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Many components of data analysis in high-energy physics and beyond require morphing one dataset into
another. This is commonly solved via reweighting, but there are advantages of preserving weights and
shifting the data points instead. Normalizing flows are machine learning models that have shown
impressive precision on a variety of particle physics tasks. Naively, normalizing flows cannot be used for
morphing because they require knowledge of the probability density of the starting dataset; in most cases in
particle physics, we can generate more examples, but we do not know densities explicitly. We propose a
protocol called flows for flows for training normalizing flows to morph one dataset into another even if the
underlying probability density of neither dataset is known explicitly. This enables a morphing strategy
trained with maximum likelihood estimation, a setup that has been shown to be highly effective in related
tasks. We study variations on this protocol to explore how far the data points are moved to statistically
match the two datasets. Furthermore, we show how to condition the learned flows on particular features in
order to create a morphing function for every value of the conditioning feature. For illustration, we
demonstrate flows for flows on toy examples as well as a collider physics example involving dijet events.

DOI: 10.1103/PhysRevD.108.096018

I. INTRODUCTION

One common data analysis task in high-energy physics
and beyond is to take a reference set of examples R and
modify them to be statistically identical to a target set of
examples T. In this setting, we do not have access to the
probability density of x∈RN responsible for R or T (i.e.,
pT and pR), but we can sample from both by running an
experiment or simulator. Examples of this task include
shifting simulation to match data for detector calibrations,
morphing experimental or simulated calibration data to
match backgrounds in signal-sensitive regions of phase
space for background estimation or anomaly detection, and
tweaking simulated examples with one set of parameters to
match another set for parameter inference.
A well-studied way to achieve dataset morphing is to

assign importance weights w so that wðxÞ ≈ pTðxÞ=pRðxÞ.

This likelihood ratio can be constructed using machine
learning-based classifiers (see e.g., [1,2]) to readily accom-
modate N ≫ 1 without ever needing to estimate pT or pR
directly. While highly effective, likelihood-ratio methods
also have a number of fundamental challenges. With non-
unity weights, the statistical power of a dataset is diluted.
Furthermore, even small regions of nonoverlapping support
between pT and pR can cause estimation strategies for w
to fail.
A complementary strategy to importance weights is

direct feature morphing. In this case, the goal is to find
a map f∶ RN → RN from the reference to the target space
such that the probability density of fðx ∼ pRÞ matches pT .
Unlike the importance sampling scenario, f is not unique.
The goal of this paper is to study how to construct f as a
normalizing flow [3,4]—a type of invertible deep neural
network most often used for density estimation or sample
generation. Normalizing flows have proven to be highly
effective generative models, which motivates their use as
morphing functions. Traditionally, normalizing flows are
trained in the setting where pR is known explicitly (e.g., a
Gaussian distribution). Here we explore how to use flows
when neither pR or pT are known explicitly. We call our
method flows for flows. This approach naturally allows for
the morphing to be conditional on some feature, such as a
mass variable [5–7]. Approaches similar to flows for flows
have been performed for variational autoencoders [8] and
recently, diffusion models [9].
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In many cases in physics, pR is close to pT , and so f
should not be far from the identity map. For example, R
might be a simulation of data T, or Rmight be close to T in
phase space. In order to assess how well-suited normalizing
flows are for this case, we also study how much x is moved
via the morphing. An effective morphing map need not
move the features minimally, but models that include this
inductive bias may be more robust than those that do not.
There is also a connection with optimal transport, which
would be exciting to study in the future.
This paper is organized as follows. Section II briefly

reviews normalizing flows and introduces all of the flows
for flows variations we study. Next, Sec. III presents a
simple application of the flows for flows variations on two-
dimensional synthetic datasets. Sec. IV gives a more realistic
application of the transport variations to sets of simulated
particle collision data. We summarize the results and con-
clude in Sec. V.

