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ABSTRACT OF THE DISSERTATION

Front-end tooling for building and maintaining dependently-typed functional
programs
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Professor Sorin Lerner, Chair

Dependently-typed functional languages are increasingly popular, but due to

the complexity of their type systems, there is still a lot of friction in the user experience,

both for beginners who try to learn the concepts, and expert users who must write and

maintain complex code bases. We explore ways to alleviate those burdens by providing
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novel front-end tooling for this class of languages.

In order to help beginners, we explore new visualizations and automation tech-

niques, focusing on three pain points we identified in the learning process. We evaluate,

via a longitudinal user study and an A-B study, their effectiveness in terms of learning

to use those languages, enjoyment of the learning process, and productivity on solving

beginner-level exercises.

In order to help experts, we prototype a tool that helps in the refactoring of pro-

grams, partially eliminating the tedium of propagating changes throughout large code

bases. Our tool is built around a small dependently-typed functional core language,

but it supports extensions to richer languages, with similar or weaker type systems. We

demonstrate this by extending it to support OCaml, a widely used, modern functional

language without dependent types.
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Introduction

This thesis aims to design and evaluate novel tools for assisting users of func-

tional programming languages and proof assistants.

Over the past couple decades, the concept of functional programming has flour-

ished from an academic object of interest to a trending topic in both academia and

industry. Concepts that used to be mostly relevant in the context of functional pro-

gramming languages, for instance, anonymous functions, currying, monads, or dependent

types, are percolating into many functional languages, as well as mainstream imperative

languages.

Unfortunately, these concepts tend to have a higher level of abstraction than

their imperative counterparts, and are often dismissed by programmers as esoteric,

until their benefits are made clear. This has happened repeatedly over the history of

programming languages: structured programming seemed restrictive until its mainte-

nance benefits became clear, garbage collection seemed non-viable until their imple-

mentation became fast enough, monads were just a mathematical concept until their

relationship with effectful computations was made crisp.

Proof assistants, that is, software tools that allow programmers to reason for-

mally about their code, are currently in a shifting period. While they have existed for

several decades, their recognition as a valuable tool is still in progress. There are mul-
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tiple explanations for this. First, the underlying meta-theories are still under active re-

search, and as a result, the software implementations are often not as polished as their

mainstream programming counterparts. Second, learning to use these proof assistants

is a hard task, often requiring extensive research and academic readings. Compared to

mainstream programming languages, tutorials for proof assistants are both scarce and

terse. Finally, there are but a few examples of successful, broadly-used software built

within proof assistants.

On this subject, a few pioneer projects have helped make the case for using proof

assistants. The CompCert C compiler Leroy [22] demonstrated that a verified compiler

for a “real-world” programming language was not only feasible, but was independently

proven to be more robust than its competitors by Yang et al. [37] and Le et al. [21]. The

seL4 micro-kernel Klein et al. [19] also demonstrated that verified software can build

such low-level artifacts as the kernel of an operating system. On a more theoretical side,

the Coq proof assistant was also used to build a mechanized proof of the four-color the-

orem Gonthier [13], as well as the odd-order theorem Gonthier et al. [15]. These proof

efforts not only helped make software verification more broadly known and respected,

they also provided several libraries and design principles for software verification. The

Mathematical Components library Gonthier [14], for instance, was built alongside the

two theorems previously mentioned, and offers a vast array of reusable mathematical

objects, as well as a methodology for developing large-scale proofs using small-scale

reflection, packaged in a library called SSReflect.

For proof assistants to become popular, we believe it will take efforts on multi-

ple fronts. In order to be approachable, we need better course material, accessible to

programmers outside of academic settings. We also need tools that are more suitable

to beginners, with softer edges, so to speak. There is good progress on this front. The

Software Foundations Pierce et al. [29] collection of books has been incrementally de-

2



signed over the past decade, and is regarded as one of the best introductions to the Coq

proof assistant and mechanized theorem proving in general. Other languages are also

providing their own learning material, for instance, Programming Language Founda-

tions 1 for Agda, or the Idris tutorial 2.

The design of proof assistants, their libraries, and the programming languages

they are based upon, will also need refining. Proof engineering is still a fairly new en-

deavor, and will require years of effort before proper abstraction mechanisms, design

principles, and tools are designed, evaluated, and adopted. For instance, there are two

separate mechanisms for ad hoc overloading in Coq, with each their strength and weak-

nesses, namely type classes and canonical structures. The former is not very robust, often

resulting in undecipherable error messages, while the latter is more powerful, but re-

quires abusing other features of the proof assistant to program it.

In this dissertation, we want to explore two aspects of the interaction of users of

proof assistants. The first aspect of interest is the barrier to entry previously mentioned.

The author noticed several rough edges in the process of learning to use a proof assis-

tant, both through their own learning experience, and through teaching other begin-

ners to use the Coq proof assistant. These problems range from conceptual ones, like

the ability to make proper mental models for what happens “behind the scenes” when

one interacts with a proof assistant, to more practical issues, like being able to find the

relevant theorems, lemmas, tactics, etc.

The second aspect we are interested in caters to a broader audience. Beginners

often lack the foresight to get their data type definitions to be well tailored for a problem

on the first try. Experts often need to refactor, add or remove features, to an existing

program. In both cases, the user will want to go back to existing definitions, update
1https://plfa.github.io/
2http://docs.idris-lang.org/en/latest/tutorial/
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them, and re-execute the existing proofs to get back to their problem at hand. Unfortu-

nately, in most proof assistants, and programming languages in general, an update in

some definition will have repercussions throughout a code base, that will require the

user’s attention to fix. While some of these changes indeed require scrutinizing, either

because new values or new proofs need to be created from scratch, often times, a de-

cent fraction of the changes necessary are systematic, deterministic consequences of the

changes made upstream.

This slows down beginners in their learning process, especially since they will

lack the knowledge necessary to make their code and proof robust to such changes. It

also occasionally slows down experts, who need to update existing, working proofs, if

only to rename variables, reorder arguments to a function or constructor, etc. We are

interested in the possibility of eliminating the tedium out of this process, accelerating

users by automatically figuring out the systematic changes, and leaving them only the

task of filling the blanks that require creativity or expertise.
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Chapter 1

Background

This section provides a brief high-level introduction to basic concepts used in

the rest of the dissertation.

1.1 Static typing

Programmers typically do not write programs by simply manipulating bits in the

computer’s memory: most languages offer abstraction mechanisms that let their users

reason at a higher level. One such high-level abstraction is the notion of a data type. A

programmer will want to manipulate structured data such as numbers, Boolean values,

or compound values made out of different values organized together in some fashion.

They will then use, and possibly define, a set of operations to work on values from

different data types. Those operations might sometimes be entirely oblivious to what

data type they are manipulating, but frequently, they will expect some properties out

of their input values, and provide some properties for their output values.

A type system is a mechanism that enforces some discipline about the proper use

of values in a program according to a set of typing rules. Typing rules usually ascribe
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a type to every value of a program, and prescribe the typed contexts within which a

value of a given type may be used. A type can be anything from a simple classification of

values according to their nature (for instance, distinguishing numbers from functions),

to more semantic rules that may sometimes be defined by the user of the language. In

this dissertation, we will use the notation t : τ to indicate that a term t has type

τ .

A static typing discipline allows the programming environment (be it a compiler,

an interpreter, or any other language tool) to reject programs before they run. On

the opposite, a dynamic typing discipline enforces its typing discipline on-the-fly, as

programs execute. This allows more programs to execute, as long as their execution

path does not encounter a typing violation. On the other hand, this provides less safety,

as latent errors in the programs stay unnoticed until an execution path triggers them.

In this dissertation, we will focus solely on static typing disciplines.

There can be many reasons for wanting to reject a program, whether statically

or dynamically. The simplest case is a breach of expectation between a value and the

context into which it is passed: this is usually called a type error. For instance, a function

declared to expect a number input might not be allowed to receive a string instead.

Another, less obvious, unfortunate reason for rejecting a syntactically-valid, se-

mantically valid program, is that the static enforcement of typing rules cannot, in gen-

eral, be complete. For instance, dependent type systems (covered in Section 1.2) cannot

safely ensure their typing discipline in the presence of arbitrary recursion. In order

to reject all unsafe programs before they are run, they must restrict the programs they

allow to some conservative subsets of all safe programs.

While the idea of preventing programmers from running syntactically-valid pro-

grams might seem like a nuisance, it provides at least two benefits. From the program-
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mer’s point of view, a disciplined use of the type system can help them catch, before

their program is run, conditions that would make the program crash were it to be exe-

cuted. These conditions can often be indicated at locations close to the source of error.

The typing discipline can also provide information that can be leveraged as documenta-

tion, or in order to perform code analyses and transformations that would be intractable

or unsafe without types.

Strong typing disciplines can even benefit the programmer tenfold, by provid-

ing means of tracking security properties Volpano and Smith [33], resource usage and

sharingNaden et al. [27], dimensions of units-of-measure Kennedy [18], etc.

1.2 Dependent types

This dissertation will mostly focus on dependent type systems. A dependent type

is a type whose definition depends on a program value. Non-dependent type systems

can only express lightweight relationships between the input and output of functions,

as well as lightweight constraints on what these inputs and outputs may be. In a depen-

dent type system, one can express such types as the type of functions that take a number

and return a larger number, or the type of positive numbers that are less than 256. In order to

express these, one must be able to mention in the type, either concrete values like 256 ,

or program values like the input value of the function.

In order to define functions whose output type depend on the value of their

input, dependent type systems must have a type former (i.e. a syntactic construct) for

dependent functions 1. In the literature, the type of functions which accept an input value

a of type A , and return an output value of type B(a) (where B is a family of types

indexed by values of type A ), is often written as either:
1 Dependent functions are sometimes referred to as dependent products in the literature. Unfortunately,
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• (a : A) → B(a)

• ∀(a : A), B(a) 2

• Π(a : A) → B(a) 3

We will tend to use the latter, and refer to those types as Π-types.

When a dependent function takes several arguments, we will group them all into

a single Π, and coalesce successive values of the same type in groups under the same

set of parentheses. In practice, this means that the types:

Π(a : X) (b c : Y) (d : Z) → R(a, b, c, d)

and

Π(a : X) → Π(b : Y) → Π(c : Y) → Π(d : Z) → R(a, b, c, d)

are syntactically equivalent, and we will favor the former (shorter) syntax.

Nested Π-types, that is, ones that appear to the right of the arrow of an enclosing

Π-type, can depend on the values of the previously quantified variables. We call a Π-

telescope any sequence of Π-types directly nested within one another. We can summarize

them in a list of bindings and their types, where each type is allowed to, but does not

have to, depend on previous bindings. For instance, the type:

Π(a : X) (b : Y(a)) (c : Z(a)) → R(a, b, c)

contains a telescope of three bindings (namely, a , b , and c ), and the type of the last

the similar but different concept of a dependent pair is sometimes referred to as either a dependent sum or,
confusingly, a dependent product. Since both views are reasonable, and in order to avoid confusion, we
will strictly adhere to the unambiguous names of dependent function type and dependent pair type in this
dissertation.

2The ∀ symbol is pronounced “for all”.
3The Π symbol may also be pronounced “for all” in such context, or “pi”.
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two bindings depend on the value of the first binding.

Dependent types may also manifest themselves in other forms depending on the

constructs of the language that integrates them. For instance, languages with records

may allow dependent records, where the type of some fields may depend on the value

of some other fields. A typical example is the packing of a plain data structure with

extra properties that we want it to have, for instance, ensuring the binary-search-tree

(or BST) property of a binary tree:

1 Inductive BinarySearchTree a := MakeBinarySearchTree
2 { tree : BinaryTree a
3 , isBST : IsBinarySearchTree tree
4 }.

For the scope of this dissertation, we do not handle such features explicitly, but

believe that the constructions we present are amenable to the introduction of those fea-

tures: the simplest flavor of dependent records can be simulated using a combination

of constructs we cover.

1.3 Proof assistants

Our first contribution focuses mostly on programs built using a proof assistant.

A proof assistant is a software tool allowing a user to define mathematical structures,

with their axioms and rules, and carry mechanized proofs of properties of those struc-

tures. By mechanized, we mean that the software has the ability to check that a proof is

correct, with respect to a set of rules. Many proof assistants rely on the Curry-Howard

isomorphism [16], bridging the gap between formal logic and typed programming. In

those systems, logical propositions can be readily expressed as types, in the same for-

mal system within which programs can be defined. Proofs built this way are essentially

programs, whose computational content is often less interesting than the fact that they
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are well-typed, and as such, are witnesses for the type/proposition they inhabit.

Proof assistants come in a large variety, both from a theoretical point of view,

and in terms of user experience. On the theory side, there are many logical systems

of interest, and different proof assistants tend to focus on some classes of those. For

instance, the Coq proof assistant focuses, by default, on an intuitionistic fragment of the

calculus of (co)-inductive constructions, orCoC, but allows itself to be extended with ax-

ioms to support classical reasoning, or extensional notions of equality, if needed.

A proof assistant is typically composed of several interacting pieces:

• a programming language, allowing the user to define programs that they wish to

execute and/or reason about formally,

• a specification language, allowing the user to define properties of programs, or gen-

eral theorems, that they wish to prove,

• a proof language, allowing the user to build those proofs.

Note that these languages need not be different from one another, and several

languages can help fulfill one of those purposes. For instance, in the Coq proof assis-

tant, the programming language and the specification language are the same language,

called Gallina, and the proof language can be either Gallina itself, or a proof-building

scripting language called Ltac.

Learning to use such a proof assistant therefore requires familiarizing oneself

with not only a programming language with a complex type system, but also the log-

ical foundation of formal proofs, and the idiosyncrasies of the proof environment of

choice.

For the Coq proof assistant, novice users are generally taught to use Ltac to build
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proofs, since manually building Gallina terms requires more expertise and is usually

tedious. An Ltac script is a sequence of commands (usually called tactics) directing the

proof assistant as to what logical rules to use in order to progress in building the proof

term. These tactics include:

• proof-solving tactics, which attempt to complete a proof obligation by constructing

the complete proof,

• case-splitting tactics, which break a proof obligation into several sub-obligations,

by using some rule of the formal logic with multiple antecedents,

• bookkeeping tactics, which modify the context or the goal of the current proof obli-

gation, either by adding/removing/reordering/rewriting in hypotheses, or by

performing modifications in the goal.

A typical proof can therefore be thought of as a tree, branching on case-splitting

tactics, extending on bookkeeping tactics, and with proof-solving tactics as leaves. The

proving process is rarely linear: many proofs will require using concepts such as case

analysis and induction in order to break down a complex goal into specialized sub-goals

that can be solved separately. In those sub-cases, one will often need to perform appli-

cations and rewriting using existing theorems.

The application of a theorem (or a hypothesis) (t : τ) can be performed in

either a hypothesis or a goal. To apply it in a hypothesis (a : α) :

• the type of the applied term, τ , must reduce to a Π-telescope:

Π(t1 : τ1) ... (tn : τn) → tr : τr

• the type of the target hypothesis, α , must be compatible with of one of the τi

(if there are multiple candidates, the first such τi will be considered)
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It then yields the conclusion of the applied term, τr , as a hypothesis, but also

adds new obligations for all the other antecedents in the telescope. Intuitively, the ap-

plied term t was fully applied, with formal parameter τi receiving argument a , and

all other formal parameters receiving arguments to be determined by solving the new

obligations. That is, given the context:

1 A, B, C : Prop
2 H1 : A → B → C
3 H2 : B
4 ==================
5 C

applying hypothesis H1 in hypothesis H2 yields the following two obligations:

1 (* 1. Hypothesis H2 became the conclusion of H1. *)
2 A, B, C : Prop
3 H1 : A → B → C
4 H2 : C
5 ==================
6 C

and:

1 (* 2. In the original context, one must prove A. *)
2 A, B, C : Prop
3 H1 : A → B → C
4 H2 : B
5 ==================
6 A

Conversely, a theorem or hypothesis can be applied to the goal of the current

obligation if its conclusion matches the goal. It yields an obligation for each antecedent.

For instance, applying hypothesis H1 from the original context to the goal would yield

the following two obligations:

1 (* 1. One must prove the first antecedent A. *)
2 A, B, C : Prop
3 H1 : A → B → C
4 H2 : B
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5 ==================
6 A

and:

1 (* 2. One must prove the second antecedent B. *)
2 A, B, C : Prop
3 H1 : A → B → C
4 H2 : B
5 ==================
6 B

Rewriting with a theorem or a hypothesis is a similar concept, but for dealing

with equalities (or, more generally, structures that admit equivalence relations, called

setoids). We will focus on the simple case of equalities. Again, one can either use rewrite

in a hypothesis, or over the goal. One can rewrite with a theorem or hypothesis as

long as its conclusion is an equality. The rewriting consists of replacing one side of the

equality with the other side, for a given occurrence. It is a directed operation, either

replacing the left operand of the binary relation with the right one, or vice-versa.

For instance, given this original context:

1 P, Q : ℕ → Prop
2 x, y, z : ℕ
3 H1 : Q z → x = y
4 H2 : P x
5 ==================
6 P y

rewriting from left to right with hypothesis H1 in hypothesis H2 yields the two

obligations:

1 (* 1. x has been replaced with y in H2. *)
2 P, Q : ℕ → Prop
3 x, y, z : ℕ
4 H1 : Q z → x = y
5 H2 : P y
6 ==================
7 P y
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and:

1 (* 2. One must prove the antecedent. *)
2 P, Q : ℕ → Prop
3 x, y, z : ℕ
4 H1 : Q z → x = y
5 H2 : P x
6 ==================
7 Q z

while rewriting from right to left with hypothesis H1 in the goal yields the two

obligations:

1 (* 1. y has been replaced with x in the goal. *)
2 P, Q : ℕ → Prop
3 x, y, z : ℕ
4 H1 : Q z → x = y
5 H2 : P x
6 ==================
7 P x

and:

1 (* 2. Again, one must prove the antecedent. *)
2 P, Q : ℕ → Prop
3 x, y, z : ℕ
4 H1 : Q z → x = y
5 H2 : P x
6 ==================
7 Q z

A novice user will need to learn to use these tactics effectively, but will also

need to learn about the families of theorems that are applicable in their proof develop-

ment. For instance, the Coq prelude contains 106 equality theorems, and importing the

module about lists increases this number to 1006. While there are facilities to look up

theorems of interest based on the shape of their type, this still lacks in ease of discovery,

and it is not rare for one to miss or re-derive an existing theorem.
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1.4 Program refactoring

Programs are rarely written once and for all: bugs may be found that must be

fixed, requirements may evolve in ways that require rewriting parts of a program, and

programs may be re-written in semantically-equivalent ways in order to account for

performance, resource-efficiency, or even simply stylistic concerns.

The concept of refactoring, which was introduced as early as in Wirfs-Brock and

Johnson [36], characterizes program transformations that preserve the semantics of the

program being manipulated. Semantics-preserving transformations of a program can

include tasks such as:

• reordering parameters to functions, classes, modules, and other parameterized

language constructs,

• changing the location of some units of code, possibly crossing module or file

boundaries,

• consistent renaming of variables and constants,

• abstracting over some concrete code, or concretizing some abstract code,

• etc.

Examples of non semantics-preserving transformations include:

• adding, removing, or changing parameters to a function,

• adding, removing, or changing parameters to a data constructor.
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Chapter 2

PeaCoq: novel display and user interac-
tion in proof assistants

This chapter will focus on the development and evaluation of innovative front-

end features for proof assistants, with a focus on helping novice users.

2.1 Background

Proof assistants have a steep learning curve. Not only do they require an un-

derstanding of high-level mathematical concepts, including but extending beyond the

ones presented in Chapter 1, but they also require the user to learn the idiosyncrasies

of their proof assistant of choice. Even experts of a given proof assistant would require

a decent amount of time to become proficient in a different proof assistant.

Let’s focus on the Coq proof assistant. Learning to use it requires getting familiar

with the Calculus of (Co-)Inductive Constructions, a dependently-typed lambda calcu-

lus. Proficiency in this language requires becoming familiar with dependent pattern

matching, universe hierarchies, induction and co-induction, well-founded relations, etc.

This covers the knowledge required to write code and specifications in this proof assis-
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tant.

In order to write proofs, the user must learn an additional, untyped language

of tactics called Ltac. This language contains more than a hundred tactic formers, with

several variations for each tactic. While many proofs can be carried out with just a

small subset of those, complicated proofs often require a large arsenal of tactics and a

thorough understanding of the tactic language.

Additionally, writing proofs over standard data types requires being able to lo-

cate relevant theorems within the standard library. This standard library, by default,

includes more than a thousand lemmas. While Coq offers facilities to search a rele-

vant lemma by giving the shape of its expected type, this is still a somewhat tedious

endeavor.

We have identified three challenges in the learning process for novice users that

we would like to tackle with PeaCoq:

1. conceptualizing and keeping track of the proof tree structure while building proofs,

2. identifying the effects of a tactic on the proof context,

3. identifying relevant tactics that can be applied in a given proof obligation.

2.2 Design

2.2.1 Design of PeaCoq

We will discuss the global architecture of PeaCoq that allows us to build all the

features we mentioned. Each feature will then be described individually.
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PeaCoq is designed following a client-server architecture. The server handles the

Coq process, and exposes end-points to communicate with it via HTTP. The client is a

web application, containing the front-end view that users interact with, and facilities

for driving the interactions with the server. Let us describe each side further.

Snap Server

SerTop (SerAPI)

Coq
PeaCoq plug-in

Back-end

Driver

EditorProof-tree Automation

Front-end

Figure 2.1. PeaCoq’s architecture

Back-end / Server

In order to let front-ends interact with it, the Coq process exposes an API that

serializes metadata and accepts certain commands. Unfortunately, prior to PeaCoq’s

development, very few tools had used this API, and as a result, it is lacking both in

polish and in features.

The protocol it uses is based upon XML syntax, and exposes commands to ma-

nipulate an abstract document (a collection of Coq sentences) and command and ob-

serve its execution.

While developing PeaCoq, we interacted with Emilio Jesús Gallego Arias, who
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was developing a layer over this XML protocol, named SerAPI (for serialization API).

This layer offers a less rough API based on s-expressions, abstracting over some minute

details of Coq’s implementation.

However, at the time PeaCoq was built, Coq was not exposing enough of its inter-

nals for our needs. In order to remedy this, we also built a Coq plug-in to expose this

data. Plug-ins circumvent the IDE API by directly being compiled and loaded along-

side the Coq code: thus, they have access to all the public interfaces of Coq’s internal

modules. Once our plug-in is loaded, it registers as a Vernacular command that can be

invoked either by users, or through the IDE API.

In order to communicate with front-ends, the back-end is driven by a HTTP

server, based on Haskell’s Snap framework. The details of its implementation are fairly

mundane: it simply listens to requests from the front-end, passes them down to Coq

through SerAPI, and forwards the responses back without much processing. However,

this architecture provided several advantages:

• Since the back-end communicates with the front-end over HTTP, the two need

not be on the same physical machine. For instance, we have had the back-end

running on a powerful Internet-facing machine, and connected it from a less

powerful phone, on public transit. It worked flawlessly, even in the presence of

computation-intensive loads like our automation, because the computation was

happening server-side. Meanwhile, the lightweight client was only processing

display and communication with the server.

• The back-end was built in such a way that it could accept multiple connections

at once. Each connection would spawn its own, separate instance of Coq. This

means that multiple clients could independently connect and work on the same

server. We used this in our study at the University of Washington, where one
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server was shared among all students, who did not need to install Coq on their

machine.

Front-end / Client

The front-end of PeaCoq is a web application, currently written in TypeScript, a

statically-typed dialect of JavaScript. We call driver the part of the code responsible for

communicating with the back-end. We use a reactive programming library called RxJS,

which provides a stream abstraction for sequences of values. Messages from the back-

end are published as streams, and each of the components involved in the front-end

(namely, the editor, the proof-tree, and the automation layer) can subscribe to only

those messages they need to observe. Conversely, those components publish streams

of commands they’d like the back-end to process, which the driver subscribes to, and

orchestrates the dispatch of.

This orchestration can require some finesse. The API provided by Coq is fairly

stateless, that is, not in the sense that there are no states, but rather, in the sense that there

is no notion of a current, mutable state. Instead, each state is given a unique identifier,

and subsequent commands may explicitly state over which previous state they wish to

be applied. This abstraction holds well at the document level, but unfortunately, some

commands change global, mutable flags, in ways that can be observed.

In order to prevent issues with such observable, mutable state, some sequences

of commands must be processed atomically, that is, no other action may be interleaved

with the sequence. In order to achieve this, the layers emit their commands not as a

simple sequence of commands, but as a sequence of sequences of commands, to be

dispatched atomically.
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This raises another concern: some atomic sequences of commands have data de-

pendencies. In particular, later commands often need to know the output of previous

commands. A pervasive example of such a pattern is found in our automation layer,

where commands must be silently tried in the background, their output must be gath-

ered, and then their effect must be cancelled. In order to cancel an action, we must tell

Coq the identifier of the state(s) to be cancelled, but that identifier is only know asyn-

chronously, in a response from the action that created said state.

Once again, this problem is easily solved by issuing atomic sequences to the

driver not as an array of sequences, but as a stream of commands. When the driver

chooses to emit a given atomic sequence, it subscribes to it. It will subsequently, and

asynchronously, receive one or many commands, until the stream indicates it has com-

pleted. Elements from this stream can be asynchronously built from other streams, and

so we can build those dependent atomic sequences as:

1 const commandToCancel = new Add('Command To Cancel')
2

3 // By convention, we put a $ sign behind stream variables.
4 const answer$ =
5 added$
6 .filter(sameTagAs(commandToCancel))
7 .takeUntil(completed$.filter(sameTagAs(commandToCancel)))
8

9 const output$ = answer$.map(...) // do what you need
10

11 const cancelCommand$ =
12 answer$.map(a => new Cancel([a.stateId]))
13

14 const commands$$ =
15 Rx.Observable.concat([
16 Rx.Observable.of(commandToCancel),
17 cancelCommand$
18 ])

Understanding this code is not necessary, but here is a high-level explanation for

the interested reader:
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• We create (but, do not issue yet!) the command whose output we want to observe.

When a command is created, it acquires a unique tag, that is sent to Coq, and

appears in responses. This helps us filter those answers that correspond to this

query.

• We preemptively subscribe to the stream of answers, looking for ones with the tag

of our command. In case there is no answer, we also cut this subscription short

when the stream of completed answers emits. Every command will produce such

an item, so we are guaranteed to terminate.

• We can listen to this answer, and compute our output however we see fit.

• We can also listen to this answer in order to emit a cancel command for it.

• The final atomic sequence of commands we send to the driver is the concatenation

of two observables: the command, and its corresponding cancel command.

This is the most important abstraction on the front-end side. Most of the code is

event-driven by subscribing to those streams and producing streams of requests.

2.2.2 Conceptualizing the proof tree structure: the tree view

When a user of the Coq proof assistant writes a proof script using the Ltac tactic

language, they are effectively guiding the tool in building a derivation, in the underlying

formal system, witnessing the truth of the theorem at hand.

