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Abstract

Protein–protein interactions (PPIs) are important for many biological processes, but predicting them from sequence data remains
challenging. Existing deep learning models often cannot generalize to proteins not present in the training set and do not provide
uncertainty estimates for their predictions. To address these limitations, we present TUnA, a Transformer-based uncertainty-aware
model for PPI prediction. TUnA uses ESM-2 embeddings with Transformer encoders and incorporates a Spectral-normalized Neural
Gaussian Process. TUnA achieves state-of-the-art performance and, importantly, evaluates uncertainty for unseen sequences. We
demonstrate that TUnA’s uncertainty estimates can effectively identify the most reliable predictions, significantly reducing false
positives. This capability is crucial in bridging the gap between computational predictions and experimental validation.

Keywords: protein–protein interaction prediction; deep learning; uncertainty awareness

Introduction
Characterizing protein–protein interactions (PPIs) is fundamen-
tal to understanding many biological processes such as signal
transduction, cellular metabolism, and the maintenance of cel-
lular systems [1]. High-throughput techniques, such as yeast-
two-hybrid [2] and tandem affinity purification [3], have greatly
accelerated identification of PPIs, but these experiments are often
time consuming and labor intensive. Recently, deep learning (DL)
methods have emerged as a promising alternative [4]. While pro-
tein structure is critical for protein binding, DL models primarily
relying on protein sequence, given its relative abundance over
structural data, have achieved impressive performance [5, 6]. For
example, protein-protein interaction prediction based on siamese
residual recurrent convolutional neural network (PIPR) [5] utilizes
a Siamese recurrent convolutional neural network to capture
local and sequential features such as co-occurrence similarity
of amino acids and electrostaticity- and hydrophobicity-based
features. PIPR is outperformed in cross-species generalizability by
D-SCRIPT [7], which combines linear and convolutional layers to
learn a predicted contact map for a given PPI. Recently, Topsy-
Turvy [8] combined D-SCRIPT with GLIDE [9], a network-based
approach that considers the local shared-neighbor relationships
together with the global network information and improved cross-
species generalizability over D-SCRIPT.

Despite these advancements, a major challenge of DL-based
models is its incapability to detect out-of-distribution (OOD) data
points and avoid overfitting to training data. Overfitting is espe-
cially concerning for PPI prediction, where the vastness of the
protein sequence space, and consequently the PPI space, cannot
be fully captured in the training datasets. Prior state-of-the-art

(SoTA) sequence-based models have shown to be effective in
predicting PPIs for species they were trained on, but have shown
to be poor predictors when tested on untrained species [5–7]. This
limitation in generalizability was further highlighted in a recent
study that created a human dataset (referred to as the Bernett
dataset) with strategically partitioned training, validation, and
test datasets, all with the goal of minimizing sequence similarity
and node-degree information [10]. When evaluated on the Bernett
dataset, the PPI prediction models DeepFE, PIPR, D-SCRIPT, and
Topsy-Turvy only achieved a balanced accuracy of 0.52, 0.52,
0.50, and 0.56 respectively, underscoring the urgent need for new
methods with improved generalizability [10].

To avoid overfitting to the training data, a powerful strategy is
to estimate the uncertainty of the predictions [11]. Uncertainty
awareness in PPI prediction is particularly important because of
the huge number of possible protein–protein pairs. Uncertainty-
aware models provide a measure of confidence alongside its
predictions, reporting lower confidence for predictions involv-
ing unfamiliar protein pairs or OOD samples, reflecting a self-
awareness of its knowledge boundaries [12]. Uncertainty aware-
ness is particularly important when PPI predictions are used
for virtual screening, narrowing down specific protein pairs for
experimental validation. Uncertainty estimates can serve as a
filter, allowing model users to remove highly uncertain predic-
tions to minimize false positives. As it has yet to be utilized for
PPI prediction, the integration of uncertainty awareness into PPI
prediction is a novel and necessary advancement, one that could
enhance the reliability and applicability of DL in this field.

We have developed “TUnA” (Transformer-based Uncertainty
Aware Model for PPI prediction), a sequence-based DL method
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that leverages implicit structural information for increased
generalizability and uncertainty awareness for OOD detection.
TUnA has three major components that make up the core
framework: ESM-2 protein embeddings, use of Transformer
encoder for learning intra- and interprotein relationships, and
the incorporation of the Spectral-normalized Neural Gaussian
Process (SNGP) method for uncertainty awareness [13]. SNGP
enhances DL models by applying spectral normalization to the
hidden layers and substituting the final fully connected layer with
a Gaussian process (GP) layer. These modifications significantly
improve models’ uncertainty awareness while retaining their
original predictive accuracy.