II. METHODS

A. Normalizing flows as transfer functions

Normalizing flows are classically defined by a parameteric
diffeomorphism fϕ and a base density pθ for which the
density is known. Using the change of variables formula, the
log likelihood (parametrized by both θ and ϕ) of a data point
x ∼ pD under a normalizing flow is given by

logpθ;ϕðxÞ ¼ logpθðf−1ϕ ðxÞÞ − log j detðJf−1ϕ ðxÞÞj; ð1Þ

whereJ is the Jacobian offϕ. Training themodel tomaximize
the likelihood of data samples results in a map f−1ϕ between
the data distribution pDðxÞ and the base density pθ. As the
base density should have a known distribution, it is usually
taken to be a normal distribution of the same dimensionality
as the data (which motivates the name “normalizing” flow).
At this point, we can introduce the first transfer method

from a reference distribution pR to a target distribution pT ,
the base transfer. For this method, we train two normalizing
flows with two different maps from the same base density. If
fϕ1

constitutes a map to the reference density pR and fϕ2
is a

map to the target densitypT, then the composition f−1ϕ2 ̊ fϕ1
is

a transfer map f∶R → T. In other words, the transfermethod
routes from reference to target via some base density
intermediary.
It is also possible to use a learned base density, such as

another normalizing flow, instead of some known base
distribution. This is our second method, unidirectional trans-
fer. Given samples from two data distributions pR and pT of
the same dimensionality, a map fγ∶ R → T between these
distributions can be found by estimating a density pϕ;R for R
to use as the base density in the construction of another
normalizing flow. In practice, this involves first training a
normalizing flow to learn the density pR by constructing the
map f−1ϕ from a base density pθ to pR.

Training of the two normalizing flows (the first for the base
density, the second for the transport) is done by maximizing
the log-likelihood of the data under the densities defined by
the change of variables formula and given by

max
γ

E
y∼pT

½logpθ;ϕ;γðyÞ�

¼ max
γ

E
y∼pT

½logpθ;ϕðf−1γ ðyÞÞ − log j detðJf−1γ ðyÞÞj�;

max
ϕ

E
x∼pR

½logpθ;ϕðxÞ�

¼ max
ϕ

E
x∼pR

½logpθðf−1ϕ ðxÞÞ − log j detðJf−1ϕ ðxÞÞj�:

A direct extension of the unidirectional training method
is given by defining densities on both the reference and the
target distributions, pθ1;R and pθ2;T which allows both fγ
and f−1γ to be explicitly used by training in both directions,
from R to T and T to R. This comprises our third transfer
method, flows for flows. A benefit of training in both
directions is that the dependence of fγ on the defined and
learned densities pθ1;R and pθ2;T is reduced. A schematic of
the flows for flows architecture is shown in Fig. 1.
The invertible network fγ that is used to map between the

two distributionsmay not have semanticmeaning on its own,
as some invertible neural networks are known to be universal
function approximators. This map can become interpretable
if it is subject to additional constraints. In this work, we
investigate two physically motivated modifications to the
flow training procedure;movement penalty, wherewe add an
L1 loss term to the flow training, and identity initialization,
where we initialize the flow architecture to the identity
function. The L1 variation directly penalizes the average
absolute value of the distance moved, while the idea for the
identity initialization is that the model will converge on the

FIG. 1. A schematic of the flows for flows architecture.

TABLE I. We consider five transfer methods from a reference
dataset to a target dataset with unknown distributions pR and pT .

Method name Training heuristic

Base transfer pR → N ð0; 1Þ → pT
Unidirectional transfer pR → pT
Flows for flows pR ⟷ pT
Movement penalty pR⟷

þL1
pT

Identity initialization pRðI þ ϵ ↔ÞpT
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first best solution that gives close to no movement. All five
transfer methods introduce in this section are summarized in
Table I.
This entire setup can be made conditional by making the

parameters of the invertible neural network dependent on
some selected parameter (i.e., the “condition”). The log-
likelihood for a normalizing flow conditioned on some
variables c is defined by

logpθ;ϕðxjcÞ¼ logpθðf−1ϕðcÞðxÞjcÞ− log jdetðJf−1
ϕðcÞðxÞÞj; ð2Þ

where the base density can also be conditionally dependent
on c. In the case of conditional distributions with continuous
conditions, the distributions on data pDðxjcÞ will often
change smoothly as a function of the condition. For these
situations, a flow that is explicitly parameterized by a well-
motivated choice of conditioning variablemay have a cleaner
physical interpretation. We provide an example of such a
flow for our application to particle collision datasets in
Sec. IV. In particular, conditional flows have been used often
in high-energy physics to develop “bumphunt” algorithms to
search for new particles [5–7,10–12]. In such studies, the
resulting flows perform well when interpolated to values of
the conditioning variable not used in training.
A schematic of a conditional flows for flows model is

shown in Fig. 2, where the conditioning function fγðcx;cyÞ
can also take more restrictive forms, such as fγðcx−cyÞ to
ensure that the learned map is simple [5,7]. Furthermore,
the two conditional base distributions can be identical such

that ϕ1 ¼ ϕ2. Alternatively, the base distributions can be
different and instead a shared condition can be used such
that c ¼ cx ¼ cy.