According to the Curry-Howard correspondence, this derivation can be equally

thought of as a well-formed tree, combining axioms and rules of the logical system, or,

as a well-typed λ-term. For instance, the theorem:

22



Theorem swap : Π (A B : Prop) → A ∧ B → B ∧ A.

can be witnessed by the following logical derivation:

. . . ,H : A ∧ B⊢ A ∧ B
. . . ,HA : A,HB : B⊢ B . . . ,HA : A,HB : B⊢ A

. . . ,H : A ∧ B,HA : A,HB : B⊢ B∧ A
∧-intro

. . . ,H : A ∧ B⊢ B∧ A
∧-elim

A : Prop,B : Prop ⊢ A ∧ B→ B∧ A
Π-intro

A : Prop ⊢ Π(B : Prop)→ A ∧ B→ B∧ A
Π-intro

⊢ Π(A B : Prop)→ A ∧ B→ B∧ A
Π-intro

A corresponding Coq proof following the same strategy matches the structure of

the derivation quite closely:

1 Proof.
2 intros A B H.
3 destruct H as [HA HB].
4 split.
5 + exact HA.
6 + exact HB.
7 Qed.

and the proof term that it generates also follows the same structure, though it is

less obvious to the beginner:

1 λ A B H → match H with
2 | conj HA HB => conj HB HA
3 end

In fact, the earlier derivation corresponds exactly to the one that the type-checker

follows when checking the type of this last term:
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. . . ,H : A ∧ B⊢ H : A ∧ B

. . . ,HA : A,HB : B⊢ HA : A . . . ,HA : A,HB : B⊢ HB : B

. . . ,H : A ∧ B,HA : A,HB : B⊢ conj HB HA : A ∧ B
∧-intro

. . . ,H : A ∧ B⊢ match H with conj HA HB => conj HB HA end : B∧ A
∧-elim

A : Prop,B : Prop ⊢ λ H → match ... end : A ∧ B→ B∧ A
Π-intro

A : Prop ⊢ λ B H → match ... end : Π(B : Prop)→ A ∧ B→ B∧ A
Π-intro

⊢ λ A B H → match ... end : Π(A B : Prop)→ A ∧ B→ B∧ A
Π-intro

Therefore, there are two equivalent ways to think about tactics:

• they add steps in the derivation tree, possibly finishing, prolonging, or splitting

branches,

• equivalently, they add subterms in the partial proof term, possibly filling, contin-

uing, or adding holes.

Unfortunately, due to the sequential nature of the proving process in a proof as-

sistant, this tree structure is somewhat hidden from the user, who receives proof obli-

gations one by one in a traversal of the derivation. For instance, in the previous proof,

after calling split. , the user is left with two obligations, originating from the two

arguments that the conjunction introduction rule must receive. However, in CoqIDE,

the main interface to the proof assistant, the resulting state is displayed thus:

1 2 subgoals
2 A, B : Prop
3 HA : A
4 HB : B
5 ______________________________________(1/2)
6 B
7 ______________________________________(2/2)
8 A

All remaining sub-obligations are counted, and displayed sequentially, no mat-

ter where they come from. In this simple example, it is quite easy to follow what has
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happened, and to remember that a second sub-obligation must eventually be solved.

In more complex examples, the delayed sub-obligations can accumulate as the proof

derivation splits into multiple cases, and it is often not immediately clear where we are

in a large proof after we finish a sub-obligation.

The newest versions of Coq include a mechanism to help with this bookkeeping,

named bullets. By using bullets like + , - , * , after a splitting point in a proof, the

user can indicate their intent to focus on the sub-obligations generated during that last

step. Preexisting sub-obligations are temporarily hidden, until all newly generated sub-

obligations are solved, at which point the preexisting ones are restored back into view.

While this feature gives the user some agency over the list of proof obligations being

displayed at any given time, it still requires the user to have a mental map of their

location in the underlying proof tree.

In order to make this mental map more tangible in the user experience, we de-

signed a feature that will display this proof tree, as it is being built and navigated, to

the user.

Building the proof-tree view

Our proof-tree view is a tree, as shown in Figure 2.2, whose nodes fall in two

categories:

• nodes in odd layers are obligation nodes, that is, they are related to a given proof

obligation,

• nodes in even layers are tactic nodes, that is, they are related to the invocation of a

given tactic.
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Figure 2.2. Proof-tree view: three obligations nodes and one tactic node

When the user enters a proof, a single, root obligation node is created. This node

corresponds to the current, single proof obligation. In order to progress, the user will

invoke a tactic. When they do, a tactic node will be inserted as a child of the current

obligation node, thus denoting that this tactic was ran from that context. Depending

on the outcome of the tactic execution, one of the following will happen:

• if the tactic yields sub-obligations, these are added as children to the tactic node,

and the focus shifts to the first such sub-obligation,

• if the tactic yields no obligation (i.e. concludes the current obligation), then the

solved sub-trees are visually folded, and the focus moves to the next pending

obligation, if any. When there are none, it means the proof is completed.

If the current obligation resulted from the execution of a tactic (i.e. for all obli-

gations but the root one), the user may backtrack their decision and return to the state

prior to the execution of the parent tactic.

2.2.3 Identifying the effects of a tactic: visual diffs

Apart from terminators, which finish an obligation, most tactics will operate

a transformation on the goal of the current context. The transformations can end up

changing entire types, or replacing sub-terms of some types with other terms. Some

tactics will also add hypotheses, remove some, or reorder hypotheses, whether volun-
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tarily or as part of how they need to operate.

In order for the user of a proof assistant to assess the usefulness of a tactic’s

execution, they must be able to identify what changed by running the tactic. This is

often done in a ad-hoc way, by going back and forth between the state before and af-

ter the tactic, while visually inspecting differences. This is not satisfactory for several

reasons.

First, finding out differences using this method is tedious. Proof contexts of-

ten contain dozens of variables and hypotheses, which makes the task of finding the

changes between two contexts both long, because the user might need to repeatedly

read several lines, and is error-prone, since the user might not notice a change.

Second, Coq does not offer great facilities for caching results, or viewing results

at a different proof context than the current one. While rolling back to the state prior to a

tactic’s execution is a fairly inexpensive action, due to the Coq’s state model, going back

to the state after the tactic’s execution requires running the tactic again from scratch.

For slow tactics, the process can be extremely slow, and while the tactic is running, the

user might forget about what they were looking for in the first place.

In order to have a better user experience, one would therefore need to be able to

inspect the state, before and after the execution of a tactic, without having to run the

tactic more than once. Additionally, visual help indicating which parts of the context

have been modified could help accelerate finding the effects of a tactic, while reducing

the chances of missing a change or mistakenly spotting a spurious change.

Fortunately, our proof-tree mechanism already provides us with a way of dis-

playing a before/after view of a proof context with respect to a tactic’s execution. When

a tactic is tried, but not committed to, we can display it as a child of the current obliga-
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tion node, and display its result as the child of this tactic node. By carefully aligning the

two nodes, the user can have an instant view of the two sides for comparison, without

needing to run the tactic ever again. We cache those results so that the user can move

in the tree however they want. Our trees are created in such a way that obligations

nodes have a unique execution history, such that when the user visits the same obliga-

tion node, we can display the same tactic nodes, without needing to run those tactics

again.

We now introduce our notion of visual diffs as a means to highlight changes be-

tween two proof contexts that are visually juxtaposed. For a given hypothesis in the

original proof context, one of the following three outcomes might happen to it as the

result of a tactic execution: it may remain the same, it may disappear, or it may by mod-

ified (either by being moved around, of by having its name, term, or type changed).

Similarly, for a given hypothesis in the final proof context, it may have originated from

an unchanged hypothesis in the original proof context, from a changed hypothesis in

the original proof context, or it may be a newly introduced hypothesis.

Examples of visual diffs are given in Figures 2.3 and 2.4. The visualization uses

colored ribbons to indicate the three type of changes that may happen to a hypothe-

sis.

Figure 2.3. Proof-tree visual diff between two obligation nodes (green ribbon)

A green, expanding ribbon, as seen in Figure 2.3 indicates that a hypothesis has

been introduced in the new context. Its shrunk left end points between two hypotheses
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if the new hypothesis appears in the resulting context between these two hypotheses.

Most of the times, introduced hypotheses appear last in the resulting context, and so

their shrunk left end points at the end of the original context.

Figure 2.4. Proof-tree visual diff between two obligation nodes (red and blue ribbons)

Conversely, a red, shrinking ribbon, as seen in Figure 2.4, indicates that a hypoth-

esis has disappeared in the new context. Its shrunk right end points between the hy-

potheses that were surrounding it before its disappearance.

A blue, constant-size ribbon, as also seen in Figure 2.4, indicates that a hypothesis

has either undergone any or all of those modifications: moved around, changed name,

change type. For instance, the blue ribbon from Figure 2.4, highlights both how the EQ

has moved from the middle of the context towards the end, and also the fact that it has

changed.

Figure 2.5. Proof-tree visual diff between two obligation nodes (sub-term highlights)

Finally, colored inline highlights indicate, in both the old and new context, sub-

terms that have changed. Those changes can appear within hypotheses that are part of

a blue ribbon, as depicted for hypothesis EQ in Figure 2.4. They can also appear within

the goal, as is the case in both Figure 2.4 and Figure 2.5. When there are several pairs
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of sub-terms that have changed within the same hypothesis (or the same goal), each

pair is given a unique color, so as to facilitate distinguishing related pairs quickly for

the user.

2.2.4 Automating tactic exploration in the background

In order to tackle our third identified challenge, that is, helping the user discover

what actions they may take in a given context, we experimented with an automation

technique. The technique itself is simple: while the user is not actively entering tactics,

we can, in the background, generate and evaluate the results of a large body of tactics.

We can then estimate which of those tactics seems relevant to the users and choose how

to display them to the user.

The difficulty lies in the details, in particular, we must address the following

problems:

• what tactics to try,

• which results are relevant,

• and how to display those results we deem relevant.

We will cover those in order, describing the set of options available. In our eval-

uation, we will highlight which choices we made.

What tactics to try?

Because Coq admits Gallina terms as arguments to some Ltac tactics, there is ef-

fectively an infinite number of tactics that can be performed at any step. Even ignor-

ing those, many tactics take terms in the environment as arguments, and the standard
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library already introduces more than a thousand terms in the ambient environment.

This makes it clear that an exhaustive search is not likely. A couple criteria will help us

discern what tactics are worth trying.

First, we can differentiate tactics called terminators from the ones that are not.

A terminator is a tactic whose success terminates the current obligation. Terminators

come in different ways, from very simple ones that find a proof or a contradiction in the

immediate context, to solvers for a given theory. For instance, the assumption tactic

is a terminator that simply looks for an assumption in the current context whose type

equates to the current goal (up to some notion of equality), while the omega tactic

is a complete solver for Presburger arithmetic. There are only two outcomes out of the

execution of a terminator: either the proof is found and the tactic succeeds and finishes

the current obligation, or its execution fails.

On the other hand, non-terminator tactics can succeed either by finishing the

current obligation, or by modifying it in any way, or even not doing anything. They can

also lead to the creation of multiple obligations. For instance, the split tactic succeeds

on goals that contain a top-level conjunction, possibly under a Π-telescope: it introduces

all the binders in the telescope, and yields two obligations, one for each conjunct.

It is best to test inexpensive terminators first, since a success would mean we

need not look further. On the other hand, some terminators can effectively diverge,

either by taking an unreasonable amount of time, or by using an increasingly larger

amount of resources, eventually throttling. In general, we will need to account for such

slowdowns for all tactics with a timeout mechanism, as we don’t want the automation

machinery to have a negative performance impact for our users.

A second important aspect to consider is what arguments to pass to tactics that

require them. The families of apply and rewrite tactics, for instance, all take as
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input one term to work with, and, for some, a second term indicating where to perform

the work. Those terms can either be variables that are local to the current proof context,

or any variable that is in scope from this file or imported files. The latter set tends to be

between one and two orders of magnitude larger than the former. Therefore, while it is

reasonable, but expensive, to try all the proof-local variables, it would be very expensive

to try all identifiers in scope!

Finally, the set of tactics available in the Coq proof assistant is not static: the tactic

language is extensible, and users frequently define both general-purpose and domain-

specific tactics. These can be registered as hints to the built-in automation mechanism,

in which case tactics like auto will use them appropriately. However, as far as we know,

at the current time, there is no built-in mechanism for discovering user-defined tactics in

scope. An automation mechanism would most likely benefit from such domain-specific

knowledge of tactics to be used in a given proof.

Which results are relevant?

While we could display all the successful tactics and their outcome to the user,

the amount of information would, in most cases, be overwhelming. In order for the

suggestions to ever be useful, some triage is necessary.

After putting failing tactics out of the picture, our first observation is that many

tactics produce the exact same obligations. Here, one might want to distinguish be-

tween two close varieties:

• Two tactics may produce the exact same partial proof term, yielding equal proof

obligations. This is obviously the case when the two tactics are aliases of each

other, but it can also happen when the two tactics take the same simple logical
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step. Let us refer to those as proof-term equivalent executions.

• Two tactics may produce the exact same proof obligations (same goals with same

contexts), but build different proof terms. This could be a concern, when the

terms being built have significant computational differences, especially in set-

tings where proofs are relevant. Let us refer to those as proof-context equivalent

executions.

Ideally, we would like to factor out proof-term equivalent executions. The user

might still care about what tactic is used. For instance, wherever the assumption tactic

works, tactics like auto or intuition should also work, but they might do additional

work that is unnecessary. Similarly, if the assumption being used is called H , the tactic

exact H should also work, but it might be less robust to changes, especially if the

name H was automatically introduced by Coq.

How to display the relevant results?

Displaying the outcome of the automation also proves an interesting challenge.

For terminators, or non-terminators that end up solving the current proof obligation,

we can simply indicate to the user that they do. Tactics that make progress without

solving the proof, however, must be somehow shown to the user alongside their result.

In the simplest form, one could just present a list of those tactics, and let the user try

them and witness their result on their own. This imposes quite a bit of cognitive load

on the users, as they must visually inspect one or several proof obligations, trying to

understand what changed between before and after the tactic execution.

To reduce that effort, we benefit from the visualization presented in Section 2.2.3.

For each tactic we did not filter out, the user can align its resulting sub-obligation(s) to
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the current obligation, and get visual information about what has changed.

While visual diffs allow the user to quickly inspect the outcome of a given tactic,

if there are too many tactics that make progress, going through them all one by one

can still require a lot of time and concentration. Some members of one of our studies

indicated the need for grouping the results. We followed a static grouping strategy,

where tactics were grouped together based on similar intent: apply tactics, case analysis

tactics, rewrite tactics, terminators, etc. This let users skip over entire classes of tactics

that they know are not what they are currently trying to achieve in the proof.

2.3 Evaluation

We built a tool, called PeaCoq, to try and evaluate the usefulness of those tech-

niques in a beginner setting. We conducted two studies: a longitudinal study in the

classroom during one quarter, and a short A-B study with beginners.

2.3.1 Longitudinal study

The first study was conducted at the University of Washington, with the help

of instructor Zachary Tatlock, during the Winter quarter of 2015. The study was ap-

proved by the institutional review board of the University of California San Diego

(project #141713), and the institutional review board of the University of Washington

(project #48738).
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Study setup

Every student in the class was given the option to use PeaCoq instead of other

IDEs for working on their homework. At any moment, they could opt in and out of

using PeaCoqwith no overhead. This study helped us iron out details on the automation

and the display, based on students’ feedback.

Study material

All the material of the class is available on the website of the instructor 1.

Study results

This study was done in order to evaluate what worked and did not work with

the current implementation of PeaCoq at the time. Most of the takeaways are qualita-

tive feedback from participants. Thirteen students chose to use PeaCoq over the other

alternatives, and provided feedback on what they liked and disliked.

The results of the study were qualitative, indicating to us places where PeaCoq

could be improved for users, through their feedback. The first issue that was raised

concerned the amount of tactics presented by the automation. Users would routinely

be shown dozens of tactic variations for a given context, with many tactics deemed

unnecessary or redundant. They requested some pre-processing, sorting, and grouping

of tactics, so that they could easily ignore tactics that they knew would not help.

Thanks to this feedback, we developed a grouping of tactics based on their ac-

tion. For instance, the destruct tactic applies to any hypothesis in context that is built

using a data type. Since contexts often grow to have many such hypotheses, the context
1https://courses.cs.washington.edu/courses/cse505/15wi
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is often cluttered with a dozen of variations of the destruct tactic, before the next tac-

tics get listed. When the user knows they are not interested in any of these, scrolling

through them is tedious. A suggested alternative consists in grouping tactics by theme,

offering browsing facilities per theme and across themes. This way, users not interested

in destruct tactics can browse over the whole group in one action.

Another problem some beginners had was that some very general tactics were of-

ten confusing. For instance, Coq provides the left and right tactics, often presented

for their use in proving logical conjunctions. However, those tactics are overloaded to

work on any data type with two constructors. For instance, when the user needs to

provide a list , they can run the left tactic to provide an empty list, or the right

tactic to indicate their intent to provide a non-empty list. This behavior, while useful for

certain expert proving tasts, is quite confusing for beginners. We solved this problem

by overwriting those tactics to instead perform a guard check for the shape of the goal.

Our modified left and right tactic first check that the goal is a syntactic conjunc-

tion, before applying the tactic. While this significantly reduces the power of the tactic,

it is sufficient for beginner exercises, and provides less surprising results.

2.3.2 A-B study

The second study was conducted at the University of California San Diego, with

the help of professor Sorin Lerner, during the Spring quarter of 2015. The study was

approved by the institutional review board of the University of California San Diego

(project #141713).

Participants in the A-B study were volunteers who received no financial com-
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pensation, but were offered free slices of pizza, a highly sought after treat in academic

settings.

Study setup

The study was done in two instances, totaling 20 participants. For each instance

of the study, 10 participants were chosen randomly but based on their availability, then

participants were randomly paired in 5 groups. Both groups were informed that they

would be testing a novel programming environment.

The 5 groups in the control group were provided with an instance of PeaCoq de-

signed to imitate the usual IDEs for Coq: all the special features of PeaCoq were disabled,

except for its syntax highlighting, and keyboard shortcuts.

The 5 groups in the study group were provided with an instance of PeaCoq with

the proof tree view always enabled, visual diffs overlaid on top of nodes in the proof

tree view, and automation running in the background to populate the proof tree view

with candidate tactics, all enabled.

Neither group was informed about the fact that this was an A-B study, or about

whether they were testing the real prototype or the control version. Both instances were

structured identically: the first hour was a general presentation of the tool they would

use, and of basics of the Coq proof assistant. Then, each pair of participant was tasked

with solving 16 problems of increasing difficulty, testing their understanding of what

they have seen so far, as well as their ability to learn about new proof solving tactics

and use them effectively. The second part was scheduled to take up to an hour and a

half.

After the study was over, and before they left, the participants were handed an
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anonymous questionnaire, asking them about some qualitative feedback and informa-

tion about their education level.

Study material

During the first part of the study, participants were introduced, by the study

coordinator, to the following concepts:

• an inductive datatype definition day , with constructors monday , tuesday , etc.,

• a function definition tomorrow , defined by pattern-matching,

• a theorem asserting that tomorrow saturday = sunday , proven introducing

the tactics simpl and reflexivity ,

• a recursive data type, natlist , representing a monomorphic list of natural num-

bers,

• a recursive function, concat , performing list concatenation,

• another theorem about the concatenation of two concrete lists, displaying an in-

stance of associativity, and proven using the same tactics seen so far,

• a theorem asserting that nil is a left-unit for concat , proven with the previ-

ous tactics, with the addition of the intros tactic to introduce the universally-

quantified list l ,

• a theorem asserting that nil is a right-unit for concat , proven by introducing

the induction tactic, and also introducing the first rewrite ,

• a theorem asserting the associativity of the concat operation, proven by using

induction , and the other tactics mentioned so far.
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During the second part of the study, they had to try and solve all 16 exercises,

as listed exhaustively in Appendix A.1. The exercises can be roughly described as fol-

lows:

1. rev_snoc : After introducing a recursive function snoc to append one element

to the end of a list, and a recursive function rev to reverse a list, participants

were asked to demonstrate that a sequence of rev after snoc is equivalent to a

sequence of cons after rev .

2. rev_involutive : Participants were asked to demonstrate that rev is involutive

(i.e. applying it twice consecutively yields the original input).

3. concat_cons_snoc : Participants were asked to prove an equality about the in-

terplay of concat and snoc .

4. go_somewhere : A new concept was introduced: disjunction. Two tactics to ma-

nipulate this concept were introduced: left and right . An example was given

of proving the disjunction of a falsehood on the left, and a tautology on the right.

Participants were then asked to find the only disjunct that was a tautology within

a nested disjunction of falsehoods. Finding the only tautology required uses of

both left and right .

5. B_is_enough : Participants were introduced to the tactic apply , and asked to

prove a disjunction where one disjunct was given in the premises, and one was

not.

6. more_facts : Participants were introduced to the concept of conjunction. A new

tactic, split , was then introduced to prove conjunctions. They were then asked

to prove the conjunction of two tautologies.
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7. A_and_B : To re-assert the importance of apply , participants were asked to

prove a conjunction where each conjunct was found in the premises.

8. snoc_concat_end : Two harder exercises about list were then presented. The

first one, asking about a more complex interplay between concat and snoc ,

9. rev_distributes_over_concat : the second one, asking to prove that rev dis-

tributes over concat .

10. map_commutes : Participants were introduced to the concept of the function map

over lists. They then showed that, if two functions commute, then mapping these

two functions also commutes.

11. map_fusion : Participants were asked to prove the map fusion property.

12. fold_snoc : Participants were introduced to the concept of a fold over a list.

They then demonstrated an interplay between fold and snoc .

13. map'_unroll : Participants were asked to demonstrate that performing the op-

eration map over a list obtained via cons can be unrolled one step.

14. map_map' : Participants were then shown how map can be implemented as a

fold . The resulting implementation, named map' , was then demonstrated to

be functionally equivalent to map . To help them, we axiomatized a small theorem

that they could use without needing to prove.

15. In_cons : We introduced a recursive predicate, In , asserting the presence of an

element in a list. They were first asked to prove that if an element is in a list, it is

still present in a list with an additional element.

16. In_concat_left : Two final concepts were introduced: the cases tactic is a
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custom tactic that let participants break a conjunction in their context into its com-

ponents, and the contradiction tactic allowing them to point to the presence

of falsehoods in the context. Participants were finally asked to prove that if an el-

ement belongs in a list, it also belongs in the result of concatenating said list with

an arbitrary other list.

Table 2.1 lists, for each of the exercises, which tactics were meant to be exer-

cised. The exercises were roughly sorted in order of difficulty, say for two points:

the part introducing logical operators (exercises 4 through 7) was much simpler, and

rev_distributes_over_concat was a challenging mid-point exercise.

Study results

Table 2.2 lists the average timings of both groups on each exercise, as well as a

rough estimate of the difficulty of each exercise. Figure 2.6 reports the cumulative time

spent on each exercise. Note that users were allowed to take breaks between exercises,

and we do not report the time spent on the last exercises for those people who did not

finish all exercises: this explains why all bars do not end at the same location. As a

reminder, group A was our control group, using a version of PeaCoq with our features

disabled, while we will refer to group B as PeaCoq users, since they used the version of

PeaCoq with our features enabled.

Looking at Figure 2.6, we can notice several trends. First, PeaCoq users were

much slower on the first exercise ( rev_snoc ). Even though it was an easy exercise,

the automation offered several options, which overwhelmed the participants for their

first proof attempt: we noticed several participants spent a long time scrutinizing differ-

ent options (including many useless options) before committing to one. In the control

group, participants were left to their own volition, and followed the previous proofs as
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Table 2.1. PeaCoq A-B study exercises design

Exercise What tactics were expected?
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01. rev_snoc 3 3 3 3 3

02. rev_involutive 3 3 3 3 3

03. concat_cons_snoc 3 3 3 3 3

04. go_somewhere 3 3

05. B_is_enough 3 3 3

06. more_facts 3 3 3

07. A_and_B 3 3 3

08. snoc_concat_end 3 3 3

09. rev_distributes … 3 3 3 3 3

10. map_commutes 3 3 3 3 3

11. map_fusion 3 3 3 3 3

12. fold_snoc 3 3 3 3 3

13. map'_unroll 3 3

14. map_map' 3 3 3 3 3

15. In_cons 3 3 3 3

16. In_concat_left 3 3 3 3 3 3 3 3

42



Table 2.2. PeaCoq A-B study exercises timings per group

All times are reported in seconds.

indicates how many pairs of participants finished the proof.
Exercise Difficulty Group A Group B

Mean
(Std. Dev.) # Mean

(Std. Dev.) #

01. rev_snoc 213
(74.6) ×5 609

(495.8) ×5

02. rev_involutive 571
(234.6) ×5 180

(179.1) ×5

03. concat_cons_sn … 158
(63.6) ×5 292

(146.0) ×5

04. go_somewhere 24
(18.7) ×5 14

(3.8) ×5

05. B_is_enough 134
(122.9) ×5 66

(31.8) ×5

06. more_facts 34
(25.7) ×5 27

(15.4) ×5

07. A_and_B 49
(20.1) ×5 21

(11.6) ×5

08. snoc_concat_en … 104
(36.1) ×5 156

(133.3) ×5

09. rev_distribute … 446
(437.4) ×5 748

(540.6) ×5

10. map_commutes 348
(134.7) ×5 189

(118.2) ×5

11. map_fusion 109
(47.8) ×5 76

(47.9) ×5

12. fold_snoc 86
(39.2) ×4 207

(182.8) ×5

13. map'_unroll 471
(186.4) ×4 13

(9.9) ×5

14. map_map' 317
(239.0) ×3 80

(83.0) ×5

15. In_cons 52
(undefined) ×1 160

(93.0) ×5

16. In_concat_left 492
(undefined) ×1 791

(256.2) ×3
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Figure 2.6. PeaCoq A-B study timings per participant pair
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examples. Since the exercise exhibited the same pattern as the exercises demonstrated

during the lesson phase, it was a good strategy.

Looking at the second exercise ( rev_involutive ), we notice the opposite trend:

PeaCoq users seem overall faster than most participants from the control group, apart

from group A5. This group remains an outlier for the whole study, and our post-study

survey seems to indicate that one of its participants had a higher mastery of functional

programming and type systems than the norm. For the other pairs, we have a hypothe-

sis for the time gap. This exercise had almost the same proof structure as the previous

one, except that, where the previous exercises required only one rewrite, with the induc-

tive hypothesis, this exercises required two rewrites, first with the lemma proven in the

previous exercise, and then with the inductive hypothesis. Noticing this required some

perspicacity from the participants in the control group. On the other hand, PeaCoq’s au-

tomation would, as part of its functioning, try to apply previously-proven theorems to

the current context. Participants were therefore shown that rewriting with rev_snoc

was an option, without having to even ponder whether this was a possibility.

While both groups solved the logic exercises (exercises go_somewhere through

A_and_B ) fairly fast, PeaCoq users finished them even faster than the control group. For

these exercises, PeaCoq only provided a handful of options that were easily browsed

through, so participants of group B did not waste any time looking at confusing op-

tions.

Exercise rev_distributes_over_concat was one of the hardest lemmas over-

all. While there are several ways of proving it, the proof we expected includes a proof

by induction, rewrites with lemmas from earlier exercises, and rewrites with lemmas

from the tutorial. It is quite easy for a beginner to lose themselves and hesitate in such a

proof. Another common mistake is to try and prove those lemmas in this larger context,
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which often results in failure. The data suggests that PeaCoq users did much better than

all control groups participant, except for the outlier. We believe, again, that this is the

result of PeaCoq suggesting those rewrites with earlier lemmas, as opposed to control

group participants who needed to recall their existence from memory, or by browsing

back through the proof file.