We assess TUnA on two widely used benchmark datasets:
the cross-species dataset and the Bernett dataset. In the cross-
species task, TUnA improves upon the previously best-performing
Topsy-Turvy as well as the previously benchmarked PIPR [5]
and D-SCRIPT [7]. Similarly on the Bernett dataset, TUnA is
the most accurate and balanced model out of all evaluated
methods. Additionally, we show that TUnA’s uncertainty aware-
ness improves calibration and we demonstrate a practical
application of uncertainty awareness. Our findings suggest
that TUnA not only advances the state of PPI prediction but
also is the first model to emphasize uncertainty as a core
component.

Methods
TUnA is an end-to-end framework designed to process two
embedded protein sequences and output a binary prediction
indicating noninteraction (0) or interaction (1) as well as a
corresponding uncertainty estimate between 0 and 1, where
1 represents the highest possible uncertainty. Following Liu
et al.’s methodology [13], we apply spectral normalization to the
model’s weights. Spectral normalization divides the hidden layer
weights by their largest singular value, regularizing the amount
of stretching or compression carried out by the hidden layers,
ensuring approximately distance-preserving hidden mappings
crucial for TUnA’s uncertainty awareness. Additionally, we
replace all instances of the ReLU activation function with the
Swish activation function, as Ramachandran et al. have shown its
effectiveness over ReLU [14].

Protein embedding
We utilize the ESM-2 pretrained protein language model to
transform protein sequences into vector representations. While
ESM-2 offers a range of pretrained models, varying in size from
8M to 15B parameters, we opt for the 150M parameter model
due to computational limitations. Given an AA sequence with
length N, the embedded representation is an N × 640 matrix.
Given that residue distances in sequence are not reflective of the
residue distances in 3D structure, positional embeddings are not
added.

Intraprotein feature extraction
To capture the intraprotein interactions, we individually process
each protein in the input pair with a Transformer encoder. The
protein sequences, represented as N × 640 matrices, are first
projected into N × d matrices, where d is the hidden dimension.
A mask is applied to the padded regions such that padded regions
are ignored during the self-attention block. The output of the
intraprotein encoder is a set of encoded N × d representations for
each protein, capturing essential intraprotein relationships and
features.

Interprotein feature extraction
While the original Transformer decoder is tailored for text gener-
ation, our PPI prediction task requires feature extraction rather
than sequential generation. Therefore, we propose the use of
a secondary encoder in place of the decoder. This interprotein
feature encoder takes as input the concatenated encoded rep-
resentations from the intraprotein feature extraction step. For
instance, if Protein A has length N and Protein B length M, their
encoded outputs would be N × d and M × d matrices, respectively.
Consequently, the input for the interprotein feature extraction
module becomes a (N + M) × d matrix.

Gaussian process prediction module
As outlined by Liu et al. [13], the standard final fully connected
layer is replaced by a Gaussian process layer that is conditioned
on the symmetric interaction feature vectors during the final
epoch of training. The kernel is approximated by the random
Fourier features approximation [15]. At the last epoch of training,
we calculate the covariance matrix, allowing us to generate both
a mean logit and its variance for each example during evalu-
ation. Using the mean and variance, the uncertainty-adjusted
probability, P, is calculated using the mean-field approximation
[13]. Following Liu et al., we define uncertainty as (1 − P)(P)/0.25,
meaning uncertainty is the highest when P = .5, indicating an OOD
sample. To understand why, note that a GP with a radial basis
function kernel begins with a prior mean of zero, updating this
belief according to the training data [16]. For OOD samples, the
GP reverts to its prior mean of 0, leading to an output logit of zero.
Since sigmoid(0) equals 0.5, distant examples are expected to yield
a predicted probability P of .5 (Supplementary Fig. 1). We use the
uncertaintyAwareDeepLearn 0.0.5 library (https://github.com/
Wang-lab-UCSD/uncertaintyAwareDeepLearn) to implement the
last layer GP.

