data in DC-SDEs decays exponentially fast, as the distance increases

on the chain.

For reading consistency, we give the formal statement of Theorem 4.5.4 with detailed

proof in Appendix B.1.2.

We shall explain how to beat the independence problem during the implementation

described in Section 4.5.1. As shown in Appendix B.1.2, the introduction of independent

Brownian motions to (4.39) is the key to solving the independence problem. We shall

also provide an extreme example (cf. Remark B.1.8) showing that without
∫
V1 dB, the

system (4.39)–(4.40) has only trivial (deterministic) solution.

As the adversarial part of GAN, signature induces another powerful tool to charac-

terize the distribution of random processes: the expected signatures. It was proved by

[40] that expected signatures characterize the distribution of random processes uniquely,

i.e., if E[S(x)] = E[S(y)] and E[S(x)] has an infinite radius of convergence, then x and y

have the same distribution.
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4.5.1 Proposed Method: DC-GANs

In this section, we describe DC-GANs for generating multimodal distributed time

series. Our method builds on the DC-SDEs with a straightforward idea: To find the

(sub-) optimal solution of the generator, we implement a GAN model with the Neural

DC-SDEs as the generator. For the discriminator, we use Neural CDEs [87] and Sig-

Wasserstein GAN [126, 125].

Generator

To overcome the independence issue explained in Problem 4.5.3, we design DC-GANs

by two phases: 1) training and 2) decorrelating and branching. The second phase will be

utilized during testing. Both V0 and V1 in (4.39) will be parameterized by multi-layers

fully connected NNs.

Training Phase. We set aside the independence problem and focus on finding the

optimal coefficients V0 and V1 (together with the discriminator). Denote the training

data by {X̃(ωi)}Mi=1, where each ωi represents a realization of the randomness in the path

space. We treat our training data {X̃(ωi)}Mi=1 as the neighborhood process X̃ in (4.39).

For each training path data X̃(ωi), we generate a DC-SDE path X(ωi), according to the

Euler scheme of (4.39),

Xtj+1
(ωi)

= Xtj(ωi) + V0(tj, Xtj(ωi), X̃tj(ωi))(tj+1 − tj) (4.41)

+ V1(tj, Xtj(ωi), X̃tj(ωi))(Btj+1
(ωi)−Bj(ωi)),

where 0 = t0 ≤ t1 ≤ . . . ≤ tJ = T is a partition on [0, T ], {B(ωi)}Mi=1 are independent

Brownian paths.
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Both the generated paths {X(ωi)}Mi=1 and the training paths {X̃(ωi)}Mi=1 will be passed

into the discriminator, where their Wasserstein distance needs to be minimized. To

simplify the notations for later use, we define Gθ : (ξ, B, X̃) 7→ X to represent the overall

transformation in (4.41), with θ denoting all network parameters of V0 and V1.

Decorrelating and Branching Phase. During testing, we utilize a branching

scheme to alleviate the independence problem; see Figure 4.3 for an illustrative example.

Let q be the number of steps we “walk” along the directed chain. Here “walking” along

the chain means: After we have finished the training (identified V0 and V1) phase, we

start with the first chain (the grey one in Figure 4.3). We take real data as the first

neighborhood X1 to generate X2 through the scheme (4.41), where X1 takes the role

of X̃ and X2 takes the role of X. Then we use X2 as the neighborhood to generate

X3, and repeat this procedure until we obtain Xq. By Theorem 4.5.4, Xq and X1 are

asymptotically uncorrelated, as q → ∞. We describe the pseudo-code in Algorithm 2

below for this decorrelating step.

Figure 4.3: Branching Scheme. Let q be the number of steps we “walk” along the
directed chain. We take real data as the first neighborhood X1 to generate X2 through
the scheme (4.41), where X1 takes the role of X̃ and X2 takes the role of X. Then
we use X2 as the neighborhood to generate X3, and repeat this procedure until we
obtain Xq.

To generate more fake data, we can initiate more chains with the same starting node

X1 (where the real data are) and independent Brownian paths, and then “walk” along
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Algorithm 2 Generator in the Decorrelating and Branching

Input: real data {X̃(ωi)}Mi=1, # of steps q, generator Gθ;
Set {X1(ωi)}Mi=1 := {X̃(ωi)}Mi=1;
for k = 2 to q do
Generate M independent copies of initials positions and Brownian paths
{ξk(ωi), Bk(ωi)}Mi=1;
Generate M paths {Xk(ωi)}Mi=1 by

Xk(ωi) = Gθ(ξk(ωi), Bk(ωi), Xk−1(ωi));

end for
Output: {Xq(ωi)}Mi=1

the chain to get X
(i)
q , i = 2, 3, . . . . Again, X

(i)
q is asymptotically uncorrelated to X1. By

the definition of DC-SDEs, Xq and X
(i)
q are conditionally independent with conditioning

on X1. Therefore, we can claim that Xq and X
(i)
q are asymptotically uncorrelated.

Architecture. Note that although the directed chain SDE pair (X, X̃) is Markovian,

X itself can be non-Markovian as a standalone stochastic process. All the historical

information can be embedded in the neighborhood process and fetched through V0 and

V1. Such a property leads to one of the key differences between our method and Neural

SDEs: there is no need to embed time series into a hidden space. In our implementations,

V0 and V1 take standard feedforward neural networks; see Appendix B.2 for details.

Discriminator

The purpose of the discriminator is to identify the optimal parameters in the V0- and

V1- networks. We use the Wasserstein GAN framework [66, 6] to train the generator, and

two types of discriminators will be used here.

SigWGAN. Using the idea of expected signature, [126, 125] designed Sig-Wasserstein

GAN by directly minimizing the signature Wasserstein-1 distance,

Sig-W1(µ, ν) := |EX∼µ[S(X)]− EX∼ν [S(X)]|,
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where µ and ν are two distributions of time series corresponding to real data and fake

data, S is the signature map, and | · | is the l2 norm. For practical use, we approximate

the infinite sequence S by truncating signatures up to some finite order m, i.e.,

Sig-Wm
1 (µ, ν) := |Eµ[Sm(X)]− Eν [Sm(X)]|. (4.42)

The higher the truncation order m, the more information the signature can capture.

However, the number of terms in the truncated signature will grow exponentially and

become costly when the time series data is high-dimensional.

Neural CDEs. Neural controlled differential equations are the second candidate for

the discriminator when the underlying time series is of high dimension. This is also the

discriminator used in [87]. Let Dϕ : X 7→ R be a Neural CDE discriminator where ϕ

denotes the network parameters. The training goal is to solve the following optimization

problem for the generator

min
θ

Eξ,B
[
Dϕ

(
Gθ(ξ, B, X̃)

)]
,

and the following one for the discriminator

max
ϕ

{
Eξ,B

[
Dϕ

(
Gθ(ξ, B, X̃)

)]
− EX̃

[
Dϕ(X̃)

]}
. (4.43)

Compared to only using the Neural CDEs as the discriminator, we notice that a com-

bination of Neural CDEs and lower-order signature Wasserstein-1 distance as the dis-

criminator works better for the third numerical example below. That is, the generator is
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optimized with respect to

min
θ

{
Eξ,B

[
Dϕ

(
Gθ(ξ, B, X̃)

)]
+ Sig-Wm

1

(
Law(X̃),Law

(
Gθ(ξ, B, X̃)

))}
. (4.44)

Remark that DC-GANs can work with different discriminators, and here we choose to use

neural CDEs and SigWGAN as the discriminators. The pseudo-algorithm of the overall

training strategy is summarized in Algorithm 3.

Algorithm 3 The Training Phase

Input: real data {X̃(ωi)}Mi=1, boolean variable cde, total epochs E, signature trunca-
tion order m;
for e = 1 to E do
Generate independent copies of initials and Brownian motions (ξ(ωi), B(ωi))

M
i=1;

Generate fake data {X(ωi)}Mi=1 by

X(ωi) = Gθ(ξ(ωi), B(ωi), X̃(ωi));

if cde is True then
Compute the loss (4.43) and its gradients w.r.t. ϕ;
Compute the loss (4.44) and its gradients w.r.t. θ;
Update θ by stochastic gradient descent optimiser;
Update ϕ by stochastic gradient ascent optimiser;

else
Compute the loss (4.42) and its gradients w.r.t. θ;
Update θ by stochastic gradient descent optimiser;

end if
end for
Output: Generator Gθ.

4.5.2 Experiments

We present the performance of the proposed DC-GANs on four different datasets,

including stochastic opinion dynamics, network dynamics from neural science, and real-
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world stock data and energy consumption data. In all cases, we set q = 10, i.e., “walk”

along the chain for ten steps during the decorrelating phase. Other hyperparameters

for neural network training can be found in Appendix B.2 for details. The codes are

submitted as supplementary material and will be made public upon acceptance.

Benchmarks & Evaluation. The first two synthetic datasets are generated by

SDEs, the third real-world data set of stock price time series was extracted from Ya-

hoo Finance1, and the fourth real-world energy consumption data were obtained from

Ireland’s open data portal2. We compare our results by DC-GANs with SigWGAN,

CTFP, and Neural SDEs, and DC-GANs give much better accuracy under discrimina-

tive, predictive, and maximum mean discrepancy (MMD) metrics detailed below. We

also provide independence metrics to show that our decorrelating and branching scheme

can resolve the independence problem. We also test over different discriminators, and

show the flexibility of choosing the one that brings better performance or has a faster

running time.