Exercise map'_unroll exhibits one of the largest disparities between the con-

trol group and the PeaCoq user group. This is the case of an exercise with a trivial solu-

tion, but realizing that it is the case is the hard part. The exercise asks the participants

to prove the following equality:

1 map' f (cons x xs) = cons (f x) (map' f xs)

where map' is a re-definition of the original function map over lists, but as a fold

operation, whereas the original uses explicit recursion. The two sides of this equation

are judgmentally equal, which means that a simple call to the reflexivity tactic

solves this goal. Unfortunately, because of the rules that govern how Fixpoint s are

unfolded in Coq, the goal can not easily be simplified to look like a simple equality.

Users in the control group were therefore stuck, until we gave them a hint to use the

unfold tactic to turn the goal into:

1 fold (fun (x0 : nat) (fxs : natlist) => cons (f x0) fxs)
2 (cons x xs) nil =
3 cons (f x)
4 (fold (fun (x0 : nat) (fxs : natlist) =>
5 cons (f x0) fxs) xs nil)

which is still scary, but from which one can call simpl to finally obtain:

1 cons (f x) (fold (fun (x0 : nat) (fxs : natlist) =>
2 cons (f x0) fxs) xs nil) =
3 cons (f x) (fold (fun (x0 : nat) (fxs : natlist) =>
4 cons (f x0) fxs) xs nil)
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The identical structure of both sides is finally more evident. Of course, PeaCoq users

were almost immediately presented with the reflexivity tactic, as a result of our

automation, and thus solved the goal immediately. While this had a significant posi-

tive impact on their timings for this exercise, we also believe that it had a significant

negative impact on their understanding of this proof. While the proof assistant could

convince itself that the two terms were equal, we doubt that participants understood

the computation rules that made this correct.

Looking towards the right side of Figure 2.6, we can see that users of the control

group did not reach the last two exercises, except for the outlier group A5. On the other

hand, all PeaCoq users reached the final exercise (as can be witnessed by them finishing

the penultimate exercise), and 3 out of 5 groups also solved the final exercise in the

allotted time.

As for the post-study survey, all the answers provided by participants are anony-

mously catalogued in Appendix A.2.

One of the question asked was Did you understand all the proofs you completed?.

About 6 out of 10 participants of the control group self-reported understanding all the

proofs they completed, and about 5-to-6 out of 10 participants of the PeaCoq group.

However, users of the PeaCoq group expressed more restraint about their answer, and

explicitly mentioned that some proofs felt “magical”.

We also included questions about the effect of different tactics, in an attempt at

evaluating their understanding in a way that is not self-reported. We summarize our

assessment of their answers in Table 2.3. Overall, the understanding of tactics across

groups is very good, with a small advantage for the control group. In particular, partic-

ipants using PeaCoq did not quite realize what the split tactic did. We surmise that,

because the tool suggested the tactic promptly, this group did not spend as much time
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reflecting on what the tactic was actually doing.

Table 2.3. PeaCoq A-B study tactic understanding

This table shows whether the semantics of a given tactic was explained convincingly.
Correct answers are indicated by a check mark 3.
Incorrect answers are indicated by a cross mark 7.
Approximate answers are indicated by a tilde ∼.

Empty cells indicate empty answers.
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A11 3 3 3 3 ∼ 3

A12 3 3 3 3 3 3

A21 3 3 3 3 3 3

A22 3 ∼ 3 3 3 3

A31 3 ∼ 3 3 ∼ 3

A32 ∼ 3 3 3 3 ∼
A41 3 3 3 3 3 3

A42 3 ∼ 3 3 3 3

A51 3 3 3 3 3 3

A52 3 3 3 3 3 3

B11 3 3 3 3 3 3

B12 ∼ 3 3 3 3 3

B21 7 3 3 3 ∼ 3

B22 3 3 3 3 3 3

B31 7 ∼ 3 3 3 3

B32 3 3 3 3 ∼ 3

B41 7 3 3 3 3 3

B42 3 3 3 3

B51 3 3 3 3 3 3

B52 3 3 3 3 3 3

Takeaways

This study highlighted the following:

• It appears that PeaCoq helps beginners go through beginner-level proofs faster
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than using the vanilla proof assistant.

• However, this speed sometimes comes at the price of understanding what is hap-

pening. Because PeaCoq alleviates too much of the mental effort, users are less

challenged, resulting in them being able to finish exercises without insight.

Threats to validity

We provide a list of threats to validity of our results, in no particular order:

• The sample size was very small (20 participants total, 10 per instance). Unfortu-

nately, the groups also had a very high variance, as can be seen by looking at the

standard deviations. Often times, skilled groups finished exercises extremely fast,

while struggling groups spent very long amounts of time stuck.

• The sample was biased towards graduate students, with only 3 undergraduate

students (1 in the A group, 2 in the B group).

• The study was fast-paced, with only one hour to learn the rudiments of theorem

proving, and an hour and a half to solve exercises. A typical graduate program-

ming language course would most likely cover the topics we saw in three to five

lectures.

• A bug in PeaCoq slowed down some pairs in group B: they had to wait for us to

come fix it, and reload the page to go back to where they initially were.

• Participant B42 vocally explained their dislike for mathematical logic. This can be

seen reflected in Appendix A, where their ratings were significantly lower than

everyone else’s. We might expect better ratings from users who are willingly try-

ing to learn, but we should also expect similar ratings from users who are forced
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to learn, for instance in a course setting.
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Chapter 3

Chick: a core dependently-typed lan-
guage and its repair algorithm

Another pain point that both beginners and experts encounter frequently is that

of refactoring existing programs and proofs. Often times, one might realize, while work-

ing on a proof, that an earlier data type must be updated to add additional information.

One might also need to update existing data types and functions when they want to

extend an existing formalization. In both situations, after updating their definition, the

programmer must perform a series of corrections to the rest of their code base to ac-

count for the newly-modified definitions. Many of those changes are mechanical, struc-

tural changes that require no knowledge of the program domain, and no creative input

from the programmer. We would like to lower the burden on the programmer for such

maintenance tasks, only leaving the complex parts of the refactoring to them.

This chapter will focus on the development and evaluation of a tool (named

Chick1) whose purpose is to help functional programmers propagate changes, made

to some of their definitions, to the rest of their code.
1All code for Chick is publicly available at: https://github.com/Ptival/chick

51

https://github.com/Ptival/chick


Section 3.1 gives background specific to this chapter.

Section 3.2 describes the global design of the tool and its components.

Section 3.3 covers the syntax of the language over which Chick operates.

Section 3.4 describes a family of data types that allow us to perform repairs.

Section 3.5 will present both usual lookup rules, and Chick-specific lookup rules,

that are necessary to describe the repair algorithm.

Section 3.6 describes all the components of the repair algorithm.

Section 3.7 goes into more details into how some diff operations needed by the

repair algorithm can be automatically derived from small descriptions of their reactions

to certain changes in the data structure they operate on.

Section 3.8, finally, describes how we automatically infer diffs from pairs of pro-

grams without requiring additional user input.

3.1 Background

We discussed the concepts of dependent types and refactoring in Chapter 1. In

the concept of a dependently-typed language, the problem of refactoring is the subject

of an interesting tension.

On the one hand, a dependent type system allows the user to describe the types

of the objects of discourse at a very high level of expressiveness. This could lead to two

advantages. First, if the types are indeed more precise, maybe the refactoring algorithm

could benefit from the additional, tighter information provided by them. Second, be-
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cause the types are more precise, the type system may enforce more strict requirements,

so that failures of the refactoring algorithm could be less dramatic, if they end up caught

by the type system.

On the other hand, because the types are stronger, the terms often end up being

more complex. For instance, simple functions from the standard library of languages

like Haskell and OCaml might be encoded using more complex type-level machinery in

a dependently-typed language. Because of this, the refactoring algorithm is confronted

with more complex problems, which are often much less tractable than their simply-

typed and polymorphically-typed counterparts.

In our preliminary research, we found out only a few refactoring techniques for

functional languages (mostly Li et al. [23]), and barely any work on refactoring with de-

pendent types (apart from the very recent Ringer et al. [31]). We would like to build on

top of the existing body of work for refactoring functional programs, but in the context

of a dependently-typed language. In particular, we would like to support the following

refactoring scenarios:

• any modification to the declaration of an inductive data type should be propa-

gated throughout the program,

• any modification to the type of a function should be propagated throughout the

program,

In the case of a proof assistant with a tactic language, it would be best to also

be able to propagate changes through proof scripts written using this tactic language.

While we do not contribute such changes in this dissertation, we demonstrate a path

towards this goal. Unfortunately, achieving such a goal would likely require developing

a formal semantics for the tactic language. The only known attempt at formalizing the
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semantics of Ltac that the author is aware of is in Jedynak [17], and it only formalizes a

very small, simplified fragment of it, which is already quite an achievement. We don’t

believe that anyone is working on such a formalization at the moment, and in fact, the

tactic language itself is currently being revised by the Coq maintainers.

Any attempt at refactoring tactics would require work similar to the one we are

presenting as a prerequisite, so we consider our work as a stepping stone towards this

ambitious goal.

3.2 Design of Chick

Partially
refactored
program

Original
program

Guess
diff

Partial
refactoring

diff
Repair

Completed
refactoring

diff

Patch

Refactored
program

Figure 3.1. Chick’s workflow

In order to help programmers in dependently-typed languages refactor their pro-

grams, we built a prototype tool called Chick. The high-level workflow of Chick is given

in Figure 3.1. The main idea is to take the original, existing program prior to the refactor-

ing attempt, and the modified program where a partial refactoring has been performed,

and automatically finish propagating changes through the rest of the program. How-

ever, we do not perform this operation all at once. Instead, our workflow consists in
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three phases.

First, we analyze the original program against the modified program to build a

list of all the differences between the two. We will describe the data types used to rep-

resent those differences in Section 3.4, but will defer explanations about how this guess

is performed until Section 3.8. We try to capture the intent of the programmer in this

list of differences; as we will discuss, there can be several ways of interpreting the same

change, and the repair performed will depend on which interpretation is chosen.

Second, this list of differences is used to compute a repair of the program. Here

again, we do not directly compute a repaired program (a value of type program ), but

instead compute a value of type ∆Program (as described in Section 3.4) describing how

the program must be modified in order to be repaired. We do so because the diff con-

tains more information about the changes than the repaired program, as we will demon-

strate in Section 3.4.6.

Third and finally, the repaired program is obtained by simply applying the re-

paired diff to the original program.

Figure 3.2 gives a concrete example of the kind of repair we want to propagate.

We will use it as our running example in the following sections. On the left-hand side

is an original program, prior to any attempt at refactoring it. In this example, the user

defined a data type list , and a couple of definitions and functions over this data

type. Let us now assume they would like to replace this type list with a richer type of

length-indexed lists. We chose this example because it brings up many of the feature

we would like to have. On the right-hand side of the same figure, the orange part is the

partial refactoring the user has manually done. The green parts on the right-hand side

constitute the rest of the refactoring, as automatically produced by our tool.
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Inductive nat : Set :=
| O : nat
| S : ∀ (n : nat), nat.

Inductive list (A : Type)

: Type :=

| nil : list A

| cons : A →

list A → list A.

Definition a_list
: list nat :=

cons nat (S (S (S O)))

(nil nat).

Definition length :
∀ (T : Type),

list T → nat :=

λ T l, list_rect T (λ _, nat) O

(λ _ _ lt, S lt) l.

Fixpoint map :
∀ (A B : Type), (A → B) →

list A →

list B :=
λ _ B f l,

match l with
| nil _ => nil B

| cons _ h t =>

cons B (f h)
(map A B f t)

end.

Inductive nat : Set :=
| O : nat
| S : ∀ (n : nat), nat.

Inductive vec (A : Type)

: nat → Type :=

| vnil : vec A O

| vcons : A → ∀ (n : nat),

vec A n → vec A (S n) .

Definition a_list
: vec nat (_ : nat) :=

vcons nat (S (S (S O)))

(_ : nat)

( vnil nat).

Definition length :
∀ (T : Type),

vec T (_ : nat) → nat :=

λ T l, vec_rect T (λ _ _, nat) O

(λ _ _ _ lt, S lt) l.

Fixpoint map :
∀ (A B : Type), (A → B) →

vec A (_ : nat) →

vec B (_ : nat) :=
λ _ B f l,

match l with
| vnil _ => vnil B

| vcons _ h _ t =>

vcons B (f h) (_ : nat)
(map A B f t)

end.

Figure 3.2. Running example of a Chick repair. The user-provided partial refactoring is
highlighted in orange. The computed repairs are highlighted in teal.
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In the a_list definition, the type must be renamed, and a type index must be

added. While the repair algorithm knows that an index must be inserted, it does not

know what value to use: here, because the length is static, the right value would be

S O , but in more complex cases (as in the next function, length ), the value can be

a new variable, or the result of an arbitrary computation, so guessing what it should

be is a hard problem. Instead, we simply insert a typed hole (_ : nat) . The user

might need to eventually provide a concrete value of type nat , though, there are cases

where the type system will infer such value without any user assistance. The term of the

definition was also updated, to rename the constructor and add a type hole for its new

argument. While this change seems trivial, it relies on our ability to match constructors

from the old inductive definition to constructors in the new inductive definition. In

order to guess that nil and vnil are related, and that cons and vcons are related,

our analysis must evaluate the most likely pairs of matching constructors. Since a user

might also have removed a constructor, and created an entirely different one, we also

want to assess our confidence in matching two constructors.

The definition of length is updated in a similar way, but notice that the function

call being updated is a call to the eliminator vec_rect . We will describe eliminators

later, in Section 3.7, but for now, all we need to highlight is that this eliminator is never

explicitly defined in the user code: it is a function that is automatically generated when

the vec definition is accepted. Our tool supports patching such functions, as long as

we describe to it how those functions change when the inductive definition they are

generated from changes.

Finally, in the definition of map , the patterns of a match construct are updated.

This will require some care since it may introduce or remove binders, but for this ex-

ample, our repair algorithm took the conservative approach of not binding the new

arguments, using a wildcard _ pattern.
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3.3 Syntax of Chick

This section will cover the syntax of Chick. Section 3.3.1 describes the syntax of

the terms of the language, a language similar to Coq’s Gallina. Section 3.3.2 describes

the syntax of the host language, a language similar to Coq’s Vernacular, within which

functions and data types can be defined.

3.3.1 Syntax of Chick terms

Chick is designed as a small functional programming language upon which the

repair algorithm will operate. The aim was to represent a language such as Gallina, and

as such, Chick is a dependently-typed lambda calculus, with inductive constructions.

The abstract syntax of Chick terms is given in the following grammar:

⟨term⟩ ::=

| ⟨var⟩ (variable)

| ⟨term⟩ ⟨term⟩ (function application)

| λ ⟨binder⟩ , ⟨term⟩ (term abstraction)

| Π( ⟨binder⟩ : ⟨term⟩ ) → ⟨term⟩ (type abstraction)

| ⟨universe⟩ (universes)

| match ⟨term⟩ with ⟨pattern⟩ end (pattern matching)

| ⟨term⟩ : ⟨term⟩ (type annotation)

| _ (hole)

⟨universe⟩ ::= Prop | Set | Type

⟨binder⟩ ::=

| ⟨var⟩ (named)

| _ (anonymous)
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⟨pattern⟩ ::= (⟨binder⟩, ⟨term⟩)

The function application, value abstraction, type abstraction, and variable constructs,

are standard constructs of a dependently-typed lambda calculus.

The type annotation construct lets us ascribe a type to a given term. The hole

construct can take the place of a term anywhere: it stands for a missing value that should

be filled by the programmer. Together, these two constructs let us have typed holes, that

is, placeholder values whose type is known. This proves invaluable throughout the

repair algorithm, as we will see, since there are situations where the algorithm must

come up with arbitrary values, knowing only the type they should bear. In the absence

of synthesis techniques to generate such values, the algorithm can safely insert a typed

hole, leaving to the programmer the task of figuring out the proper value.

Finally, the pattern matching construct is found in languages with algebraic data

types, and lets us dispatch code based on the shape of some such data type. The atten-

tive reader may notice that our pattern language is somewhat limited. We do not cover

nested patterns, or other advanced pattern features.

We use the same universe names as found in Gallina, though we do not yet sup-

port its cumulative universe hierarchy syntactically. This does not mean that Chick can-

not repair Gallina programs that use the universe hierarchy, but rather, that it cannot

syntactically represent universe levels. Instead, Chick is oblivious to universe levels,

so it will repair programs regardless of their universe level. The downside is that, be-

cause it cannot represent universe levels explicitly, it might break programs that require

them. Bare support for universe levels can be added almost for free, since the repair al-

gorithm could simply carry them along and attempt no repair. A universe-aware repair

algorithm would require further investigation.
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About underscores

While we use the underscore symbol (_) to represent both a hole term and an

anonymous binder, the two concepts can never appear in the same program location,

and therefore, there can be no confusion: in a term context, the symbol represents a

hole, while in a binding context, it represents an anonymous binder.

3.3.2 Syntax of Chick programs

Our programs are defined as sequences of commands in the following vernacu-

lar (to borrow Coq’s parlance):

⟨program⟩ ::= ⟨vernacular⟩

⟨vernacular⟩ ::=

| Definition ({ kind : ⟨definition-kind⟩ , name : ⟨var⟩, type : ⟨term⟩, body : ⟨term⟩ })

| Inductive (⟨inductive⟩)

⟨definition-kind⟩ ::= Definition | Fixpoint

Our definition kinds follow Coq’s Vernacular conventions: a Definition is never

recursive, while a Fixpoint is allowed to be recursive. Declarations are ordered, and

may only depend on previous declarations. This will ease the task of our repair algo-

rithm, since dependencies are syntactically ordered. In a language where declarations

are allowed to depend on other declarations backward and forward, we would want to

repair programs according to the dependency tree rather than the syntactic order of

declarations.

Inductive definitions are not mutual, and follow the following syntax:
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⟨inductive⟩ ::= Inductive ({

name : ⟨var⟩,

parameters : (⟨var⟩, ⟨term⟩),

indices : (⟨binder⟩, ⟨term⟩),

universe : ⟨universe⟩,

constructors : ⟨constructor⟩

})

⟨constructor⟩ ::= Constructor ({

name : ⟨var⟩,

parameters : (⟨binder⟩, ⟨term⟩),

indices : ⟨term⟩

})

For a presentation of inductive data type declarations, we refer the reader to Co-

quand and Paulin [7] for an academic description, or to Pierce et al. [29] for some ed-

ucational material. We will briefly recall the difference between inductive parameters,

inductive indices, constructor parameters, and constructor indices.

Inductive parameters indicate that a type is generic in some input type. Most often,

this type parameter will be a type that the constructors may contain instances of, or

operate on values of. For instance, many containers will have a carrier type for the type

of values they may contain. The choice of type to be contained does not restrict the

shapes that the container may take: we say that it behaves parametrically. For instance,

the type of list of boolean values, list bool , and the type of list of natural number

values, list nat , contain the same “shapes”: [] , _ ∷ [] , _ ∷ _ ∷ [] , etc. The

choice of the type parameter only tells us what values we are allowed to put in those
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holes, but does not dictate which of those shapes we may or may not instantiate.

On the other hand, inductive indices can affect what inhabitants we may find in

an inductive type. Instead of being called an inductive type, one that is indexed is often

instead called an inductive family of types, or inductive type family, to capture the idea that

the choice of index has an effect on what inhabitants may exist. Knowing the index of

an inductive value gives us information about what shape it may have. For instance, we

could build a type of lists indexed by whether their length is odd or even as:2,3

1 Inductive parity : Type :=
2 | Even : parity
3 | Odd : parity
4 .
5

6 Definition next_parity (p : parity) : parity :=
7 match p with
8 | Even => Odd
9 | Odd => Even

10 end.
11

12 Inductive parity_list (T : Type) : parity → Type :=
13 | [] : parity_list T Even
14 | (∷) : ∀ (h : T) {p : parity} (t : parity_list T p) →
15 parity_list T (next_parity p)
16 .

Now, if we consider the type family parity_list T p as a whole, for a given

choice of carrier type T , the possible shapes of values are still the same as for list :

[] , _ ∷ [] , _ ∷ _ ∷ [] , etc. However, for a given choice of p , the valid shapes be-

come restricted by construction. The type parity_list T Even only contains shapes

[] , _ ∷ _ ∷ [] , _ ∷ _ ∷ _ ∷ _ ∷ [] , etc. Dually, the type parity_list T Odd

only contains shapes _ ∷ [] , _ ∷ _ ∷ _ ∷ [] , etc.

2Coq syntax does not let us define constructors that look like operators, but we do it here to keep the
code clear and concise.

3In constructor (∷) , we use curly braces p to mark the constructor parameter as implicit, indicating
it can be implicitly inserted unambiguously by Coq when the next constructor parameter, t , is supplied.
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In general, different families may have entirely disjoint shapes, as presented here,

or partially-overlapping shapes (for instance, the type family of finite sets), or even

all the same shapes (in which case, the index might be used as a type-level marker

for some information, a technique often called phantom type in statically-typed lan-

guages).

Constructor parameters are just arguments that are passed to a given constructor.

They are completely independent for each constructor, and are simply used to store

data relevant to the given constructor. For instance, in our parity_list example, h ,

p , and t are three constructor parameters for constructor (∷) .

The return type of a constructor must indicate in what family is exists. To do so,

it must provide values for the inductive indices. We call those values the constructor in-

dices. For instance, in our parity_list example, the inductive index of type parity

is instantiated with value (next_parity p) in the (∷) constructor. Note that it is

possible to have indices be computed values, as is the case here.

Finally, let us discuss scope for those constructs.

• Following Coq’s convention, inductive parameters must be named. They are nat-

urally in scope for the whole definition of the inductive type.

• Inductive indices may be anonymous, or named, and they form a telescope (as de-

scribed in Section 1.2). They are not scoped over the rest of the definition. There-

fore, the only purpose for named indices is to create dependent indices.

• Constructor parametersmay be anonymous, or named. They also form a telescope

all the way to the constructor’s return type, such that both subsequent parameters,

as well as the constructor’s indices, may refer to them.
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• Constructor indices must be passed as explicit arguments to the return type, and

as such, there is no binding involved.

3.4 Describing program modifications with diffs

We define a family of data types that allows us to describe changes made to terms

from the language presented in Section 3.3.1, as well as programs from the language

presented in Section 3.3.2. We will refer to these descriptions of changes as diffs 4. We

will usually denote a diff type ∆τ if it corresponds to values of the diffed type τ. Infor-

mally, one can think of the type ∆τ as a descriptor for how some value v1 of type τ can

be transformed into another value v2.

It is important to clarify how we intend to use those diff types. We will want to

describe changes made to the data types in the abstract syntax tree (AST) of the user’s

program. An example will help us avoid some misconception: consider the user pro-

gram and its modification in Figure 3.3. While, from the program point of view, a value

of type bool was modified from the value True to the value False , we will not use

the type ∆ bool to describe this change! From the point of view of the abstract syntax

tree, a value of type term has changed from the original value Var "True" to the

value Var "False" , which we will capture using the diff type ∆ Term .

To be precise, we will have to describe how a Definition has changed, and

describe how its name has remained a , its type has remained bool , but its definition

has changed. This will be described as a value of type ∆ Vernacular , containing a

diff for each of those three components that may change, including the one of diff type

∆ Term .

4Our approach is very similar to that of Miraldo et al. [26], though it was derived independently from
their work, at around the same time they were publishing it.
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Inductive bool : Set :=
| True : bool
| False : bool.

Definition a : bool := True.

Inductive bool : Set :=
| True : bool
| False : bool.

Definition a : bool := False .

Figure 3.3. A simple program and its modification

When the user makes a change to their program, we will attempt to guess the

structure of their changes, as a value of one of the program diff type ∆ Program . To

illustrate the kind of changes we are interested in describing, let us look back at our

motivating example in Figure 3.2, where we can observe the following partial attempts

at refactoring:

1. they renamed list into vec ,

2. added an index of type nat ,

3. renamed constructor nil into vnil ,

4. instantiated the index for the first constructor with O ,

5. renamed constructor cons into vcons ,

6. added a parameter n of type nat to the second constructor,

7. updated the recursive occurrence’s name,

8. updated the recursive occurrence’s index,

9. and instantiated the index for the second constructor with (S n) .

Intuitively, we want to capture changes like insertion, modifications, deletions,

and permutations, at all syntactic levels of the meta-language (within terms, within in-

ductive declarations, etc.). We will use the same descriptions to capture user-provided
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and repair-generated modifications.

Every diff type is accompanied by a patching function. Given an element of

the diffed type, say (x : χ), and an element of the diff type for that particular type, say

(δx : ∆χ), the patching function produces, when successful, a patched element (with the

same type as the original one), say (x′ : χ). This operation is partial for many diff types,

because they often capture modifications that only make sense for certain constructors

of the diffed type: for instance, a diff stating that the head of a list has been modified

can not be meaningfully applied to an empty list. We will overload the notation x δx⇝

x′ to indicate that x′ is the (optional) value obtained when (successfully) patching x

according to the diff δx, using the relevant patching function for that diff type. In all of

our notations, we use a black frame and a teal highlight to indicate that a value is an

output.

3.4.1 Atomic diff

There are many data types for which we will only capture changes at an atomic

granularity: either the value is the same in the new program, or it has been replaced

with a different, unrelated value. For instance, a binder can either have the same name,

or have been renamed. Similarly, the only possible change to the recursive flag of a

definition is to be atomically changed to a different value. The parameterized diff type

∆Atomic captures such cases for a given type τ:

⟨∆Atomic τ⟩ ::=

| 1 (unchanged)

| K(⟨τ⟩) (replaced)

with the following semantics:
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x 1⇝ x
Identity

x K(y)⇝ y
Replace

Notation

We chose this notation to be reminiscent of the identity function (for 1), and the

constant function (for K). However, these are not functions, but simply inert construc-

tors.

3.4.2 List diff

We will now describe our diff type for lists. Again, the subject of discourse is not

lists as they appear in the user’s program, but lists of abstract syntax tree constructs,

as they appear in the AST of said program. We refer the reader to Section 3.3.1 and

Section 3.3.2, to remind themselves of the nature of such lists and their prevalence: the

patterns of a match construct, the parameters and indices to an inductive type, as well

as programs themselves, are all instances of lists of syntactic constructs.

We provide a rich selection of diff operations for lists. The aim is not to have

a canonical representation, but rather to capture closely the intent of the user modifi-

cations. We give the abstract syntax for these operators as prefix and infix operators,

following a visual intuition of what happens to a list h ∷ t , though the reader is en-

couraged to read the semantics, immediately following, in order to understand the in-

tent of each construct, as it will probably feel opaque on first glance. We also provide a
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concrete example of a diff in Section 3.4.5 that uses many of these constructs.5.