Implementation and training details
We use the code for TransformerCPI [17], a Transformer-based
protein–drug interaction prediction model, as a starting point
and heavily adapt the architecture and workflow [17]. TUnA is
implemented in PyTorch 1.13.1 with CUDA 11.6 and trained on
a NVIDIA A6000 with 48 GB of memory. TUnA minimizes the
binary cross-entropy loss with the Adam + Lookahead optimizer
[18, 19]. While Adam does not require a learning rate sched-
uler, we observed adding a StepLR scheduler improved perfor-
mance. To determine the number of epochs, we trained the TUnA
for 20 epochs and then re-trained TUnA until the epoch when
it achieved the lowest validation loss to minimize overfitting.
Given the large number of hyperparameters and consequently
the computational cost of traditional grid search, we identify
the most important hyperparameters based on early validation
performance. As the size of the hidden dimensions appeared to
have a large impact on performance, we identified the optimal
hidden dimension through grid search (Supplementary Tables 1
and 2). The selected hyperparameters for TUnA are described in
Supplementary Table 3.

During training, we limit the maximum sequence length to
512 AAs due to computational limitations. If a sequence exceeds
this length, we randomly select a continuous 512 AA-long subset
for each training instance, ensuring varied exposure to different
sequence regions. Because we train using mini-batches, we zero-
pad sequences shorter than 512 AAs. We note that this is only
applied during training and that during testing, the model con-
siders the entire sequence.
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Figure 1. TUnA architecture overview. Protein sequences are embedded using ESM-2 then passed into the intraprotein interaction encoder composed of
a linear transformation down to d-dimensions, followed by a standard Transformer encoder. The encoded protein representations are concatenated and
passed through the interprotein interaction encoder. We use both concatenations (A||B and B||A) to ensure permutation invariance. The outputs of the
interprotein interaction encoder are averaged along all nonpadded regions to output a d-dimension vector, referred to as the interaction feature vector.
The interaction feature vectors are then max-pooled and used as the input for the GP layer. The GP layer returns an uncertainty-adjusted probability
used to assign the label the protein pair as interacting or noninteracting.

Results
Model overview
The three core components of the TUnA architecture are shown
in Fig. 1. First is the protein embedding method. Previous works
have utilized such as one-hot encoding, hand-crafted physico-
chemical features, or conjoint triad features [5, 20, 21]. Conversely,
more recent models such as D-SCRIPT and Topsy-Turvy utilize
pretrained protein language models to embed protein sequences.
We utilize the SoTA ESM-2 protein language model, which has
implicitly learned rich structural information via the masked
language modeling objective. While only ever trained on sequence
information, ESM-2 can learn structural information as predict-
ing masked residues requires an understanding of evolutionary
sequence patterns closely tied to biological structure [22]. ESM-2
provides a structural information-rich starting point for TUnA.

Second is the Transformer-based architecture. Transformers,
widely used in natural language processing for their ability to
capture rich long-range dependencies through the multiheaded
self-attention mechanism, have shown to be impactful even in
drug–protein interaction prediction and PPI prediction, as evi-
denced by TransformerCPI and TransformerGO, respectively [23–
24]. Self-attention can be especially useful for protein sequences
as the relationship between residues is not sequential in 3D. For
example, a protein may have an important structural motif that is
composed of residues distant in the amino acid (AA) sequence but
close in the 3D structure. We first use the Transformer encoder
twice, once per protein, with the goal of extracting an encoded
description of the protein by considering the intraprotein inter-
actions. By concatenating the encoded protein representations
and passing it through the interprotein encoder, the goal is to
create an informative representation of the entire protein–protein
complex, combining information about the individual proteins
and the interprotein interactions.

Lastly, we implement the SNGP method outlined by Liu et al.
to introduce distance and uncertainty awareness [13]. SNGP
involves applying spectral normalization to the hidden layers for

approximately distance-preserving hidden mappings and replac-
ing the final fully connected layer with a Gaussian process
approximated using random Fourier features. Compared to other
uncertainty estimation methods such as Deep Ensembles [25]
and Monte Carlo Dropout [26], SNGP only requires only a single
network, thus offering a low-cost uncertainty estimate, and
also combines the flexibility of neural network models and
better uncertainty calibration of GP. During inference, using
the learned covariance matrix, TUnA outputs an uncertainty-
adjusted probability, P. The uncertainty is a function of P, where
uncertainty is highest when P = .5.

Performance on cross-species dataset
The cross-species dataset (Supplementary Table 4) was con-
structed by Sledzieski et al., with PPI data originating from the
STRING database (v11) filtered to only include experimentally
determined physical binding interactions [7, 27]. Furthermore,
Sledzieski et al. used CD-HIT [28] to cluster nonhuman sequences
with human sequences at 40% similarity. Proteins with high
similarity to training set proteins were removed to prevent the
model from abusing sequence similarity to make predictions [7].
The datasets are purposely imbalanced, a 10:1 negative to positive
ratio, based on the assumption that positive interactions are very
rare. Lastly, Sledzieski et al. only include PPIs involving proteins
between 50 and 800 AAs.