B. Network architecture

Throughout this work, we use two different flow
architectures, one for the “standard” normalizing flow
architecture (i.e., learning transformations from standard
normal distributions to arbitrary distributions) and one for
the flows for flows architecture (i.e., learning transforma-
tions between two nontrivial distributions).
For the former architecture type, the invertible neural

networks are constructed from rational quadratic splines
with four autoregressive (AR) layers [13]. Each spline
transformation has eight bins and the parameters of the
spline are defined using masked AR networks with two
blocks and128 nodes as defined in theNFLOWSpackage [14].
For the latter architecture type, we use eight AR layers with
splines of eight bins from three masked AR blocks of 128
nodes. This slightly more complex architecture is found to
give better performance for the large shifts between the toy
distributions that we consider. However, in cases where the
reference and the target distributions are similar to each other,
the architecture of the flows for flows model could in
principle be simplified for faster training time while main-
taining good performance.
An initial learning rate of 10−4 is annealed to zero

following a cosine schedule [15] over 60 epochs for the first
flow type and 64 epochs for the second flow type. All
trainings use a batch size of 128 and the norm of the
gradients is clipped to five. For the toy distribution analyses
in Sec. III, the training datasets all contain 106 samples.

III. TOY EXAMPLE RESULTS

In this section, we explore the performance of the five
transfer methods for learning a mapping between nontrivial
two-dimensional distributions. In general, we consider both
the accuracy of the transform, i.e., does the transfer method
learn to successfully morph between the reference and the

FIG. 2. Schematic of a conditional flows for flows architecture.

FIG. 3. Transport task between two instantiations of the same distribution. The first column shows the reference distribution; the
second column shows the base transfer method acting on the reference distribution; the third column shows the flows for flows method.
Individual samples have been color coded so as to make clear their paths assigned by the transport method.
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FIG. 4. Transport task between two different distributions. Individual samples have been color coded so as to make clear their paths
assigned by the transport method.

FIG. 5. Transport tasks between various choices of nonidentical reference and target toy distributions. The color bar has been set to
scale logarithmically, which can emphasize out-of-distribution points.
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target distribution, and the efficiency of the transform, i.e.,
does the method learn a morphing that is logical, and not
unnecessarily circuitous.

A. Base transfer vs flows for flows

In Fig. 3 we show a transport task between two datasets
drawn from a toy distribution of four overlapping circles.
Here we are in some sense trying to learn the identity
mapping. We compare the action of the base transfer, which
can be seen as the “default” method of mapping between
two nontrivial distributions, against the flows for flows
method. Both methods are able to successfully map the
overall shape of the reference to the target distribution.
However, the base transfer method tends not to keep points
in the same circle when mapping them from reference to
target, while the flows for flows method is more successful
at keeping larger portions of each ring together.
In Fig. 4, we show a transport task between two different

distributions, from four overlapping circles to a four-
pointed star. As before, both the base transfer and flows
for flows methods are able to morph the shape of the
reference distribution into the shape of the target distribu-
tion. Interestingly, the flows for flows method appears to
distribute points from each of the four circles more equally
among each point of the star.