⟨∆List τ ∆τ⟩ ::=

| ⟨∆Atomic τ⟩ (atomic modification of the whole list)

| ⟨τ⟩ Ins
:: ⟨∆List τ ∆τ⟩ (insert a head)

| ⟨∆τ⟩
Mod
:: ⟨∆List τ ∆τ⟩ (modify and keep the head)

| Drop
:: ⟨∆List τ ∆τ⟩ (drop the head)

|
p
⇄
:: ⟨∆List τ ∆τ⟩ (permute according to a permutation p)

with the following semantics:

l δl⇝ l′

l h
Ins
:: δl⇝ (h :: l′)

Insert
h

δh⇝ h′ t δt⇝ t′

(h :: t)
δh

Mod
:: δt⇝ (h′ :: t′)

Modify

t δt⇝ t′

(h :: t)
Drop
:: δt⇝ t′

Drop

(hp(1) :: . . . :: hp(|p|) :: t)
δ⇝ l

(h1 :: . . . :: h|p| :: t)

p
⇄
:: δ⇝ l

Permute

Note that we defined the semantics of
Mod
Π so that it both modifies and keeps the

head: the recursive occurrence in rule Modify, δt, therefore applies to the tail t and not

the whole list after the head has been repaired. On the other hand, the recursive occur-

rence in rule Permute, named δ, targets the entire list after the permutation is performed,

not solely the tail: this is necessary because we will want to perform modifications of

elements after having shuffled them around.
5Note that we omit the constructor for the atomic list diff, even though our implementation requires

it to lift values of the atomic diff type to the corresponding list diff type.
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3.4.3 Term diff

The diffs for terms include atomic changes, as well as insertion, modification,

deletion, and permutation of most constructors. We illustrate a couple of these:

⟨∆Term⟩ ::=

| ⟨∆Atomic t⟩ (atomic modification)

| ⟨∆Term⟩
Ins
$ ⟨∆Term⟩ (insert application)

|
Ins
λ ⟨v⟩, ⟨∆Term⟩ (insert value abstraction)

|
Ins
Π (⟨v⟩ : ⟨∆Term⟩), ⟨∆Term⟩ (insert type abstraction)

| … (other insertions)

| … (removals/modifications/permutations)

Note that we use an infix dollar sign ($) as a symbol for function application in our

diffs, even though we use an infix space for function application in our terms, which

is not ideal, but should help with readability. For our purpose, we biased the diffs on

binary operations in the least surprising way: deleting a function application keeps its

left child, i.e. removes the function call and keeps the function (Rule Rm-App), while

deleting a Π keeps its right child, i.e. removes the value being quantified but keeps

the return type (Rule Rm-Pi). For insertion, we allow maximal flexibility by passing

the entire old term to both recursive occurrences: for instance, the diff (1
Ins
$ 1) turns any

term t into the self-application (t t) (Rule Ins-App). However, it is often the case that only

one recursive occurrence will use the original term, while the other ones will replace it:

for instance, the diff (1
Ins
$ K(x)) turns any term t into the application (t x).
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f δ⇝ f ′

f x
Drop
$ δ⇝ f ′

Rm-App
τ2

δ⇝ τ′2

Π(x : τ1)→ τ2

Drop
Π δ⇝ τ′2

Rm-Pi

t δ1⇝ t1 t δ2⇝ t2

t δ1
Ins
$ δ2⇝ t1 t2

Ins-App

3.4.4 Other diff types

We also need diffs for many other internal data types. Diff types for tuples are

derived from diff types of their constituents in a straightforward way. Inductive data

type definitions, as well as constructor definitions, behave essentially like a tuple of all

their arguments, so their diff type is derived accordingly.

3.4.5 Example of a program diff

With all of this machinery, we can define the original diff for our running ex-

ample (again, referring to the changes seen on Figure 3.2). The diff is a value of type

∆Inductive, as shown in Figure 3.4. Because the diffs for the constructors take a lot of

space, they are abbreviated as δ nil and δ cons , and shown separately in Figures 3.26

for nil and 3.6 for cons .

While the inductive diff should be somewhat straightforward, the reader might

be surprised by δ nil (in Figure 3.26) not mentioning the renaming of list (on the

left) into vec on the right. While this renaming appears syntactically in the concrete
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We demonstrate a diff between the following two programs. The constructors are
elided, and their diff (δ nil and δ cons ) is shown in Figures 3.26 and 3.6 respectively.
Inductive nat : Set :=
| O : nat
| S : ∀ (n : nat), nat.

Inductive list (A : Type)

: Type := …

… (* rest of first program *)

Inductive nat : Set :=
| O : nat
| S : ∀ (n : nat), nat.

Inductive vec (A : Type)

: nat → Type := …

… (* identical *)

1Inductive
Mod
:: do not modify inductive nat

δInductive( modify list into vec
K( vec ), modify the name
1List, keep the parameter

nat Ins
:: 1List, add the nat index

1Universe, keep the universe

δ nil Mod
:: δ cons Mod

:: 1List modify the constructors (elided)

)
Mod
::

1List do not modify the rest of the program

Figure 3.4. Diff for our running example (constructors elided)
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syntax, it is only a surface-level syntactic requirement that constructors repeat the type

they inhabit. The abstract syntax tree only contains the list of indices, and does not

repeat the name of the inductive type, nor the parameters of the inductive type, in

every constructor.

…
| nil : list A

…
| vnil : vec A O

δ nil B

δConstructor( modify the nil constructor
K( vnil ), modify constructor name
1, no change to parameters

O Ins
:: 1 instantiate the nat index with value O

)

Figure 3.5. Diff for our running example ( nil constructor only)

One might also find the modification of the parameter in Figure 3.6 hard to

read. The diff (K( vec )
Mod
$ 1Term)

Ins
$ n might seem inverted, but it only appears so be-

cause function application is left-associative. Therefore, when comparing list A with

vec A n , we are comparing (app list A) and (app (app vec A) n) . In this

form, we can better see that the outermost application of (app list A) corresponds

to the innermost application of (app (app vec A) n) , that is, (app vec A) . This

should make it clear that the diff between these two terms needs to insert an applica-

tion node first (the one with argument n ), and then will modify the leftmost argument

from list to vec . The reader might want to refer to rule Ins-App from Section 3.4.3

for the semantics of
Ins
$ .

Again, the diff shown in Figure 3.4 would be the input to our repair algorithm,
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…
| cons : A →

list A → list A.

…
| vcons : A → ∀ (n : nat),

vec A n → vec A (S n) .

δ cons B
δConstructor( modify the cons constructor

K( vcons ), modify constructor name

1
Mod
:: keep the first parameter

( n : nat )
Ins
:: insert a second parameter

(1Binder : (K( vec )
Mod
$ 1Term)

Ins
$ n )

Mod
:: modify list A into vec A n

while keeping binder anonymous
1List, no other parameter

(S n) Ins
:: instantiate the nat index

1List, no other index
)

Figure 3.6. Diff for our running example ( cons constructor only)
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alongside the original program. The repair algorithm should propagate changes in

such a way as to generate all the other fixes seen in teal in Figure 3.2.

3.4.6 Why compute diffs rather than repaired values?

We have now hinted multiple times to the importance of computing and storing

diffs for our repair algorithm, rather than just computing and storing the repaired data.

We now have the necessary syntax and semantics to explain how the two differ. Con-

sider an original function f , with type nat → bool → string . Now consider the

following two diffs that can change this type to bool → nat → string :

δ1 =

[1,0]
⇄
Π 1

δ2 =
Drop
Π (

Mod
Π (1 : 1)→

Ins
Π( nat : _ )→ 1)

Indeed if we run our patching function, we obtain:

nat → bool → string
δ1⇝ bool → nat → string

nat → bool → string
δ2⇝ bool → nat → string

Now, consider some client code that calls this function f . For instance, prior to

repairing, let’s say that we have a call:
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let result := f (S n) b in …

If the only information we have available, about the type of f , is that its new

type is bool → nat → string , all we can do is make a wild guess as to how we should

modify this function call:

• should the bool argument be b ?

• should the nat argument be (S n) ?

Knowing which diff turned the old type of f into the new type gives us much

more structural information, allowing us to make an educated guess. If the diff was δ1,

that is,
[1,0]
⇄
Π 1, then it appears the arguments were swapped, and so we should patch the

client code as follows:

let result := f b (S n) in …

On the other hand, if the diff was δ2, that is,
Drop
Π (

Mod
Π (1 : 1)→

Ins
Π( nat : _ )→ 1), then

it appears that the parameter of type bool has moved to first position, but the param-

eter of type nat is a brand new parameter, unrelated to the one that was present in

the old type. Therefore, the patch to the client code should rather produce the follow-

ing:

let result := f b (_ : nat) in …

where we inserted a typed hole of type nat rather than conserve the value (S n)

from the old program, as our diff indicates it is not relevant.

This should illustrate how diffs contain more information than before-after pairs.

As long as we keep propagating changes through the program as diffs, rather than

patched constructs, we can retain the semantic intent of the changes throughout our

repair algorithm. However, this relies on obtaining an original diff, based on the refac-
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toring attempt from the user, that captures their intent. We will describe how we can

guess satisfactory diffs in Section 3.8, though we will sometimes need the programmer

to disambiguate their intent explicitly.

3.5 Lookup rules

When encountering a variable in a program under repair, we will often need to

answer the question “What has happened to this variable?”. In order to do so, we gener-

alize the usual notion of variable lookup. In presentations of lambda calculi where both

a global environment and a local context carry typing information, the usual notion of

variable lookup first looks in the local context (since it carries the “closest” enclosing

scopes), then, if no binding is found, looks in the global environment.

We use the following judgments for looking up a variable in the local context Γ

(on the left), and in the global environment E (on the right): 6

Γ ⊢ v : τ E ⊢ v : τ

3.5.1 Lookup rules for types

The rules for looking up types are straightforward, as shown in Figures 3.7, 3.8,

and 3.9. In the latter, we handle the complexity of inductive data type definitions. For

those, a system like Coq will introduce not only a name for the inductive type being de-

fined, but also one name per elimination principles it generates, and finally one name
6While the two judgments share the same syntax, it should always be clear whether the value to the

left of the turnstile is a local context or a global environment.
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Lookup-Context
Γ ⊢ v : τ

E, Γ ⊢ v : τ

Lookup-Environment
Γ ⊬ v : τ E ⊢ v : τ

E, Γ ⊢ v : τ

Figure 3.7. Lookup rules (local context and global environment)

Lookup-Context-Here

(v : τ) :: Γ ⊢ v : τ

Lookup-Context-There
w , v Γ ⊢ v : τ

(w : τ) :: Γ ⊢ v : τ

Figure 3.8. Lookup rules (local context)

per the constructor of the data type. This is captured in the lookup rules, where we

check those in order before looking in the rest of the environment. Unfortunately,

rule Lookup-Environment-There has to be quite bloated, but its premises only ensure that

we look in the rest of the environment only when neither of the three previous rules

hold.

3.5.2 Lookup rules for diffs

Our second notion of a lookup essentially follows the same strategy, but we are

not interested in finding the type of the variable, but rather in knowing how both the

binding and the binding type have been modified. To do so, we use the following judg-

ment:

[
E
δE

]
,
[
Γ

δΓ

]
⊢
 v

δv

 :  ?

δτ
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Lookup-Environment-Definition-Here

Definition({k, v, τ, t}) :: E ⊢ v : τ

Lookup-Environment-Definition-There
w , v E ⊢ v : τ

Definition({k,w, τ, t}) :: E ⊢ v : τ

Lookup-Environment-Inductive-Type-Here
I= Inductive({nind, pind, iind,u, c})

v = nind and InductiveType(nind, pind, iind, uind) = τ

or ∃ uelim ∈ Universe such that
v = EliminatorName(I, uelim) and EliminatorType(I, uelim) = τ

or ∃ C ∈ c such that
C = Constructor({v, pctor, ictor}) and ConstructorType(I, C) = τ

I :: E ⊢ v : τ

Lookup-Environment-There
I= Inductive({nind, pind, iind,uind, cind})

v , nind
and ∀ uelim ∈ Universe , v , EliminatorName(I, uelim)

and ∀ Constructor({nctor, pctor, ictor}) ∈ cind, v , nctor

E ⊢ v : τ

I :: E ⊢ v : τ

Figure 3.9. Lookup rules (global environment)
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Diff-Lookup-Context[
Γ

δΓ

]
⊢
 v

δv

 :  ?

δτ

[
E
δE

]
,
[
Γ

δΓ

]
⊢
 v

δv

 :  ?

δτ



Diff-Lookup-Environment[
E
δE

]
⊢
 v

δv

 :  ?

δτ

[
E
δE

]
,
[
Γ

δΓ

]
⊢
 v

δv

 :  ?

δτ


Figure 3.10. Diff lookup rules (local context and global environment)

Notation

This judgment can be read as follows:

• Top: If you are interested in the variable v, as bound in the original global envi-

ronment E and original local context Γ,

• Bottom left: and the global environment underwent modification δE,

• Bottom left: and the local context underwent modification δΓ,

• Bottom right: then, references to the variable must undergo modification δv ,

• Bottom right: and the variable’s type has undergone modification δτ .

The rules in Figure 3.10 summarize the global strategy of first looking up in the

local context, and then falling back to the global environment, analogously to the pro-

cess in Figure 3.7.

Lookup rules for diffs in the local context

Figure 3.11 shows how we proceed to lookup for the diff of a variable from the

original program in the local context. Note that, since we assume the original program
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Diff-Lookup-Context-Same
Γ ⊢ v : τv[

Γ

1

]
⊢
[
v
1

]
:

[
?

1

]
Diff-Lookup-Context-Ins[

Γ

δΓ

]
⊢
 v

δv

 :  ?

δτv

[
Γ

(δw : δτw)
Ins
:: δΓ

]
⊢
 v

δv

 :  ?

δτv



Diff-Lookup-Context-Mod-Here (v : τ) :: Γ

(δv : δτ)
Mod
:: δΓ

 ⊢  v
δv

 :  ?

δτ



Diff-Lookup-Context-Mod-There

w , v
[
Γ

δΓ

]
⊢
 v

δv

 :  ?

δτ

 (w : τ) :: Γ

(δv : δτ)
Mod
:: δΓ

 ⊢  v
δv

 :  ?

δτ


Diff-Lookup-Context-Drop-Here

Deprecate(v) = v′(v : τ) :: Γ
Drop
:: δΓ

 ⊢  v
K(v′)

 :  ?

K(_)



Diff-Lookup-Context-Drop-There

w , v
[
Γ

δΓ

]
⊢
 v

δv

 :  ?

δτ

(v : τ) :: Γ
Drop
:: δΓ

 ⊢  v
δv

 :  ?

δτ


Diff-Lookup-Context-Permute

Γ

p
⇄
::1⇝ Γ′

[
Γ′

δΓ

]
⊢
 v

δv

 :  ?

δτ

 Γ
p
⇄
:: δΓ

 ⊢
 v

δv

 :  ?

δτ


Figure 3.11. Diff lookup rules (local context)
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type-checked, when we look up variables, we can assume that they are properly bound:

were it not the case, we would need additional rules to account for the absence of a

variable, and to change the output types to allow for failure.

When the context hasn’t changed, we can obtain its type from the old environ-

ment (Rule Diff-Lookup-Context-Same). When some variable has been inserted, we can

ignore it with no effort, since we only care about shadowing in the original program

(Rule Diff-Lookup-Context-Ins).

When we find the target variable in the local context, there are only two remain-

ing possibilities for the diff: either it is a
Mod
Π , or a

Drop
Π . When it has been modified,

we have found exactly the information we were looking for, so we can simply output

it (Rule Diff-Lookup-Context-Mod-Here). If it has been dropped, then there is no satis-

factory result, the variable is no longer in the program. In order to make sure the user

notices, we rename the variable using the helper Deprecate, and make its diff as unin-

formative as possible using a hole (Rule Diff-Lookup-Context-Drop-Here).

In the cases were a variable other than our target is being modified (covered in

Rule Diff-Lookup-Context-Mod-There), or in the cases were a variable other than our tar-

get is being dropped (covered in Rule Diff-Lookup-Context-Drop-There), we simply keep

looking recursively into the remaining context. Finally, if the context has undergone a

permutation (Rule Diff-Lookup-Context-Permute), we can permute the context appropri-

ately and keep looking recursively.

Lookup rules for diffs in the global environment

Unfortunately, the number of combinations we need to consider for diffs grow

alongside the number of constructs that introduce variables, as well as along the num-
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Diff-Lookup-Env-Same
E ⊢ v : τv[

E
1

]
⊢
[
v
1

]
:

[
?

1

]
Diff-Lookup-Env-Ins[

E
δE

]
⊢
 v

δv

 :  ?

δτv

[ E
e Ins
:: δE

]
⊢
 v

δv

 :  ?

δτv


Diff-Lookup-Env-Permute

E

p
⇄
::1⇝ E′

[
E′
δE

]
⊢
 v

δv

 :  ?

δτ

 E
p
⇄
:: δE

 ⊢
 v

δv

 :  ?

δτ


Figure 3.12. Lookup in the global environment (identity, insertion, permutation)

ber of modifications that happen to those constructs. Since inductive data type defi-

nitions introduce three classes of variables (namely, the type, the eliminators, and the

constructors), and we have four classes of changes for lists (1, Mod
:: , Drop

:: , ⇄), this raises

the number of cases in a quadratic fashion. We do our best to summarize those cases in

few rules, by using disjunctive premises to account for many cases in a single rule.

Figure 3.12 covers the simplest cases. When the environment has not changed,

as in Rule Diff-Lookup-Env-Same, the variable must not have changed either, as long as

it actually existed. When any Definition or Inductive has been inserted, we can skip it

and keep looking recursively (Rule Diff-Lookup-Env-Ins). Finally, when the environment

has undergone a permutation, we can simply proceed recursively on the appropriately

permuted environment (Rule Diff-Lookup-Env-Permute).

When an element has been removed from the environment (Figure 3.13), we

need to check whether it was our target variable that has been removed. For the case of

a Definition , it suffices to check whether the name matches, but for an Inductive ,
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Diff-Lookup-Env-Drop-Here

e = Definition({k, v, τ, t})

or


e = Inductive({nind, pind, iind,uind, cind})

and


v = nind

or ∃ uelim ∈ Universe such that v = EliminatorName(e, uelim)

or ∃ C ∈ c such that C = Constructor({v, pctor, ictor})
Deprecate(v) = v′[ e :: E

Drop
:: δE

]
⊢
 v
K(v′)

 :  ?

K(_)


Diff-Lookup-Env-Drop-There

e = Definition({k,w, τ, t}) and v , w

or


e = Inductive({nind, pind, iind,uind, cind})

and


v , nind

and ∀ uelim ∈ Universe , v , EliminatorName(e, uelim)

and ∀ Constructor({nctor, pctor, ictor}) ∈ cind, v , nctor[
E
δE

]
⊢
 v

δv

 :  ?

δτ

[ e :: E
Drop
:: δE

]
⊢
 v

δv

 :  ?

δτ


Figure 3.13. Lookup in the global environment (drop)
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we need to check whether the name matches the inductive type, any of the elimina-

tors, or any of the constructors. If it does, then we indicate that the variable has been

removed by using Deprecate again (Rule Diff-Lookup-Env-Drop-Here). Otherwise, we

keep looking recursively (Rule Diff-Lookup-Env-Drop-There).

When an element has been modified in the environment (Figure 3.14), we again

need to check whether our target variable is the one that has been removed. For the

same reasons as in the drop case, we need to check all possibilities for inductive data

type definitions, yielding Rule Diff-Lookup-Env-Mod-Here for cases where the target vari-

able is being modified, and Rule Diff-Lookup-Env-Mod-There for cases where other vari-

ables than our target are being modified.

Finally, the rules in Figures 3.15 and 3.16 describe diffs lookups in cases where

the variable we are looking up could be one of the constructors of a modified induc-

tive data type declaration. The rules search through the list of constructors, ignoring

inserted constructors, until they find the target or the lookup or exhaust the list of con-

structors.

3.6 Repairing programs by propagating changes

In this section, we assume that we are given an original program p, that is, a

sequence of vernacular commands as described in Section 3.3.2, and a diff of that pro-

gram δp as described in Section 3.4, capturing a partial refactoring made by the user.

We assume that the original proof script type-checked, and attempt to build a repaired

diff δ′p such that:
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Diff-Lookup-Env-Mod-Here

e = Definition({k, v, τ, t}) and δe = δDefinition({δk, δv , δτ , δt})
or

e = Inductive({nind, pind, iind,uind, cind})
and δe = δInductive({δnind, δpind, δiind, δuind, δcind})

and




v = nind

and δn = δv

and δInductiveType(

[
nind
δnind

]
,

[
pind
δpind

]
,

[
iind
δiind

]
,

[
uind
δuind

]
) = δτ

or



∃ uelim ∈ Universe
such that v = EliminatorName(e, uelim)

and δEliminatorName(
[ e
δe

]
,uelim) = δv

and δEliminatorType(
[ e
δe

]
,uelim) = δτ[ e :: E

δe
Mod
:: δE

]
⊢
 v

δv

 :  ?

δτ


Diff-Lookup-Env-Mod-There

e = Definition({k,w, τ, t}) and v , w

or


e = Inductive({nind, pind, iind,uind, cind})

and


v , nind

and ∀ uelim ∈ Universe , v , EliminatorName(e, uelim)

and ∀ Constructor({nctor, pctor, ictor}) ∈ cind, v , nctor[
E
δE

]
⊢
 v

δv

 :  ?

δτ

[ e :: E
δe

Mod
:: δE

]
⊢
 v

δv

 :  ?

δτ


Figure 3.14. Lookup in the global environment (modification)
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Diff-Lookup-Env-Mod-Constructor-Same-Here
C = Constructor({v, pctor, ictor})[

Inductive({nind, pind, iind,uind,C :: cind}) :: E
δInductive({δnind, δpind, δiind, δuind,1})

]
⊢
[
v
1

]
:

[
?

1

]
Diff-Lookup-Env-Mod-Constructor-Mod-Here

I= Inductive({nind, pind, iind,uind,C :: cind})

δI = δInductive({δnind, δpind, δiind, δuind, δC
Mod
:: δcind})

C = Constructor({v, pctor, ictor}) δC = δConstructor({δv, δpctor , δictor})

δConstructorType(

[
I
δI

]
,

[
C
δC

]
) = δτ[ I :: E

δI
Mod
:: δE

]
⊢
 v

δv

 :  ?

δτ


Diff-Lookup-Env-Mod-Constructor-Drop-Here

C = Constructor({v, pctor, ictor}) Deprecate(v) = v′ Inductive({nind, pind, iind,uind,C :: cind}) :: E

δInductive({δnind, δpind, δiind, δuind,
Drop
:: δcind})

Mod
:: δE

 ⊢ [ v
v′

]
:

 ?

K(_)


Diff-Lookup-Env-Mod-Constructor-There

C = Constructor({w, pctor, ictor}) v , w
δ = 1 δ′ = 1

or δ = δC
Mod
:: δcind δ′ = δcind

or δ =
Drop
:: δcind δ′ = δcind Inductive({nind, pind, iind,uind, cind}) :: E

δInductive({δnind, δpind, δiind, δuind, δ′}) Mod
:: δE

 ⊢  v
δv

 :  ?

δτ

Inductive({nind, pind, iind,uind,C :: cind}) :: E

δInductive({δnind, δpind, δiind, δuind, δ}) Mod
:: δE

 ⊢  v
δv

 :  ?

δτ


Figure 3.15. Lookup in the global environment (constructor rules, part 1/2)
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Diff-Lookup-Env-Mod-Constructor-Ins
I= Inductive({nind, pind, iind,uind, cind})

δI = δInductive({δnind, δpind, δiind, δuind,C Ins
:: δcind})[ I :: E

δInductive({δnind, δpind, δiind, δuind, δcind})
Mod
:: δE

]
⊢
 v

δv

 :  ?

δτ

[ I :: E
δI

Mod
:: δE

]
⊢
 v

δv

 :  ?

δτ


Diff-Lookup-Env-Mod-Constructor-Permute

cind

p
⇄
::1⇝ cind

′

 Inductive({nind, pind, iind,uind, cind
′}) :: E

δInductive({δnind, δpind, δiind, δuind, δcind})
Mod
:: δE

 ⊢  v
δv

 :  ?

δτ


Inductive({nind, pind, iind,uind, cind}) :: E

δInductive({δnind, δpind, δiind, δuind,

p
⇄
:: δcind})

Mod
:: δE

 ⊢
 v

δv

 :  ?

δτ


Figure 3.16. Lookup in the global environment (constructor rules, part 2/2)
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• δ′p contains the changes from δp,

• δ′p completes the refactoring started by δp, by propagating forward the changes

from δp to use-sites that must be repaired to account for those changes,

where propagating changes forward means:

• propagating renaming of constants and variables,

• propagating changes in the number, order, and type of arguments to functions,

obtained from their definition, to their use-site,

• propagating changes in the definition of inductive data types to use-sites of the

type, its constructors, and its eliminators (those will be explained in more details

in Section 3.7).

We give a top-down description of the repair algorithm, starting at the level of

whole programs, descending all the way to terms and data type definitions.

3.6.1 Repairing programs

The repair algorithm for programs RProgram is described formally in Figure 3.17

using the following judgment:

[
E
δE

]
⊢ RProgram(

[
p
δp

]
) = δ′p
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Notation

This judgment can be read as follows:

• Top: If the original program p type-checked in the original environment E,

• Bottom left: and the environment underwent modification δE,

• Bottom center: and the program underwent modification δp,

• Right: then RProgram proposes to repair the program with modification δ′p .

To be more precise, E is the environment in which the original program p was

defined: a list of term definitions, with type Definition, and of inductive data type defi-

nitions, with type Inductive (as presented in Section 3.3.2). Each vernacular command

is type-checked in such a global typing environment, and upon being executed, popu-

lates it with some additional definitions for the subsequent commands.

δE is a diff indicating how the global environment has been changed by the time

p is reached by the repair algorithm: it accounts for whether some definitions have been

added, removed, or modified, in the prefix of the already repaired program preceding

p. For instance, in our motivating example, by the time we reach the inductive defini-

tion being modified ( list , becoming vec ), Ewould contain the inductive data type

definition for the type nat , and δE would keep it intact. After this definition has been

processed, E would contain, in order, nat , and list , and δE would still keep the

former intact, but would register the diff turning list into vec .

The repair algorithm for programs takes as input the original program p, and

the user-provided modification δp. From those, it outputs a repaired modification δ′p ,

that propagates the changes introduced by δE and δp to the rest of the program p. The

algorithm essentially folds over the sequence of vernacular commands that make up the
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Repair-Program-Same-Nil[
E
δE

]
⊢ RProgram(

[
[]

1

]
) = 1

Repair-Program-Same-Cons[
E
δE

]
⊢ RProgram(

 v :: p

1Vernacular
Mod
:: 1Program

 ) = δ[
E
δE

]
⊢ RProgram(

[
v :: p

1Program

]
) = δ

Repair-Program-Replace[
E
δE

]
⊢ RProgram(

[
p

K(q)

]
) = K(q)

Repair-Program-Insert[ E
v Ins

:: δE

]
⊢ RProgram(

[
p
δp

]
) = δ[

E
δE

]
⊢ RProgram(

 p

v Ins
:: δp

 ) = δ

Repair-Program-Modify[
E
δE

]
⊢ RVernacular(

[ v
δv

]
) = δ′v

[ v :: E
δ′v

Mod
:: δE

]
⊢ RProgram(

[
p
δp

]
) = δ′p[

E
δE

]
⊢ RProgram(

 v :: p

δv
Mod
:: δp

 ) = δ′v
Mod
:: δ′p

Repair-Program-Drop[ v :: E
Drop
:: δE

]
⊢ RProgram(

[
p
δp

]
) = δ′p[

E
δE

]
⊢ RProgram(

 v :: p
Drop
:: δp

 ) = Drop
:: δ′p

Repair-Program-Permute

q

p
⇄
::1⇝ q′

[
E
δE

]
⊢ RProgram(

[
q′

δ

]
) = δ′

[
E
δE

]
⊢ RProgram(

 q
p
⇄
:: δ

 ) = p
⇄
:: δ′

Figure 3.17. Rules for repairing programs (RProgram)
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program, propagating changes from previous commands to subsequent ones.

