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ABSTRACT OF THE THESIS 

 

Long-term Evaluation of Low-Cost Air Sensors  

in Monitoring Indoor Air Quality at a California Community  

 

by 

 

Zemin Wang 

Master of Science in Environmental Health Sciences 

University of California, Los Angeles, 2020 

Professor Yifang Zhu, Chair 

 

Introduction: In response to substantial evidence showing adverse health effects of long-term or 

short-term exposure to air pollutants, interest has grown in real-time monitoring of air quality in 

fine-grained geographic detail. The development and application of low-cost air sensors enable 

high spatial resolution air quality monitoring. The validity and consistency of those devices, 

however, still needs to be investigated. Previous literature suggests potential inaccuracy due to 

environmental factors. Our study aims to provide evidence that low-cost air sensors could be 

applied at a community scale to monitor indoor air quality over time and to alert communities 

and residents about air pollution issues.  
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Objectives: 1. Identify indoor particulate matter(PM2.5) sources using low-cost sensors at a 

community scale; 2. Identify and explore potential indoor PM mitigation measures; 3. Explore 

the impacts of ambient PM levels on indoor air quality; 4. Evaluate the long-term performance of 

low-cost air sensors 

Methods: We have operated 30 PurpleAir II (PA-II) sensors (12 outdoor and 18 indoor) at a 

California community located adjacent to a major interstate freeway vicinity since May 2017. 

PM2.5 data were recorded and uploaded automatically by the sensor network. We also collected 

one-week indoor human activity logs (i.e., whether cooking, opening windows, or using air 

purifiers at each hour) from 9 recruited residents using questionnaires during the PM monitoring 

campaign. The indoor PM data were matched with activity logs based on the monitoring location 

and time. We then assessed the impacts of ambient air quality, microclimatic factors (e.g., 

temperature and relative humidity (RH)), and indoor human activities on indoor PM2.5 

concentrations using t-tests and a linear mixed-effects regression model.  

Results: Indoor sensors had greater data completeness than outdoor sensors. The average of 

PM2.5 Indoor/Outdoor (I/O) ratio during cooking hours was 7.3, significantly greater (p < 0.01) 

than the average of 1.4 during non-cooking hours. The fitted linear mixed-effects model can 

explain 86.4% of the variation in indoor PM levels. The model shows that indoor PM2.5 was 

positively influenced by ambient PM2.5 and indoor cooking and negatively influenced by window 

opening and using an air purifier. Moreover, ambient PM and window opening had an interaction 

effect on indoor PM levels.  

Conclusions: PA-II sensors could effectively monitor indoor PM concentrations over a long-

time span and detect the impacts of indoor activities on IAQ. PA-II sensors deployed indoors 

performed better than those deployed outdoors. Ambient PM levels had a significant positive 
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effect on IAQ. Residential cooking was a strong indoor PM emission source, which could be 

influenced by effective ventilation and mitigation measures.  
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1. Introduction 

According to the World Health Organization, 91% of people worldwide were breathing air containing 

high levels of pollutants in 2016 (WHO, 2016). Particularly, particulate matter (PM) pollution was 

predicted to be associated with more than 8 million nonaccidental deaths in 2015 (Burnett et al., 2018). 

As a complex mixture of particles suspended in air, PM is considered responsible for many of the most 

harmful health effects of ambient air pollution (Mukherjee & Agrawal, 2017). A recent study shows that 

PM-associated mortality in California in 2012 was estimated to 12,700-26,700, which is comparable to 

the ozone-associated mortality (Wang et al., 2019). Numerous studies have shown strong associations 

between PM pollution and various adverse health effects, such as respiratory, cardiovascular and 

cerebrovascular diseases, and cancers. When PM is combined with other air pollutants in the air, adverse 

health effects could accumulate (Farraj et al., 2015; Ku et al., 2017; Siddika et al., 2019; Thompson et al., 

2019). A multi-city study has shown that the median death rate attributable to PM2.5 was 39 deaths per 

100,000 people in 2016 (Anenberg et al., 2019). Pascal et al. have also confirmed the short-term increases 

in mortality risk, even at PM exposure levels at concentrations under European regulation (Pascal et al., 

2014). Schwartz et al. have concluded a causal association of air pollution with daily deaths at a 

concentration under U.S. EPA standards (Schwartz et al., 2017). Identification of possible PM sources 

will provide a foundation for control measures to reduce the adverse health impacts of air pollution 

(Mukherjee & Agrawal, 2017).  

Since people spend 80-90% of their daily time in the indoor environment (Simoni et al., 2003), most 

human exposure to PM occurs indoors. Previous studies have highlighted the critical impacts of indoor air 

quality (IAQ) on working performance (Wargocki & Wyon, 2017) and human health symptoms such as 

respiratory diseases (Lanthier-Veilleux et al., 2016) and cardiovascular diseases (Snider et al., 2018). 