B. Evaluating multiple transfer methods

In Fig. 5, we evaluate just the shape-morphing ability of
the transfer methods. We consider six reference-target
pairings, where the reference and target distributions are
different,1 and show the action of the base transfer,
unidirectional transfer, flows for flows, movement penalty,
and identity initialization methods on the reference dis-
tribution. We consider transports between three toy dis-
tribution types; four overlapping circles, a four-pointed star,
and a checkerboard pattern. All of the transfer methods
considered are able to successfully learn to map from
reference to target, except for the unidirectional transfer,
which exhibits a large amount of smearing in the final
distribution. Overall, the base transfer, movement penalty,
and identity initialization methods show the cleanest final-
state distributions.
Another useful metric is the distance traveled by a

sample that is mapped under a flow action. For many
physical applications, a map that moves data the least is
ideal, but we have only explicitly added an L1 loss term to
the movement penalty method. Therefore, it is interesting
to consider how far, on average, all the methods move the
features.
In Fig. 6, we show a histogram of the distances traveled,

amassing all of the six transfer tasks shown in the rows of

Fig. 5 so as to equalize over many types of starting and
target shapes. The movement penalty method performs
best, producing the shortest distances traveled from refer-
ence to target by a large margin compared with the other
methods. Interestingly, the flows for flows and identity
initialization methods have larger mean distances traveled
than the base transfer method as well as larger standard
deviations. This is somewhat counterintuitive given that the
base transfer method does not explicitly link the reference
and target distributions during the training procedure, but it
may reflect the somewhat contrived nature of the toy
examples (especially in light of the more intuitive results
for the science datasets shown in Fig. 9). All methods
except the unidirectional transfer perform more optimally
than or on par with the expected baseline, which comes
from computing the distances between two random, unre-
lated instantiations of each reference-target distribution
pairing.

IV. APPLICATION: CALIBRATING COLLIDER
DATASETS

We now move to a physical example: mapping between
distributions of scientific observables. Many analyses of
collider data are geared towards finding evidence of new
physics processes. One powerful search strategy is to
compare a set of detected data with an auxiliary dataset,
where the auxiliary dataset is known to contain Standard
Model-only physics. Any nontrivial difference between the
detected and the auxiliary datasets could then be taken as
evidence for the existence of new physical phenomena.

FIG. 6. Distances traveled in parameter space between two
nonidentical toy distributions. Each histogram compiles data
from six transfer tasks, corresponding to the rows of Fig. 5. The
“baseline” method shows the distances between two random,
unrelated instantiations of each reference; target distribution
pairing. The maximum possible distance travelable in parameter
space is 11.31.

1For results corresponding to transports between identical
distributions, see Appendix A.
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The above analysis procedure is contingent upon the
auxiliary dataset being a high-fidelity representation of
Standard Model physics. However, such an assumption is
not true for many datasets that would be, at first glance,
ideal candidates for the auxiliary dataset, such as simula-
tion of Standard Model processes or detected data from
adjacent regions of phase space. Therefore it is necessary to
calibrate the auxiliary dataset such that it becomes ideal.
Historically, this calibration task has been performed using
importance weights estimated from ratios of histograms,
either using data-driven approaches like the control region
method or fully data-based alternatives. Recently, machine
learning has enabled these approaches to be extended to the
case of many dimensions and/or no binning—see e.g.
Ref. [16] for a review.
With the flows for flows method, we can consider yet

another calibration approach; to create an ideal auxiliary
dataset (the target) by morphing the features from a less-
ideal, imperfect auxiliary dataset (the reference). When the
imperfect auxiliary dataset is chosen to be close to the ideal
reference dataset, as would be true of the candidates listed
in the previous paragraph, then the flows for flows method
should simply be a perturbation on the identity map.2

A. Analysis procedure and dataset

We focus on the problem of resonant anomaly detection,
which assumes that given a resonant feature M, a potential
new particle will have jM −M0j≲ s (which defines the
signal region) for some unknown M0 and often knowable
s [17]. The value of M0, which corresponds to the mass of
the new particle, can be derived from theoretical assump-
tions on the model of new physics or can be found through
a scan. Additional features X∈RN are chosen which can be
used to distinguish the signal (the new particle) from
background (Standard Model-like collisions), which can

be done by comparing detected data with reference data
within the signal region.
For our datasets, we use the LHC 2020 Olympics

dataset [18,19] which consists of a large number (∼106)
Standard Model simulation events. The events naturally
live in a high-dimensional space, as each contains hun-
dreds of particles with momenta in the x, y, and z
directions. To reduce their dimensionality, the events
are clustered into collimated sprays of particles called
jets using the FastJet [20,21] package with the anti-kt
algorithm [22] (R ¼ 1). From these jets, we can pull a
compressed feature space of only five dimensions; this set
of features has been extensively studied in collider
analyses. The jet features, along with the resonant feature
M, are displayed in Fig. 7. We take the band M∈ [3.3,
3.7] TeV as our signal region.
The LHCOlympics dataset contains two sets of Standard