Rule Repair-Program-Modify does the bulk of the work, dispatching the repair of

each vernacular command to the repair algorithm for vernacular commands RVernacular

(described in Section 3.6.2). First, the head vernacular command v is repaired (using

RVernacular), returning a repaired diff δ′v . Then, we want to repair the rest of the pro-

gram, but the changes made to v may affect the global environment for the subsequent

commands. For instance, in our motivating example, the vernacular command defin-

ing the inductive type list gets modified to define the inductive type vec instead:

when we repair the rest of the program, we must remember that the original program

was defined in a global environment where list was defined, and that the updated

program must replace it with vec . We therefore repair the rest of the program p in the

appropriate updated environment and its diff.

Rule Repair-Program-Same-Cons applies when the list of vernacular commands

has not changed. It defers to Rule Repair-Program-Modify: even though it the com-

mands have not changed, they might need repairs to account for changes in their de-

pendencies, as accounted for in the global environment diff. Repair-Program-Insert and

Repair-Program-Drop update their environment as necessary. Finally, Rule RProgPermute

recursively repairs the permuted sequence of commands.

Note

While our presentation makes it look like vernacular commands each add ex-

actly one element to the global environment, it is not always as simple: inductive data

type definitions add 1. the inductive type (e.g. list ), 2. all its constructors (e.g. nil ,

cons ), and 3. all its eliminators (e.g. list_rec , list_ind , as described later in

Section 3.7). For simplifying diff operations, the whole Inductive effectively acts as a
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placeholder, in our formalism, for all of those at once. The lookup rules, given in Ap-

pendix 3.5, encapsulate the complexity of accounting for all the definitions arising from

one inductive data type definition.

3.6.2 Repairing vernacular commands

We formally describe the repair algorithm for vernacular commands RVernacular

in Figure 3.18 using the following judgment:

[
E
δE

]
⊢ RVernacular(

[ v
δv

]
) = δ′v

which can be read analogously to RProgram as described in Section 3.6.1.

Rule Repair-Vernacular-Def shows how we attempt to repair a vernacular term

definition. It is quite involved because we account for the possibility of a non-recursive

definition becoming recursive and vice-versa. We want to account for the user-provided

modifications δk, δn, δτ, and δt, but we might need to repair some of them. We first repair

the type τ, and obtain its repaired diff δ′τ. Now, the user has modified the name of the

definition according to δn, but there are two situations where we must intervene:

1. If δn is 1, the user intends to keep the name n for this definition. However, they

could have introduced another name n in the global environment, which would

be accounted for in δE. In this case, we need to come up with a fresh name that is

free in the new environment.

2. If δn is K(m), the user intends to rename this definition from n into m. Again,

even though this is unlikely in practice, it could be a problem if the new global
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Repair-Vernacular-Definition

τ
δτ⇝ τ′

[
E
δE

]
,

[
[]

1

]
⊢ RTerm1(τ

′ :
[Type

1

]
) = δ′τ τ′

δ′τ⇝ τ′′

[
E
δE

]
⊢ Fresh1(

[ n
δn

]
) = δ′n n

δ′n⇝ n′ Γ=

[] if k = Definition
(n : τ) :: [] if k = Fixpoint

δΓ=



(n′ : τ′′)
Ins
:: 1 when k = Definition

δk = K(Fixpoint)
Drop
:: 1 when k = Fixpoint

δk = K(Definition)
1 otherwise

t
δt[δn←δ′n]⇝ t′

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t

′ :

[
τ
δ′τ

]
) = δ′t[

E
δE

]
⊢ RVernacular(

[
Definition({k,n, τ, t})

δDefinition({δk, δn, δτ, δt})

]
) = δDefinition({δk, δ′n, δ′τ, δ′t})

Repair-Vernacular-Inductive
I= Inductive({nind, pind, iind,uind, cind})

δI = δInductive({δnind, δpind, δiind, δuind, δcind})[
E
δE

]
⊢ Fresh1(

[
nind
δnind

]
) = δnind

′

[
E
δE

]
⊢ RInductive(

[
nind
δnind

]
,

[
pind
δpind

]
,

[
iind
δiind

]
,

[
uind
δuind

]
,

[
cind
δcind

]
) = (δpind

′, δiind
′, δcind

′)[
E
δE

]
⊢ RVernacular(

[
I
δI

]
) = δInductive({δnind

′, δpind
′, δiind

′, δuind, δcind
′})

Figure 3.18. Rules for repairing vernacular commands (RVernacular)
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environment contains an m already. In this case, we also need to come up with a

fresh name that is free in the new environment.

The helper function Fresh1 takes care of these two situations: it takes as input a name

n, and a desired modification for it δn, and returns a suitable modification δ′n, that first

tries to preserve δn when possible, otherwise tries to preserve nwhen possible, or finally,

comes up with a fresh name when neither of these conditions can be met.

Finally, in order to repair the body of the definition, we need to build an initial

local context (as described in Section 3.5). This context is empty for non-recursive defini-

tions, but should contain a self-reference for recursive definitions. The side conditions

defining Γ and δΓ make sure that the local context is appropriately set in all possible

combinations of the recursive flag before and after the user-modification.

3.6.3 Repairing inductive data type definitions

Figure 3.19 gives the high-level overview of how inductive data type definitions

are repaired. The repair operates in three sequential steps:

1. First, the inductive parameters are repaired using RParameters. Starting with an

empty local context, the first parameter is repaired, and added to the local con-

text, with its repaired diff, before repairing the next parameter. Thanks to the

local context, further parameters may be repaired appropriately if they depend

on previous parameters that have undergone repair already. We return the final

local context, alongside the repaired parameters, because we need to update the

indices in the same context.

2. Second, the inductive indices are repaired using RIndices, starting in the local con-

text obtained at the end of the previous step. Indices are repaired in a similar
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Repair-Vernacular-Inductive[
[]

1

]
,

[
E
δE

]
⊢ RParameters(

[
pind
δpind

]
) = (

[
Γ

δΓ

]
, δpind

′)

[
Γ

δΓ

]
,

[
E
δE

]
⊢ RIndices(

[
iind
δiind

]
) = δiind

′

InductiveType(nind, pind, iind, uind) = τ

δInductiveType(

[
nind
δnind

]
,

[
pind
δpind

]
,

[
iind
δiind

]
,

[
uind
δuind

]
) = δτ

[
E
δE

]
,

 (nind : τ) :: []

(δnind : δτ)
Mod
:: 1

 ⊢ RConstructors(

[
cind
δcind

]
) = δcind

′

[
E
δE

]
⊢ RInductive(

[
nind
δnind

]
,

[
pind
δpind

]
,

[
iind
δiind

]
,

[
uind
δuind

]
,

[
cind
δcind

]
) = (δpind

′, δiind
′, δcind

′)

Figure 3.19. Rules for repairing inductive data type definitions (RInductive)

fashion to parameters, populating the context with each repaired index before re-

pairing the next one. We don’t need the final context further, so it is not returned.

3. Once we have repaired parameters and indices, we are ready to compute how

the type of the inductive data type is changing, using δInductiveType. We need this

information in order to repair the constructors, because constructors can contain

recursive references to the inductive data type being defined in their parameters.

We omit most of the details of repairing an inductive data type definition behind

the symbol RInductive. It essentially needs to go recursively in all parameters and indices

of both the inductive type itself and all of its constructors and repair them. Each sub-

sequent parameter must be repaired in a local context where its predecessor parameter

has been accounted, so as to react to possible modifications: for instance, if the first

parameter must be renamed, and the second parameter’s type refers to the first param-
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Repair-Parameters-Same[
E
δE

]
,
[
Γ

δΓ

]
⊢ RParameters(

 (v : τ) :: pind

(1Variable : 1Term)
Mod
:: 1List

 ) = (

[
Γ′

δ′
Γ

]
, δ)

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RParameters(

[
(v : τ) :: pind

1List

]
) = (

[
Γ′

δ′
Γ

]
, δ)

Repair-Parameters-Replace
δ′Γ = p′ind∣∣∣p′ind

∣∣∣ Ins
:: (. . .

Ins
:: (p′ind1

Ins
:: δΓ))

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RParameters(

 pind

K(p′ind)

 ) = (

[
Γ

δ′
Γ

]
,K(p′ind))

Repair-Parameters-Permute

pind

p
⇄
::1⇝ p′ind

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RParameters(

p′ind
δ

 ) = (

[
Γ′

δ′
Γ

]
, δ′)

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RParameters(

pind
p
⇄
:: δ

 ) = (

[
Γ′

δ′
Γ

]
, δ′)

Figure 3.20. Rules for repairing inductive parameters (RParameters, part 1/2)

eter’s name, the type will need to be repaired. Indices must also be repaired in the

context of the repaired parameters. Constructors are repaired one by one, in isolation,

but the repairing of their parameters. Constructor indices are simply instances of the

inductive indices with terms: they are simply repaired in isolation.

Repairing inductive parameters

Figures 3.20 and 3.21 show the rules forRParameters, the algorithm for repairing in-

ductive parameters. As previously mentioned, the algorithm must return its final local

context (and diff), so that the inductive indices may be repaired in the proper context.

While our formalization in this dissertation returns the contexts explicitly, our imple-
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Repair-Parameters-Ins[
E
δE

]
,

[
Γ

(v : τ)
Ins
:: δΓ

]
⊢ RParameters(

[
pind
δpind

]
) = (

[
Γ′

δ′
Γ

]
, δp′ind)[

E
δE

]
,
[
Γ

δΓ

]
⊢ RParameters(

 pind

(v : τ)
Ins
:: δpind

 ) = (

[
Γ′

δ′
Γ

]
, δp′ind)

Repair-Parameters-Mod

Fresh1(
[ v
δv

]
) = δ′v τ

δτ⇝ τ′
[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(τ :

[
Type
1

]
) = δ′τ

[
E
δE

]
,

 (v : τ) :: Γ

(δ′v : δ′τ)
Mod
:: δΓ

 ⊢ RParameters(

[
pind
δpind

]
) = (

[
Γ′

δ′
Γ

]
, (δ′v : δ′τ)

Mod
:: δp′ind)[

E
δE

]
,
[
Γ

δΓ

]
⊢ RParameters(

 (v : τ) :: pind

(δv : δτ)
Mod
:: δpind

 ) = (

[
Γ′

δ′
Γ

]
, δp′ind)

Repair-Parameters-Drop[
E
δE

]
,

(v : τ) :: Γ
Drop
:: δΓ

 ⊢ RParameters(

[
pind
δpind

]
) = (

[
Γ′

δ′
Γ

]
, δp′ind)[

E
δE

]
,
[
Γ

δΓ

]
⊢ RParameters(

(v : τ) :: pind
Drop
:: δpind

 ) = (

[
Γ′

δ′
Γ

]
, δp′ind)

Figure 3.21. Rules for repairing inductive parameters (RParameters, part 2/2)
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mentation uses a state monad to pass around local context and global environment.

The rules are fairly straightforward, recursively going over every parameter in

the list, and accounting for their changes in the local context.

Repairing inductive indices

Inductive indices are also given as a telescope, like the inductive parameters,

with the only difference being that their binder may be omitted, where inductive param-

eters must be named. They can be repaired in a similar fashion to inductive parameters,

so we omit the rules for indices.

3.6.4 Repairing terms

The repair algorithm for terms is described formally in Figures 3.22, 3.23, 3.24,

and 3.25 using the following judgments:

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

[ τ
δτ

]
) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t) = δt

The first judgment (described in Figures 3.22 and 3.23) describes how a term is repaired

when we know both its old type τ, and how that type got modified δτ. It is syntax-

directed by the structure of δτ. The second judgment (described in Figures 3.24 and 3.25)

describes how a term is repaired when we no longer make decisions based on its old

type and type diff: this happens for constructs whose type does not inform us about the

type of its constituents (for instance, function application), and for simple terms (holes,

universes, variables).
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Notation

The first judgment can be read as follows:

• Top: Given that a term t had type τ in local context Γ and global environment E,

• Bottom left: and the global environment underwent modification δE,

• Bottom left: and the local context underwent modification δΓ,

• Bottom right: and the type underwent modification δτ,

• Right: then, we suggest to repair the term t with diff δt .

The second judgment can be read analogously, but does not have access to typing in-

formation for the term being repaired. Importantly, the first judgment assumes the diff

δτ is repaired already: it is the responsibility of the caller to ensure so.

Diff-directed term repair algorithm

RTerm1 (described in Figures 3.22 and 3.23) is a repair algorithm for terms, di-

rected by the syntax of the diff for the type of the term being repaired. We will describe

these rules one by one, as they are often quite complex.

Repair-Term-1-Same-Π

Repair-Term-1-Same-Π[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

 Π(χ : τ1)→ τ2
Mod
Π (1Binder : 1Term)→ 1Term

 ) = δ[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

[
Π(χ : τ1)→ τ2

1Term

]
) = δ
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Repair-Term-1-Same-Π[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

 Π(χ : τ1)→ τ2
Mod
Π (1Binder : 1Term)→ 1Term

 ) = δ[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

[
Π(χ : τ1)→ τ2

1Term

]
) = δ

Repair-Term-1-Same-Other

Repair-Term-1-Same-Π does not apply
[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

[ τ
1

]
) = δt

Repair-Term-1-Mod-Π[
E
δE

]
,
[
Γ

δΓ

]
⊢ Fresh1(

[x
1

]
) = δx x δx⇝ x′

[
E
δE

]
,
[
Γ

δΓ

]
⊢ Fresh2(

[ x
δx

]
,

[
χ
δχ

]
) = z χ

δχ⇝ χ′

[
E
δE

]
,

 (z : τ1) :: Γ

(K(z) : δτ1)
Mod
:: δΓ

 ⊢ RTerm1(t[x← z] :
[

τ2[χ← z]
δτ2 [K(χ′)← K(z)]

]
) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(λx→ t :

 Π(χ : τ1)→ τ2
Mod
Π (δχ : δτ1)→ δτ2

 ) = Mod
λ δx → δt[K(z)← K(x′)]

Repair-Term-1-Ins-Π[
E
δE

]
,
[
Γ

δΓ

]
⊢ Fresh1(

[χ
1

]
) = δχ χ

δχ⇝ x τ
δτ1⇝ τ1

[
E
δE

]
,

[
Γ

(x : τ1)
Ins
:: δΓ

]
⊢ RTerm1(t :

[
τ

δτ2 [K(χ)← K(x)]

]
) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

 τ
Ins
Π(χ : δτ1)→ δτ2

 ) = Ins
λ x→ δt

Figure 3.22. Rules for repairing terms, diff-directed (RTerm1 , part 1/2)
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Repair-Term-1-Drop-Π[
E
δE

]
,
[
Γ

δΓ

]
⊢ Fresh2(

[x
1

]
,
[χ
1

]
) = z

[
E
δE

]
,

(z : τ1) :: Γ
Drop
:: δΓ

 ⊢ RTerm1(t[x← z] :
[
τ[χ← z]

δτ2

]
) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(λx→ t :

Π(χ : τ1)→ τ2
Drop
Π δτ2

 ) = Drop
λ δt

Repair-Term-1-Permute-Πs[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(λxp(i)

i∈{1,…,|p|} → t :

Π(χp(i) : τp(i))
i∈{1,…,|p|} → τ

δτ

 ) = δ

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(λxi

i∈{1,…,|p|} → t :


Π(χi : τi)

i∈{1,…,|p|} → τ
p
⇄
Πδτ

 ) =
p
⇄
λδ

Repair-Term-1-Replace[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

[
τ

K(τ′)

]
) = K(_ : τ′)

Repair-Term-1-Otherwise[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

[ τ
δτ

]
) = δt

Figure 3.23. Rules for repairing terms, diff-directed (RTerm1 , part 2/2)
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This rule applies when the type of the term being repaired used to be a de-

pendent function type, such as Π(χ : τ1) → τ2, and this type has not been modified.

In order to not repeat ourselves, this rule simply expands 1Term into the equivalent
Mod
Π (1Binder : 1Term)→ 1Term, so that rule Repair-Term-1-Mod-Π applies.

Repair-Term-1-Same-Other

Repair-Term-1-Same-Other

Repair-Term-1-Same-Π does not apply
[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

[ τ
1

]
) = δt

This rule applies when the type of the term being repaired has not been modified,

for all other cases than a dependent function type. Naively, one might expect the output

to simply be 1 , however, this would not account for changes to definitions in the global

environment and local context, that may have repercussions within t. The rule therefore

defers to the term-directed repair algorithm RTerm2 .
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Repair-Term-1-Mod-Π

Repair-Term-1-Mod-Π[
E
δE

]
,
[
Γ

δΓ

]
⊢ Fresh1(

[x
1

]
) = δx x δx⇝ x′

[
E
δE

]
,
[
Γ

δΓ

]
⊢ Fresh2(

[ x
δx

]
,

[
χ
δχ

]
) = z χ

δχ⇝ χ′

[
E
δE

]
,

 (z : τ1) :: Γ

(K(z) : δτ1)
Mod
:: δΓ

 ⊢ RTerm1(t[x← z] :
[

τ2[χ← z]
δτ2 [K(χ′)← K(z)]

]
) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(λx→ t :

 Π(χ : τ1)→ τ2
Mod
Π (δχ : δτ1)→ δτ2

 ) = Mod
λ δx → δt[K(z)← K(x′)]

This rule requires a lot of care. It applies when the term is an explicit term

abstraction, of the form λx → t, its type is an explicit type abstraction, of the form

Π(χ : τ1)→ τ2, and the diff to its type is an explicit modification of the type abstraction,

of the form
Mod
Π (δχ : δτ1)→ δτ2 .

Perhaps surprisingly, the first thing we’ll do is possibly find a fresh name for

x. Consider that the term abstraction under repair could be (λx → f x), where f was

a function in scope. Now consider what happens in the rare but possible case where

the user renamed f into x. If we aim to repair the term abstraction, we will want to

rename the occurrence of f into x, but it would be wrong to do so, because this x would

be accidentally captured by the term abstraction! In order to repair such an f within

the term abstraction, we had better alpha-rename it first, using a suitably fresh variable,

say (λy → f y). This lets us safely perform the renaming, obtaining (λy → xy). We use

a helper function, Fresh1, in order to detect the conditions within which the variable x
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would require freshening. The output of the helper has type ∆Binder, and will be either

1 when the variable does not need to be refreshed, or K(y) when the variable needs

to be refreshed and y is a suitable fresh variable.

A similar issue arises when we want to repair the body of the abstraction: we

want to introduce the variable being abstracted over in our local context, but it already

has two names, x in the term abstraction, and χ in the type abstraction. For the same

reason as in the previous paragraph, neither x, nor χ, might always be suitable in the

repaired program. We need a new helper function, Fresh2, to pick a suitably fresh

variable, z , that can be substituted in both the term abstraction and the type abstraction

without accidental capture. In many cases, z will simple be x or χ, but in some cases, it

might need to be a new variable.

Now armed with δx and z , we can introduce (z : τ1) in the local context. As

for the local context diff, we preserve the binding, using (K(z) : δτ1). Using K(z) for the

binder diff ensures that all occurrences of z, that is, old occurrences of x, get properly

rewritten into z. We must now perform appropriate substitutions so as to keep the body

of the term abstraction, the body of the type abstraction, and the diff of the body the

type abstraction, all in agreement. For the body of the term abstraction, we substitute

z for x. For the body of the type abstraction, we substitute z for χ. But how should we

alter the diff of this body, that is, δτ2? Looking back at the provenance of δτ2 , we see

it is a diff that has been created under the assumption that variable χ was to undergo

modification δχ. However, we changed this resolution so that variable χ will instead

become x. Therefore, within δτ2 , we should replace occurrences of χ′, the variable that

δτ2 was expecting, to z, the variable that will actually be in scope. Since the only diff

construct that can mentions variables is the “replace” atomic diff operation, K(…), this

means we only need to substitute K(z) everywhere we see a free K(χ′).
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Repairing the body of the term abstraction gives us back a diff, δt . However,

remember that this diff was built with z substituted for the bound variable. Repairing

the term abstraction does not require renaming x to z though, this was only necessary

to account for the dependent function type in repairing the body. In fact, remember

we had decided that variable x should change according to δx. We can therefore build

the appropriate output diff by replacing the binder following δx, and performing a diff

substitution within δt, substituting K(x′) everywhere we see a free K(z), where x′ is the

variable chosen by δx.

Repair-Term-1-Ins-Π

Repair-Term-1-Ins-Π[
E
δE

]
,
[
Γ

δΓ

]
⊢ Fresh1(

[χ
1

]
) = δχ χ

δχ⇝ x τ
δτ1⇝ τ1

[
E
δE

]
,

[
Γ

(x : τ1)
Ins
:: δΓ

]
⊢ RTerm1(t :

[
τ

δτ2 [K(χ)← K(x)]

]
) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

 τ
Ins
Π(χ : δτ1)→ δτ2

 ) = Ins
λ x→ δt

This rule applies when the type of a term t has changed to include a new type

abstraction, as in
Ins
Π(χ : δτ1) → δτ2 . To allow the term to receive this new argument,

we will want to turn it into a term abstraction. But what name should we pick for the

variable to abstract over? The obvious candidate is χ, the same variable that appears

in the type abstraction. However, once again, there is a chance that some unrelated

χ appears free in t. Abstracting over the same variable would result in an accidental

capture! We must pick a suitably fresh name, possibly χ, in the current context. This is

once again achieved using Fresh1, and we obtain a diff, δχ , which will either be 1 if it

is possible to name the binder χ, or K(y) with a suitably fresh y otherwise. Let us name
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x the variable name that was picked.

We can compute the type that this x should have, τ1, and add a binding (x : τ1)

to the local context as we repair t. Once again, we must perform a diff substitution,

because δτ2 was built under the assumption that the value abstracted over would be

named χ, but we instead chose to name it x. The resulting δt is how we want to repair

the body of our soon-to-be term abstraction. The final output is simply
Ins
λ x→ δt . We

do not need to undo the diff substitution, because δt indeed appears under a binder

named x.

Repair-Term-1-Drop-Π

Repair-Term-1-Drop-Π[
E
δE

]
,
[
Γ

δΓ

]
⊢ Fresh2(

[x
1

]
,
[χ
1

]
) = z

[
E
δE

]
,

(z : τ1) :: Γ
Drop
:: δΓ

 ⊢ RTerm1(t[x← z] :
[
τ[χ← z]

δτ2

]
) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(λx→ t :

Π(χ : τ1)→ τ2
Drop
Π δτ2

 ) = Drop
λ δt

This rules applies when some explicit term abstraction, λx → t, had an explicit

type abstraction for its type, Π(χ : τ1) → τ2, but no longer receives this argument. In

this case, we will want to drop the , but repair its body. Once again, we will use Fresh2

to pick a suitably fresh variable that will neither be captured by x in t, nor by χ in τ2. We

simply add the binding (z : τ1) to the local context, and Drop
:: for its diff. Thanks to our

lookup rules (from Section 3.5.2), any reference to z will be replaced with a deprecated

variable name. We simply need to repair the body at the appropriate type and type

diff. The result, δτ , will contain both repairs to t, and remove all references to the
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now obsolete binder x, replacing those with some variable name, depending on the

implementation of Deprecate.

Repair-Term-1-Permute-Πs

Repair-Term-1-Permute-Πs[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(λxp(i)

i∈{1,…,|p|} → t :

Π(χp(i) : τp(i))
i∈{1,…,|p|} → τ

δτ

 ) = δ

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(λxi

i∈{1,…,|p|} → t :


Π(χi : τi)

i∈{1,…,|p|} → τ
p
⇄
Πδτ

 ) =
p
⇄
λδ

This rule applies when the term being repaired is a sequence of term abstrac-

tions λxii∈{1,…,|p|} → t, while its type used to be some telescope of type abstractions

Π(χi : τi)
i∈{1,…,|p|} → τ, and its type has undergone a permutation

p
⇄
Πδτ . Note that the

sequence of term abstractions, as well as the telescope of type abstractions, could be

longer than the length of the permutation, and of different lengths. All that matters

is that we have at least |p| explicit λs in the term, and at least |p| explicit Πs in the type

abstraction, so that we can perform the permutation. When this is possible, the rule is

fairly simple: it applies the permutation to both the term and the type, and repairs the

resulting term against the resulting type. The output of this result is then permuted to

obtain the result of the original problem.
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Repair-Term-1-Replace

Repair-Term-1-Replace

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

[
τ

K(τ′)

]
) = K(_ : τ′)

When the type of a term has been replaced by an arbitrary type τ′, there is noth-

ing meaningful that can be done to repair the old term. We have to give up and return

a typed hole, (_ : τ′).

Repair-Term-1-Otherwise

Repair-Term-1-Otherwise[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

[ τ
δτ

]
) = δt

Finally, when none of the other rules apply, we have exhausted the ways in which

we could use the type to guide the repair. There are still opportunities for repairing the

term, but they are no longer directed by its type, only by the syntax of the term itself.

Therefore, we simply forget about the type information, and call RTerm2 , which we will

discuss now.

Term-directed term repair algorithm

RTerm2 (described in Figures 3.25 and 3.25) is an algorithm directed by the syntax

of the term being repaired, and is used when no information is known about its type, or

how that type might have changed. Let us again go through the rules one by one.

108



Repair-Term-2-Variable[
E
δE

]
,
[
Γ

δΓ

]
⊢
 v

δv

 :  ?

δτv

 [
E
δE

]
,
[
Γ

δΓ

]
⊢ RArguments([],τv,δτv ,δv) = δ[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(v) = δ

Repair-Term-2-Application-Variable
E, Γ ⊢ f : τf

[
E
δE

]
,
[
Γ

δΓ

]
⊢
 f

δf

 :
 ?

δτf


[
E
δE

]
,
[
Γ

δΓ

]
⊢ RArguments(aii∈{1,…,n},τf ,δτf ,δf ) = δ

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(f ai

i∈{1,…,n}) = δ

Repair-Term-2-Application-Term
t is not a variable[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t) = δt

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(ai) = δai

i∈{1,…,n}

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t ai

i∈{1,…,n}) = δt
Mod
$ δai

i∈{1,…,n}

Repair-Term-2-Π[
E
δE

]
,
[
Γ

δΓ

]
⊢ Fresh1(

[x
1

]
) = δx

[
e
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(τ1 :

[Type
1

]
) = δτ1

[
e
δE

]
,

 (x : τ1) :: Γ

(δx : δτ1)
Mod
:: δΓ

 ⊢ RTerm1(τ2 :
[Type

1

]
) = δτ2[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(Π(x : τ1)→ τ2) =

Mod
Π (δx : δτ1)→ δτ2

Repair-Term-2-λ[
E
δE

]
,
[
Γ

δΓ

]
⊢ Fresh1(

[x
1

]
) = δx

[
e
δE

]
,

[ x :: Γ

δx
Mod
:: δΓ

]
⊢ RTerm2(t) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(λx→ t) =

Mod
λ δx → δt

Figure 3.24. Rules for repairing terms, term-directed (RTerm2)
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Repair-Term-2-Match[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t) = δt

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RBranches(t, [b1 . . . bn]) = δb[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2( match t with b1 . . . bn) = δ

Repair-Term-2-Annotation[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(τ :

[
Type
1

]
) = δτ

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

[ τ
δτ

]
) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t : τ) = δt : δτ

Repair-Term-2-Otherwise[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t) = 1

Figure 3.25. Rules for repairing terms, term-directed (RTerm2 , part 2/2)

Repair-Term-2-Variable

Repair-Term-2-Variable[
E
δE

]
,
[
Γ

δΓ

]
⊢
 v

δv

 :  ?