Indoor particles include the ambient infiltrated as well as the indoor generated through indoor human 

activities. A recent study in China (Snider et al., 2018) shows that outdoor PM2.5 contributed an estimated 

20-44% of indoor PM2.5. Indoor air quality could be also influenced by a wide and varied range of indoor 
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emission sources (e.g. cooking and heating with natural gas, tobacco and electronic cigarettes) (Li et al., 

2019; Snider et al., 2018). Hence, traditional assessment based on fixed-site air quality monitoring 

networks is inadequate and problematic for personal or domestic exposure to air pollutants. Residential 

indoor monitoring sensors can provide a more representative measure of personal or domestic exposure. 

Moreover, controlling IAQ is presently recognized as more efficient and economic than decreasing 

outdoor pollutant concentrations (Liu & Zhang, 2019), which makes it necessary to accurately quantify 

indoor pollutant levels.  

Attempts to collect indoor real-time and high-resolution air quality data have been encumbered by the 

limitations of air monitoring devices. Given the high cost of current air monitoring instruments, air 

pollution exposure is usually measured outdoors by central-site air quality monitoring stations (Faridi et 

al., 2018; Guo et al., 2017; Pun et al., 2017). Existing expensive and sophisticated air quality monitoring 

networks could provide limited data, especially lacking IAQ information for residents and communities. 

With technological advancements in the areas of electrical engineering and wireless networking, “low-

cost” air quality sensors have been developed and shifted traditional air monitoring towards a more 

affordable and portable direction. South Coast Air Quality Management District has evaluated dozens of 

commercially available low-cost air quality sensors under ambient (field) and controlled (laboratory) 

conditions (Polidori et al., 2017). According to the evaluation reports, some low-cost sensors had a good 

performance under laboratory conditions and showed a good correlation in the field compared with 

Federal Reference Methods (FRM) or Federal Equivalent Methods (FEM). Previous studies, however, 

have suggested that a number of low-cost sensors had poor reliability and did not perform well under 

actual ambient conditions. Also, there is no generally accepted evidence on the long-term performance of 

the commercially available air quality sensors and their actual applications for individuals, local 

environment groups, or communities.  

The PurpleAir II air quality sensor (PA-II) is a low-cost and indoor-friendly optical particle counter. The 

sensor was designed for monitoring not only outdoor but also indoor particulate matter levels compared 
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with many current air monitoring sensors that could be only deployed outdoors. The sensor could also 

provide information on relative humidity (RH) and temperature for reference. A study on laboratory and 

field evaluation of low-cost sensors conducted by SCAQMD (Polidori et al., 2016, 2017) suggested that 

PA-II sensors showed good to excellent accuracy for monitoring PM2.5. The laboratory and in-field 

measurements of PM1.0 and PM2.5 from PA-II showed strong correlations (lab R2>0.99, field R2>0.93) 

compared with the FEM. The sensors, however, underestimated PM10 concentration as measured by the 

reference (field R2>0.66), and as PM10 concentration increased, sensors’ accuracy decreased.  

Recent studies have tested the validity of PA-II sensors for assessing local or regional air pollutant 

exposure (Kim et al., 2019), monitoring indoor or outdoor PM emissions (Gupta et al., 2018), and 

measuring PM concentrations at a large scale (Bi et al., 2020). However, some researchers still doubt the 

real-world performance of low-cost air sensors. While various correction functions have been proposed 

(Magi et al., 2020; Malings et al., 2020), there are problematic because the proposed correction formulas 

were studied based on specific environmental conditions and the number of sensors used in these studies 

are limited. There is a great need for generally accepted evidence on the real-world performance and 

potential correction formulas for PA-II sensors. Therefore, this study aims to (1) evaluate the real-world 

performance and (2) explore the potential applications of commercially available air sensors in a local 

community using PA-II sensors. 
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2. Method 

2.1. Study sites 

We deployed a PA-II sensor network in a California neighborhood that straddles the 405 Freeway along 

the 3200 blocks of two major streets, Sawtelle and Sepulveda Boulevards, on the west and east of the 

freeway, respectively. A map of the sampling locations is attached in the Appendix (Figure A1). A total 

of 30 PA-II air sensors were installed and equally distributed at the two sides of the freeway since 

November 2017. Eighteen indoor sensors were installed in residents’ apartments and twelve outdoor 

sensors were installed on the roof of the apartment buildings. Occupants of apartments recruited for 

indoor installations were recruited based on location, and they gave consent for data collection. Each 

recruited apartment was required to complete a one-week activity log to record their indoor activities 

along with a survey for their home characteristics during the first month of the investigation campaign.  

2.2. Instrumentation 

The PA-II sensor is a low-cost optical particle counter, which could measure number concentrations of 

suspended particles with diameters ranging from 0.3 to 10 μm and estimate the size-specific mass 

concentrations of particles such as PM1.0, PM2.5, PM10. The sensors could also monitor ambient relative 

RH and temperature for reference. Each sensor has two identical monitoring units in case of either one not 

working. All the data collected by PA-II were automatically uploaded to and recorded on the PurpleAir 

server through a Wi-Fi connection. All sensors information in this study is available to the public on the 

PurpleAir website, and the datasets could be exported and downloaded upon request 

(https://www.purpleair.com/sensorlist).  