Metrics

Marginal Distribution & MMD. For the first two examples, we plot histograms to

compare their marginal distributions at several time stamps. To measure the goodness

of fitting for time series, we use maximum mean discrepancy (MMD) induced by the

expected signature given in (4.42).

Discriminative Metric. To quantitively measure the similarity between the fake

data generated by DC-GANs and real data, we train a post-hoc time series classifier by

optimizing a two-layer LSTM to discriminate original and fake sequential data. The fake

data is labeled nonreal and the original data is labeled real. The worse discriminative

1https://finance.yahoo.com/quote/GOOG?p=GOOG&.tsrc=fin-srch.
2https://data.gov.ie/dataset?theme=Energy.
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ability of the post-hoc time series classifier implies the better performance of the time

series generator. Our discriminative score is calculated as the absolute difference between

0.5 and predicting accuracy on testing data, thus a smaller score indicates a better

generator.

Predictive Metric. Typically, a useful time series dataset contains temporal evo-

lution information, and we can predict the future given past data. We expect that DC-

GANs can capture this temporal dynamic property accurately from the original data.

To this end, we train an auxiliary two-layer LSTM sequential predictor on the generated

time series and test this post-hoc predictor on the original time series. The predictive

score is calculated as the L1 distance between predicted sequences and true sequences on

testing data (the real data), with smaller scores for better generators.

Independence Metric. It is crucial for success to show that our algorithm can

address the independence problem. As an independence metric, we use

ρ(x, y) := sup
t∈[0,T ]

∥ρ(xt, yt)∥1, (4.45)

where x, y ∈ L2(Ω × [0, T ],RN) and ρ(xt, yt) represents the cross-correlation matrix be-

tween random vectors xt, yt. Smaller ρ(x, y) means less correlation between real data x

and generated data y.

All experiments are run over ten different random seeds, and we report the mean and

standard deviation (in the parentheses) for all metrics in Tables 4.1–4.4. We give more

details on how all these metrics are implemented in Appendix B.2.1.

119



Directed Chain SDEs Chapter 4

Example 1: Stochastic Opinion Dynamics

We first consider stochastic opinion dynamics modeled by the following MV-SDE

dYt = −
[ ∫

R
φθ(∥Yt − y∥)(Yt − y) µt(dy)

]
dt+ σ dWt,

where φθ is a interaction kernel with θ1, θ2 > 0,

φθ(r) =


θ1 exp

(
− 0.01

1−(r−θ2)2

)
, r > 0,

0, r ≤ 0,

and µt = Law(Yt) denotes the distribution of Yt. One can interpret θ1 as a scale parameter

that characterizes the intensity of the attraction between entities, and θ2 as the range

parameter that determines the distance, within which an entity must be of one another

in order to interact. This model is widely used in many disciplines, from flocking and

swarming behaviors in biology (where Yt is the position) to public opinion evolution in

social science (where Yt is the opinion towards a topic). We refer to [124] for further

details.

We choose θ1 = 6, θ2 = 0.2, σ = 0.1, T = 1, ∆t = 0.01, and generate 8192 paths. The

distribution µt is approximated by the empirical distribution of 8192 samples. These sam-

ples are used to produce the blue density in Figure 4.1, where a clear shift in distribution

from unimodality to bimodality is observed.

We first compare with the Neural SDEs method [87]. Figure 4.1 gives the comparison

of the marginal distributions at t = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0. One can see that DC-

GANs can accurately capture the bimodal distribution in general, but the Neural SDE

method can not. Under the MMD metric (4.42), the discrepancy of DC-GANs is 0.07,

while the Neural SDEs give 0.12. More comparisons with SigWGAN, CTFP, and Neural
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SDEs under discriminative, MMD, and independence metrics are provided in Table 4.1.

Our proposed DC-GANs have a smaller discriminative score, and an independence score

comparable with the ones produced by the Neural SDE generator, SigWGAN, and CTFP,

all of which generate purely independent samples. Therefore, we conclude that DC-GANs

can produce fake data closer to the real data without independence issues.

Table 4.1: Stochastic Opinion Dynamics (Example 1). The scores are computed for
SigWGAN, CTFP, Neural SDEs, and DC-GANs under different metrics. The numbers
in the parenthesis are the corresponding standard deviations of each score. Note that
a smaller value means a better approximation, which indicates the DC-GANs provide
more accurate fake data with compared independence and running time.

Method Discriminative MMD Independence Time (min)

SigWGAN 0.213 (0.01) 0.328 (0.004) 0.009(0.004) 6.55
CTFP 0.131 (0.02) 0.281 (0.005) 0.010(0.003) 5.58

Neural SDEs 0.045 (0.025) 0.122 (0.003) 0.007 (0.005) 7.07
DC-GANs 0.028 (0.019) 0.07 (0.003) 0.009 (0.004) 6.82

Example 2: Stochastic FitzHugh-Nagumo Model

FitzHugh-Nagumo model is a standard model from neuroscience [8, 134], used to

describe the neurons’ interacting spiking. Mathematically, for N neurons and P different

neuron populations, and i ∈ {1, . . . , N}, we denote by p(i) = α, α ∈ {1, . . . , P} the

population of i-th particle that belongs to. The state vector of neural i, (X i,N
t )t∈[0,T ] =
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(V i,N
t , wi,Nt , yi,Nt )t∈[0,T ], satisfies the SDE,

dX i,N
t = fα(t,X

i,N
t ) dt+ gα(t,X

i,N
t )

 dW i
t

dW i,y
t


+

P∑
γ=1

1

Nγ

∑
j,p(j)=γ

(
bαγ(X

i,N
t , Xj,N

t ) dt

+ βαγ(X
i,N
t , Xj,N

t ) dW i,γ
t

)
,

where V denotes a short, nonlinear elevation of membrane voltage, w denotes a slower,

linear recovery variable, Nγ denotes the number of neurons in the population γ. We defer

more details about model description and training data generation to Appendix B.2.2.

The FitzHugh-Nagumo system is an example of a relaxation oscillator, and exhibits

a characteristic excursion in phase space, before the variables V and w relax back to

their rest values. As a result, their distributions are typically multimodal distributed;

see Figure B.1 in Appendix B.2.2.

Figure 4.4 depicts the differences of their joint marginal densities between generated

time series and training (real) time series on channels 1 and 3 at t = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0.

The darker the color the smaller the differences, thus the closer the distribution and in-

dicating a better generator. It can be observed that DC-GANs produce less difference in

joint marginal densities at multiple time stamps. Under discriminative, predictive, and

MMD metrics, DC-GANs give better samples than SigWGAN, CTFP, and Neural SDEs

consistently; see Table 4.2. In particular, fake samples produced by DC-GANs are almost

indistinguishable for a two-layer LSTM classifier after exhaustive training. By the com-

parison using MMD, one can see that DC-GANs generate fake samples with distributions

significantly closer to real data than the other three methods. The independence scores

given by (4.45) are nearly indistinguishable.
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Figure 4.4: Stochastic FitzHugh-Nagumo Model (Example 2). Figures (a)-(f) are
generated by Neural SDEs, and Figures (g)-(l) are generated by DC-GANs. They show
their joint marginal densities differences between estimated time series and real-time
series on channels 1 (Dim 1) and 3 (Dim 3) at t ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Darker
color means a smaller difference, and thus a better fitting. One can observe that
DC-GANs produce less difference in joint marginal densities at multiple time stamps.

Table 4.2: Stochastic FitzHugh-NagumoModel (Example 2). The scores are computed
for SigWGAN, CTFP, Neural SDEs, and DC-GANs under different metrics. Note that
a smaller value means a better approximation. Parenthesized numbers are standard
deviations.

Method Discrimative Predictive MMD Independence Time (min)

SigWGAN 0.126 (0.04) 0.44 (0.001) 0.737 (0.01) 0.0083(0.0024) 9.63
CTFP 0.275 (0.05) 0.501 (0.004) 1.095 (0.02) 0.0088(0.0023) 6.88

Neural SDEs 0.20 (0.003) 0.44 (0.000) 0.97 (0.02) 0.0085 (0.0023) 8.25
DC-GANs 0.01 (0.009) 0.439 (0.000) 0.47 (0.02) 0.0085 (0.0027) 8.13

Example 3: Stock Price Time Series (Real Data)

The third example is Google stock prices from 2004 to 2019, extracted from Yahoo Fi-

nance. Sequences of stock prices are known as continuous time series data with unknown

distributions, and can even be non-Markovian. Our data have six channels, volume and

high, low, opening, closing, and adjusted closing prices. Among all, the first five channels

are multimodal. The combined discriminator (4.44) (Neural CDE and Sig-W1) is used

in GAN for this experiment, and we list the comparison results in Table 4.3. One can
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Table 4.3: Stocks Price Time Series (Example 3). The scores are computed for SigW-
GAN, CTFP, TimeGAN, Neural SDEs, and DC-GANs under different metrics. Note
that a smaller value means a better approximation. Parenthesized numbers are stan-
dard deviations.