Following D-SCRIPT and Topsy-Turvy, we report the average
and standard deviation of performance metrics across three ran-
dom initializations. Figure 2a shows the area under the precision
recall curve (AUPR) and area under the receiver operating curve
(AUROC) for each model. Given the large class imbalance, AUPR
is an appropriate metric for model evaluation. TUnA demon-
strates a clear improvement over Topsy-Turvy, achieving the high-
est AUPR and AUROC scores across all five evaluated species.
TUnA achieves higher performance at a significantly reduced
computational cost compared to Topsy-Turvy. While Topsy-Turvy
required ∼79 h for 10 epochs of training, TUnA took ∼15 h for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae359#supplementary-data
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Figure 2. Results on cross-species and Bernett datasets. (a) Performance on cross-species datasets after being trained on human PPIs. For D-SCRIPT,
Topsy-Turvy, and TUnA, we report the average over three random initializations. (b) Performance on the Bernett dataset. ES stands for early stopping,
in which model training is stopped when balanced accuracy reaches its peak. Metrics for all models, with the exception of ESM2-MLP, ESM-GP, T-FC,
TUnA-ProSE, and TUnA, are derived from Bernett et al. [10] AUROC and AUPR metrics are obtained from the corresponding repository for Bernett et al. We
report balanced accuracy, the average of recall and specificity, as was reported by Bernett et al. (c) Expected calibration error evaluated on the Bernett test
dataset post-training on the Bernett training dataset. (d) Precision and number of true positives across different uncertainty thresholds on the Bernett
test dataset.

18 epochs. In addition, while Topsy-Turvy utilizes the ProSE [29]
protein language model’s N × 6165 embedding for each length
N protein sequence, TUnA uses ESM-2’s N × 640 embedding,
requiring ∼10 times less memory. In total, the embeddings for the
unique mouse sequences for Topsy-Turvy requires ∼367 Gb, while
TUnA only requires ∼35 Gb. This reduction in computational cost
is important for providing a more accessible and practical tool for
PPI prediction.

Performance on Bernett dataset
While the cross-species task can provide a measure of a
model’s generalizability, particularly regarding the applicability

of knowledge learned from human PPIs to other species, the
Bernett dataset [30] serves as another rigorous benchmark. As
a human-only dataset, the Bernett dataset lacks evolutionarily
conserved information across species that may inflate model
performance. The Bernett dataset aims to minimize data leakage.
Starting with positive PPIs from the HIPPIEv2.3 [31] human PPI
database, negative PPIs were randomly sampled. Then, the PPIs
were partitioned into three parts with the graph partitioning
framework KaHIP “such that there are no overlapping sequences”
[32]. For each partition, an equal amount of negative PPIs was
generated by random sampling. Additionally, CD-HIT was used
to reduce redundancy “both” within “and between” partitions,
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removing any proteins with >40% pairwise sequence similarity.
Furthermore, to minimize the node degree bias, in which models
may predict a PPI based solely on the fact that one of the
proteins is frequently involved in positive interactions, the
node degree is balanced between the positive and negative
examples.

For our experiments, we adhered to the predetermined parti-
tions for training, validation, and testing in the Bernett et al. study
[10]. Due to computational limitations in the protein embed-
ding step, we only used protein sequences with a length of 1500
amino acids or less for the training and validation sets. However,
the full test set without this length limitation was used for a
fair benchmark comparison. Details of the dataset are shown in
Supplementary Table 5.

Recently, Sledzieski et al. [33] showed that ESM-2 embeddings
combined with a multilayer perceptron (MLP) classifier can
achieve SoTA performance on the Bernett dataset. Because an
official implementation of this model is not publicly available,
we train a model closely following Sledzieski et al.’s architecture
[33], referred to as ESM2-MLP, for comparison. Additionally, we
aimed to highlight potential differences between using ESM-
2 embeddings and ProSE embeddings by training TUnA using
ProSE embeddings (TUnA-ProSE). To better understand the
individual contributions of Transformer encoder and SNGP,
we train two additional models. First, we remove the SNGP
components from TUnA, removing spectral normalization and
replacing the GP layer with a fully connected layer. We refer
to this model as the Transformer with fully-connected (T-FC).
Second, we train a model in which we add SNGP to ESM2-MLP,
which we refer to as ESM2-GP. For ESM2-GP, we add spectral
normalization to ESM2-MLP and replace the last fully connected
layer with a GP layer. For T-FC and ESM2-GP, we use the same
hyperparameters of their respective original models, except the
number of epochs trained for. We determine the number of
epochs using the same methodology previously described. As
the final part of this benchmark, we compare the runtimes of
TUnA with other models with top performance on this dataset
to provide a quantitative assessment of the cost associated with
each model. The hyperparameters for these models are shown in
Supplementary Table 6.