2.3. Indoor activity logs  

We collected information about residents’ indoor activities logs from 9 out of the total of 30 recruited 

residents using questionnaires. Indoor cooking, window opening, and use of air purifiers were recorded 

hourly for seven days for each study participant.  
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2.4. Data processing 

In this study, we used the average of the measurements monitored by two internal channels to represent 

one PA-II sensor. We excluded measurements with abnormal temperature records (i.e., greater than 200℉ 

or less than 0℉) and smoothed the data by taking hourly, daily, and monthly averages, respectively. The 

hourly data were used for exploring the variation in Indoor/Outdoor ratios (I/O ratios) before/during 

various indoor activities. The daily and monthly data were used for showing the long-term trends of PM 

concentration and data collection validity.  

2.5. Data analysis 

2.5.1. Data completeness 

Data completeness was used for assessing the data collection efficiency and indicating partial 

performance of a sensor. We calculated data completeness by taking the ratio between the number of 

available hourly data and the total hours that a sensor had been assumed to work (Zheng et al., 2018).  

2.5.2. Calculation of indoor/outdoor ratios of PMs 

Indoor/Outdoor Ratios of PM (I/O ratios) were used to compare indoor air quality with ambient air 

quality at a given location (Deng et al., 2015). I/O ratios were calculated by dividing indoor PM 

concentration level by outdoor PM concentration level recorded at the nearest outdoor sensor (the 

maximum distance between the paired sensors is 200 meters). I/O ratios above 1.2 suggest that indoor PM 

concentration is higher than the outdoors and could be due to indoor PM sources. I/O ratios above 0.8 and 

at or below 1.2 suggest that indoor concentration is equilibrating with outdoor concentration. I/O ratios 

less than 0.8 indicate that indoor concentration is lower than the outdoors and illustrates possible outdoor 

influence (Deng et al., 2015). To assess the overall difference between indoor and outdoor PM 

concentrations, we used a paired t-test to calculate the test statistic, t-value.  

 



6 
 

2.5.3. Effects of indoor activities on I/O ratio 

We also examined how specific indoor activities affected indoor air quality, comparing the I/O ratios 

before and during a specific indoor activity. To test the statistical significance of differences in I/O ratios, 

we used a Welch two-sample t-test assuming unequal variances of two samples to calculate the t-value.  

2.5.4. Effects of indoor factors and ambient air quality on indoor PMs 

To further evaluate the performance of low-cost air sensors on assessing impacts of various indoor factors 

and ambient air quality on indoor PM levels, a linear mixed-effects regression model was developed 

utilizing questionnaire responses and observation data. The response variable was set as monitored hourly 

indoor PM2.5 concentration. The input variables comprised current ambient PM concentration, indoor 

emission term (i.e., cooking), indoor ventilation term (i.e., window opening), indoor mitigation measure 

term(i.e., air purifier used), current microclimatic influence terms (e.g., temperature and RH). Since 

indoor air pollutants accumulate in indoor spaces and then continue to affect indoor air quality, past 

concentrations of indoor PM were added into the model to better predict the current indoor PM 

concentration (Lim et al., 2012). For the linearity assumption of modeling, regression models used the 

natural log of measured PM concentrations. Apart from these main effects, an interaction effect of 

window opening with the ambient PM2.5 concentration was also taken into consideration. To take into 

account unobserved heterogeneity between monitoring devices, building structures, residents’ 

characteristics, and residents’ daily activities, the sampling site was considered as a potential random 

effects term in the regression analysis. Past concentrations of indoor PM2.5, outdoor PM2.5, cooking, 

window opening, air purifier using, temperature, RH, and interaction effect of window opening with the 

ambient PM2.5 were selected as input (X) variables, and the concentrations of current indoor PM2.5 were 

regarded as output (Y) variables, as listed in Table 1.  
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Table 1. Descriptions of X and Y variables of regression model on indoor PM 

 Description 

X variables the past concentration of indoor PM2.5, ambient PM2.5 concentration, cooking, window opening, 

air purifier using, temperature, RH, the interaction effect of window opening with the ambient 

PM2.5 

Y variables indoor PM2.5 concentration 

 

The indoor PM2.5 prediction model can be expressed as follows:   