δτv

 [
E
δE

]
,
[
Γ

δΓ

]
⊢ RArguments([],τv,δτv ,δv) = δ[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(v) = δ

This rule applies when repairing a variable. By using our lookup rules (from Sec-

tion 3.5), we can hope to obtain a diff for v, δv , telling us whether it has been renamed

or not. Naively, we might want to call this the answer, and move on. But, our lookup

also lets us know how the type of v has changed, captured in the output δτv . And it

could be that the type of v has changed, for instance, from a constant to a function of

some number of arguments! Were this the case, repairing an occurrence of v properly
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would require adding values for these new arguments.

This is just a special case of repairing a function application, that we will see

in the next rule (Rule Repair-Term-2-Application-Variable). We will solve the problem by

using a helper function, RArguments, which repairs an arbitrary function applied to some

number of arguments. A variable is simply a special case where the list of arguments

is empty, i.e. [].

Repair-Term-2-Application-Variable

Repair-Term-2-Application-Variable

E, Γ ⊢ f : τf

[
E
δE

]
,
[
Γ

δΓ

]
⊢
 f

δf

 :
 ?

δτf


[
E
δE

]
,
[
Γ

δΓ

]
⊢ RArguments(aii∈{1,…,n},τf ,δτf ,δf ) = δ

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(f ai

i∈{1,…,n}) = δ

This rule applies when the term is a function application. Repairing nested func-

tion applications is not as trivial as it could seem. Consider some function f , whose type

used to be (A→ C), and undergoes the transformation:

δτ =
Mod
Π (1 : 1)→ (

Ins
Π(_ : B)→ 1)

yielding the type (A → B → C). Suppose the original code contains a call to f , for

instance (f a). The repaired function call ought to be (f a (_ : B)). This means that the

repair diff ought to be:

δt = ((1
Mod
$ 1)

Ins
$ (_ : B))
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Notice how the outermost term modification in δt, i.e.
Ins
$ , corresponds to the inner-

most type modification in δτ, i.e.
Ins
Π . This is not surprising: a function g whose type is

(A → (B→ (C → D))), and its application to arguments (((g a) b) c), exhibit the same

inversion. For this reason, RArguments works by processing the Π-telescope type diff (a

sequence of nested modification of Πs, such as δτ) from outside-in, and builds the term

applications diff (such as δt) from inside-out.

In order to do so, we syntactically extract as many nested applications as possible,

yielding a sequence of arguments of some arbitrary length aii∈{1,…,n}, and pass this array

of arguments to RArguments.

We omit the rules for RArguments as they would be cumbersome. The algorithm

is first directed by the diff of the function’s type, performing the appropriate addition,

modification, deletion, and permutation of arguments, while also repairing existing

arguments. Care is taken in keeping track of the unprocessed list of arguments, so that

when the function’s type diff becomes 1, we can introduce the appropriate amount

of Mod
:: in the result. For instance, consider the following change and repair, and their

diffs:

In this figure, we annotate the instances of 1 with a subscript indicating the term

that they are preserving. Notice how, in the type, we have 1 C → D → E , but in the diff

for x , we have no choice but to expand it to a sequence of
Mod
$ operations, one for each

argument, because of the reversed order. In practice, this can be achieved in one of two

ways:

• by pre-processing instances of 1 in input types, and expanding them to the diffs

that they stand for. For instance here, we would expand 1 C → D → E into the

equivalent, but more verbose
Mod
Π (1 : 1 C )→

Mod
Π (1 : 1 D )→ 1 E ,
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Definition f : A → C → D → E → F :=
↪→

…
.

Definition x := f a c d e.

Definition f : A → B → C → D → E →
F :=↪→

…
.

Definition x := f a (_ : B) c d e.

δτf =
Mod
Π (1 : 1 A )→

Ins
Π(B : A)→ 1 C → D → E

δx = 1
Ins
$ (_ : B)

Mod
$ 1 c

Mod
$ 1 d

Mod
$ 1 e

Figure 3.26. Modification and repair of a function and function call, and their
respective diff

• or by keeping track of the number of arguments in the RArguments algorithm, and

processing 1 as if it was a
Mod
Π (:) → for as long as we have arguments remaining

(essentially dynamically emulating the previous option).

We present the rules following the latter approach.

Repair-Term-2-Application-Term

Repair-Term-2-Application-Term

t is not a variable

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t) = δt

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(ai) = δai

i∈{1,…,n}

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t ai

i∈{1,…,n}) = δt
Mod
$ δai

i∈{1,…,n}

This rule applies when we are trying to repair a function application that does
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not fit the previous rule: its leftmost nested node that is not an application node is not

a variable either, but some other term. An example of such term is an immediately

applied function obtained by pattern matching:

(match b with true => f | false => g end) x

Because we do not know the type of the function being applied, we cannot repair the

function applications properly. We simply repair each argument, and leave the se-

quence of applications unchanged. A more interesting repair would consist in first

inferring the type of t, then repairing it to obtain a diff for its type, and then calling

RArguments. We have not yet explored this option.

Repair-Term-2-Π

Repair-Term-2-Π[
E
δE

]
,
[
Γ

δΓ

]
⊢ Fresh1(

[x
1

]
) = δx

[
e
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(τ1 :

[Type
1

]
) = δτ1

[
e
δE

]
,

 (x : τ1) :: Γ

(δx : δτ1)
Mod
:: δΓ

 ⊢ RTerm1(τ2 :
[Type

1

]
) = δτ2[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(Π(x : τ1)→ τ2) =

Mod
Π (δx : δτ1)→ δτ2

This rule applies to repair a dependent function space. It is a somewhat straight-

forward process. Once again, we need to possibly refresh the binder, using Fresh1, for

the same reasons as explained for Rule Repair-Term-1-Mod-Π.
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Repair-Term-2-Match

Repair-Term-2-Match[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t) = δt

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RBranches(t, [b1 . . . bn]) = δb[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2( match t with b1 . . . bn) = δ

This rule applies to repair a match construct. The repair process is quite com-

plex, so we abstract over it with the RBranches helper function. The discriminee, t, can be

readily repaired.

Subsequently, we need to repair the branches. There are two complications:

1. We need to find what type is being matched, so that we can look up its construc-

tors and how they have changed. However, the type never appears explicitly in

the program.

2. We would like to keep the existing branches in the same order as they appear in

the user’s program, which can be different from the order in which the construc-

tors are declared in the data type.

To resolve the first issue, we use a sequence of heuristics: we can look up the

type of t, which might be the inductive type. However, remember that in a dependently-

typed language, the type of t could be an arbitrary computation, rather than simply a

concrete type constructor applied to its arguments. Our second heuristic looks at the

constructors in the branches, and looks for an inductive data type in scope that has

these constructors. This is more involved, but should cover cases where the type of t is

not helpful.
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Once we know the inductive type of t, we are ready to attack the second problem.

Let us consider a concrete case to make matters clear. Consider the code:

1 Inductive T : Type := A : T | B : T | C : T.
2

3 Definition code (t : T) : … :=
4 match t with
5 | C => …
6 | A => …
7 | B => …
8 end.

And let’s consider the following modification to inductive data type T :

1 Inductive T : Type := B : T | C : T | D : T.

where constructor A has been removed, and constructor D has been added. We would

like the repair to be:

1 Definition code (t : T) : … :=
2 match t with
3 | C => …
4 (* | A => … *) (* this branch should be deleted *)
5 | B => …
6 | D => … (* this branch should be added *)
7 end.

A simple way to obtain this result is to find a permutation from the old list of

branches to the old list of constructors, and a mapping from the old list of constructors

to the new list of constructors, as depicted in Figure 3.27. We first compute the permu-

tation p that will let us reorder the patterns as they appear in the user’s program, to

the order in which they appear in the data type declaration. Now that they are in the

same order, and we know the inductive data type being modified, we can also obtain

the diff to that inductive data type, and in particular, the diff to the list of constructors.

From this, it is easy to compute a diff-continuation, represented in Figure 3.27 as a list

diff operation with “…”.
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| C => …

| A => …

| B => …

| A => …

| B => …

| C => …

Drop
:: …

δB
Mod
:: …

δC
Mod
:: …

δD
Ins
:: …

δC
Mod
:: …

Drop
:: …

δB
Mod
:: …

D Ins
:: …

p
⇄
:: RBranch

p−1
⇄
::

Figure 3.27. Repairing branches of a match using permutations

For instance, since the A constructor was removed, we can compute that the A

branch must be removed. Had the B constructor been modified, we could compute a

relevant δB patch to repair the branch. In our simple example where it has not changed,

we have δB = 1. For new constructors, like D , we can just fabricate empty branches

(with the proper constructor and arity for each pattern) and append them last.

We have not yet extended our language to dependent pattern matching of the

form:

1 match … as … in … return … with
2 | …
3 end

as found in Coq, but we believe it should not pose a significant challenge: the as clause,

in clause, and return clause, should be repaired in order, with proper care taken

about what variables come in and out of scope. They can be repaired independently

from the discriminee and the branches. When an in clause is present, it would in fact

tell us the type of the discriminee! When a return clause is present, however, we

might be able to use RTerm1 , rather than RTerm2 , to repair the body of each branch, since

we know what type to expect from the branch!
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Our treatment of match has a great advantage over manual refactoring in the

presence of a wildcard pattern. A common source of problems when refactoring a

data type definition happens when some code uses wildcard patterns. Consider the

following code:

1 Inductive T : Type := A : T | B : T | C : T.
2

3 (* then, somewhere far from this definition *)
4

5 Definition handle (t : T) : bool :=
6 match t with
7 | A => true
8 | _ => false (* everything else is false! *)
9 end.

If the programmer later decides to extend the datatype to the following:

1 Inductive T : Type := A : T | B : T | C : T | D : T .

then the old version of the handle function will happily type-check, mapping input

D to output false , which might not have been the intent of the programmer. Pattern

matches that does not use wildcard patterns, on the other hand, will complain that the

D case is not handled. For this reason, wildcard patterns are often considered bad

practice. However, with our technique, the same program will naturally be repaired

into:

1 Inductive T : Type := A : T | B : T | C : T | D : T .
2

3 Definition handle (t : T) : bool :=
4 match t with
5 | A => true
6 | D => (_ : bool)
7 | _ => false (* everything else is false! *)
8 end.

which will force the user to consider whether they want this branch to return true or

false . In some sense, it makes working with wildcard patterns safer, as long as all
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refactoring attempts are carried through our tool, of course.

We omit the rules for RBranches, but the high-level algorithm consists in:

• heuristically figure out the type of the discriminee t,

• perform the transformation described in Figure 3.27.

Repair-Term-2-Annotation

Repair-Term-2-Annotation[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(τ :

[
Type
1

]
) = δτ

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm1(t :

[ τ
δτ

]
) = δt[

E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t : τ) = δt : δτ

This rule applied when the term being repaired is a type-annotated term. Note

that (t : τ) is the term being repaired here, the black colon operator being part of the

syntax of Chick (described in Section 3.3.1), as opposed to the purple colon operator

that we use in the previous judgment RTerm1 . This is quite straightforward: we first

repair the type, then we repair the term. Note that, even though we repair the type

with RTerm1 , there are no rules that apply to a type like Type , so it will defer back to

RTerm2 . We only choose to present the rule with RTerm1 so that, if someone extended

RTerm1 to be more clever in its treatment of Type , this could benefit from it.
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Repair-Term-2-Otherwise

Repair-Term-2-Otherwise

[
E
δE

]
,
[
Γ

δΓ

]
⊢ RTerm2(t) = 1

For all other cases, we do not yet perform any meaningful repair. The concrete

terms that we do not attempt to repair are:

• immediately-applied term abstractions, which are harder than applied functions

because we cannot simply look up the type of the term abstraction,

• holes, that can remain the same,

• and universes, that can remain the same.

3.7 Deriving repair functions

Accounting for changes in inductive definitions requires quite a bit of work:

• the inductive type itself must be repaired, including its parameters, and its in-

dices,

• each constructor must be repaired, including their parameters, and their instanti-

ation of indices,

• the automatically generated elimination principles for the type must also be re-

paired accordingly.

Let us focus on the latter. In a proof assistant like Coq, when an inductive data type t
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is defined, the system also defines a family of elimination principles t_ind , t_rec , and

t_rect , that essentially encode an induction principle for the given type. For instance,

for the types list and vec , the induction principles are given in Figure 3.28.

list_ind :
∀ (A : Type)

(P : list A →
Prop),

P (nil A) →
(∀ (a : A)

(l : list A),
P l →
P (cons A a l)

) →

∀ l : list A,
P l

1
2

3
3

4
5
6

vec_ind :
∀ (A : Type)
(P : ∀ n : nat, vec A n →

Prop),
P 0 (vnil A) →
(∀ (a : A) (n : nat)

(v : vec A n),
P n v →
P (S n) (vcons A a n v)

) →
∀ (n : nat)

(v : vec A n),
P n v

1
2

3
3

4
5
6

Figure 3.28. Induction principles for list and vec

The property being returned P is usually referred to as the motive of the elim-

ination principle (see McBride [25] for a thorough introduction to elimination with a

motive). The motive is a property about a value of the inductive type being eliminated:

we will refer to this value as the target of the motive. The value being eliminated (the

last universally quantified value, respectively l and v ) are usually referred to as the

discriminee. The process that computes the elimination principle’s type from the induc-

tive data type definition Inductive({nind, pind, iind,uind, cind}) is involved, but straightfor-

ward:

1 the inductive parameters pind are universally quantified over,

2 the motive P is universally quantified over, its type being computed by:

• universally quantifying over the inductive indices iind,
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• universally quantifying over a target, i.e. an element of the inductive type

undergoing elimination, fully instantiated with parameters from 1 and the

indices from the previous sub-step,

• and returning in the appropriate universe for the desired elimination princi-

ple,

3 for each constructor Constructor({nctor, pctor, ictor}), a case is universally quantified

over, whose type is obtained thus:

• each constructor parameter pctor is universally quantified over, and for each

parameter that is a recursive occurrence of the data type being eliminated,

a fully instantiated motive, with appropriate arguments so as to target this

parameter, is also universally quantified over immediately after this param-

eter,

• the return type is also a fully instantiated motive, where inductive indices are

instantiated with the constructor indices ictor, and the motive’s target is an

instantiation of the constructor nc, with inductive parameters from step 1 ,

and constructor parameters from the previous sub-step,

4 inductive indices iind are universally quantified over,

5 the discriminee is universally quantified over, its type being the inductive type

applied to inductive parameters from 1 and inductive indices from 4 ,

6 finally, the elimination rule returns a value of the fully instantiated motive, with

indices from 4 , and the discriminee as target.

We will use Haskell syntax to describe meta-language implementation details (we re-

serve Coq syntax for programs in the object language). Our function computing the
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type of an eliminator has the following high-level skeleton:

1 eliminatorType … =
2 quantifyVars inductiveParameters {- 1 -}
3 . mkPi motiveType motive {- 2 -}
4 . quantifyCases inductiveConstructors {- 3 -}
5 . quantifyVars inductiveIndices {- 4 -}
6 . mkPi discrimineeType discriminee {- 5 -}
7 $ mkApp indices discriminee {- 6 -}
8 where
9 indices = applyVars inductiveIndices motive

where quantifyVariables , applyVariables are folding functions that create Pi s,

and App s, respectively, and motiveType and discrimineeType are computed by

additional fold operations.

Our insight is as follows: while we cannot derive a diff-propagating function

for any fold in general, we can describe how a given folding operation f reacts to

differences in the input list l in the call (fold f l b) . From this description, we

can derive the diff-propagating function for the whole fold operation. To make things

more concrete, let’s focus on quantifyVariables and build its corresponding, diff-

propagating version δquantifyVariables . The original function is a right-fold that

universally quantifies over every element encountered. We can describe how it reacts

to changes in the input list using the following record type:

1 data ΔListFold τ δτ δ = ΔListFold
2 { onInsert ∷ τ → [τ] → δ → δ
3 , onModify ∷ δτ → τ → [τ] → δ → δ
4 , onPermute ∷ [Int] → [τ] → δ → δ
5 , onRemove ∷ τ → [τ] → δ → δ
6 , onReplace ∷ [τ] → [τ] → δ → δ
7 , onSame ∷ [τ] → δ → δ
8 }

For each diff operation on lists, we record a transformer on the output diff type δ . In

our example, the fold is building a Term , so the output diff type is ΔTerm , and we
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describe how the output term is affected by changes to the input list: when an element

is inserted in the input list, aΠ is added to the output term, when an element is removed

from the input list, a Π is removed from the output term, etc. When the entire list gets

replaced, the handler receives the old list l and the new list l' : the output term will

see (length l') Πs removed, and for each element of l , a corresponding Π will be

added. We then have two functions:

1 δListFoldLeft, δListFoldRight ∷
2 ΔListFold τ δτ δ →
3 [τ] → ΔList τ δτ → Maybe (δ → δ)

which take such a description, an original list, and a list diff, and compute the resulting

diff transformer for the output type, as long as the diff makes sense for the list. Receiving

the original list lets us check the sanity of the list diff at each step (e.g. a diff should not

ask to drop the head from an empty list), and lets us pass the element being modified

or removed to the handlers who need the information. With all this machinery ready,

we can derive δEliminatorType as:

1 δEliminatorType ... =
2 δquantifyVars ips δips
3 <$> CopyPi δmotiveType Same
4 <$> δquantifyCases cs δcs
5 $ δquantifyVars iis δiis
6 $ CopyPi δdiscrimineeType Same
7 $ CopyApp δindices Same
8 where
9 δindices = δapplyVars iis δiis Same

which matches closely the original definition of EliminatorType . We use the same

mechanism to derive a diff-propagating version of the function that computes the type

of an inductive type family (based on the diff of its parameters and indices lists), and a

diff-propagating version of the function that computes the type of a constructor (based

on the diff of its parameters and indices lists). At a high-level, we have the following

property:
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EliminatorType(Inductive({n,−→p ,−→i ,u,−→c })) = e

Inductive({n,−→p ,−→i ,u,−→c }) δi⇝ Inductive({n′,
−→
p′ ,
−→
i′ ,u′,

−→
c′ })

ΔEliminatorType(Inductive({n,−→p ,−→i ,u,−→c }), δi) = δe

EliminatorType(Inductive({n′,
−→
p′ ,
−→
i′ ,u′,

−→
c′ })) = e′

e δe⇝ e′

i.e., δEliminatorType produces the correct diff to transport the old eliminator type

to the new eliminator type.

Remark

In fact, we even have the following corollary:

EliminatorType(i) = e

ΔEliminatorType(i, δInductive({K(n),K(−→p ),K(−→i ),K(u),K(−→c )})) = δe

EliminatorType(Inductive({n,−→p ,−→i ,u,−→c })) = e′

e δe⇝ e′

which makes EliminatorType seem redundant, as it coincides exactly with the result of

ΔEliminatorType when passed a diff replacing all pre-existing data from the inductive

type.
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3.8 Guessing diffs

We showed how our algorithm could take an initial program, and a diff describ-

ing how to obtain the partial refactoring, in order to generate a repaired diff with the

refactoring carried out. However, we had postponed the discussion of how this original

diff was obtained.

Automatically generating this diff turns out to be a hard problem. It is equiva-

lent to the tree difference problem: given two abstract syntax trees, we want to find a

mapping of pairs of nodes from the old tree and the new tree, such that we have high

confidence that they are related nodes.

There is a bit of literature on the subject. We chose to use the GumTree algorithm,

for two reasons. First, its has a worst-case time complexity of O(n2), where the worst

time is unlikely to happen in real abstract syntax trees. Second, it works by ranking

candidate pairs according to some heuristic similarity metric, which is useful in order

to compute not just the most likely answer, but, possibly, a list of likely answers ranked

by the heuristic likelihood.

Unfortunately, our early attempts of using the algorithm with our data types

proved unsuccessful. Let us illustrate where the algorithm fails in our setting, by first

giving a broad overview of how it works:

• First, all leaves are distinguished based on their identity. In our figures, we will

denote nodes that are considered similar using colors. After this first pass, all

leaves should be colored, such that they are similar to equal leaves.

• Then, all pairs of old internal nodes and new internal nodes are compared (in

an efficient order) for similarity of their children. The similarity S between two
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S(n1,n2) =
2×
∣∣∣ {c1 ∈ C(n1) such that ∃c2 ∈ C(n2), c1 ≈ c2}

∣∣∣∣∣∣ {c ∈ C(n1)} ∣∣∣ + ∣∣∣ {c ∈ C(n2)} ∣∣∣
where C(n) is the set of children of n

and c1 ≈ c2 means that c1 is considered similar to c2
Figure 3.29. Similarity between two nodes

nodes is defined in Figure 3.29, and ranges between 0 (no shared children) to 1 (all

children are shared). Note that it does not account for the order of the children.

• As items are found to be similar, they are added to a relation n1 ≈ n2. A custom

threshold allows us to tweak how similar two nodes need to be in order for our al-

gorithm to consider them similar. Then, remaining pairs of nodes are considered

by decreasing similarity, and added to the same relation.

Let us now see where this algorithm underperforms in our setting. Consider

the abstract syntax trees in Figure 3.30. In it, we highlight three identical sub-trees, T1,

T2, and T3, in red dashed rounded rectangles. Due to being exactly the same sub-trees,

their similarity score will be equal. Yet, to a human being, T2 ≈ T3 seems more likely

than T1 ≈ T3: they are roughly in a similar location in the abstract syntax tree.

In order to improve the algorithm’s detection of such cases, we modify our ab-

stract syntax trees by “squashing” sequences of binary operators together into n-ary

nodes. We show how this affects the same two trees in Figure 3.31. Thanks to the

squashing, the four internal nodes l1, l2, r1, and r2 now display different similarities

with each other. The algorithm will now consider that l2 and r2 are most likely to be

similar, and mark them as such.

Once this is done, it will recompute similarities for the remaining, unmatched

internal nodes. Here, l1 and r1, the only remaining nodes, will now have an increased
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→

→

A →

C D

→

A →

C D

→

→

C →

B →

A D

→

A →

B →

C D

T1

l1

T2

l2

T3

r

S(l1, r) = 1 S(l2, r) = 1

Figure 3.30. Example of sub-trees with equal similarity

→

→

A C D

A C D

l1

l2

→

→

C B A D

A B C D

r1

r2

S(l1, r1) =
6

9
= 0.67 S(l1, r2) =

6

8
= 0.75

S(l2, r1) =
6

8
= 0.75 S(l2, r2) =

6

7
= 0.86

Figure 3.31. Example of squashed telescopes
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similarity of 8
9 , or 0.89, due to l2 and r2 being considered similar. This should exceed

our custom threshold and allow these nodes to be considered similar, resulting in the

matching shown in Figure 3.32.

→

→

A C D

A C D

→

→

C B A D

A B C D

Figure 3.32. Guess for matching with squashed telescopes

However, we now need to unsquash the tree and figure out the proper relation-

ship between the previously squashed nodes. This yields the syntax trees as shown in

Figure 3.33, where several nodes share the same coloring. In order to produce a diff,

we would like to have unique pairings between the two trees.

→

→

A →

C D

→

A →

C D

→

→

C →

B →

A D

→

A →

B →

C D

Figure 3.33. Guess for matching unsquashed, unresolved
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Since → is a right-associative operation, we resolve the pairings by comparing

the left children of the remaining nodes first, then by comparing similarity on the re-

maining nodes. This yields our final guess, as shown on Figure 3.34. The outlines

highlight those nodes we considered similar due to their left child. The root nodes

have different left children, but their similarity is 1
2 , or 0.5, due to having similar right

children, so they are also considered similar.

→

→

A →

C D

→

A →

C D

→

→

C →

B →

A D

→

A →

B →

C D

Figure 3.34. Guess for matching unsquashed, resolved

Now that we have identified similar nodes between the old tree and the new

tree, the final step is to build an actual diff from this information. The algorithm is

a fairly straightforward tree recursion. We highlight how it works on three relevant

examples.

Example 1

When the nodes on either side are equal, as is the case with the root nodes of

the two trees we’ve been considering so far, we can keep the node (here, a Π node,
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using
Mod
Π ), and recursively compute the diffs between its sub-trees. This is shown in

Figure 3.35.

→

→

... ...

→

... ...

→

→

... ...

→

... ...

L

L L

R

R R

δ( →
L

, →
R

) =
Mod
Π (1 : δ( →

L
, →

R
))→ δ( →

L
, →

R
)

Figure 3.35. Run of the algorithm for turning a matching into a diff (example 1)

Example 2

When the nodes on either side are not equal, as is the case with the left sub-

trees of the trees we previously considered, we must figure out whether the node on

the left has been removed, or moved around, and if the node on the right has been

added, or moved around. This is shown in Figure 3.36. In this case, the left node has a

similar node in the right sub-tree, and the right node has a similar node in the left sub-

tree. In order to resolve this crossing of nodes, we must introduce a permutation. Our

algorithm figures out a minimal permutation that will re-order all the nodes in the left

telescope, such that all such crossings are resolved at once. In this case, the permutation

is simply switching the first and second elements of the telescope, indicated by the

permutation
[1,0]
⇄
Π . We then proceed recursively with the permuted tree on the left, and

the exact same tree on the right.
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→

A →

C D

→

C →

B →

A D

L

L

R

R

δ( →
L

, →
R

) =

[1,0]
⇄
Π δ( →

C →

A D

L

L

, →
R

)

Figure 3.36. Run of the algorithm for turning a matching into a diff (example 2)
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Example 3

Another case where the nodes considered do not match each other is shown in

Figure 3.37. There, the right sub-tree contains a matching node for the left node, but the

left sub-tree does not contain a matching node for the right node. This tells us that the

right node must have been inserted. We output an insertion with
Ins
Π , and recursively

process the entire left tree against the right sub-tree of the right node.

→

A D

→

B →

A D

L R

R

δ( →
L

, →
R

) =
Ins
Π(_ : B)→ δ( →

A D

L
, →

A D

R
)

Figure 3.37. Run of the algorithm for turning a matching into a diff (example 3)

Figure 3.38 shows the final result of running our algorithm on our running ex-

ample trees. The result is framed with colors indicating the provenance of each part of

the large expression. The two-colored frame indicates the color of the two nodes that

have given rise to a permutation. Notice how the result is neither computed via a top-

down nor a bottom-up approach: the top node gives rise to the outermost
Mod
Π , but its

left child gives rise to one of the innermost 1.

This chapter is, in part, currently being prepared for submission for publication

of the material. The dissertation author was the primary investigator and author of this
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→

→

A →

C D

→

A →

C D

→

→

C →

B →

A D

→

A →

B →

C D

Mod
Π (1 :

[0,1]
⇄
Π

Mod
Π (1 : 1 )→

Ins
Π(_ : B)→ 1 )→

Mod
Π (1 : 1 )→

Ins
Π(_ : B)→ 1

Figure 3.38. Final guess
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material. The only co-author is their advisor, Sorin Lerner.
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Chapter 4

Coop: extending Chick to repair other
languages

In this chapter, we present ongoing work to extend Chick so that it can repair

programs regardless of their surface level language. We call this extension Coop.

Section 4.1 presents a high-level view of the architecture of Coop.

Section 4.2 explains how we embed constructs from foreign languages within

Chick, and how we extract those back after repair.

Section 4.3 describes our use of traversals to repair inner constructs that we han-

dle within outer constructs that we do not handle.

Section 4.4 shows how we can turn the output abstract syntax tree of Coop into

concrete syntax with minimal impact on the original layout of the code.

4.1 Design of Coop

Unfortunately, testing Chick on real-world Coq programs is extremely compli-

cated. For one, the language described by Chick is a very small subset of Coq’s Gallina
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and Vernacular languages, ignoring not only many of the core constructs of those lan-

guages, but also all of Ltac. Even ignoring this lack of support, parsing Coq code cor-

rectly is almost always not possible outside of Coq itself, because the language supports

an extensible syntax, adding almost arbitrary notations to its core syntax, and does not

(yet) expose this information in a convenient way to external tools.