Model data generated from the different simulation toolkits
PYTHIA 8.219 [24,25] and HERWIG++ [26]. We use the former
as a stand-in for detected collider data. The latter is used as
the reference dataset, the less than ideal auxiliary dataset
that is calibrated through the flows for flows method to
form the ideal auxiliary, target dataset.
To construct the ideal auxiliary dataset, we train a flow to

learn the mapping between the reference dataset and the
target data outside of the signal region, so as to keep the
signal region blinded. Once trained, the flow can then be
applied to the nonideal auxiliary dataset within the signal
region, thus constructing the ideal auxiliary dataset. We
use the same architectures as in Sec. II B, with the modi-
fication that we condition the transport flows on the mass
featureM. This conditioning is motivated by the fact that the
flow is trained outside the signal region and applied within
the signal region, which is defined exactly by the variableM.

B. Results

In Fig. 8, we provide the distributions of the flow-moved
reference dataset to the target dataset, as well as the ratios to
the target, outside of the signal region. As is clear from
Fig. 7, the reference and target datasets are far more similar
in this calibration example than they were in the toy
examples. Therefore for the movement penalty method,

FIG. 7. Reference and target distributions used in the application of the flows for flows procedure to scientific datasets. The feature
space is comprised of the resonant feature M and five other features mJ1 , ΔmJJ, τ21J1 , τ

21
J2
, and ΔRJJ . A description of these observables

can be found in [23]. The signal region is defined by jM −M0j < c for M0 ¼ 3.5 TeV and c ¼ 200 GeV.

2This procedure is the underlying motivation for the flow-
enhanced Transportation for anomaly detection method [6].
Equally, the ideal and reference datasets could be defined using
the same dataset but selecting different conditional values. This
method of flows for flows is used to train the constructing
unobserved regions with maximum likelihood estimation
method [7] and is studied for toy datasets in Appendix B.
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it was necessary to scan over the strength of the L1 term
added to the training loss in order to achieve good
performance; we found that we needed to reduce the
strength by a factor of 20, as compared with what was
used for the toy distributions. In fact, all five transfer
methods (base transfer, unidirectional transfer, flows for
flows, movement penalty, and identity initialization) per-
form comparably, and all five methods are able to success-
fully transform the reference dataset such that the five
marginal feature distributions greatly resemble those of the
target.
In Fig. 9, we show a histogram of the distances traveled

for each data point due to the flow action. Distributions for
distance traveled in each individual dimension of feature
space are given in Fig. 10. Since the reference and target
distributions are so similar, the base transfer methods leads
to a highly nonminimal transport path. While the unidi-
rectional method performs well, it shows a longer tail in
distance traveled that may represent a less than ideal
mapping. The flows for flows and identity initialization
methods perform comparably with relatively little distance
traveled, while movement penalty appears to have found a
nearly minimal path.
Based on the closeness of the distributions of the

reference and target in Fig. 7, we might hope for a mapping
that morphs featuresmJ1 ,ΔmJJ, andΔRJJ almost not at all,

and features τ21J1 and τ21J2 very minimally. Indeed, this is
exactly the behavior we see in Fig. 10 for the movement
penalty method (and, to a lesser extent, for the flows for
flows and identity initialization methods).

FIG. 8. Distributions of and ratios of the flow-transported reference (less than ideal auxiliary) dataset to the target (ideal auxiliary)
dataset. Ratios are taken over each of the five marginal distributions in the parameter space; errorbars represent Poisson uncertainties in
bin counts. All data is taken outside of the signal region. All features have been individually minmaxscaled to the range [−3, 3] to
optimize flow training.