𝐿𝑛𝐶𝑖𝑛𝑖𝑗 = 𝛽0 + 𝛽1𝐿𝑛𝐶𝑖𝑛 𝑖−1,𝑗 + 𝛽2𝐿𝑛𝐶𝑎𝑚𝑏𝑖𝑒𝑛𝑡𝑖𝑗 + 𝛽3𝐶𝑜𝑜𝑘𝑖𝑛𝑔𝑖𝑗 + 𝛽4𝑊𝑖𝑛𝑑𝑜𝑤𝑖𝑗 +

𝛽5𝑃𝑢𝑟𝑖𝑓𝑖𝑒𝑟𝑖𝑗 + 𝛽6𝑇𝑖𝑗 + 𝛽7𝑅. 𝐻.𝑖𝑗+ 𝛽8𝑊𝑖𝑛𝑑𝑜𝑤𝑖𝑗 ∗ 𝐿𝑛𝐶𝑎𝑚𝑏𝑖𝑒𝑛𝑡𝑖𝑗 + 𝑢𝑗 + 𝜀𝑖𝑗 (1)
 

The three indoor activities terms were determined from the previous part of the analysis and were coded 

as follows: 1 represents Yes (i.e., cooking, opening at least one window, or using at least one air purifier 

at the apartment), and 0 represents No (i.e., no cooking, closing windows, no air purifier used). In 

addition, the likelihood ratio test was used for testing the statistical significance of the potential random 

effect. 

  



8 
 

3. Results and Discussion 

3.1. Outdoor and Indoor Sensors’ Data Completeness 

As shown in Figure 1 and Table 2, the performance of PA-II sensors on data completeness was different 

after deployed at different field locations. Each indoor sensor completed greater than 77% of data 

collection events during their sampling period (see Table 2). Incomplete indoor data mostly stemmed 

from the loss of stable Wi-Fi when residents went on vacation. Outdoor sensors provided less complete 

data than sensors deployed indoors. The outdoor sensor 2 had the lowest value of data completeness 

(24%). According to our records, sensor 2 was broken twice for unknown reasons. We suspect that 

possible detrimental conditions around the monitoring site (e.g., outlet failure) contributed to the 

malfunction of monitors. Sensor 10 also had extremely low data completeness (26%) probably due to the 

same issue.  

 

 

 

 

 

 

 

 

Figure 1. Data collected by the low-cost air monitoring network. The darkness of white-and-black boxes 

represents the monthly PM2.5 concentration. The red boxes represent a monitoring month without 

available data from a sensor.  The yellow box represents the average of PM2.5 concentrations (121 μg/m3) 

monitored by sensor 2 on January 1st, 2018, which was comprised of 19-hours measurements.  

 

122 μg/m3
 



9 
 

3.2. PM2.5 concentration level, RH, and temperature on a 1-hour scale 

Table 2 and Table 3 show the summary statistics for outdoor and indoor 1-hour averaged PM2.5 

concentrations, RH, and temperatures from November 2017 to June 2019. During the sampling period, 

the geometric mean (GM) of hourly indoor PM2.5 concentration was 9.36 μg/m3 (IQR: 1.16 – 10.57 

μg/m3) by 18 indoor PA-II sensors in the study community, compared to a GM of hourly outdoor PM2.5 

concentrations of 9.75 μg/m3 (IQR: 4.90 – 21.45 μg/m3) across 12 sensors. Based on the paired t-test 

results, the mean indoor PM2.5 concentration was significantly lower than the average of outdoor PM2.5 

concentrations reported by the nearest sensor (difference = 4.18 μg/m3, p<0.001), suggesting a possible 

protective role of buildings in the reduction of air pollution, which is consistent with previous findings 

(Snider et al., 2018). This effect was found to be more significant when the local ambient PM 

concentration increased in winter (Figure 2). On the contrary, most of the maximum hourly PM2.5 levels 

reported by a single indoor sensor were much higher than outdoor PM2.5 concentrations (Table 2 and 

Table 3), and the three highest hourly PM2.5 concentrations were reported by indoor sensor 20 (1292 μg/m3 

and 965 μg/m3) and indoor sensor 24 (938 μg/m3). While the outdoor mean PM2.5 levels monitored by 

different sensors were relatively close to each other, measurements by indoor sensors varied dramatically 

among sensors and logging time of a day. There could be potential influences of residence location and 

human activities on indoor PM levels.  
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Table 2. Summary Statistics for 1-hour Averaged Measurements of Outdoor Sensors 

Sensor ID 
Number of 

Hours of Data  

PM2.5 (μg/m3) R.H.a (%) Temp.b (℉) 
Data 

Completeness  
Mean ± 

SDc 
GMd IQRe 

Mean ± 

SDc 
Mean ± SDc 

1 12445 18 ± 18 10.3 18.2 50 ± 16 70 ± 9 52% 

2 2265 35 ± 35 19.2 36.5 44 ± 20 63 ± 8 24% 

3 13320 16 ± 18 8.9 16.4 53 ± 18 68 ± 9 96% 

4 13495 17 ± 20 8.4 17.7 51 ± 17 68 ± 9 56% 

5 10728 18 ± 20 10.0 18.3 51 ± 19 68 ± 10 82% 

6 12843 16 ± 16 9.2 15.5 54 ± 16 69 ± 10 85% 

7 13722 17 ± 18 9.6 16.8 50 ± 16 71 ± 10 100% 

8 12874 16 ± 17 9.7 15.6 49 ± 15 71 ± 10 92% 

9 12535 15 ± 15 8.9 14.1 51 ± 15 73 ± 9 95% 

10 2190 23 ± 21 11.4 34.7 39 ± 17 69 ± 10 29% 

11 14379 17 ± 20 9.1 18.0 51 ± 18 68 ± 10 57% 

12 13166 17 ± 20 8.7 15.7 55 ± 19 67 ± 9 78% 

Note:  a R.H. represents relative humidity; b Temp. represents temperature; c SD represents standard deviation;  