Even assuming the problem of parsing solved, Chick as described in Section 3.3

has no way of representing all the features of Coq that we do not explicitly support. In

order to build a robust tool, that can withstand future evolution of those languages, we

need a way to account for language constructs that we do not know. What we would

like is the ability to gloss over syntactic constructs that we do not know, and provide

repairs for the rest of the program, to the best of our ability. This is unsafe by nature,

since the syntactic constructs we gloss over can change the global environment in ways

we do not account for, but any help attempt is better than none, since our tool only

claims to cut some of the tedious work for its users.

We present the workflow that we envision for Coop, an extension of Chick to sup-

port repairing other programming languages, in Figure 4.1. Starting with an original

program and a partially refactored program, in some source language, we can use a

parser for the source language to obtain abstract syntax trees (AST) for those. Now, in

order to embed these into Chick, we need some program we call an embedder, and dis-

cuss in Section 4.2. Now we can run the original Chick pipeline, described in Section 3.2,

until we obtained a repaired abstract syntax tree, still in theChick language. We can now

run an extracter, which performs the inverse operation to our embedder. We obtain a

repaired abstract syntax tree, now in the syntax of the source language. We can then ob-

tained the repaired program, using the surface syntax of the source language, by calling

a pretty-printer. We use a diff-pretty-printer, described in Section 4.4, so as to obtain a

program syntactically as close as possible to the original.
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Original program Partially refactored program

Source language parser

Original AST Partially refactored AST

Source language embedder

Source
language

Chick

Original AST Partially refactored AST

Chick (as described in Figure 3.1)

Repaired AST

Source language extracter Chick
Source

language

Repaired AST

Source language diff-pretty-printer

Repaired program

Figure 4.1. Coop’s workflow
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4.2 Embedding and extracting programs

In order to embed a new language into Chick, we simply need to add a construc-

tor to the constructor of our Vernacular and Term types. For instance, we added

support for OCaml with the following extension:

⟨vernacular⟩ ::=

| … (same as in Section 3.3.2)

| OCamlStructureItem ⟨ocaml-structure-item⟩

⟨term⟩ ::=

| … (same as in Section 3.3.1)

| OCamlExpression ⟨ocaml-expression⟩

Now, our embedder can inspect the incoming abstract syntax tree, and decide to

map constructs from the source language toChick constructs, when it makes sense to do

so, or store the constructs in the extra constructors when there is no matching concept

in Chick.

For instance, in the OCaml embedder, we map constructs such as OCaml’s (non-

polymorphic) variants to our notion of inductive data types, since the concepts match.

We can also map most simple expressions to our term type, but complex features that we

do not support (say, nested pattern matching) get put aside in the OCamlExpression

constructor.

The extracter acts as an inverse of the embedder, mapping Chick constructs back

to their source language counterpart. Constructs that have been stashed in one of our

constructors for unsupported language features are simply restored as is, and Chick

constructs are mapped back to the source language construct they came from.
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Unfortunately, we sometimes need to map different source language abstract

syntax trees to the same Chick abstract syntax tree. For instance, using OCaml as an

example again, the following two functions:

1 let f x y = 42
2 let g x = fun y -> 42
3 let h = fun x -> fun y -> 42

map to similar Chick terms:

1 Definition f : _ := λ x, λ y, 42.
2 Definition g : _ := λ x, λ y, 42.
3 Definition h : _ := λ x, λ y, 42.

In order to try and preserve surface-level syntax as much as possible, we would

like to attach metadata about such source language syntactic choices in Chick terms.

This goals seems at odds with our intent of making Coop extensible, but we can actu-

ally achieve this somewhat easily by using the so-called “Trees that grow” technique

employed by Najd and Jones [28] for the Glasgow Haskell Compiler (GHC). Using gen-

eralized algebraic data types (GADTs), and type families, this technique allows us to

build abstract syntax trees for Chick that can be decorated with arbitrary metadata, and

use type-level computations to determine what this metadata may be for different con-

structors in different contexts.

For instance, we can solve the previous problem by attaching metadata about

the number of function arguments that are marked as parameters, as opposed to being

abstracted over.

1 -- We declare the existence of a family of types for storing
the↪→

2 -- metadata attached to a Definition.
3 type family DefinitionMetadata ξ
4

5 -- We attach this metadata to the Definition contructor.
6 data Vernacular ξ
7 = Definition (DefinitionMetadata ξ) (DefinitionData ξ)
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8 | …
9

10 -- We instantiate the family for the OCaml language with an
11 -- integer representing the number of explicit parameters.
12 type instance (DefinitionMetadata OCaml) = Int

With this information attached to our Definition nodes, the extracter can pick

the appropriate form, so as to preserve the original syntactic choice.

1 extracterVernacularOCaml ∷ Vernacular 'OCaml → StructureItem
2 extracterVernacularOCaml (Definition metadata data) =
3 -- Here, metadata ∷ Int, tells us how many parameters should
4 -- be before the equal sign, vs. bound by a lambda

Sometimes, Chick might need to come up with a new datum, for which there is

no sensible metadata it could attach to it. For such cases, using an optional type for the

metadata (say, Maybe Int instead of Int here) allows us to avoid this issue.

Overall, this technique gives us great flexibility, as different languages will need

different metadata for the same concepts. The language of choice is carried throughout

the Chick pipeline as a type-level tag, using Haskell’s DataKinds extension. This also

means that, anywhere in the pipeline, we can readily choose to inspect the tag and

do something specific based on it. For now, we only use this technique to pick the

appropriate parser and pretty-printer, but it could also be used to change parts of the

repair algorithm if some language needs specific, distinct support.

4.3 Optics to repair unknown language constructs

There is a major problem with the approach described in Section 4.2. Consider

the following OCaml code:

1 type a = … (* some type definition *)
2

3 module SomeModule =
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4 struct
5 type b = … (* some other type definition, depends on a *)
6 let f = … (* some function, depends on a *)
7 end

Our current implementation of Chick does not have a notion of modules. There-

fore,Coophas to stash away the whole module declaration in its OCamlStructureItem ,

and will provide no repair for it. This is unfortunate, because the module contains data

type declarations, and function declarations, all of which we know how to repair, and

could attempt to, were they visible.

We can find a solution to this problem using functional lenses. Lenses are an ab-

straction mechanism encompassing a pair of a getter and a setter for some value within

some datum. They are often described in the simplified version:

1 data Lens s a = Lens
2 { get ∷ s → a
3 , set ∷ s → a → s
4 }

where s stands for the type of the store, or the outer structure, and a stands for the type

of the value under focus.1

Lenses are useful because they are first-class, composable values that allow mod-

ifying parts of a datum while ignoring the rest of it. This matches quite well with our

goal: we wanted to zoom in on the inner parts of the module, getting and setting the

components of the module we understand, ignoring the rest. However, lenses only

have one focus, whereas our data could contain an arbitrary amount of components we

might want to focus upon.

Traversals are a generalization of lenses with multiple foci. They are also an ab-
1Actual implementations of lenses are usually more complex, with two additional parameters allow-

ing the setter to output at a different store type. Some instances also add a Functor constraint to allow
getting and setting in a functorial context.
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straction of a getter and a setter, except that they may operate on multiple instances of

the focus type within a datum. In order to allow maximum flexibility, traversals process

the foci within an applicative functor. Uniform traversals over parameterized data struc-

tures can be automatically derived using extensions like Haskell’s TemplateHaskell,

but in our case, we will need to write our traversals manually. This allows us to specifi-

cally choose the order of the traversal, as well as selectively choose whether some parts

of data types should be traversed or not. Let us see how we can define such a traver-

sal over OCaml abstract syntax trees. For this, we will use type classes to capture data

types that contain structures we are interested in. For the OCaml language, we are inter-

ested in values of type Structure (which correspond to our Vernacular data type),

and values of type CoreType and Expression (which correspond to our Term data

type).

1 class HasStructure t where
2 structure ∷ Traversal' t Structure
3

4 class HasCoreType t where
5 coreType ∷ Traversal' t CoreType
6

7 class HasExpression t where
8 expression ∷ Traversal' t Expression

We can then instantiate those classes for all of OCaml’s abstract syntax tree con-

structs, for instance:

1 instance HasStructure ModuleExprDesc where
2 structure f = case f of
3 -- if something does not contain a Structure,
4 -- we can skip it entirely:
5 PmodIdent i → PmodIdent <$> pure i
6 -- if something contains a Structure right here,
7 -- we can apply `f`
8 PmodStructure s → PmodStructure <$> f s
9 -- if something may contain Structures recursively,

10 -- we keep traversing it
11 PmodApply m1 m2 → PmodApply
12 <$> traverseOf structure f m1
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13 <*> traverseOf structure f m2
14 …

Writing those instances is entirely systematic, so we believe it can be automated us-

ing Haskell’s TemplateHaskell facilities, though we have not yet written such automa-

tion.

4.3.1 Traversals over concrete syntax and functorial syntax

Depending on how the abstract syntax tree of the source language has been de-

fined, there are actually two distinct ways of building those traversals. They correspond

to the following two ways of defining a data type of “commands” over a datatype of

“expressions”:

1 -- Variant 1: concrete representation
2 data Language
3 = DoSomething Language.Term
4 | …
5

6 -- Variant 2: functorial representation
7 data LanguageF e
8 = DoSomething e
9 | …

10

11 type Language = LanguageF Language.Term

With the concrete representation, the constructor DoSomething may only ever con-

tain values of type Language.Term. It is more rigid than the functorial representation,

wherein the type of expressions is abstracted over. In the functorial setting, one can

instantiate the LanguageF functor with different types, yielding a family of concrete

types.

With the functorial approach, Coop can replace the source language’s expression

type with its own type, essentially storing Chick abstract syntax trees within the source
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language’s abstract syntax tree:

1 data Vernacular f
2 = …
3 | ForeignLanguage (LanguageF f)

In this case, Chick can, given a traversal for LanguageF f, transform all occur-

rences of f into Chick.Term, and repair those using the applicative functor. While it

is convenient to store our expressions within the original abstract syntax tree, we are

forced to replace all occurrences so that the types match up. Once all of this is done, we

have the following endpoints:

1 embed ∷ Vernacular Language.Term → Vernacular Chick.Term
2 embed = …
3

4 chick ∷ Vernacular Chick.Term → Vernacular Chick.Term
5 chick = …
6

7 extract ∷ Vernacular Chick.Term → Vernacular Language.Term
8 extract = …

and we can simply pipeline them together to obtain the resulting abstract syntax tree,

that must finally be processed by our pretty-printer (as described in Section 4.4).

In the case of the concrete representation, because we cannot store Chick terms

within the foreign language’s abstract syntax tree, we must proceed with a level of in-

direction: we can use an indexed traversal to extract a list of all the values being tra-

versed, turn those values into Chick terms, repair those Chick terms, turn the repaired

terms back into source language terms, and finally reinsert those repaired terms in the

proper locations using the indexed traversal. The process looks like the following par-

tial code:

1 itraverseLanguage ∷
2 IndexedTraversal' Int Language.AST Language.Term
3 itraverseLanguage = …
4
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5 getTerms ∷ Language.AST → [Language.Term]
6 getTerms = toListOf itraverseLanguage
7

8 -- From there, we do the following:
9 -- 1. map `embed` to get a [Chick.Term] (unrepaired)

10 -- 2. map `repair` to get a [Chick.Term] (repaired)
11 -- 3. map `extract` to get a [Language.Term] (repaired)
12

13 insertRepairedTerms ∷
14 [Language.Term] → Language.AST → Language.AST
15 insertRepairedTerms l =
16 imapOf itraverseLanguage (λ index _ → l ‼ index)

The indexed traversal allows us to know where to insert the repaired terms in

the original abstract syntax tree.

4.3.2 Scope-aware traversals

There remains yet another trouble with our traversals. Consider the following

OCaml code:

1 module SomeModule (A : ModuleTypeForA) =
2 struct
3 (* ... *)
4 end

Thanks to our traversals, we might be able to repair terms that appear within

this OCaml functor2. Unfortunately, while glossing over the module construct, we also

gloss over a binding construct, introducing a binder A. This might create problems when

this module appears in an ambient context where some other variable A is bound. In

particular, if our repair algorithm is trying to repair instances of the variable A, it will,

erroneously, attempt to repair the local references to A, mistaking them for references

the outer A.
2Note that OCaml uses the term functor to describe about parameterized modules, while, so far, this

dissertation has been using the term functor to describe functorial parameterized data types.
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In order to avoid this issue, we can change our traversals so that they accumulate

bound variables as they traverse the source language abstract syntax tree, and turn

our focal points into a pair of the construct under focus, and the list of binders it lives

under. With this information, we can easily alter the term so thatChick knows that those

variables have been rebound. This can be achieved in two ways:

• either by over-populating, before running the repair algorithm, its local context

with those binders (bound to an unknown type, represented as a hole), and pop-

ulating the local context diff with as many 1
Mod
:: …,

• or, by adding extraneous λ-abstractions to the term, and adding as many extrane-

ous
Mod
λ 1 → … to its diff, and running the repair algorithm in the current global

environment and local context. This requires a post-processing pass to remove

those extraneous lambdas from the repaired term, before injecting it back into its

abstract syntax tree.

4.4 Diff-aware pretty-printing

So far, we have explained how we can embed the constructs and binding struc-

ture from the abstract syntax tree of some arbitrary source language, repair those con-

structs as part of our core language, and then extract the repaired constructs back into

an abstract syntax tree for the original language. However, we need to repair the con-

crete syntax of the original program, not just the abstract syntax tree.

While we could just call a naive pretty-printer with the final abstract syntax tree,

there is a high chance that doing so would interfere with the layout of the original code,

unless we somehow stored enough information to reproduce the exact original layout.

In order to minimize our impact on the concrete syntax of the program, we can instead
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try to only modify those parts of the concrete syntax that need being altered.

To do so, we need the abstract syntax tree of the source language to contain lo-

cation information about the provenance of its nodes. This requirement is not hard to

satisfy: we expect most languages to have parsers that produce such information, if

only to be able to indicate error locations. Now, when we obtain the repaired source

abstract syntax tree, we can simply follow a simultaneous recursive descent through

the original and repaired trees. At any point where they differ, we can:

• obtain the source span for the text to be replaced from the original tree,

• obtain the replacement text by pretty-printing the node from the repaired tree.

Then, we can graft the pretty-printed repaired term in place of the original text span.

If the language is indentation-sensitive, we might need to be more clever, figuring out

the level of indentation, and hanging the replacement text at that depth.

We can also come up with extra quality of life improvements, such as retaining

and lifting the comments from the deleted span, so that no comment is lost in the repair.

Repairs can also be processed sequentially, with a human in the loop, so that repair

suggestions are reviewed by the user before being applied, for instance, by using a

merging tool such as the ones provided for version control systems.

This chapter is, in part, currently being prepared for submission for publication

of the material. The dissertation author was the primary investigator and author of this

material. The only co-author is their advisor, Sorin Lerner.
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Chapter 5

Related work

Refactoring functional programs

A main line of work in refactoring functional programs is the work done on

the HaRe refactoring tool for Haskell [23] and subsequently on refactoring Erlang pro-

grams [24]. The scope of the former is much larger than this paper: they implement a

large library of refactoring algorithms, including some that this paper covers, for the

Haskell programming language. In particular, their tool handles Haskell 98, and pro-

vides an API to perform refactorings. They also refactor while preserving the user’s syn-

tactic choices, which proves challenging in layout-based languages like Haskell. How-

ever, their publications do not distill the details of how to implement those refactorings,

and thus, does not allow for easy experimentation, porting to other languages, or veri-

fication of their techniques.

A very promising ongoing line of work is that of ornaments [35]. Their formalism

allows to describe data type transformations from within the language itself, and per-

form similar transformations to ours. The ornamentation language is more expressive

than our language of diffs in many ways, allowing arbitrary mappings between con-

structors before and after modification: for instance, one of their motivating example
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cuts a constructor into two different constructors depending on some Boolean condition.

As a result, their technique requires the programmer to describe the transformation

they wish to carry as an ornament, and the programmer’s help is required alongside

the transformation to indicate to the repair algorithm what to do in corner cases. Our

restriction to a simple language of modifications allows us to guess the transformation

based on the syntactic modification of the program itself, and grants us more leverage

on automation, at the price of a much lower expressiveness.

Refactoring proofs

One of the few tools that attempts refactoring in the context of the proof assis-

tants is the Levity tool by Ruegenberg [32]. The refactoring it performs is referred to as

levitation, and corresponds to the move of a lemma up its dependency chain, to a loca-

tion that is deemed more relevant. This transformation is hard to perform in many proof

assistants, because figuring out where the lemma can exist can be challenging and time-

consuming, and because the action of levitating the lemma might derail other parts of

the proof development, even when they seem unrelated, because the declaration of a

lemma might have unintended side-effects through automation mechanisms.

Another main line of work in this domain is the line of work of Whiteside et al.

[34], followed up by Dietrich et al. [9]. They define a framework for specifying refac-

toring rules over an idealized proof language called Hiproof, and its idealized tactic

language called Hitac. The latter is designed to be close to the declarative Isar tactic

language of Isabelle. This framework allows them to define many interesting refactor-

ings, and to prove their correctness, informally, with low effort. They acknowledge that

it would be more difficult to develop the same refactorings for a less declarative tactic

language like the Ltac language of the Coq proof assistant.
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Boite [3] also addresses the problem of modifying an existing inductive type

definition while reusing existing proofs. Their technique does not alter existing code,

rather, they internalize the notion of extension of an inductive data type (that is, the

adding of a constructor, or parameters), and provide commands that perform such ex-

tensions, deriving extended data types and extended functions from the original ones.

It would be interesting to have proof assistants internalizing and exposing this kind of

algebraic manipulations of data types.

Finally, recent work by Ringer et al. [31] builds semantic patches to help pro-

grammer refactor their proofs. Their approach does not modify the old program into a

new program. Rather, the old program is kept with its proofs, alongside the new pro-

gram, and patches are automatically derived to transport proof obligations between

the old program and the new program. Their approach seems complementary to ours,

depending on the use case for the programmer.

Automatic code generation

Another exciting line of work consists in removing the friction of performing

those manual refactorings altogether.

General purpose automation like Isabelle’s sledgehammer Blanchette et al. [2] or

the recent for on a similar hammer for Coq Czajka and Kaliszyk [8] can help reduce the

work of programmers in those systems by avoiding writing terms entirely. Hopefully,

doing so removes a lot of brittle tactic calls, but they do not help in refactoring data type

definitions when the objects of discourse evolve.

The body of work on program synthesis could also prove very beneficial. For

instance, [30] can perform program synthesis from refinement types, which could po-
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tentially spare the programmer from fixing code that is never manually-written, but

rather synthesized. However, the specifications themselves could still require refactor-

ing tools, since they are themselves terms from a refinement type system.

IDE-based detection of refactoring attempts

The work of Foster et al. [12] focuses on detecting when a programmer is trying

to perform a refactoring in Java programs. Many times, the programmer will not know

that refactoring tools exist in their IDE, or will not realize that they are performing a

task that corresponds to an existing refactoring algorithm. In particular, they use a text-

based diff in order to be able to recognize refactoring attempts even when the program

is in a transient, non-parseable state.

Incremental computation

The literature on incremental computation focuses on the problem of reliably

and efficiently re-computing data that is the output of some computation after the input

undergoes a modification, which is similar to our deriving of repairing functions from

Section 3.7. For instance, Acar et al. [1], Carlsson [5], as well as Firsov and Jeltsch [10],

all use an abstract data type for values that can be efficiently recomputed, and propose a

monadic interface to build incremental computations while providing the programmer

with an interface that hides those details behind the scenes. Similarly, Chen et al. [6]

automatically transform a non-incremental program to inject incremental behavior into

it. While this is similar to what we do in spirit, we care about more than just obtaining

the result of the incremental computation, since we sometimes reuse the diff of one

data type to compute a diff for another, related data type. Incremental computation

techniques are typically not interested in this, and do not usually expose the internals
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of their functioning to the user.

Cai et al. [4] define a general way of using derivatives of functions to compute their

reactions to some abstract modifications, and compute those derivatives for first-order

functions. They demonstrate it on examples using unordered collections. Our diffs

are an instance of their general notion, but we depart from it by having more special-

ized diffs to fit our needs, and by supporting a small family of higher-order functions

(namely, folds over lists), using our deriving technique to help compute their deriva-

tive.
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Chapter 6

Future work

In this chapter, we will go over several potential ways to extend Chick and Coop

in the future.

6.1 Avoiding problematic binders using scope sets

Our treatment of binders in Section 3.6.4 is extremely cumbersome. Not only

do we have to be careful about capture-avoiding substitutions, both in the old program

and the new program, but we also have to be careful to repair every term only once,

because the repair operation is not idempotent.

A novel approach from Flatt [11] developed for the new Racket macro expander

might be useful here. In their setting, every scope created is assigned a label, and every

reference to a bound variable is initially marked with the set of scopes within which

it appears in the original program text. Subsequently, the macro expander discards

the renaming approach entirely. Instead, every binding form, as well as every macro

expansion, creates a scope, adds that scope to all identifiers in binding position, and

keeps track of a mapping from identifiers with scope sets to the representation of a
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binding.

Subsequently, the macro expander is free to perform expansions without need

for capture-avoiding freshness conditions, or, as it is called in the macro expansion lit-

erature, hygienic macro expansion Kohlbecker et al. [20]. Instead, a reference’s binding is

found by looking in the mapping for the binder with same name whose scope of sets is

the largest subset of the reference.

We believe this approach could potentially be adapted to solve the problems

we encounter. Our first issue (demonstrated in Rule Repair-Term-1-Mod-Π) was that of

an outer binding becoming shadowed by a binding position, when said outer binding

is renamed by the programmer to have the same name as the binding position. For

instance, in the following code:

Definition f := …

… (λ g → f g) …

Definition g := …

… (λ g → f g) …

we could not simply rename the variable f on the right side to g , because it would

accidentally become captured by the term abstraction. We needed to be very careful

about this problem in our rules. With a “set of scopes” approach, we would instead

have:

Definition f{a} := …

… (λ g{a,b} → f{a,b} g{a,b}) …

Definition g{a,m} := …

… (λ g{a,b} → f{a,b} g{a,b}) …

where scope label a corresponds to the scope created by the definition of f , scope label

b corresponds to the scope created by the term abstraction introducing g , and scope

label m corresponds to a virtual scope that we introduce to mark where the user has

modified their program. As a result, in this approach, we can repair the program on
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the right with simple substitution, yielding:

Definition f{a} := …

… (λ g{a,b} → f{a,b} g{a,b}) …

Definition g{a,m} := …

… (λ g{a,b} → g{a,m} g{a,b}) …

where the inner mention of g with scope set {a,m} is not captured by the term abstrac-

tion, because its set of scopes mentions scope label m, preventing it from being a subset

of the enclosing {a, b} set. We will still need to resolve the name collision when pro-

ducing the concrete repaired program, but as far as the repair algorithm is concerned,

there is no need to pick a fresh name for the binder, as it can not capture the repaired

variable.

The second problem we had with binders, still in Rule RModPi, was to pick a

name that was both fresh for the term abstraction, and fresh for the type abstraction, so

that we could add this name to the typing context, as we proceeded to repair the term

abstraction’s body, assuming its type was the type abstraction’s body. Here again, we

could circumvent the renaming altogether by introducing a new scope label.

If we decide to attach scope labels to any term of the abstract syntax tree, rather

than only variables, we could even consider using scope labels as markers, separating

terms that have been repaired from terms that have not been repaired yet.

6.2 Repairing tactic scripts

Using the same methodology we used to repair programs and terms, we have

considered repairing proof scripts written in a tactic language like Ltac. The problem

withCoq tactics is that their effect depends on what is in context when the tactic is called,

making them hard to reason about statically. For instance, the intros tactic inspects
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the current sub-goal, and introduces as many universally quantified variables from the

sub-goal as it can. To do so, it has to come up with names for those variables, yet the

user never explicitly passes those names. Instead, the algorithm chooses suitable, fresh

names, using the names of the variables as they appear in the sub-goal (when their

quantification is explicitly named), or picking some fresh name.

For instance, if your current goal is:

nat → nat → nat → nat

and you run intros , the following names will be added to your context:

H, H0, H1 : nat

This makes tactic scripts complicated to repair, as there is no lexical binding position

for those automatically introduced names. In order to repair tactic scripts, we must

be able to replay them. This can only be done outside the tool if the tactic language

has well-defined semantics. Unfortunately, Ltac is a very complicated tactic script, and

formalizing its semantics is still an open-ended problem.

Had we done so, we could hope to repair tactics by replaying them, and com-

puting diffs for the proof context, just like we did for our global environment and local

context when repairing terms. The problem is very interesting, as a change in the num-

ber of constructors of a data type can have drastic changes in the structure of a proof.

We have started working on a prototype, toying with repairing a tactic language that

only provides tactics like intro and destruct , but we don’t have a proper prototype

for those yet.

157



6.3 Integrating code diffs in version control systems

An equally ambitious goal could be to treat our diffs, that is, first-class values

that represent the intent of changes made to a program, the same way we treat the code

of the program. For instance, as a program evolves, we keep a published index on the

changes made to it using a version control system. We can envision a diff-aware version

system wherein diffs are also published.

Consider a use case where Ada is publishing a software library that Bertrand

depends upon for his project. When Ada decides to make a breaking change to her

library, she could perform the change by using a diff-based repair algorithm like the

one we present. When the repair is finished, she has a complete, structural diff, that

captures exactly all of the changes that have happened to the library. Ada can publish

this diff, alongside the new code, to her public version control system. Bertrand can

update his dependency to Ada’s new version, but he needs to update his client code to

adapt to the changes made by Ada. Thanks to the published diffs, Bertrand could also

run a repair algorithm over his code, automating much of the necessary code changes

needed to stay compatible with Ada’s library.

Of course, this workflow would need to be extremely polished to convince both

users to opt in. In particular, we would definitely want a strong diff guessing algorithm,

like the one presented in Section 3.8, and would need a nice way of presenting different

guesses to the programmer so that they can safely pick the choice that best matches

their intent.
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Appendix A

PeaCoq

A.1 PeaCoq A-B study material

In this section, we report the entire listing of exercises provided to the partici-

pants of the A-B study described in Section 2.3.2.