Model Discriminative Predictive MMD Independence Time (min)

SigWGAN 0.183 (0.03) 0.060 (0.004) 0.121 (0.011) 0.012(0.004) 4.13
CTFP 0.256 (0.05) 0.138 (0.006) 0.187 (0.009) 0.013(0.005) 6.40

TimeGAN 0.102 (0.021) 0.038 (0.001) 0.0220 (0.007) 0.011 (0.005) >660
Neural SDEs 0.085 (0.028) 0.048 (0.001) 0.0193 (0.008) 0.011 (0.006) 9.93
DC-GANs 0.045 (0.015) 0.036 (0.000) 0.0133 (0.005) 0.013 (0.006) 9.53

see that DC-GANs outperform SigWGAN, CTFP, TimeGAN, and Neural SDEs under

all three metrics.

Example 4: Energy Consumption Data (Real Data)

We download the Energy Consumption data from Ireland’s open data portal, and

choose four electric and gas consumption time series from 02/2011–02/2013, where chan-

nels 1,3, and 4 exhibit multimodal features. We list the comparison results in Table 4.4,

which shows consistent advantages of DC-GANs compared with other methods under

different metrics as in previous examples. Notice that DC-GANs can be used with both

Neural CDEs (NCDE) and Signature Wasserstein (SigW) discriminators, and in this ex-

ample, DC-GANs with SigW as the discriminator present better performance and have

a faster running time.

4.5.3 Conclusion

We propose a novel time series generator, DC-GANs, motivated by the study of

[53, 83] on directed chain SDEs (DC-SDEs). Compared to more complicated graph sys-

tems, we find from numerical examples that the directed chain systems exhibit promising

ability in fitting time series of multimodal probability distributions. We prove in theory
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Table 4.4: Energy Consumption Data from Ireland’s open data portal (Example 4).
The scores are computed for SigWGAN, CTFP, Neural SDEs, and DC-GANs under
different metrics. Note that a smaller value means a better approximation. Parenthe-
sized numbers are standard deviations.

Method Discriminative Predictive MMD Independence Time(min)

SigWGAN 0.368 (0.09) 0.159 (0.002) 0.135 (0.006) 0.022(0.007) 9.47
CTFP 0.487 (0.01) 0.185 (0.001) 0.558 (0.006) 0.021(0.008) 8.52
Neural SDEs 0.413 (0.06) 0.172 (0.004) 0.126 (0.004) 0.022(0.006) 9.73
DC-GANs (w/ NCDE) 0.322 (0.12) 0.155 (0.006) 0.077 (0.003) 0.029(0.007) 23.44
DC-GANs (w/ SigW) 0.310 (0.09) 0.151 (0.008) 0.075 (0.003) 0.033(0.008) 9.38

that DC-GANs have the same flexibility as the Neural SDEs in capturing marginal distri-

butions, and DC-GANs naturally embrace the non-Markovian property in the topological

structure, if needed. We also prove that the correlation of the generated path decays expo-

nentially fast as the graph distance of the generated path from the original data becomes

large under some mild assumptions, and hence, the lack-of-independence problem can be

overcome by walking along the directed chain. We present four numerical examples, two

synthetic datasets generated by the SDEs, and two real-world data of stock price and en-

ergy consumption, and show that DC-GANs have a better performance than SigWGAN,

CTFP, Neural SDEs and TimeGAN, with the comparable independence property. We

remark that the DC-GANs algorithm can also work with irregular data (i.e., the sample

paths may have data sampled on different time grids), which may happen in healthcare

applications.
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Appendix A

Signatured DFP for MFG with

Common noises

A.1 Proof of Lemma 3.4.1

In this appendix, we shall follow rough path theory and signatures stated in Chapter

2 to give the proof of Lemma 3.4.1 using the factorial decay property of signatures.

Lemma A.1.1 Suppose µt = E[ι(Xt)|FB
t ] where ι : Rd → R is a measurable function.

View µt as µ(t, B0:t) with µ : Vp([0, T ],Rn0+1) → R continuous for some p ∈ (2, 3), and

let K ⊂ Vp([0, T ],Rn0+1) be a compact set, then for any ϵ > 0, there exist a positive

integer M and a linear functional l ∈ T ((Rn0+1))∗, such that

sup
t∈[0,T ]

sup
B̂∈K

|µt − ⟨l, SM(B̂0:t)⟩| < ϵ. (A.1)

Proof: By constructing the iterated integral in Stratonovich sense, S(B̂0:T ) is the

signature of a p-geometric rough path ∀p ∈ (2, 3) [64], and thus it characterizes B0:T

uniquely. Therefore, conditional distribution µt = E[ι(Xt)|FB
t ] can be written as µt :=
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µ(t, B0,t) = µ(B̂0,t).

By Proposition 2.1.13, for any ϵ > 0 there exits l such that

sup
B̂∈K

|µ(B̂0:T )− ⟨l, S(B̂0:T )⟩| <
ϵ

2
. (A.2)

Since |⟨l, S(B̂0:T ) − SM(B̂0:T )⟩| ≤ ∥l∥ · ∥S(B̂0:T ) − SM(B̂0:T )∥ where the first norm is

functional norm and second is tensor norm and ∥S(B̂0:T )−SM(B̂0:T )∥ =
∑

i≥M+1 ∥B̂i
0:T∥.

By the compactness of K, and (2.7), (2.8),
∑

i≥M+1 ∥B̂i
0:T∥ admits a convergent uniform

norm over B̂ ∈ K and goes to 0 as M → ∞. Then for M large enough,

sup
B̂∈K

|µ(B̂0:T )− ⟨l, SM(B̂0:T )⟩| <
ϵ

2
+ sup

B̂∈K
|⟨l, S(B̂0:T )− SM(B̂0:T )⟩| <

ϵ

2
+
ϵ

2
= ϵ. (A.3)

For t < T , we extend path B̂0:t to space Vp([0, T ],Rd) by defining

B̃t
s :=

 B̂s, 0 ≤ s ≤ t

B̂t, t < s ≤ T.

Then B̃t
0:T ∈ Vp([0, T ],Rd), S(B̃t

0:T ) = S(B̂0:t) by Chen’s identity (2.5), and µ(B̂0:t) =

µ(B̃t
0,T ). Denote K̃ = {B̃t

0:T ,∀t ∈ [0, T ] : B̃t
0:T is constructed by B̂0:t and B̂ ∈ K}. Thus

K̃ is also compact.

sup
t∈[0,T ]

sup
B̂∈K

|µ(B̂0:t)− ⟨l, SM(B̂0:t)⟩| = sup
t∈[0,T ]

sup
B̂∈K

|µ(B̃t
0:T )− ⟨l, SM(B̃t

0:T )⟩|

= sup
B̃∈K̃

|µ(B̃0:T )− ⟨l, SM(B̃0:T )⟩| < ϵ, (A.4)

where the second equality is due to the construction of B̃t
0:T and the last inequality is by

(A.3).
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A.2 Details of Implementing the Sig-DFP Algorithm

The simulation of X i,(n) and JB(φ, µ̂
(n−1)) follows

JB(φ, µ̂
(n−1)) =

1

B

B∑
i=1

( L−1∑
k=0

f(tk, X
i,(n)
k , µ̂

(n−1)
k (ωi), αφ(tk, X

i,(n)
k , µ̂

(n−1)
k (ωi))∆k

+ g(XL, µ̂
(n−1)
L (ωi))

)
, (A.5)

X
i,(n)
k+1 = X

i,(n)
k + b(tk, X

i,(n)
k , µ̂

(n−1)
k (ωi), αφ(tk, X

i,(n)
k , µ̂

(n−1)
k (ωi))∆k

+ σ(tk, X
i,(n)
k , µ̂

(n−1)
k (ωi), αφ(tk, X

i,(n)
k , µ̂

(n−1)
k (ωi))∆W i

k

+ σ0(tk, X
i,(n)
k , µ̂

(n−1)
k (ωi), αφ(tk, X

i,(n)
k , µ̂

(n−1)
k (ωi))∆Bi

k, X
i,(n)
0 = X i

0 ∼ µ0,

(A.6)

where µ̂
(n−1)
k (ωi) is computed by µ̂

(n−1)
k (ωi) = ⟨l̄(n−1), SM(B̂i

0:tk
)⟩ with l̄(n−1) obtained

from the previous round of fictitious play. Then l(n) is calculated by regressing {ι(X i,(n)
0 ),

ι(X
i,(n)
L/2 ), ι(X

i,(n)
L )}Ni=1 on {SM(B̂0,0), S

M(B̂0,tL/2
), SM(B̂0,tL)}Ni=1, and we update l̄(n) =

n−1
n
l̄(n−1) + 1

n
l(n) for n ≥ 1. The algorithm starts with a random initialization l̄(0) to

produce µ̂(0).

Linear-Quadratic MFGs. We set αφ to be a feed-forward NN with two hidden

layers of width 64. The signature depth is chosen at M = 2. This model is trained for

Nround = 500 iterations of fictitious play. Note that fictitious play has a slow convergence

speed since our initial guessm(0) is far from the truth. Therefore, we only apply averaging

over distributions (or linear functions) during the second half iteration. We set the

learning rate as 0.1 for the first half iterations and 0.01 for the second half. The minibatch

size is B = 210, and hence Nbatch = 25.

Mean-field Portfolio Game. We consider signature depth M = 2 and use a fully

connected neural network πφ with four hidden layers to estimate πt. Since different
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players are characterized by their type vectors ζ, πφ takes (ζ, t,Xt,mt) as inputs. Hidden

neurons in each layer are (64, 32, 32, 16). We train our model with Nround = 500 rounds

fictitious play. The learning rate starts at 0.1 and is reduced by a factor of 5 after every

200 rounds. The minibatch size is B = 210, and hence Nbatch = 25.