 d GM represents geometric mean; e IQR represents interquartile range.  

 

Table 3. Summary Statistics for 1-hour Averaged Measurements of Indoor Sensors 

Senor ID 
Number of 

Hours of Data  

PM2.5 (μg/m3) R.H.a (%) Temp.b (℉) 
Data 

Completeness  Mean ± SDc GMd IQRe 
Mean ± 

SDc 
Mean ± SDc 

13 13560 15 ± 45 4.3 8.2 41 ± 4 83 ± 2 100% 

14 12511 1 ± 7 0.2 0.2 36 ± 3 85 ± 2 100% 

15 12726 9 ± 14 5.7 8.6 45 ± 4 83 ± 3 99% 

16 13468 25 ± 40 8.5 24.5 41 ± 3 82 ± 3 81% 

17 13544 3 ± 19 0.8 1.7 43 ± 2 80 ± 2 84% 

18 13111 8 ± 16 2.0 9.2 39 ± 5 80 ± 4 77% 

19 13617 11 ± 29 6.5 8.3 40 ± 6 83 ± 3 100% 

20 13736 18 ± 39 7.9 13.4 41 ± 6 83 ± 5 99% 

21 13735 15 ± 38 4.2 8.8 39 ± 6 83 ± 3 78% 

22 5284 4 ± 9 1.6 3.8 40 ± 4 83 ± 4 100% 

23 13802 19 ± 40 6.0 13.6 41 ± 4 81 ± 4 98% 

24 13806 11 ± 28 3.8 10.0 40 ± 5 82 ± 3 98% 

25 13808 10 ± 14 5.7 8.9 41 ± 5 81 ± 3 100% 

26 13830 16 ± 42 4.6 8.8 36 ± 6 83 ± 2 93% 

27 13807 8 ± 32 1.4 3.9 46 ± 4 82 ± 3 100% 

28 13848 21 ± 44 7.4 16.2 36 ± 6 85 ± 2 96% 

29 13848 9 ± 19 4.1 7.4 40 ± 4 81 ± 3 100% 

30 8403 11 ± 36 2.0 5.4 41 ± 4 85 ± 2 94% 

Note:  a R.H. represents relative humidity; b Temp. represents temperature; c SD represents standard deviation;  

 d GM represents geometric mean; e IQR represents interquartile range.  
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Figure 2. Outdoor and indoor PM2.5 concentrations on a 1-day scale. The red line represents the daily 

average of outdoor PM2.5 concentration. The green line represents the daily average of indoor PM2.5 

concentration.  

 

3.3. Impacts of human activities on Indoor PM Emission Sources 

Table 4 shows the summary of indoor activities reported, which could be related to PM emissions or 

mitigation, including cooking, opening window in the sensor room, and using an air purifier. According 

to the activity log records, 9 out of the total 30 residents reported their activity logs for seven days. Each 

of the nine residents reported at least one cooking activities with a total number of 59 cases. Window 

opening was reported 30 times from 7 residences and using an air purifier was reported 32 times from 5 

residents.  Each case lasted for a different number of hours.   

Table 4. Summary of indoor human activities related to indoor PM concentrations 

 

 

 

 

Activities  No. of reported cases No. of reported apartments 

Cooking  59 9 out of 9 

Opening window(s) 30 7 out of 9 

Using air purifier(s) 32 5 out of 9 
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3.3.1. Cooking Activities 

Cooking hours were defined as the reported cooking hours and one extra hour following the cooking 

activities. Out of 117 cooking hours with available air quality data, 61 hours (52%) had PM2.5 I/O ratios 

less than 0.8, 7 hours (6%) had PM2.5 I/O ratios between 0.8 to 1.2, and 49 hours (43%) had PM2.5 I/O 

ratios greater than 1.2. The peak value of I/O ratios appeared as high as 183 during a residential cooking 

event and the simultaneous hourly PM2.5 level was 194 μg/m3, which indicates that cooking could lead to 

acute exposure to indoor PM2.5. For some apartments, the low-cost sensor did not detect a noticeable 

increase of indoor PM2.5 levels during cooking events. This may occur as a result of the varied type and 

scale of cooking activities, the distance from the cooking stove to the sensor, or good ventilation and 

mitigation measurements such as opening a window or using a range hood vent during a cooking activity.  