1 (* The following material is derived from Software Foundations by Benjamin
2 Pierce et al. Their work is under the following MIT license: *)
3
4 (*
5 Copyright (c) 2012
6
7 Permission is hereby granted, free of charge, to any person obtaining a copy
8 of this software and associated documentation files (the "Software"), to deal
9 in the Software without restriction, including without limitation the rights

10 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 copies of the Software, and to permit persons to whom the Software is
12 furnished to do so, subject to the following conditions:
13
14 The above copyright notice and this permission notice shall be included in
15 all copies or substantial portions of the Software.
16
17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 THE SOFTWARE.
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24 *)
25
26 (* ###################################################################### *)
27 (** ** Days of the Week *)
28
29 Inductive day : Type :=
30 | monday : day
31 | tuesday : day
32 | wednesday : day
33 | thursday : day
34 | friday : day
35 | saturday : day
36 | sunday : day
37 .
38
39 Definition tomorrow (d : day) : day :=
40 match d with
41 | monday => tuesday
42 | tuesday => wednesday
43 | wednesday => thursday
44 | thursday => friday
45 | friday => saturday
46 | saturday => sunday
47 | sunday => monday
48 end.
49
50 Theorem test_tomorrow:
51 tomorrow saturday = sunday.
52 Proof.
53 simpl. reflexivity.
54 Qed.
55
56 (* ###################################################### *)
57 (** ** Lists of Numbers *)
58
59 Inductive natlist : Type :=
60 | nil : natlist
61 | cons : nat -> natlist -> natlist
62 .
63
64 Definition empty_list := nil.
65
66 Definition singleton_list := cons 42 nil.
67
68 Definition one_two_three := cons 1 (cons 2 (cons 3 nil)).
69
70 Fixpoint concat (l1 l2 : natlist) : natlist :=
71 match l1 with
72 | nil => l2
73 | cons h t => cons h (concat t l2)
74 end.
75
76 Theorem test_concat1 :
77 concat (cons 1 (cons 2 nil))
78 (cons 3 (cons 4 nil))
79 = (cons 1 (cons 2 (cons 3 (cons 4 nil)))).
80 Proof.
81 simpl. reflexivity.
82 Qed.
83
84 (* ###################################################### *)
85 (** * Reasoning About Lists *)
86
87 Theorem concat_nil_left : forall (l : natlist),
88 concat nil l = l.
89 Proof.
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90 (* FILL IN HERE *)
91 Qed.
92
93 Theorem concat_nil_right : forall (l : natlist),
94 concat l nil = l.
95 Proof.
96 (* FILL IN HERE *)
97 Qed.
98
99 (* In-class exercise! *)

100 Theorem concat_associativity : forall (l2 l1 l3 : natlist),
101 concat (concat l1 l2) l3 = concat l1 (concat l2 l3).
102 Proof.
103 (* FILL IN HERE *)
104 Qed.
105
106 (*
107 [snoc] adds an element [v] at the end of the list [l]:
108 snoc (cons 1 (cons 2 nil)) 3 = cons 1 (cons 2 (cons 3 nil))
109 *)
110 Fixpoint snoc (l : natlist) (v : nat) : natlist :=
111 match l with
112 | nil => cons v nil
113 | cons h t => cons h (snoc t v)
114 end.
115
116 (*
117 [rev] reverses a list:
118 rev (cons 1 (cons 2 nil)) = cons 2 (cons 1 nil)
119 *)
120 Fixpoint rev (l : natlist) : natlist :=
121 match l with
122 | nil => nil
123 | cons h t => snoc (rev t) h
124 end.
125
126 (* ###################################################### *)
127 (**
128 For each theorem:
129 - Discuss the statement of the theorem with your partner.
130 - Once you understand it, prove the theorem.
131
132 Every time you solve a theorem, switch who uses the keyboard/mouse.
133 *)
134
135 Theorem rev_snoc : forall x l,
136 rev (snoc l x) = cons x (rev l).
137 Proof.
138 (* FILL IN HERE *)
139 Qed.
140
141 Theorem rev_involutive : forall (l : natlist),
142 rev (rev l) = l.
143 Proof.
144 (* FILL IN HERE *)
145 Qed.
146
147 Theorem concat_cons_snoc : forall l1 x l2,
148 concat l1 (cons x l2) = concat (snoc l1 x) l2.
149 Proof.
150 (* FILL IN HERE *)
151 Qed.
152
153 (* ###################################################### *)
154
155 Module LogicExercises.
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156
157 (* We now use notations from logic:
158 /\ stands for the logical conjunction (AND) of two propositions
159 \/ stands for the logical disjunction (OR) of two propositions
160
161 New tactics: left, right
162
163 When your goal looks like [A \/ B]
164 You get to pick which of [A] or [B] you will prove.
165 If you believe you can prove [A], use the [left.] tactic.
166 If you believe you can prove [B], use the [right.] tactic.
167
168 Here is an example:
169 *)
170
171 Theorem right_example : 0 = 1 \/ 1 = 1.
172 Proof. right. reflexivity.
173 Qed.
174
175 Theorem go_somewhere : 0 = 1 \/ (2 = 2 \/ 2 = 3).
176 Proof.
177 (* FILL IN HERE *)
178 Qed.
179
180 (*
181 New tactic: apply
182
183 If you ever have a goal [G]
184 And a hypothesis [H : G] or [H : X -> ... -> G]
185 You can use the tactic [apply H.] to solve your goal in the former case,
186 or turn your goal into subgoal(s) [X], [...] in the latter case.
187 *)
188
189 Theorem B_is_enough : forall A B : Prop,
190 B ->
191 A \/ B.
192 Proof.
193 (* FILL IN HERE *)
194 Qed.
195
196 (*
197 New tactic: split
198
199 When your goal looks like [A /\ B]
200 You need to prove both [A] and [B].
201 The tactic [split.] lets you split your goal into these two goals.
202
203 Here is an example:
204 *)
205
206 Theorem two_facts : nil = nil /\ 42 = 42.
207 Proof. split. reflexivity. reflexivity.
208 Qed.
209
210 Theorem more_facts : 1 = 2 \/ (1 = 1 /\ nil = nil).
211 Proof.
212 (* FILL IN HERE *)
213 Qed.
214
215 Theorem A_and_B : forall (A B : Prop),
216 A ->
217 B ->
218 A /\ B.
219 Proof.
220 (* FILL IN HERE *)
221 Qed.
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222
223 End LogicExercises.
224
225 (* ###################################################### *)
226
227 Theorem snoc_concat_end : forall (l : natlist) (n : nat),
228 snoc l n = concat l (cons n nil).
229 Proof.
230 (* FILL IN HERE *)
231 Qed.
232
233 Theorem rev_distributes_over_concat : forall (l1 l2 : natlist),
234 rev (concat l1 l2) = concat (rev l2) (rev l1).
235 Proof.
236 (* FILL IN HERE *)
237 Qed.
238
239 (* ###################################################### *)
240 (** We now introduce [map], which applies a function [f] to
241 every element of a list [l].
242 *)
243
244 Fixpoint map (f : nat -> nat) (l : natlist) :=
245 match l with
246 | nil => nil
247 | cons x xs => cons (f x) (map f xs)
248 end.
249
250 Theorem map_commutes : forall f g l,
251 (forall x, f (g x) = g (f x)) ->
252 map f (map g l) = map g (map f l).
253 Proof.
254 (* FILL IN HERE *)
255 Qed.
256
257 (* In this theorem, "fun x =>" introduces an anonymous function which receives
258 a parameter [x] and returns the result on the right of the arrow. *)
259 Theorem map_fusion : forall f g l,
260 map f (map g l) = map (fun x => f (g x)) l.
261 Proof.
262 (* FILL IN HERE *)
263 Qed.
264
265 (* ###################################################### *)
266 (** We now introduce [fold], which processes a list with an
267 accumulating function [f], starting from an initial value [b].
268 *)
269 Fixpoint fold (f : nat -> natlist -> natlist) (l : natlist) (b : natlist) :=
270 match l with
271 | nil => b
272 | cons x xs => f x (fold f xs b)
273 end.
274
275 Theorem fold_snoc : forall f l x b,
276 fold f (snoc l x) b = fold f l (f x b).
277 Proof.
278 (* FILL IN HERE *)
279 Qed.
280
281 Definition map' f l := fold (fun x fxs => cons (f x) fxs) l nil.
282
283 (* We use [Lemma] instead of [Theorem] here to indicate that this theorem may
284 help you in proving the next theorem. *)
285 Axiom map'_unroll : forall f x xs,
286 map' f (cons x xs) = cons (f x) (map' f xs).
287
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288 Axiom map'_nil : forall f, map' f nil = nil.
289
290 Theorem map_map' : forall f l, map f l = map' f l.
291 Proof.
292 (* FILL IN HERE *)
293 Qed.
294
295 Ltac cases H := match type of H with _ \/ _ => destruct H end.
296
297 (*
298 New tactics: cases, contradiction
299
300 When a hypothesis looks like [H : A \/ B]
301 You have to prove the goal for each case, to do so, use the tactic [cases H.]
302 You will get two goals as a result, one with a [A] hypothesis, one with a [B]

hypothesis.↪→
303
304 Finally, if you ever get a hypothesis like [H : False]
305 You have derived a contradiction, and you can indicate this to the system by calling
306 the tactic [contradiction.], which will solve your goal.
307 *)
308
309 Fixpoint In n l :=
310 match l with
311 | nil => False
312 | cons h t => h = n \/ In n t
313 end.
314
315 Theorem In_cons : forall x h l,
316 In x l ->
317 In x (cons h l).
318 Proof.
319 (* FILL IN HERE *)
320 Qed.
321
322 (*
323 New tactic: simpl in *
324
325 Sometimes, you might want to simplify things in your hypotheses, the same way things
326 can be simplified in your conclusion.
327 *)
328
329 Theorem In_concat_left : forall x l1 l2,
330 In x l1 ->
331 In x (concat l1 l2).
332 Proof.
333 (* FILL IN HERE *)
334 Qed.
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A.2 PeaCoq A-B study post-study survey

We report the qualitative feedback obtained via a questionnaire given after the A-

B study described in Section 2.3.2. We indicate participants anonymously as Xpi where

X stands for the study group (A being the control group, Bbeing the group testing our

tool), p stands for a given pair of participants, and i distinguishes between the two

participants in a pair.

We report participants’ answers as they were written, only fixing typos, but we

do not alter their phrasing or grammatical structures whatsoever.
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Participant In your own words, describe what you did today.

A11 Proved several theorems in a pair using an interactive proof assistant.

A12

1. Proved some set and logic and operation lemmas and theorems.

2. Used a new tool to write the proofs.

A21 Tried to understand Coq by using an entire IDE and write some proofs.

A22 We used a proof assistant to prove theorems about lists and their proper-

ties.

A31 We used the theorem prover to prove that the functions of code did what

they meant to in all cases.

A32 Today I learned about the Coq theorem proving language. After an intro-

duction, I worked in a pair to solve various theorems for lists of natural

numbers, and maps.

A41 Use an automated theorem prover to prove basic facts in data structures

and logic.

A42 We used a tool that could define predicates, types and prove various prop-

erties about them.

A51 We learned a little about basic proofs in Coq then applied what we learned

in the exercises.

A52 I used a proof assistant to prove several simple mathematical theorems.
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Participant In your own words, describe what you did today.

B11 I used a graphical tool to prove several invariants about functions/data

structures in a given language (Coq).

B12 Proved some special cases of inferences from new definitions using induc-

tion and other primitive proof techniques. Use already proved theorems

in future proofs.

B21 I used a programming language tool to prove various constructs.

B22 Proved a bunch of simple theorems about functions working on lists.

B31 Use Coq to prove a theorem. Reasoning the steps and select what makes

sense from the options given by the tool.

B32 We were trying to usePeaCoq to prove a bunch of theorems by exploring all

the possible strategies, such as induction, transformation, simplification,

etc.

B41 We used a graphical version of an interactive proof assistant to prove some

theorems involving list operations.

B42 Proved some functions using PeaCoq.

B51 We used the PeaCoq web editor interface to prove theorems on pieces of

code via Coq. First we were given an introduction to Coq combined with

a tutorial on using the tool, and then we worked in pairs on a series of

example of proofs/theorems.

B52 I used a modified version of the Coq proof assistant to prove things about

lists and functions over them.
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Participant What did the experience today remind you of?

A11 Learning to program for the first time. Lots of brute-forcing and trying

things that worked in the past to see if they would work in a new context.

A12 Using induction in high school/undergrad and trying to draw insights

from proving the base case to apply to the general case.

A21 Today was quite unique but I felt like writing functional programs since I

tried to prove my implementation there too.

A22 It reminded me of working on large code bases where certain things ap-

pear to work by magic. Fixes/proofs were performed with little funda-

mental understanding.

A31 Taking a programming languages class, since the constructs are all the

same.

A32 Today’s experience reminded me of an intro to algorithms course.

A41 Proving mathematical theorems for research.

A42 Liquid types in Haskell. Mathematical induction.

A51 Learning programming in school and proofs in math classes.

A52 It reminded me of pen-and-paper proofs.
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Participant What did the experience today remind you of?

B11 Playing a logical/exploration game.

B12

1. Writing unit tests for corner cases.

2. Giving a systematic proof covering all cases.

B21 It reminded me of safe programming techniques in the way that if we can

prove that our constructs work, there shouldn’t be any problems at run-

time.

B22 Functional programming and reasoning about it.

B31 First time to learn formal proof stuff.

B32 Decision tree.

B41 It reminded me of a puzzle game in which you have to reach a target and

can use as keys some of the facts you encounter on your way there.

B42 Proving technique classes.

B51 The

rules

rules

rules

statement
format reminded me of constructions I have seen in com-

puter science papers that have not formally learned about. The theo-

rems we were proving, e.g. concat xs nil = xs , reminded in a dif-

ferent/more powerful direction (but requiring manual work to prove).

B52 Analysis class, proving simple-seeming things about math was similarly

harder than it looked.
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Participant Did you understand all the proofs you completed?

A11 No.

A12 No. We figured out that there were some hammers which we should keep

using ( simpl , reflexivity , rewrite ). They mostly made sense but

we didn’t spend time to understand the exact changes they made.

A21 Most of them. Especially the last ones were quite confusing.

A22 Not entirely. While I had conceptual knowledge of what was happening,

I didn’t understand it holistically.

A31 Yes.

A32 Yes.

A41 Yes.

A42 Yes.

A51 Yes.

A52 Yes.
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Participant Did you understand all the proofs you completed?

B11 Yes.

B12 Yes.

B21 Yes, the only one that I had trouble with was destruct .

B22 No.

B31 No. Sometimes it is magically done.

B32 No, but most of them.

B41 Yes (at least on a second closer inspection).

B42 No.

B51 For the most part. The last exercise ( In_concat_left ) had me a bit con-

fused on how destruct worked/what it did. Once that clicked for me,

what we were doing there made sense.

B52 I think so?
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Participant Did you find the tool useful for achieving the tasks?

A11 Error messages were mostly helpful sometimes. Sort of. Clear when some-

thing didn’t work.

A12 Yes. Because it would stop me from trying to use wrong rules. Also be-

cause I could follow from one lemma to another in most cases.

A21

1. Has a simple, clean UI,

2. Doesn’t require anything other than a browser.

A22 A little. It provided confidence that the task was completed correctly.

A31 Yes. I like how the right side always showed the next goal, in that it was

easy to focus on one statement at a time.

A32 Yes, very.

A41 Yes, it was pretty self-explanatory. Inline code and comments very help-

ful.

A42 Yes.

A51 Yes, the step by step approach was helpful to visualize how the proof was

coming along. It also helped with trial and error.

A52 Highlighting, previous/next were extremely useful. The information

snippets would be useful if I weren’t the proof author.
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Participant Did you find the tool useful for achieving the tasks?

B11 The tool was very useful, specifically:

1. Highlighting the diffs was helpful to explain what each tactic does,

2. Having all the options available to apply was helpful for a novice

who doesn’t know what the available tactics are.

B12 Yes.

B21 It definitely helped in showing the paths you could take in a proof, which

is helpful if you can’t think of them on the spot.

B22 I proved things without having to think too hard about it.

B31

1. As an inexperienced learner, I even don’t know how to start a proof,

but the tool gives me the guidance to do this.

2. After some time, when you get familiar with it, there exists some

patterns to find the correct solution.

B32 I think it’s useful. But it is hard to say “how” useful it is for two reasons:

1. I’m not aware of any order tools,

2. the problems are actually simple and intuitive to prove manually.
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B41

1. Provided a broad overview of the available options (some perhaps

“counter-intuitive” options that I might have thought of were pre-

sented right away),

2. fewer keystrokes

3. visual diffs are very useful for calculating how bigger / smaller our

target is.

B42 I wouldn’t be able to achieve the tasks on my own, but that’s probably

because I have no idea how to prove those things.

B51 Yes, absolutely. The tree interface made exploring possible tactics and

seeing the results very quick and easy. I’ve never actually used Coq or

anything like it before but with this interface I was able to get up to speed

pretty quickly.

B52 I didn’t have to already know/remember the set of options, and it was

useful to get a preview of what each one would do.
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Participant Do you have suggestions on how to improve the tool you used today?

A11 Backing up through a Qed. backs up the entire proof. Would prefer to

step back one tactic at a time like during the proof. Right-hand pane some-

times not wide enough to see everything. Primitive sub-string matching

to suggest rewrites would be useful.

A12

1. It should stop me from going down useless proof steps even though

the rules apply.

2. It should stop me from going in circles by warning (we are not sure

we did that but came close).

3. Difficult to translate intuition from base case to general case. Had to

use pen-and-paper at times to write small examples.

A21

1. Missing some keyboard shortcuts.

2. Having a pane which shows previous proofs would be quite helpful.

A22 I had little confidence that I understood what was happening. Completing

the same proofs later would likely result in similar trial and error. The only

thing I was learning was the sort of patterns that proofs took on. Variable

names were confusing and hard to work with.

A31 split should be syntax-highlighted.

A32 Adding auto-complete would be nice and a command list.
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A41 Previously proved functions were difficult to find/see when scrolling up.

I could see this being a major problem for anything complex. Could be

solved with a better interface e.g. in an IDE.Not related to the software,

but there’s a tendency to avoid planning and just react to results of simpl ,

rewrite , etc.

A42

1. Bugs when we were using Firefox instead of Chrome. Tool wouldn’t

revert steps correctly.

2. Auto-completion of previously defined rewrite theorems

A51 Flip Next and Previous in the GUI.

A52 Some sort of search (“I want to use this”) would be handy. The coloring

breaks on exceptions.
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Participant Do you have suggestions on how to improve the tool you used today?

B11

1. Highlight the border of the sub-window (code/proof) that has key-

board focus,

2. When deep in a proof tree, I kept forgetting what induction hypoth-

esis I had accumulated so far (and I think I didn’t always see them

in the current goal). It would be useful to somehow get reminded of

what invariants/induction hypothesis I had accumulated.

B12 A first time user might find it difficult to switch between cases using “[”

and “]”. Some syntax in languages were not straightforward, for instance

fold . Syntax of map functions were clear.

B21 Maybe look ahead and see if some paths don’t lead to solutions.

B22 No answer provided.

B31 No answer provided.

B32 I guess it’s definitely helpful if the tool can automatically probing some

paths without clicking.

B41

1. Trivialize options that lead to the target in one to two steps.

2. On the fly explanation of what the operators do.

B42 It crashes when you hit the left button three or four times quickly.
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B51 There was that one bug that we ran into a few times: going back causing

the editor to crash, that made us lose progress a few times.

1. An auto-save feature would be appreciated as a guard against this

(could use e.g. Local Storage API),

2. A way to “bookmark” and jump back to points in the tree would be

appreciated, perhaps also some highlights of previously explored

paths?

B52 A minor one: intros. should be option one (instead of intro x. ) since

it always seems like the right start.
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Participant Explain in your own word what the split tactic does.

A11 Splits up an AND so each side can be proven separately.

A12 Split/divides a proof of an AND expression into two different proof exer-

cises.

A21 Used to prove both paths of a theorem (conjunction) with two parts.

A22 Splits a logical and into subgoals for each expression.

A31 Follow both branches of an AND , since both must be proven.

A32 Selects the terms from both sides of an AND .

A41 Enumerates all cases in a conjunction.

A42 Divides the AND predicate into two sub-problems so we can prove each

separately.

A51 Splits an and into each side so they can be proved separately.

A52 Split conjunction.
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Participant Explain in your own word what the split tactic does.

B11 For a goal A /\ B introduces 2 subgoals A and B .

B12 Prove each child tree is correct.

B21 Applies some function to all elements in a set.

B22 Prove all sub-trees.

B31 Every element in a collection.

B32 Try to prove each case.

B41 Apply action to all elements of a collection.

B42 ?

B51 When you have A /\ B , you need to prove both A and B , so split, doing

A and then B .

B52 Splits an A /\ B goal into separate A and B goals.
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Participant Explain in your own word what the intro tactic does.

A11 Fixes some forall value.

A12 Introduces the different variables in the expression.

A21 Instantiates the forall variables.

A22 Do it first thing?

A31 Apply a foreach .

A32 Provides the types for the theorem we are proving.

A41 Instantiates a placeholder variable under a universal quantifier.

A42 Infers already known information from the setup to give us known or as-

sumed values.

A51 List names of variables in forall and hypotheses.

A52 Instantiate forall .
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Participant Explain in your own word what the intro tactic does.

B11 Given a forall x, p(x) goal, make up a new variable name x and

introduce it and make p(x) (with that specific x ) the current sub-goal.

B12 Introduce (or define) the variables used in proof.

B21 Introduces all the components of your proof in order to use them.

B22 Introduce quantified variables (i.e. give them a name).

B31 Extend the original theorem to an easy-to-understand format.

B32 Give a start point.

B41 Add facts to your assumptions.

B42 ?

B51 Take the names from the forall and put them in the usable rule envi-

ronment. It was sort of unclear to me why we needed to do this explicitly

every time.

B52 Equivalent of the mathematician’s “fix”, gets rid of forall .
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Participant Explain in your own word what the induction tactic does.

A11 Allows case analysis over inductive types.

A12 Applies induction the variable mentioned as parameter and breaks the

proof into base case and general case.

A21 To use induction on a given variable. Proof by cases analysis.

A22 Perform induction with two steps/goals: base case + inductive case.

A31 Break a step into its base case(s) and recursive case(s).

A32 Performs induction on an element.

A41 Breaks a logical statement universally quantifying over a variable x , into

cases based on match .

A42 Performs mathematical induction. Divides into base case, induction case.

Assumes hypothesis.

A51 Breaks a list into the base case and induction step.

A52 Induct over recursive variable.
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Participant Explain in your own word what the induction tactic does.

B11 If x is of a given type (like ML algebraic types), do a case analysis for

each of the constructors of the type. If one of them is recursive, introduce

a hypothesis for its sub-part, and use it to prove the statement for the larger

goal.

B12 Split into two branches: base case and induction case. Introduce a hypoth-

esis argument called IH which can be invoked later in the proof.

B21 Proves that some function works for arbitrary element.

B22 Start an inductive proof (base case + step).

B31

1. Base case,

2. Induction...

B32 It’s just “induction” we do... counting base case, inductive hypothesis,

inductive steps.

B41 Do structural induction of a...

B42 Proof by induction.

B51 Case analysis: break e.g. a list into nil and cons , and branch along each

path with an additional inductive hypothesis, proving each path (one for

each possible value/case) proves the overall theorem.

B52 Splits a goal involving a recursively-defined data type into a base case and

an inductive step goal (in the latter, you get the inductive hypothesis in the

environment).
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Participant Explain in your own word what the reflexivity tactic does.

A11 Used when x = x.

A12 Comparing an expression with itself is true.

A21 Used to prove equality when both sides of the equality is the same (or very

similar after simplifying).

A22 Attempt to reconcile an equality.

A31 When you have x = x , call that step finished and move on to the next.

A32 Simplifies like expressions on both sides of the equality.

A41 Uses the tautological identity to prove trivial equalities. Also does simpl .

A42 A == A .

A51 Simplifies and accepts if both sides are the same.

A52 Apply functions, find structural equality.
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Participant Explain in your own word what the reflexivity tactic does.

B11 x = x is trivially true.

B12 a = a . Also simplifies based on definition of types.

B21 Two things are equivalent.

B22 Check if two things are equal.

B31 x = x .

B32 Trivial equivalence.

B41 Use the reflexive property (along with some simplification).

B42 Checks if two things are the same.

B51 Prove a = a for some a .

B52 Proves x = x (also performs simple simplifications).
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Participant Explain in your own word what the rewrite tactic does.

A11 Used to pull in some fact proven earlier.

A12 Uses the rule provided to find a component in LHS/RHS (depending on

arrow) and modify it (as per the rule).

A21 Uses a rule to rewrite a part of the proof.

A22 Pattern-match and replace.

A31 Rewrite the current step with a specified function.

A32 Applies an equality to your current goal or sub-goal.

A41 Pattern-match part of an expression using a (inductive) hypothesis in

scope.

A42 Substitution.

A51 Replaces one side of an expression with the other.

A52 Replace equal terms.
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Participant Explain in your own word what the rewrite tactic does.

B11 Use a previous lemma/induction hypothesis to transform some terms.

B12 Replace parts of LHS, RHS, using the theorems proved earlier.

B21 Use previous lemma or theorems to modify the construct.

B22 Use previously proven things to rewrite the expression.

B31 Rewrite some formulas to ones that are closer to the proof’s target. Better

to utilize the existing hypothesis.

B32 Transformation.

B41 Use some rewrite property applied to parts of your expressions.

B42 Replaces a pattern in the text.

B51 Use a theorem/inductive hypothesis/other rewrite rule to transform part

of the current node and continue with the proof.

B52 “Substitution” or “plugging int”.
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Participant Explain in your own word what the right tactic does.

A11 Tells proof assistant I’m about to prove the right-hand side of an OR .

A12 Choose the right-side expression in a combination of Boolean expressions.

A21 To prove the right part of an OR expression.

A22 Take a goal with a logical or and solve only the right sub-expression.

A31 Follow the right branch of an OR , ignoring the left.

A32 Selects the right side of a logical comparison.

A41 Try to prove the second clause in a disjunction.

A42 Discard left side of the or predicate.

A51 Selects the right-hand side of an or gate to try to prove.

A52 Follow right arm of disjunction.
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Participant Explain in your own word what the right tactic does.

B11 Given a goal A \/ B try to prove B .

B12 While proving \/ , choose the right clause to prove.

B21 Choose the right hand goal of an OR construct to continue a proof.

B22 Prove the right side of the \/ expression.

B31 Prove the right side.

B32 For A \/ B or A /\ B , try to prove the right proposition.

B41 Prove the right part of a disjunction.

B42 Visits the right-hand side of an OR statement.

B51 When you have A \/ B , you need to prove A or B , here, we choose to

prove B to prove the overall statement.

B52 Replaces A \/ B goal with B .
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Participant I found the tool easy to understand.

Strongly

disagree
Disagree Neutral Agree

Strongly

agree

A11 3

A12 3

A21 3

A22 3

A31 3

A32 3

A41 3

A42 3

A51 3

A52 3

B11 3

B12 3

B21 3

B22 3

B31 3

B32 3

B41 3

B42 3

B51 3

B52 3
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Participant I found the session educational.

Strongly

disagree
Disagree Neutral Agree

Strongly

agree

A11 3

A12 3

A21 3

A22 3

A31 3

A32 3

A41 3

A42 3

A51 3

A52 3

B11 3

B12 3

B21 3

B22 3

B31 3

B32 3

B41 3

B42 3

B51 3

B52 3
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Participant I found the session fun.

Strongly

disagree
Disagree Neutral Agree

Strongly

agree

A11 3

A12 3

A21 3

A22 3

A31 3

A32 3

A41 3

A42 3

A51 3

A52 3

B11 3

B12 3

B21 3

B22 3

B31 3

B32 3

B41 3

B42 3

B51 3

B52 3
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Participant I would like to continue using this tool.

Strongly

disagree
Disagree Neutral Agree

Strongly

agree

A11 3

A12 3

A21 3

A22 3

A31 3

A32 3

A41 3

A42 3

A51 3

A52 3

B11 3

B12 3

B21 3

B22 3

B31 3

B32 3

B41 3

B42 3

B51 3

B52 3
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Participant I would recommend this session to a friend.

Strongly

disagree
Disagree Neutral Agree

Strongly

agree

A11 3

A12 3

A21 3

A22 3

A31 3

A32 3

A41 3

A42 3

A51 3

A52 3

B11 3

B12 3

B21 3

B22 3

B31 3

B32 3

B41 3

B42 3

B51 3

B52 3
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