Mean-field Game of Optimal Consumption and Investment. In this example,

signature depth is M = 4. The optimal controls (πt, ct)0≤t≤1 are estimated by two neural

networks πφ and cφ, each with three hidden layers. Due the nature of heterogeneous

extended MFG, both αφ and cφ take (ζt, t, Xt,mt,Γt) as the inputs. Hidden layers in each

network have width (64, 64, 64). We will propagate two conditional distribution flows,

i.e., two linear functionals l̄(n), l̄
(n)
c during each round fictitious play. Instead of estimating

mt,Γt directly, we estimate E[logX∗
t |FB

t ],E[log c∗t |FB
t ] by ⟨l̄(n), S4(B̂0:t)⟩, ⟨l̄(n)c , S4(B̂0:t)⟩,

and then take the exponential to get mt,Γt. To ensure the non-negativity condition, we

evolve logXt according to (A.22), use cφ to predicted log ct, and then take exponential to

get ct, Xt. We use Nround = 600 rounds fictitious play training, learning rate 0.1 decaying

by a factor of 5 for every 200 rounds, the minibatch size B = 211, and hence Nbatch = 24.

The training time for all three experiments with sample size N = 213, 214, 215 is given

in Table A.1.

Table A.1: Training time in minutes. Here LQ-MFG = Linear-Quadratic mean-field
games, MF Portfolio = Mean-field Portfolio Game, and MFG with Consump. =
Mean-field Game of Optimal Consumption and Investment.

N = 213 N = 214 N = 215

LQ-MFG 12.4 23.7 46.7
MF Portfolio 12.3 23.3 45.5
MFG with Consump. 23.4 40.9 80.1
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A.3 Proof of Theorems 3.4.2 and 3.4.3

We first list all main assumptions on (b, σ, σ0, f, g) that will be used to prove Theo-

rem 3.4.2. Let ∥·∥ be the Euclidean norm andK be the same constant for all assumptions

below.

Assumption A.3.1 We make assumptions A1-A3 and B1-B3 as follows.

A1. (Lipschitz) ∂xf, ∂αf, ∂xg exist and are K-Lipschitz continuous in (x, α) uniformly

in (t, µ), i.e., for any t ∈ [0, T ], x, x′ ∈ Rd, α, α′ ∈ Rm, µ ∈ P2(Rd),

∥∂xg(x, µ)− ∂xg(x
′, µ)∥ ≤ K∥x− x′∥,

∥∂xf(t, x, µ, α)− ∂xf(t, x
′, µ, α′)∥ ≤ K(∥x− x′∥+ ∥α− α′∥),

∥∂αf(t, x, µ, α)− ∂αf(t, x
′, µ, α′)∥ ≤ K(∥x− x′∥+ ∥α− α′∥).

The drift coefficient b(t, x, µ, α) in (3.3) takes the form

b(t, x, µ, α) = b0(t, µ) + b1(t)x+ b2(t)α,

where b0 ∈ Rd, b1 ∈ Rd×d and b2 ∈ Rd×m are measurable functions and bounded

by K. The diffusion coefficients σ(t, x, µ) and σ0(t, x, µ) are uncontrolled and K-

Lipschitz in x uniformly in (t, µ):

∥σ(t, x, µ)∥ ≤ K∥x− x′∥, ∥σ0(t, x, µ)∥ ≤ K∥x− x′∥.

A2. (Growth) ∂xf, ∂αf, ∂xg satisfy a linear growth condition, i.e., for any t ∈ [0, T ],
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x ∈ Rd, α ∈ Rm, µ ∈ P2(Rd),

∥∂xg(x, µ)∥ ≤ K

(
1 + ∥x∥+

(∫
Rd

∥y∥2 dµ(y)
) 1

2
)
,

∥∂xf(t, x, µ, α)∥ ≤ K

(
1 + ∥x∥+ ∥α∥+

(∫
Rd

∥y∥2 dµ(y)
) 1

2
)
,

∥∂αf(t, x, µ, α)∥ ≤ K

(
1 + ∥x∥+ ∥α∥+

(∫
Rd

∥y∥2 dµ(y)
) 1

2
)
.

In addition f, g satisfy a quadratic growth condition in µ:

|g(0, µ)| ≤ K

(
1 +

∫
Rd

∥y∥2 dµ(y)
)
,

|f(t, 0, µ, 0)| ≤ K

(
1 +

∫
Rd

∥y∥2 dµ(y)
)
.

A3. (Convexity) g is convex in x and f is convex jointly in (x, α) with strict convexity

in α, i.e., for any x, x′ ∈ Rd, µ ∈ P2(Rd),

(∂xg(x, µ)− ∂xg(x
′, µ))T (x− x′) ≥ 0,

and there exist a constant cf > 0 such that for any t ∈ [0, T ], x, x′ ∈ Rd, α, α′ ∈ Rm,

µ ∈ P2(Rd),

f(t, x′, α′, µ) ≥ f(t, x, α, µ)+∂xf(t, x, α, µ)
T (x′−x)+∂αf(t, x, α, µ)T (α′−α)+cf∥α′−α∥2.

B1. (Lipschitz in µ) ∂xg, ∂xf, ∂αf, b0, σ, σ
0 are Lipschitz continuous in µ uniformly in
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(t, x), i.e., there exists a constant K such that

∥∂xg(x, µ)− ∂xg(x, µ
′)∥ ≤ KW2(µ, µ

′),

∥∂xf(t, x, µ, α)− ∂xf(t, x, µ
′, α)∥ ≤ KW2(µ, µ

′)

∥∂αf(t, x, µ, α)− ∂αf(t, x, µ
′, α)∥ ≤ KW2(µ, µ

′)

∥b0(t, µ)− b0(t, µ
′)∥ ≤ KW2(µ, µ

′),

∥σ(t, x, µ)− σ(t, x, µ′)∥ ≤ KW2(µ, µ
′),

∥σ0(t, x, µ)− σ0(t, x, µ′)∥ ≤ KW2(µ, µ
′),

for all t ∈ [0, T ], x ∈ Rd, α ∈ Rm, µ, µ′ ∈ P2(Rd), where W2 is the 2-Wasserstein

distance.

B2. (Separable in α, µ) f is of the form

f(t, x, µ, α) = f 0(t, x, α) + f 1(t, x, µ),

where f 0 is assumed to be convex in (x, α) and strictly convex in α, and f 1 is

assumed to be convex in x.

B3. (Weak monotonicity) For all t ∈ [0, T ], µ, µ′ ∈ P2(Rd) and γ ∈ P2(Rd × Rd) with

marginals µ, µ′ respectively,

∫
Rd×Rd

[
(∂xg(x, µ)− ∂xg(y, µ

′))T (x− y)
]
γ( dx, dy) ≥ 0,∫

Rd×Rd

[
(∂xf(t, x, µ, α)− ∂xg(t, y, µ

′, α))T (x− y)
]
γ( dx, dy) ≥ 0.

Note that Assumption A.3.1 extends conditions A and B in [3] by considering gen-

eral drift coefficient b(t, x, µ, α) and non-constant diffusion coefficients σ(t, x, µ) and
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σ0(t, x, µ).

Our proof of Theorem 3.4.2 uses the probabilistic approach. To this end, we define

the Hamiltonian by

H(t, x, y, µ, α) = b(t, x, µ, α) · y + f(t, x, µ, α).

Denote by α̂ the minimizer of the Hamiltonian which is unique due to Assumptions A1

and A3:

α̂(t, x, y, µ) = argmin
α∈Rm

H(t, x, y, µ, α). (A.7)

By the Lipschitz property of ∂αf in (t, µ, α) and the boundedness of b2(t), α̂ is Lipschitz

in (x, y, µ). Let Ĥ be the Hamiltonian, with α̂ obtained in (A.7),

Ĥ(t, x, y, µ) = H(t, x, y, µ, α̂(t, x, y, µ)). (A.8)

Under Assumptions A1-A3, with the stochastic maximum principle, the problem (3.2)-

(3.3) is equivalent to solve the following FBSDE, given µ ∈ M([0, T ];P2(Rd)),

dXt = b(t,Xt, µt, α̂(t,Xt, Yt, µt)) dt+ σ(t,Xt, µt) dWt + σ0(t,Xt, µt) dBt, X0 = x0 ∼ µ0,

dYt = −∂xĤ(t,Xt, Yt, µt) dt+ Zt dWt + Z0
t dBt, YT = ∂xg(XT , µT ).

(A.9)

Moreover, the optimal control is given by

α̂t = α̂(t,Xt, Yt, µt), (A.10)

for any solution (Xt, Yt, Zt, Z
0
t ) to FBSDE (A.9).

The next theorem describes the McKean-Vlasov FBSDE for finding the mean-field

equilibrium (cf. Definition 3.2.1).
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Theorem A.3.2 (Theorem 2.2.8, [3]) Under AssumptionsA1-A3, the mean-field equi-

librium of (3.2)-(3.3) exists if and only if the following McKean-Vlasov FBSDE is solv-

able:

dXt = b(t,Xt,L(Xt|FB
t ), α̂(t,Xt, Yt, µt)) dt+ σ(t,Xt,L(Xt|FB

t )) dWt + σ0(t,Xt,L(Xt|FB
t )) dBt,

dYt = −∂xĤ(t,Xt, Yt,L(Xt|FB
t )) dt+ Zt dWt + Z0

t dBt.