FIG. 9. Distances traveled in five-dimensional parameter space
between the reference (less-than ideal auxiliary) dataset to the
target (ideal auxiliary) dataset, outside of the signal region. The
maximum possible distance travelable in parameter space (for
the minmaxscaled features) is 13.41.
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V. CONCLUSIONS AND FUTURE WORK

In this work, we have explored a number of ways to use
normalizing flows to create mappings between nontrivial
reference and target datasets of the same dimensionality. Our
aim is to consider methods that go above and beyond the
“naive” base transfer method, which uses standard normal-
izing flows thatmap from reference to target via a base density
intermediary. In particular, we have introduced the flows for
flows method, which uses two normalizing flows to para-
metrize the probability densities of both the reference and the
target and trains both with exact maximum likelihoods.
We have evaluated five transfer methods; base transfer,

unidirectional transfer, flows for flows, movement penalty,
and identity initialization. We have attempted to evaluate
each method on two facets; the accuracy of the transport
between reference and target, and the efficiency of the
transport (i.e., how far away are points transported by the
mapping). When the reference and target are fully unrelated
(such as for the toy examples in Sec. III), the flows for flows
method is comparable with the naive base transfer method
both for accuracy and extent. When the reference and target
sets are similar, or obviously related in some way (such as
for the particle physics calibration application in Sec. IV),
the flows for flows method is far preferable to the base
transfer method. These results imply that the flows for flows
method should be used over the base transfer method, as it
can always provide both an accurate and efficient transport.
However, the highest performing (and thus our recom-
mended) methods of transport are either the movement
penalty or identity initialization methods, depending on the
specific application.
There are many avenues for further modifications of the

flows for flows method, or other ways to construct flow-
based mapping functions in general. One interesting avenue
involves physically-motivated extensions of normalizing
flows: continuous normalizing flows (CNF) [27] constrain
the flow mappings such that they can be assigned velocity
vectors, and convex potential (CP) flows [28] constrain the
map to be the gradient of a convex potential. One can
explicitly enforce optimal transports with OT-Flows [29],
which add to the CNF loss both an L2 movement penalty

and a penalty that encourages the mapping to transport
points along the minimum of some potential function.
While such modifications may not be necessary when the
reference and target distributions are very similar, they
could be explored for situations when the reference and
target distributions are significantly different.
Looking towards applications that are different to that

explored in this work, it would be interesting to use the flows
for flows methods in high-dimensional physical analyses.
While our science example used a six-dimensional, high-
level subspace of dijet production variables, the fact that
flow-based models are well-suited for modeling higher-
dimensional datasets means that they could be used on
lower-level event variables, such as particle 4-momenta.
While the standard flow architecture is not permutation-
invariant variants exist that can account for this [30,31].
Further, the flows for flows method could conceivably be
used for tasks such as jet-flavor tagging, where some input
variables are integers.Here, similar to other applicationswith
standardnormalizing flows, a dequantization step [32]would
first need to be applied to such variables for training and
evaluation, then reversed after inference.

The flows for flows package can be found at https://
github.com/jraine/flows4flows. J. R. and S. K. contributed
equally to its creation.
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APPENDIX A: TOY RESULTS:
LEARNING THE IDENTITY

In Sec. III, we focused on mappings between a non-
identical reference and target distribution. However, it is
possible to get a more meaningful interpretation of a given
transport method by considering an identical reference and
target; in other words, when we ask the flow to learn the
identity mapping. In this situation, it would be desirable for
the flow to learn to transport data points as little as possible.

In Fig. 11, we plot the transport results between three
identical reference-target parings (four overlapping circles,
a four-pointed star, and a checkerboard pattern). All of the
transfer methods shown are able to successfully learn to
map from reference to target, except the unidirectional
transfer, which fails glaringly. The base transfer, movement
penalty, and identity initialization methods show the
cleanest final-state distributions.
In Fig. 12, we provide a compiled histogram of the

distances traveled for the three transfer tasks shown in the
rows of Fig. 11. In this case, the identity initialization
method performs ideally, leaving the reference distribution
virtually unchanged. The movement penalty method also
performs well. The base transfer and flows for flows
method are comparable and perform about as well as, if
not slightly better than, the baseline (as was the case for
nonidentical reference and target distributions); the unidi-
rectional method performs suboptimally.

APPENDIX B: CONDITIONAL TOY
DISTRIBUTIONS

In this appendix, we provide plots similar to those in
Sec. III but for conditional normalizing flows (as given in
Sec. II A). We extend the two-dimensional toy distributions
that have been studied so far by introducing rotations. A
flows for flows model can then learn to move points
sampled at one value of the condition such that they follow
the distribution defined by another value of the condition.
To train the flows for flows models for the conditional

toy datasets; we first generate unconditional toy distribu-
tions. We then rotate each data point in the distribution xi
by a random angle θi ∈ ½7.5°; 15°; 22.5°; 30°; 37.5°; 45°�.