 

Figure 3. Log-scale PM2.5 I/O ratios during cooking and non-cooking hours. The solid horizontal line 

represents the median. The box represents the 25th to 75th percentiles, and the whiskers represent the 

outliers. The red solid line indicates where I/O ratio = 1.  

 

The GM of PM2.5 I/O ratios for cooking hours was approximately 1.0 (IQR: 0.3 - 3.2), and for non-

cooking hours the GM of I/O ratios was approximately 0.3 (IQR: 0.1 – 0.8). As labeled in Figure 3, the 

PM2.5 I/O ratios for cooking hours were significantly higher than the non-cooking hours (p = 0.006) using 

p < 0.01 
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Welch two-sample t-test. Both results indicate that during domestic cooking activities, the indoor PM was 

mostly generated indoors rather than infiltrated from the outdoor. When there were no cooking events in 

the residence, outdoor PM pollution apparently contributed more to indoor PM levels than indoor PM 

emissions. As cooking is an activity conducted daily in most homes, monitoring and mitigating the PM 

exposure during cooking is of great health importance. PA-II sensors used in this study were effective and 

economic for measuring indoor PM concentrations to identify potential acute exposure due to cooking. 

Based on the alerts from PA-II, residents could take good mitigation measures to decrease the indoor PM 

levels including the use of air cleaner, range hood, and natural ventilation or changing a cooking manner 

(Amouei Torkmahalleh et al., 2017; Kang et al., 2019; O’Leary et al., 2019; Sharma & Balasubramanian, 

2020).  

3.3.2. Opening window(s) 

Comparing the window-opening and no-window-opening events, there is no statistically significant 

difference in I/O ratios (p = 0.428), but the center of the distribution of the I/O ratios during window 

openings seems to be closer to 1. As shown in Figure 4, the GM of I/O ratios from the window opening 

group was 0.9 (IQR: 0.6 – 1.1), and the GM of I/O ratios from the no window opening group was 0.3 

(IQR: 0.1 – 0.8). This suggests that indoor air quality was influenced more by the ambient air quality 

when there was a window open because window openings could increase the outdoor-and-indoor 

ventilation rate. It indicates that the apartments were effectively ventilated by opening the window(s). 

Meanwhile, though, there was limited information on the number of windows opened or the opening area 

of the windows for further analysis of the ventilation effect of window openings.  

Furthermore, we found an accelerated reduction of indoor PM when opening windows after cooking 

activities, which is consistent with the finding of a previous study (Kang et al., 2019). Figure 5 shows the 

normalized GMs trend of indoor PM2.5 concentration in residences before, during, and after a cooking 

activity. The GMs of indoor background PM2.5 concentrations (measured an hour before cooking) for the 

ventilation and the non-ventilation groups were 4.64 μg/m3 and 1.79 μg/m3, respectively. Data for both 
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groups peaked during the cooking hour and gradually decreased to the background level. The GM of 

PM2.5 concentrations for the ventilation group went back to the background level (4.53 μg/m3) after 2 

hours, and the GM of concentrations for the non-ventilation group (2.26 μg/m3) was still slightly higher 

than the background level after 8 hours. This suggests that window opening could accelerate the decrease 

of indoor PM2.5 concentrations to the background level after an indoor cooking activity, which is an 

effective ventilation measure to mitigating the cooking-derived PM exposure. The effect of the natural 

ventilation measure on indoor PM levels could be detected by the low-cost air sensor.  

 

Figure 4. Log-scale PM2.5 I/O ratios of ventilation group (window-opened hours) and non-ventilation 

group (no-window-opened hours). The solid horizontal line represents the median. The box represents the 

25th to 75th percentiles, and the whiskers represent the outliers. The red solid line indicates where I/O ratio 

= 1.  

p = 0.428 
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Figure 5. Normalized geometric mean of indoor PM2.5 concentrations (μg/m3) before, during, and after 

cooking activities with/without opening window. The green line represents the normalized GM of indoor 

PM2.5 concentrations in residences with window opening. The red line represents the normalized GM of 

indoor PM2.5 concentration in residences without window opened.  

 

3.3.3. Using air purifier(s) 

Another potential mitigation measure that was evaluated in the study was the use of air purifiers. Among 

all the investigated residents, 5 out of 9 reported the utilization of air purifiers (56%) with a total of 32 

cases. Residences with an air purifier in use had lower PM2.5 I/O ratios (GM: 0.1, IQR: 0.0 – 0.3) 

compared with residence without any air purifier in use (GM: 0.8, IQR: 0.4 – 1.2), although the difference 

was not statistically significant (p = 0.769). This indicates that using an air purifier could decrease the 

effects of outdoor air quality on indoor PM levels to some extent. Further study is still needed to 

accurately measure the mitigation effect of air purifiers with different characteristics such as the air 

exchange flow and the type of air purifier. In Figure 5, there are several outliers in using purifiers group 

showing that indoor PM levels were over 100 times higher than the outdoor, which might occur due to the 

high associations between human indoor activities. For instance, people intuitively tend to use air purifier 
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when they feel indoor air quality worse, or when they are doing some indoor PM-emitted activities. There 

is also a need for further study to confirm or refute the assumptions.  