(A.11)

Moreover, the mean-field control-distribution flow pair is given by

α∗
t = α̂(t,Xt, Yt,L(Xt|FB

t )), µ∗
t = L(Xt|FB

t ), ∀t ∈ [0, T ]. (A.12)

Theorem A.3.3 Under Assumption A.3.1, the FBSDE systems (A.9) and (A.11) have

unique solutions. Moreover, let µ1
t , µ

2
t ∈ M([0, T ];P2(Rd)) be different given flow of

measures, and denote by (X i
t , Y

i
t , Z

i
t , Z

0,i
t ) the unique solution to FBSDE (A.9) given µit,

then

E

[
sup
t∈[0,T ]

∥∆Xt∥2 + sup
t∈[0,T ]

∥∆Yt∥2 +
∫ T

0

∥∆Zt∥2 + ∥∆Z0
t ∥2 dt

]
≤ CK,TE

[∫ T

0

(∆µt)
2 dt

]
,

(A.13)

where ∆Xt = X1
t −X2

t , ∆Yt,∆Zt,∆Z
0
t are defined similarly, and ∆µt = W2(µ

1
t , µ

2
t ).

Proof: The results generalize Theorem 3.1.3, Proposition 3.1.4 and Theorem 3.1.6 in

[3] to the multi-dimensional case and with Lipschitz SDE coefficients b, σ, σ0. The original

proofs rely on Theorem 3.1.1 and Theorem 3.1.2 under Assumption H in [3]. With the

additional conditions on (b, σ, σ0) in our setting, Assumption H of [3] still holds. We

omit the details because they essentially parallel the corresponding derivations in [3].

Now we are ready to prove Theorem 3.4.2.

Proof: [Proof of Theorem 3.4.2] The proof uses the estimate (A.13) repeatedly. We
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first observe that, for µt = L(Xt|FB
t ) and µ

′
t = L(X ′

t|FB
t ), one has

E[W2
2 (µt, µ

′
t)] ≤ E[∥Xt −X ′

t∥2], ∀t ∈ [0, T ]. (A.14)

Then we define a map Φ by

µ = {µt}0≤t≤T → Φ(µ) := {L(Xµ
t |FB

t )}0≤t≤T , (A.15)

where Xµ
t is the optimal controlled process in FBSDE (A.9) given µ ∈ M([0, T ];P2(Rd)).

Combining (A.14) and (A.13) gives

sup
t∈[0,T ]

E[W2
2 (Φ(µt),Φ(µ

′
t))] ≤ sup

t∈[0,T ]
E[∥Xµ

t −Xµ′

t ∥2]

≤ CK,TE
[∫ T

0

W2
2 (µt, µ

′
t) dt

]
≤ CK,TT sup

t∈[0,T ]
E[W2

2 (µt, µ
′
t)]. (A.16)

Thus, for sufficiently small T , Φ is a contraction map. By definition, µ∗
t defined in (A.12)

is a fixed point of Φ: Φ(µ∗) = µ∗. Let µ(0) be the initial guess of µ∗, and µ(n) be the

resulted flow of measures of Xt given µ̃(n−1) which is the approximation of µ(n−1) by

truncated signatures. So the measure flows are generated by

µ(0) → µ(1) ⇝ µ̃(1) → µ(2) ⇝ µ̃(2) · · · → µ(n−1) ⇝ µ̃(n−1) → µ(n) ⇝ µ̃(n) (A.17)

where → corresponds to the map Φ, and ⇝ corresponds to the truncated signature

approximation. Therefore, with (A.16) and the assumption supt∈[0,T ] E[W2
2 (µ̃

(n)
t , µ

(n)
t )] ≤
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ϵ in Theorem 3.4.2, and denoting by 2CK,TT = q, we deduce that

sup
t∈[0,T ]

E[W2
2 (µ̃

(n)
t , µ∗

t )] ≤ 2 sup
t∈[0,T ]

E[W2
2 (µ̃

(n)
t , µ

(n)
t )] + 2 sup

t∈[0,T ]
E[W2

2 (µ
(n)
t , µ∗

t )]

≤ 2ϵ+ 2CK,TT sup
t∈[0,T ]

E[W2
2 (µ̃

(n−1)
t , µ∗

t )] = 2ϵ+ q sup
t∈[0,T ]

E[W2
2 (µ̃

(n−1)
t , µ∗

t )]

≤ 2ϵ+ q(2ϵ+ q sup
t∈[0,T ]

E[W2
2 (µ̃

(n−2)
t , µ∗

t )])

≤ · · ·

≤ 2ϵ(1 + q + q2 + . . . qn−1) + qn sup
t∈[0,T ]

E[W2
2 (µ

(0)
t , µ∗

t )]

=
2− 2qn

1− q
ϵ+ qn sup

t∈[0,T ]
E[W2

2 (µ
(0)
t , µ∗

t )].

With sufficiently small T , one has 0 < q < 1. To estimate
∫ T
0
E|α(n)

t −α∗
t |2 dt, we observe

that

α
(n)
t − α∗

t = α̂(t,X µ̃(n−1)

t , Y µ̃(n−1)

t , µ̃
(n−1)
t )− α̂(t,X∗

t , Y
∗
t , µ

∗
t ), (A.18)

where (X µ̃(n−1)

t , Y µ̃(n−1)

t ) is the solution to FBSDE (A.9) given µ̃(n−1), and (X∗
t , Y

∗
t ) can

be viewed as the solution to FBSDE (A.9) given µ∗. Then using the Lipschitz property

of α̂ in (t, x, µ) and (A.13) again produces

∫ T

0

E|α(n)
t − α∗

t |2 dt ≤ CK,TE
[∫ T

0

∥X µ̃(n−1)

t −X∗
t ∥2 + ∥Y µ̃(n−1)

t − Y ∗
t ∥2 +W2

2 (µ̃
(n−1)
t , µ∗

t ) dt

]
≤ CK,TT sup

t∈[0,T ]
E[W2

2 (µ̃
(n−1)
t , µ∗

t )].

Therefore, we obtain the desired result.

Next we give the proof to Theorem 3.4.3. Proof: [Proof of Theorem 3.4.3] Con-

sider a partition of [0, T ] : 0 = t0 < · · · < tL = T , and define π(t) = tk for t ∈ [tk, tk+1)

with ∥π∥ = max1≤k<L |tk−tk−1|, then by following the line of the proof to Theorem 3.4.2,

one only needs an additional estimate on E|Xµ
t −X

(n)
tk

|2 to complete the proof. Noticing
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that Xt solves (3.3) with µ∗ and X
(n)
tk

satisfies (3.10) with µ̃(n−1), one can obtain the

estimate by following Lemma 14 in [33] with N = 1.

A.4 Benchmark Solutions

This appendix summarizes the analytical solutions to the three examples in Sec-

tion 3.5, which are used to benchmark our algorithm’s performance.

Linear-Quadratic MFGs. The analytical solution is provided in [32]:

mt := E[Xt|FB
t ] = E[X0] + ρσBt, t ∈ [0, T ], (A.19)

αt = (q + ηt)(mt −Xt), t ∈ [0, T ], (A.20)

where ηt is a deterministic function solving the Riccati equation:

η̇t = 2(a+ q)ηt + η2t − (ϵ− q2), ηT = c,

with the solution given by

ηt =
−(ϵ− q2)(e(δ

+−δ−)(T−t) − 1)− c(δ+e(δ
+−δ−)(T−t) − δ−)

(δ−e(δ+−δ−)(T−t) − δ+)− c(e(δ+−δ−)(T−t) − 1)
.

Here δ± = −(a+ q)±
√
R, R = (a+ q)2 + (ϵ− q2) > 0, and the minimized expected cost

is V (0, x0 − E[x0]) with

V (t, x) =
ηt
2
x2 + µt, µt =

1

2
σ2(1− ρ2)

∫ T

t

ηs ds.

The benchmark trajectories in Figure 3.2 are simulated according to (3.14) with mt
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and αt in (A.19) and (A.20).

Mean-field Portfolio Game Given the type vector ζ = (ξ, δ, θ, µ, ν, σ), the analytical

solution provided in [105] is summarized below

π∗
t = δ

µ

σ2 + ν2
+ θ

σ

σ2 + ν2
ϕ

1− ψ
,

mt = E[ξ] + E[µπ∗]t+ E[σπ∗]Bt,

where ϕ = E[δ µσ
σ2+ν2

] and ψ = E[θ σ2

σ2+ν2
]. Note that, since the type vector ζ is random

representing the heterogenuity of agents in this mean-field game, π∗ is a random strategy.

The maximized expected utility of this game is given by E[v(0, ξ − θE[ξ])], with

v(t, x) = −e−x/δe−ρ(T−t),

ρ =
1

2(σ2 + ν2)

(
µ+

θ

δ

ϕ

1− ψ
σ

)2

− θ

δ

(
ψ̃ +

ϕ̃ϕ

1− ψ

)
− 1

2

(
θ

δ

ϕ

1− ψ

)2

,

ψ̃ = E
[
δ

µ2

σ2 + ν2

]
, ϕ̃ = E

[
θ

µσ

σ2 + ν2

]
.

Note that Figure 3.3(c) plots the absolute value of E[v(0, ξ − θE[ξ])].