FIG. 11. Transport tasks between various choices of identical reference and target toy distributions. The color bar has been set to scale
logarithmically, which can emphasize out-of-distribution points.

FIG. 12. Distances traveled in parameter space between two
identical toy distributions. Each histogram contains data from
three transfer tasks, corresponding to the rows of Fig. 11.
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FIG. 13. Transport task between a choice of identical reference and target toy distributions. Individual samples have been color coded
so as to make clear their paths assigned by the transport method. The conditioning rotation of each distribution is given in the top-right
corner.

FIG. 14. Transport tasks between various choices of identical reference and target toy distributions. The color bar has been set to scale
logarithmically, which can emphasize out-of-distribution points.

FIG. 15. Transport task between a nonidentical choice of reference and target toy distributions. Individual samples have been color
coded so as to make clear their paths assigned by the transport method.
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For a given reference-target data point pairing xR, xT used
to train the flow, the condition is then set to be the
difference between the training data’s rotation angles,
θR − θT . In all other ways, the training procedure is the
same as that of the unconditional toy distributions.
The results for the conditional toy distribution trans-

portation tasks tell a similar story as before, in Sec. III. For
a transport task between identical toy distributions with
different conditioning angles (shown in Fig. 13), the flows
for flows method appears to minimally and logically

transport individual samples, in contrast to the base trans-
port method. When looking more broadly at just the
transport accuracy (shown in Fig. 14), the flows for
flows-based methods (i.e., flows for flows, movement
penalty, and identity initialization) are visibly better than
the base transfer and unidirectional transfer.
For a transport task between nonidentical toy distribu-

tions (shown in Fig. 15), the flows for flows method
performs far more similarly to the base transfer method
with respect to dispersing samples from the rings to the

FIG. 16. Transport tasks between various choices of identical reference and target toy distributions. The color bar has been set to scale
logarithmically, which can emphasize out-of-distribution points.
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arms of the star. When considering just the distribution
shapes (shown in Fig. 16), the unidirectional transfer
performs extremely poorly, the flows for flows method
performs next best, the movement penalty and identity
initialization methods perform well, and the base transfer
method shows the cleanest final state. Again, given the
more intuitive performance rankings for the scientific
dataset, it is likely that the superior performance of the

base transfer method is more a reflection of the contrived
nature of the transport tasks between these toy distributions
chosen.
In Fig. 17, we show again a series of transport tasks

between two nonidentical toy distributions, but for a
selection of conditioning angles. The choice of angle does
not appear to affect the performance of each individual
transport method.

FIG. 17. Transport tasks between the fourcircles and star distributions at a variety of conditioning angles. The colorbar has been set to
scale logarithmically, which can emphasize out-of-distribution points.

TOBIAS GOLLING et al. PHYS. REV. D 108, 096018 (2023)

096018-12



[1] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Springer Series in Statistics (Springer
New York Inc., New York, NY, USA, 2001).

[2] M. Sugiyama, T. Suzuki, and T. Kanamori, Density Ratio
Estimation in Machine Learning (Cambridge University
Press, Cambridge, England, 2012).

[3] E. G. Tabak and C. V. Turner, A family of nonparametric
density estimation algorithms, Commun. Pure Appl. Math.
66, 145 (2013).

[4] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed,
and B. Lakshminarayanan, Normalizing flows for probabi-
listic modeling and inference arXiv:1912.02762.

[5] J. A. Raine, S. Klein, D. Sengupta, and T. Golling, CUR-
TAINs for your sliding window: Constructing unobserved
regions by transforming adjacent intervals, Front. Big Data
6, 899345 (2023).

[6] T. Golling, S. Klein, R. Mastandrea, and B. Nachman, Flow-
enhanced transportation for anomaly detection, Phys. Rev.
D 107, 096025 (2023).

[7] D. Sengupta, S. Klein, J. A. Raine, and T. Golling, CUR-
TAINs flows for flows: Constructing unobserved regions
with maximum likelihood estimation, arXiv:2305.04646.