 

Figure 6. Log-scale boxplot of PM2.5 I/O ratios during using and non-using air purifier hours. The red line 

indicates where the I/O ratio = 1.  

 

3.4. Linear mixed-effects model for indoor PM2.5 concentration 

To further evaluate the performance of PA-II sensors, we developed a linear mixed-effects model for 

assessing the impacts of various indoor factors and ambient air quality on indoor PM2.5 levels. The results 

of the fitted linear mixed-effects model are shown in Table 5 (fixed effects) and Figure 7 (random effect 

of sampling site). Based on this model, indoor PM2.5 concentrations had positive associations with past 

indoor PM2.5 concentrations (p < 0.001), current ambient PM2.5 concentrations (p < 0.001), and indoor 

cooking activities (p < 0.001). Window opening (p = 0.032) and use of air purifiers (p = 0.001) had both 

significant negative impacts on indoor PM2.5 concentrations, which had been identified as two effective 

household mitigation measures (Deng et al., 2015; Park et al., 2017; Sharma & Balasubramanian, 2020; 

Tong et al., 2020). Consistent with previous studies (Liu & Zhang, 2019; Snider et al., 2018; Tong et al., 

2020; Zhao et al., 2015), ambient PM2.5 levels were positively associated (p < 0.001) with indoor PM 

p = 0.769 
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levels when all the other factors were controlled such as closing the window. These results indicate that 

PM2.5 was always infiltrated from the outdoor to the indoor environment at a normal apartment even when 

the windows of the building were all closed. During window opening, the association between ambient 

PM2.5 concentrations with IAQ would increase about two folds according to the value of interaction effect 

(p = 0.046). No microclimatic variable was significantly associated with indoor PM2.5 concentrations in 

this study, and the measurements of temperature and RH reported by PA-II still need further studies to be 

evaluated for accuracy. In addition, previous studies found that meteorological factors have potential 

associations with the increased bias of low-cost sensors (Bi et al., 2020; Zheng et al., 2018), but the effect 

is still not clear and needs further evidence to confirm or refute these associations.  

Unmeasured factors contributed to significant differences in PM levels between sites. As shown in Figure 

7, varied intercepts were found for the PM2.5 prediction model for each sampling site or monitoring 

sensor, and the likelihood ratio test comparing models with/without the random effect term demonstrates 

that sampling site or sensor was a significant random effect (p = 0.03), suggesting unobserved 

heterogeneity across residences and/or sensors deployed. Since all the low-cost sensors used in the 

present study were firstly deployed in the field without laboratory evaluation, there was probably some 

differences in factory calibration. On the other hand, differences between sites might also be attributable 

to microclimatic factors, as described above, leading to variation in sensor performance, as well as other 

factors of each residence (e.g., unrecorded activities of residents, building structure characteristics, the 

number of residents living in an apartment) that varied between sampling sites.  
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Table 5. Fixed-effects variables and coefficients of the linear mixed-effects regression model 

Fixed Effects Description Coefficient Standard Error p-value 

𝐿𝑛𝐶𝑖𝑛 𝑖−1,𝑗 past concentration of indoor PM2.5 0.839 0.014 <0.001 

𝐿𝑛𝐶𝑎𝑚𝑏𝑖𝑒𝑛𝑡𝑖𝑗 ambient PM2.5 concentration 0.097 0.021 <0.001 

𝐶𝑜𝑜𝑘𝑖𝑛𝑔𝑖𝑗 cooking 0.567 0.075 <0.001 

𝑊𝑖𝑛𝑑𝑜𝑤𝑖𝑗 window opening -0.259 0.120 0.032 

𝑃𝑢𝑟𝑖𝑓𝑖𝑒𝑟𝑖𝑗 air purifier using -0.333 0.077 0.001 

𝑇𝑖𝑗 Temperature -0.002 0.009 0.842 

𝑅. 𝐻.𝑖𝑗 Relative humidity 0.001 0.004 0.811 

𝑊𝑖𝑛𝑑𝑜𝑤𝑖𝑗

∗ 𝐿𝑛𝐶𝑎𝑚𝑏𝑖𝑒𝑛𝑡𝑖𝑗 

Interaction effect of window 

opening and ambient PM2.5 

0.083 0.041 0.046 

 

 
 

Figure 7. Random-effect of sampling site (intercepts) for the fitted linear mixed-effects regression model. 

Horizontal lines represent the 95% confidence intervals of the random intercepts at each sampling site.  