Mean-field Game of Optimal Consumption and Investment Following [102],

the analytical solution is given by

π∗
t ≡ π∗ =

δµ

σ2 + ν2
− θ(δ − 1)σ

σ2 + ν2
ϕ

1 + ψ
, c∗t =

(
1

β
+ (

1

λ
− 1

β
)e−β(T−t)

)−1

, (A.21)
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where

ϕ = E
[

δµσ

σ2 + ν2

]
, ψ = E

[
θ(δ − 1)σ2

σ2 + ν2

]
, λ = ϵ−δ

(
eE[log(ϵ

−δ)]
)− θ(δ−1)

1+E[θ(δ−1)]
,

β = θ(δ − 1)
E [δρ]

1 + E [θ(δ − 1)]
− δρ,

and

ρ =

(
1− 1

δ

) {
δ

2(σ2 + ν2)

(
µ− σ

ϕ

1 + ψ
θ(1− 1

δ
)

)2

+
1

2

(
ϕ

1 + ψ

)2

θ2
(
1− 1

δ

)

− θE

[
δµ2 − θ(δ − 1)σµ ϕ

1+ψ

σ2 + ν2

]
+
θ

2
E

[
(δµ− θ(δ − 1)σ ϕ

1+ψ
)2

σ2 + ν2

]}
.

Note that the expression of mt, Γt and the maximized expected utility are not given

in [102]. For completeness, we give their derivations below. Since c∗t in (A.21) doesn’t

depend on the common noise B, Γt := expE[log c∗t |FB
t ] admits a unique formula for all

agents

Γt = expE[log c∗t ].

To obtain the formula for mt := expE[logX∗
t |FB

t ], we first deduce by Itô’s formula that

d logX∗
t = π∗

t (µ dt+ ν dWt + σ dBt)−
1

2
(2c∗t + (π∗

t )
2σ2 + (π∗

t )
2ν2) dt, (A.22)

from which we easily get

E[logX∗
t |FB

t ] = E[log ξ] + E[π∗µ− 1

2
(π∗)2(σ2 + ν2)]t−

∫ t

0

E[c∗s] dt+ π∗σBt,

and mt = expE[logX∗
t |FB

t ]. The maximized expected utility of this game is given by
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E[v(0, ξ,E[ξ])], with

v(t, x, y) = ϵ

(
1− 1

δ

)−1

x1−
1
δ y−θ(1−

1
δ
)f(t),

and f(t) is defined by

f(t) = exp

{∫ T

t

(
ρ+

1

δ
c∗s + E[c∗s]

(
1− 1

δ

)
θ

)
ds

}
.

Note that, to ensure the positiveness of Xt required by using the power utility, the tra-

jectories of Xt are obtained by simulating logXt via (A.22) then taking the exponential.

A.5 Plots of πt, ct, Γt = expE(log ct|FB
t ) for Mean-Field

Game of Optimal Consumption and Investment

0.0 0.2 0.4 0.6 0.8 1.0
time t

0

1

2

3

4

5

π t
 a

nd
 

̂
π t

πt ̂πt

(a) πt

0.0 0.2 0.4 0.6 0.8 1.0
time t

0.25

0.50

0.75

1.00

1.25

1.50

1.75

c t
 a

nd
 

̂
c t

ct ̂ct

(b) ct

0.0 0.2 0.4 0.6 0.8 1.0
time t

0.6

0.8

1.0

1.2

1.4

Γ t
 a

nd
 

̂ Γ t

Γt ̂Γt

(c) Γt = expE(log ct|FB
t )

Figure A.1: Plots on test data for three different (Xi
0,W

i, Bi, ζi). Solid line
is the benchmark solution and dashed line is the numerical approximation us-
ing the Sig-DFP algorithm. Each panel presents three trajectories of πt, ct,
and Γt = expE(log ct|FB

t ) and their approximations. Parameter choices are:
δ ∼ U(2, 2.5), µ ∼ U(0.25, 0.35), ν ∼ U(0.2, 0.4), θ, ξ ∼ U(0, 1), σ ∼ U(0.2, 0.4),
ϵ ∼ U(0.5, 1).
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A.6 Experiment setup for the high-dimensional case

n0 = 5

To test the performance of Sig-DFP in high dimensions, we implement a toy experi-

ment on the mean-field game of optimal consumption and investment with the common

noise of dimension n0 = 5. Specifically, we modify the σ dBt term in (3.18) to be in high

dimensions, i.e., Xt now follows

dXt = πtXt(µ dt+ ν dWt + σT dBt)− ctXt dt,

where σ := (σ1, . . . , σ5)
T, Bt is a 5-dimensional Brownian motion, and X0 = ξ. We use

the same hyperparameters for training and provide the running time in Table 3.6.
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Appendix B

Neural DC-SDEs as Generator for

Time Series

B.1 Additional Theorems and Proofs

Given that signature is well-defined and with finite expectation, we call E[S(X)]

the expected signature of X. Intuitively, the expected signature serves the moment-

generating function, which can characterize the law induced by a stochastic process under

some regularity conditions. More precisely, an immediate consequence of Proposition 6.1

in [41] on the uniqueness of the expected signature is summarized in the below theorem:

Theorem B.1.1 Let X, Y be two random variables of geometric rough paths such that

E[S(X)]] = E[S(Y )] and E[S(X)] has an infinite radius of convergence, then X, Y have

the same distribution.
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B.1.1 Proof of Theorem 4.5.2

We first restate Theorem 4.5.2 formally. Without loss of generality, we treat the time-

homogeneous case, i.e., µ and σ are independent of t. Our proof relies on constructing the

forward equations characterizing marginal distributions of both SDEs and directed chain

SDEs, thus can be easily generalized to time-dependence cases. The forward equation

associated with directed chain SDEs has been constructed by [83] and will be used directly

in our proof.

Theorem B.1.2 Let Y ∈ L2(Ω×[0, T ],RN) be an N-dimensional stochastic process with

the following dynamics

dYt = µ(Yt) dt+ σ(Yt) dB
y
t , Y0 = ξy,

where By is a standard d-dimensional Brownian motion, and µ : RN → RN , σ : RN →

RN×d are Borel measurable functions with Lipschitz and linear growth conditions. Then,

there exist functions V0 and V1 such that the process X has the same marginal distribution

as Y for all t ∈ [0, T ], where X is described by the following directed chain SDEs with an

initial position ξ as an independent copy of ξy,

dXt = V0(Xt, X̃t) dt+ V1(Xt, X̃t) dB
y
t , X0 = ξ,

subject to: Law(Xt, 0 ≤ t ≤ T ) = Law(X̃t, 0 ≤ t ≤ T ).

Proof: Let g ∈ C2(RN) be a twice continuously differentiable function. To character-

ize marginal distributions of the SDE solution Y for all t ∈ [0, T ], we use the Kolmogorov

forward equations. Define u(t, x) := E[g(Yt)|Y0 = x], it is the solution of the following
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Cauchy problem

(∂t − L)u(t, x) = 0, (B.1)

u(0, x) = g(x). (B.2)

The derivation relies on Itô’s formula and can be found in stochastic calculus textbooks,

e.g., in [85]. Here the infinitesimal operator L is given by

Lg(x) = µ(x) · ∇xg(x) +
1

2
Tr(σσT (x)Hessxg(x)),

where Hessx(·) denotes the Hessian matrix, and Tr(·) denotes the matrix trace. In [83,

Section 4.5], a similar partial differential equation for the directed chain SDEs is derived,

and we here summarize a simpler version without the mean-field interaction term. Define

v(t, x) := E[g(Xt)|X0 = x], then v solves

(∂t − Ldc)v(t, x) = 0, (B.3)

v(0, x) = g(x). (B.4)

Let ξ̃ be an independent copy of ξ, and the differential operator Ldc is given by

Ldcg(x) =Eξ̃

[
V0(x, ξ̃) · ∇xg(x) +

1

2
Tr(V1V

T
1 (x, ξ̃)Hessxg(x))

]
, (B.5)

where Eξ̃ is the expectation with respect to the distribution of ξ̃. As long as we can

match these two operators L and Ldc with some non-degenerate choices of V0, V1, then

(B.1)-(B.2) and (B.3)-(B.4) agree with each other and so do their solutions u and v. To
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this end, it suffices to choose V0, V1 such that

Eξ̃[V0(x, ξ̃)] = µ(x),

Eξ̃[V1V
⊤
1 (x, ξ̃)] = σσ⊤(x).

A toy example of non-degenerate V0, V1 can be V0(x, ξ̃) = µ(x) + φ1(ξ̃) − Eξ̃[φ1(ξ̃)] and

V1(x, ξ̃) such that V1V
⊤
1 (x, ξ̃) = σσ⊤(x)+φ2(ξ̃)−Eξ̃[φ2(ξ̃)] with measurable and integrable

functions φ1, φ2.

B.1.2 Proof of Theorem 4.5.4

From [83, Proposition 2.1], we have the existence and weak uniqueness of directed

chain SDEs. Denote this unique measure flow by

m := Law(Xt, 0 ≤ t ≤ T ) = Law(X̃t, 0 ≤ t ≤ T ).

This measure can also be understood as a probability distribution on C([0, T ],RN).