We show that TUnA achieves SoTA performance on the Bernett
dataset and shows the best balance in the quality and quantity of
predictions, evidenced by the highest MCC (Fig. 2b). While Topsy-
Turvy ES excels in precision and specificity, it has the lowest recall
out of all models, suggesting it is heavily biased toward predicting
negative interactions. Based on the performances of TUna-ProSE,
ESM2-MLP, ESM2-GP, and T-FC we get a deeper insight on the
influence of the ESM-2 embeddings, the Transformer encoder,
and SNGP.

As previously shown by Sledzieski et al. [33], ESM2-MLP’s strong
performance demonstrates ESM-2 embeddings play a critical role
in generalizing to unseen sequences. This aligns with our prior
belief that the embeddings may contain implicit learned struc-
tural and evolutionary information that are important for predict-
ing PPIs. As unseen sequences are different in sequence but poten-
tially similar in structure, ESM-2 provides additional information
leverageable by the model. The similar performance between
TUnA and TUnA-ProSE indicates that both ESM-2 and ProSE
embeddings are informative for PPI prediction. Given that both
protein language models are trained on a similarly sized Uniref-
based dataset [22, 29], this outcome is not surprising. However,
as ProSE embeddings are much larger than ESM-2 embeddings
and do not offer a corresponding performance increase, we prefer

Table 1. Comparison of wall-clock runtimes in minutes.

Model Training
runtime

Average time
per epoch

Inference
runtime

TUnA 219.52 15.58 7.30
T-FC 73.07 14.23 6.08
ESM2-MLP 19.27 1.65 0.82
ESM2-GP 24.57 2.05 2.07

ESM-2 embeddings for their superior performance and lower
computational overhead on this benchmark.

Next, a comparison between the no-GP models (ESM2-MLP and
T-FC) and GP models (ESM2-GP and TUnA) illustrates the impact
of a last GP layer on performance. For the ESM models, a GP
layer performs worse than MLP. However, for the transformer
models, TUnA has better overall performance than T-FC. The
difference in response to the GP underscores the GP’s sensitivity
to the input features used to update the covariance matrix. Given
the Transformer encoder’s capacity to generate more informative
interaction feature vectors compared to the MLP, incorporating a
GP with T-FC (leading to TUnA) is a more lucrative strategy than
incorporating GP to ESM2-MLP. We note that the inputs to the GP
are the same dimension in both ESM2-GP and TUnA, suggesting
the difference is not due to a difference in dimensionality but
rather the quality of the input features. Thus, we believe the
higher computational cost of the Transformer is justified when
used in conjunction with SNGP.

Based on the wall-clock runtimes for training and inference of
TUnA, T-FC, ESM2-MLP, and ESM2-GP, we see how computational
overhead Transformer-based models require (Table 1). Unsurpris-
ingly, one training epoch for TUnA and T-FC is longer on average
than one training epoch for ESM2-MLP and ESM2-GP as the Trans-
former architecture is deeper than the MLP architectures. For both
training and inference, TUnA requires the most time while ESM2-
MLP is the least time consuming.

Effect of uncertainty awareness
We highlight our second novel contribution to the field of PPI
prediction–uncertainty awareness. In general, DL models can be
overconfident for unseen and OOD data [34]. Overconfidence
results in misleading and unreliable predictions. Thus, SNGP is a
core part of TUnA, enabling it to make predictions reflecting its
knowledge and confidence. Confidence calibration, measured by
the expected calibration error (ECE) [35] assesses the quality of
a model’s uncertainty awareness, where better calibration results
in a lower ECE. The Bernett test set, given it has no sequences seen
during training, is OOD with respect to sequence and thus ideal to
evaluate the models’ response to OOD data. We calculate the ECE
for best-performing models TUnA, T-FC, ESM2-MLP, and ESM2-GP.