 

The diagnostic graphs of the fitted regression model are attached in the Appendix (Figure A2). The 

residual plot and the histogram of residuals verify the assumptions of linearity and homoscedasticity, and 

the normal Q-Q plot proves the assumption of normality. The scatter plot of the fitted against the 

observed values of the natural logarithm of PM2.5, as shown in Figure 8, suggests a good fit by this model.  

The conditional and marginal R2 (0.864 and 0.862, respectively) of the fitted model reveal that this 

mixed-effects model could explain 86.4% of the variations in the indoor PM2.5 concentrations and the 

Intercept 
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model with fixed-effects could explain 86.2% of the variations. Compared to previous studies (Gaffin et 

al., 2017; Tong et al., 2020), this model has better performance in explaining the variations in indoor 

PM2.5 levels with a greater value of R2. Introducing past indoor PM2.5 levels term into this model, 

however, could limit the generalization of the model. If we removed the past IAQ term from the model, 

the conditional and marginal R2 would be 0.490 and 0.246, respectively. The fitted results of the partial 

regression model are attached in the Appendix (Table A1).  Therefore, this model performed well with the 

data monitored by PA-II sensors, yielding reliable and reasonable predictions of indoor PM levels.  

 

Figure 8. Scatter plot of the fitted value vs. observed value of the natural logarithm of indoor PM2.5 

concentrations. The blue line indicates where the fitted values equal to the observed values.  
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4. Limitations 

This study has several limitations. First, the study was conducted at a single university-based community 

with a small sample size. The similarity of residents’ routine, sampling location, and building design 

limited the generalizability of this study. Second, the activity logs were only collected for 7 days at each 

recruited residence and were recorded manually by the recruited participants. Individual memory errors 

and attention biases could happen. Third, this low-cost air quality sensor can detect size-specific PM, but 

performs poorly for PM with diameters less than 0.3 μm and greater than 10 μm. Since the particles 

emitted from gasoline vehicles distribute more in the range of diameter less than 0.5 μm, the PA-II sensor 

probably failed to detect part of the transportation pollution around this freeway-adjacent study site. In 

addition, the performance of PA-II sensor was highly affected by the outlet and wi-fi connection, which 

could introduce unknown bias. Lastly, the study investigated three indoor activities with limited control 

variables, while there are more than three types of indoor activities (e.g., burning candles, smoking, and 

putting on make-up) and influence factors (e.g., room area, number of residents, and ventilation system) 

relating to indoor PM concentrations.  
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5. Conclusions 

This study provides evidence that the low-cost air quality sensor, PA-II sensor, could effectively monitor 

indoor PM concentrations and detect the impacts of indoor activities on IAQ.  

As analyzed above, indoor sensors perform better compared with sensors deployed outdoors. Residential 

cooking is a major indoor PM emission source. Natural ventilation (opening window) can effectively 

bring back indoor elevated PM2.5 concentration to the background level. Using an air purifier is another 

effective mitigation measure.  

In addition, indoor PM levels are significantly associated with past PM levels, ambient PM levels, and 

indoor activities. Ambient PM levels and window opening have an interaction effect on indoor PM levels. 

In other words, when ambient PM pollution occurs, closing windows could significantly help to reduce 

indoor PM levels. When indoor PM emission occurs, opening windows could effectively help to dilute 

the indoor PM.  

Given the inexpensive cost and good performance in this study, the PA-II sensor offers a cost-effective 

way to monitor real-time IAQ for individuals, communities, and other local environmental groups, and 

has the potential to provide a high-resolution dataset of PM for environment scientists and policymakers.  
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Appendices  

 

Figure A1. Map of Sampling Locations of PurpleAir II sensors in the university village apartments 
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Figure A2. Diagnostic graphs of the fitted regression model.  

 

Table A1. Fixed-effects variables and coefficients of the linear mixed-effects regression model 

Fixed Effects Description Coefficient Standard Error p-value 

𝐿𝑛𝐶𝑎𝑚𝑏𝑖𝑒𝑛𝑡𝑖𝑗 ambient PM2.5 concentration 0.522 0.036 <0.001 

𝐶𝑜𝑜𝑘𝑖𝑛𝑔𝑖𝑗 cooking 0.852 0.140 <0.001 

𝑊𝑖𝑛𝑑𝑜𝑤𝑖𝑗 window opening -0.384 0.240 0.110 

𝑃𝑢𝑟𝑖𝑓𝑖𝑒𝑟𝑖𝑗 air purifier using -0.915 0.236 <0.001 

𝑇𝑖𝑗 temperature 0.002 0.019 0.932 

𝑅. 𝐻.𝑖𝑗 Relative humidity 0.010 0.008 0.245 

𝑊𝑖𝑛𝑑𝑜𝑤𝑖𝑗

∗ 𝐿𝑛𝐶𝑎𝑚𝑏𝑖𝑒𝑛𝑡𝑖𝑗 

Interaction effect of window 

opening and ambient PM2.5 

0.217 0.077 0.005 

Note: conditional R2 = 0.490, marginal R2 = 0.246.  
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