Given the Brownian motion path and the neighborhood path, we define a map Φ :

C([0, T ],RN)× C([0, T ],Rd) → C([0, T ],RN) such that

X = Φ(X̃;B) ∈ C([0, T ],RN)

and Φt as the projection of Φ onto any specific time stamp, i.e. Xt ≡ Φt(X̃;B). Then,

on a chain-like structure depicted in Figure 4.2 or 4.3, we write

Xq = Φ(Xq−1;B
q) = Φ(Φ(Xq−2;B

q−1);Bq) = Φ ◦ Φ(Xq−2;B
q−1, Bq).
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Namely, Xq is obtained as an output of the composite map Φ ◦ Φ from the inputs Xq−2,

Bq−1 and Bq. Repeating the above equation until tracing back to the first node produces

Xq = Φ ◦ · · · ◦ Φ(X1;B
2, . . . , Bq) := Φq(X1;B),

where B = (B2, . . . , Bq) and B2, . . . , Bq are independent d-dimensional Brownian mo-

tions. Such a chain-like structure possesses local Markov property as pointed out in

Proposition 4.6 in [83]. Let us denote Xt,q = Φq
t (X1;B). In the proof below, we impose

Lipschitz and linear growth conditions on coefficients V0 and V1.

Assumption B.1.3 For both coefficients V0 and V1, there exists a positive constant CT

such that,

1. (Lipschitz conditions) for i = 0, 1,

|Vi(x1, y1)− Vi(x2, y2)| ≤ CT (|x1 − x2|+ |y1 − y2|);

2. (Linear growth conditions) for i = 0, 1,

Vi(x, y) ≤ CT (1 + |x|+ |y|).

The following lemma gives the necessity of having the Brownian motion noises Bj,

j = 2, . . . , q in Φq
t , in order to have dependence decay properties.

Lemma B.1.4 Suppose Assumption B.1.3 holds. In the degenerate case, i.e., V1 ≡ 0

and Xt,q = Φq
t (X1), if all the initial conditions X0,1 = X0,2 = · · · = X0,q = ξ are identical,

then the directed chain SDE satisfy X1 = X2 = · · ·Xq in the L2 sense.
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Proof: We first write our directed chain dynamics in the integral form,

Xt,q = ξ +

∫ t

0

V0(Xs,q, Xs,q−1) ds. (B.6)

Note that the current directed chain system with degenerate V1 also has unique solutions.

By the Lipschitz property on V0, we compute

E[ sup
0≤s≤t

|Xs,q −Xs,q−1|2] ≤ E
[
sup
0≤s≤t

2CT

∫ s

0

(|Xv,q −Xv,q−1|2 + |Xv,q−1 −Xv,q−2|2) dv
]

≤ C · E
[ ∫ t

0

sup
0≤v≤s

(
|Xv,q −Xv,q−1|2 + |Xv,q−1 −Xv,q−2|2

)
dv

]
≤ C ·

∫ t

0

E
[
sup

0≤v≤s
|Xv,q −Xv,q−1|2

]
dv

+ C ·
∫ t

0

E
[
sup

0≤v≤s
|Xv,q−1 −Xv,q−2|2

]
dv

≤ C · eCT
∫ t

0

E
[
sup

0≤v≤s
|Xv,q−1 −Xv,q−2|2

]
dv,

where the third inequality comes from Fubini’s theorem and Proposition 2.2 in [83], and

the last inequality follows from Gronwall’s inequality. Iterating back to the beginning of

the chain, we deduce

E[ sup
0≤s≤T

|Xs,q −Xs,q−1|2] ≤
TCq−1e(q−1)CT

(q − 1)!
E[ sup

0≤s≤T
|Xs,2 −Xs,1|2].

According to the invariance of (joint) distribution (see [53, 83]), we get

E[ sup
0≤s≤T

|Xs,2 −Xs,1|2] ≤
TCq−1e(q−1)CT

(q − 1)!
E[ sup

0≤s≤T
|Xs,2 −Xs,1|2].

The constant q can be arbitrarily large and hence the above inequality forms a contrac-
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tion, which implies

E[ sup
0≤s≤T

|Xs,2 −Xs,1|2] = 0.

We then conclude X1 = X2 = · · · = Xq in the L2 sense.

Although the assumption of identical initials in Lemma B.1.4 is different from the

general setting of directed chain SDEs, where initials should be i.i.d, it is consistent in the

case that initials are deterministic. Therefore, the existence of non-degenerate V1 becomes

crucial, and we give the following necessary assumptions for factorial dependence decay

property.

Definition B.1.5 (Ck,kb,Lip) We have the following definition for Ck,kb,Lip:

(a) We use ∂x, ∂y to denote the derivative with respect to the first and second Euclidean

variables in V0, V1.

(b) Let V : RN × RN → RN with components V 1, . . . , V N : RN × RN → R. We say

V ∈ C1,1
b,Lip(RN ×RN ;RN) if the following is true: for each i = 1, . . . , N , ∂xV

i, ∂yV
i

exist. Moreover, assume the boundedness of the derivatives for all (x, y) ∈ RN×RN ,

|∂xV i(x, y)|+ |∂yV (x, y)| ≤ C.

In addition, suppose that ∂xV
i, ∂yV

i are all Lipschitz in the sense that for all

(x, y) ∈ RN × RN ,

|∂xV i(x, y)− ∂xV
i(x′, y′)| ≤ C(|x− x′|+ |y − y′|),

|∂yV i(x, y)− ∂yV
i(x′, y′)| ≤ C(|x− x′|+ |y − y′|),

and V i, ∂xV
i, ∂yV

i all have linear growth property,

|V i(x, y)|+ |∂xV i(x, y)|+ |∂yV i(x, y)| < CT (1 + |x|+ |y|),
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where CT is a constant depending only on T .

(c) We write V ∈ Ck,kb,Lip(RN × RN ;RN), if the following holds: for each 1, . . . , N , and

all multi-indices α, β on {1, . . . , N} satisfying |α| + |β| ≤ k, the derivative ∂αx∂
β
y

exists and is bounded, Lipschitz continuous, and satisfies linear growth condition.

(d) We say V0 ∈ Ck,kb,Lip(RN × RN) for short if V0 : RN × RN → RN satisfies (c). Let

V1 : RN × RN → RN×d with components V 1
1 , . . . , V

d
1 : RN × RN → RN . We say

V1 ∈ Ck,kb,Lip(RN × RN) for short if V j
1 ∈ Ck,kb,Lip(RN × RN) for every j = 1, . . . , d.

Assumption B.1.6 We emphasize two assumptions used for the existence and smooth-

ness of the marginal densities of directed chain SDEs:

1. (Uniform ellipticity on V1) Assume that there exists ϵ > 0 such that for all η, x, x̃ ∈

RN ,

η⊤V1(x, x̃)V1(x, x̃)
⊤η ≥ ϵ|η|2.

2. (Smoothness on V0, V1) Assume that V0, V1 ∈ Ck,kb,Lip(RN ,RN) with k ≥ N +2, where

V0, V1 ∈ Ck,kb,Lip(RN ,RN) is defined in Definition B.1.5.

Under Assumption B.1.6, one can prove the existence of the density function of directed

chain SDEs [83, Theorem 4.3].

Theorem B.1.7 Suppose Assumption B.1.6 is satisfied. For every Lipschitz function

φ : RN → R with Lipschitz constant K, there exists a constant c > 0 such that the

difference between the conditional expectation of φ(Xt,q), given X1 and the unconditional

expectation φ(Xt,q) for all t ∈ [0, T ] is bounded, i.e.,

E
[
sup

0≤t≤T

∣∣E[φ(Xt,q)|X1]− E[φ(Xt,q)]
∣∣2] ≤ cq−1

(q − 1)!
. (B.7)
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We shall first provide some interpretations for Theorem B.1.7 before giving the proof.

For random variables in space C([0, T ],RN), there is no unique choice on how to measure

their correlation or covariance. Here, we measure the difference between conditional

expectation and unconditional expectation over a family of testing functions φ. Thus,

we use the left-hand side in inequality (B.7) to measure the dependence between Xq and

X1.

Proof: Note that Assumption B.1.6 is a stronger version of Assumption B.1.3, and

it not only ensures the existence and weak uniqueness of the solution, but also guarantees

the existence of a smooth density which excludes the case of deterministic Xt,q. If Xq

and X1 are independent, the left-hand side is zero for every Lipschitz function φ. The

vice versa is also correct because of the exclusion of the deterministic case.

Let us start from the left-hand side in (B.7), the difference between the conditional

expectation of φ and unconditional expectation can be bounded by

E
[
sup

0≤t≤T

∣∣E[φ(Xt,q)|X1]− E[φ(Xt,q)]
∣∣2]

=

∫
C([0,T ],RN )

sup
0≤t≤T

∣∣∣∣ ∫
C([0,T ],RN )

(
EB

[
φ(Φq

t (ω;B))
]
− EB

[
φ(Φq

t (ω̃;B))
])
m( dω̃)

∣∣∣∣2m( dω)

≤
∫
C([0,T ],RN )2

sup
0≤t≤T

EB

[∣∣φ(Φq
t (ω;B))− φ(Φq

t (ω̃;B))
∣∣2]m( dω̃)m( dω)

≤ K2

∫
C([0,T ],RN )2

EB

[
sup

0≤t≤T

∣∣Φq
t (ω;B)− Φq

t (ω̃;B)
∣∣2]m( dω̃)m( dω)

≤ cq−1

(q − 1)!
,

for some positive constant c, where the proof of the last inequality is verbatim to the

procedures in Lemma B.1.4.