While Fig. 2b suggests T-FC, ESM2-MLP, and ESM2-GP have
comparable performance metrics, their respective ECEs reveal a
drastic difference in calibration. As shown in Fig. 2c, models with-
out SNGP (T-FC and ESM2-MLP) have significantly higher ECEs
compared to their counterparts with SNGP (TUnA and ESM2-GP).
These results suggest SNGP can be an effective method for adding
uncertainty awareness to PPI prediction models. Additionally, we
observe a similar pattern seen in Fig. 2b where the improvement
in ECE between T-FC and TUnA is greater than the improvement
between ESM2-MLP and ESM2-GP, further justifying and highlight-
ing the advantage of the Transformer-GP combination. Overall,
TUnA is the best calibrated and most uncertainty-aware model,
evidenced by the lowest ECE.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae359#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae359#supplementary-data
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In a study involving protein engineering, Parkinson et al. use
uncertainty to select and narrow down the most certain predic-
tions for experimental evaluation to save cost and time [36]. While
we cannot experimentally validate predictions in this study, we
describe a practical application of uncertainty awareness using
the Bernett test set. For selecting experimental candidates, preci-
sion is a key metric considering the number of false positives must
be minimized. In other words, the quality of the predictions can
be a more important factor than the number of predictions. For
TUnA, T-FC, ESM2-MLP, and ESM2-GP, we calculate the precision
after removing predictions above the uncertainty thresholds 0.2,
0.4, 0.6, and 0.8, where 0.2 represents the most stringent threshold.
For all models, we use the predictive uncertainty, defined as
(1 − P)(P)/0.25, where P is the probability of interaction. In addition,
we count the number of true positives within each threshold.

In all models, the precision increases as we remove uncertain
predictions (Fig. 2d). Furthermore, the models incorporating SNGP
see a higher precision across different thresholds compared to
the models without, TUnA notably having perfect precision at the
0.2 threshold. In reality, downstream validations are often time
consuming where the precision of model predictions is the top
priority and TUnA is particularly useful for filtering out predic-
tions based on uncertainty.

Discussion
We introduced TUnA, a novel uncertainty-aware sequence-based
model for PPI prediction. TUnA utilizes ESM-2 embeddings as
well as Transformer encoders for extracting intra- and inter-
protein interactions. In addition, we incorporated SNGP to add
uncertainty awareness. To the best of our knowledge, TUnA is
the first method to incorporate uncertainty awareness to the PPI
prediction task.

First, we showed TUnA improves upon the existing methods
for predicting cross-species PPIs as well as for predicting human
PPIs without sequence similarity-based data leakage, node degree
bias, or any evolutionarily conserved information available in
the cross-species task. Second, we explored TUnA’s uncertainty
awareness as well as the contributions of the ESM-2 embeddings,
the Transformer encoder, and SNGP in model performance. We
compared TUnA against three different models all utilizing ESM-
2 embeddings, T-FC, ESM2-MLP, and ESM2-GP. We found ESM-
2 embeddings are a rich starting point for any model given its
implicitly learned structural and evolutionary information, even
at the 150M parameter level. However, the differences in the
models became more apparent when looking at each model’s level
of uncertainty awareness, measured by the ECE. Incorporation
of SNGP improved uncertainty awareness in all cases but more
significantly for the Transformer-based model than the MLP-
based model, highlighting the advantage of the Transformer–GP
combination. We demonstrated that uncertainty awareness is not
only a theoretical advantage but also has practical implications
for improving precision and reducing the risk of false positives,
which is crucial for selecting targets for the follow-up experimen-
tal validations.

In conclusion, TUnA represents an advancement of the PPI
prediction field as a state-of-the-art, uncertainty-aware method.
Through uncertainty awareness, we hoped to bridge the gap
between computational predictions and practical application—
TUnA’s uncertainty estimates provide a simple and effective way
for anyone to select the most promising PPI candidates. Future
work can continue to improve upon robustness against unseen
sequences, continuing to push the boundary of what is possible
with sequence alone.

Key Points

• Current deep learning methods for protein–protein inter-
action (PPI) prediction cannot generalize to proteins dif-
ferent from those in the training set and do not provide
reliable uncertainty estimates for their predictions.

• We aimed to bridge the gap between computational pre-
dictions and practical application by developing a model
that measures the uncertainty of its predictions. This
uncertainty enables the identification and prioritization
of the most promising PPI candidates for experimental
validation.

• We introduce TUnA, the first uncertainty-aware model
for PPI prediction. TUnA not only achieves state-of-
the-art performance on existing benchmarks but also
demonstrates superior uncertainty awareness.
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