Remark B.1.8 We shall emphasize that the assumption X0,1 = X0,2 = · · · = X0,q = ξ

is not allowed under directed chain framework except for ξ ≡ x ∈ RN (the deterministic
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initial condition). This is quite common in practice, for instance, the investment returns

usually start from 1. Given results from Lemma B.1.4 and equation (B.7), we are able

to conclude that

E[ sup
0≤t≤T

|φ(X1)− E[φ(X1)]|2] ≤
cq−1

(q − 1)!
.

Here q can be arbitrarily large, hence we conclude that E[sup0≤t≤T |φ(X1)−E[φ(X1)]|2] =

0. The only possible solution for a directed-chain system is the deterministic case where

we have deterministic initial conditions and degenerate V1 (or we should call it “ODE”).

Brownian motion is the key ingredient to enrich the representability of our directed-chain

systems.

B.2 Experimental Details

Both discriminative and predictive metrics involve training tasks, and we shall first

list all implementing details of these metrics, which is universal for all experiments. Then,

we provide training hyper-parameters and training details used in different experiments.

B.2.1 Metrics

Discriminative Metric. We first generate the same amount of fake data paths as true

data paths to avoid imbalance, and choose 80% from both real and fake data as training

data, leaving the rest 20% as testing data. We use a two-layer LSTM classifier with

channels/2 as the size of the hidden state, where channels is the dimension of generated

and real series. We will minimize the cross-entropy loss, and the optimization is done

by Adam optimizer with a learning rate of 0.001 for 5000 iterations. The discriminative

score is calculated by the difference between 0.5 and the prediction accuracy on testing

data.
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Predictive Metric. We first generate the same amount of fake data as true data, and

use it as training data for the predictive metric, whereas true data is for testing. We use

a two-layer LSTM sequential predictor with channels/2 as the size of the hidden state,

where channels is the dimension of generated and real series. Our objective function

is L1 distance between predicted sequences and true sequences. The predictor generates

one-step future predictions in the last feature with the others as input. Optimization is

done by Adam optimizer with a learning rate of 0.001 for 5000 iterations. The predictive

score is reported as the L1 distance (also interpreted as mean absolute error (MAE))

between the predictive sequences and true sequences on testing data.

Independence Metric. The independence score is computed by the maximum of the

L1 distance of cross-correlation matrices over the time period [0, T ]. In practice, we con-

sider the maximum over the time stamps t ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

B.2.2 Experiments

In all four experiments, we use feed-forward neural networks with two hidden layers of

sizes [128,128] to parameterize the drift V0 and diffusion coefficient V1. For the purpose of

fair comparisons, we use the same GAN structure for both neural SDEs and DC-GANs,

i.e., the same Sig-Wasserstein GAN setup (4.42) or the combination of neural CDE and

Sig-WGAN scheme (4.44) as discriminators. We remark that DC-GANs can be adapted

to torchsde1 framework and use their adjoint method for back-propagation.

Stochastic Opinion Dynamics. In this experiment, we only use Sig-Wasserstein

GAN approach for the discriminator, and choose m = 8 as the truncation depth in

(4.42). We choose N = 1 and d = 3 dimensional standard Brownian motion in the

1See the Python package https://github.com/google-research/torchsde.
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DC-GANs generator (4.41), a batch size of 1024, a learning rate of 0.001 decaying to

one-tenth for every 500 steps, and train a total of 2000 steps. Training data and testing

data are sampled by the Euler scheme (4.41) with a sample size of 8192, and their initial

distributions ξ are drawn independently from a uniform distribution on [−2, 2].

Stochastic FitzHugh-Nagumo Model. The stochastic FitzHugh-Nagumo model is

widely used in neuroscience for describing the neurons’ interacting spiking, in particular,

to capture the multimodality of neurons’ interspike interval distribution. For N neurons

and P different neuron populations, we denote by p(i) = α, α ∈ {1, . . . , P}, the pop-

ulation of i-th particle belongs to, for i ∈ {1, . . . , N}. The state vector (X t,N
t )t∈[0,T ] =

(V i,N
t , wi,Nt , yi,Nt )t∈[0,T ] of neural i follows a three-dimensional SDE:

dX t,N
t = fα(t,X

t,N
t ) dt+ gα(t,X

t,N
t )

 dW i
t

dW i,y
t


+

P∑
γ=1

1

Nγ

∑
j,p(j)=γ

(
bαγ(X

i,N
t , Xj,N

t ) dt+ βαγ(X
i,N
t , Xj,N

t ) dW i,γ
t

)
,

where Nγ denotes the number of neurons in population γ. For all γ and α ∈ {1, . . . , P},

Iα(t) := I, ∀t ∈ [0, T ], ∀α for some constant value I, fα, gα, bαγ and βαγ are given by

fα(t,X
i,N
t ) =


V i,N
t − (V i,N

t )3

3
− wi,Nt + Iα(t)

cα(V
i,N
t + aα − bαw

i,N
t )

aαrSα(V
i,N
t )(1− yi,Nt )− aαdy

i,N
t

 ,

gα(t,X
i,N
t ) =


σαext 0

0 0

0 σyα(V
i,N
t , yi,Nt )

 ,
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and

bαγ(X
i,N
t , Xj,N

t ) =


−J̄αγ(V i,N

t − V αγ
rev )y

i,N
t

0

0

 ,

βαγ(X
i,N
t , Xj,N

t ) =


−σJαγ(V

i,N
t − V αγ

rev )y
i,N
t

0

0

 .
The functions Sα, X and σyα are defined as

Sα(V
i,N
t ) =

Tαmax

1 + e−γα(V
i,N
t −V i,N

T )
,

X (yi,Nt ) = 1yi,Nt ∈(0,1)Γe
−Λ/(1−(2yi,Nt −1)2),

σyα(V
i,N
t , yi,Nt ) =

√
aαrSα(V

i,N
t )(1− yi,Nt ) + aγdy

i,N
t ×X (yi,Nt ),

where (W i,W i,y,W i,γ), i = 1, . . . , N are standard three-dimensional Brownian motions

that are mutually independent. For sample paths produced by this model, we follow the

parameter choices in line with [55],

V0 = 0, σV0 = 0.4, a = 0.7, b = 0.8, c = 0.08, I = 0.5, σext = 0.5,

w0 = 0.5, σw0 = 0.4, Vrev = 1, ar = 1, ad = 1, Tmax = 1, λ = 0.2,

y0 = 0.3, σy0 = 0.05, J = 1, σj = 0.2, VT = 2, Γ = 0.1, Λ = 0.5.

The above choice produces the joint multimodal distribution of V and w; see the figure

below.

All training and testing data are generated through the Euler scheme with the above

parameters. In the training phase, we choose the Sig-Wasserstein GAN approach again

for our discriminator and choose m = 6 as the truncation depth in (4.42). We take N = 3
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Figure B.1: Stochastic FitzHugh-Nagumo Model (Example 2). Left subfigure shows
the multimodal joint density of VT and wT , and right subfigure shows the sample
paths from the time-dependent model (blue) and from the DC-GANs (red).

and d = 5 in our DC-GANs generator, and use a batch size of 1024 for training 2000

steps with a learning rate of 0.001 decaying to one-tenth every 500 steps. Training and

testing data are generated by the Euler scheme, where the initial positions ξ are drawn

from a 3-dimensional Gaussian random variable with means (0, 0.5, 0.3) and standard

deviations (0.4, 0.4, 0.05).

Stock Price Time Series. In this real-world example, we use the six-dimensional

stock price data of Google from 2004 to 2019. We segment them into sequences of length

24, which results in 3773 sequences as our time series data set. The combination of

Neural CDEs and Signature MMD (4.44) is used as the discriminator. For the purpose

of a fair comparison, we use the same noise size d and discriminator setup for both Neural

SDEs and DC-GANs generators. In particular, for the Neural CDEs discriminator, we

set the dimension of the hidden process to be 16, and their coefficients are approximated

by a feed-forward neural network with two hidden layers of size [128, 128]. For both DC-

GANs and Neural SDEs generator, the Brownian motion’s dimension is set at d = 10;

and for the Neural SDEs which embed stock prices data into a hidden space, we set its
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(the hidden space) dimension at 12. The batch size is chosen to be 128. Both generators

and discriminators are trained using Adam optimizer. Both learning rates start at 0.0001

and decay to one-tenth after 2000 steps, the signature depth is chosen at m = 4 in (4.44)

to alleviate the dimensional burden, and training steps are set as 4000. Our CTFP

implementation follows the setup in [50], SigWGAN follows from [125] and TimeGAN

implementation follows the setup in [149].

Energy Consumption. In the real-world energy consumption example, we choose four

electric and gas consumption time series from 02/2011-02/2013 and use daily data as a

single time series, bringing 694 sequences with a length of 96. For both neural SDEs and

DC-GANs, we use a ten-dimensional Brownian motion and neural nets with two hidden

layers of size [128, 128] to estimate drift and diffusion coefficients. The batch size is 128,

the training step is 4000, and the learning rate for the generator starts at 0.0001. In the

case of using Neural CDEs as the discriminator, we use hidden size 16, [128, 128] as the

hidden layers of neural nets estimating coefficients and 0.0001 as the starting learning

rate of the discriminator. In the case of using SigWGAN, we consider signature depth 6.

All learning rates decay to one-tenth after 2000 steps. Our CTFP implementation follows

the setup in [50], SigWGAN follows from [125] and TimeGAN follows from [149].
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[70] István Gyöngy. Mimicking the one-dimensional marginal distributions of processes
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