[8] J. N. Howard, S. Mandt, D. Whiteson, and Y. Yang,
Learning to simulate high energy particle collisions from
unlabeled data, Sci. Rep. 12, 7567 (2022).

[9] S. Diefenbacher, V. Mikuni, and B. Nachman, Refining fast
calorimeter simulations with a Schrödinger bridge, arXiv:
2308.12339.

[10] B. Nachman and D. Shih, Anomaly detection with density
estimation, Phys. Rev. D 101, 075042 (2020).

[11] G. Stein, U. Seljak, and B. Dai, Unsupervised in-distribution
anomaly detection of new physics through conditional
density estimation, in Proceedings of the 34th Conference
on Neural Information Processing Systems (2020), arXiv:
2012.11638.

[12] A. Hallin, J. Isaacson, G. Kasieczka, C. Krause, B.
Nachman, T. Quadfasel, M. Schlaffer, D. Shih, and M.
Sommerhalder, Classifying anomalies through outer density
estimation (cathode), Phys. Rev. D 106, 055006 (2022).

[13] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios,
Neural spline flows, Adv. Neural Inf. Process. Syst. 32
(2019), https://proceedings.neurips.cc/paper_files/paper/
2019/hash/7ac71d433f282034e088473244df8c02-Abstract
.html.

[14] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios,
NFLOWS: Normalizing flows in PyTorch, Zenodo, 10.5281/
zenodo.4296287 (2020).

[15] I. Loshchilov and F. Hutter, Sgdr: Stochastic gradient
descent with warm restarts, arXiv:1608.03983.

[16] G. Karagiorgi, G. Kasieczka, S. Kravitz, B. Nachman, and
D. Shih, Machine learning in the search for new funda-
mental physics, Nat. Rev. Phys. 4, 399 (2021).

[17] G. Kasieczka, B. Nachman, and D. Shih, New methods and
datasets for group anomaly detection from fundamental
physics, in Proceedings of the Conference on Knowledge
Discovery and Data Mining (2021), arXiv:2107.02821.

[18] G. Kasieczka, B. Nachman, and D. Shih, Official datasets
for lhc Olympics 2020 anomaly detection challenge
(Version v6) [Data set]., 10.5281/zenodo.4536624 (2019).

[19] G. Kasieczka et al., The LHC Olympics 2020 a community
challenge for anomaly detection in high energy physics,
Rep. Prog. Phys. 84, 124201 (2021).

[20] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual,
Eur. Phys. J. C 72, 1896 (2012).

[21] M. Cacciari and G. P. Salam, Dispelling the N3 myth for the
kt jet-finder, Phys. Lett. B 641, 57 (2006).

[22] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet
clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[23] J. Thaler and K. Van Tilburg, Identifying boosted objects
with N-subjettiness, J. High Energy Phys. 03 (2011) 015.

[24] T. Sjostrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4
physics and manual, J. High Energy Phys. 05 (2006) 026.

[25] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai,
P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z.
Skands, An introduction to PYTHIA 8.2, Comput. Phys.
Commun. 191, 159 (2015).

[26] M. Bähr, S. Gieseke, M. A. Gigg, D. Grellscheid, K.
Hamilton, O. Latunde-Dada, S. Plätzer, P. Richardson,
M. H.Seymour,A. Sherstnev, andB. R.Webber,Herwigþþ
physics and manual, Eur. Phys. J. C 58, 639 (2008).

[27] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D.
Duvenaud, Neural ordinary differential equations (2018).

[28] C.-W. Huang, R. T. Q. Chen, C. Tsirigotis, and A. Courville,
Convex potential flows: Universal probability distributions
with optimal transport and convex optimization, in
International Conference on Learning Representations
(2020), https://openreview.net/forum?id=te7PVH1sPxJ.

[29] D. Onken, S. W. Fung, X. Li, and L. Ruthotto, Ot-flow: Fast
and accurate continuous normalizing flows via optimal
transport, CoRR abs/2006.00104 (2020), arXiv:2006
.00104.

[30] D. Nielsen, P. Jaini, E. Hoogeboom, O. Winther, and M.
Welling, Survae flows: Surjections to bridge the gap between
VAEs and flows, Adv. Neural Inf. Process. Syst. 33, 12685
(2020), https://proceedings.neurips.cc/paper_files/paper/
2020/hash/9578a63fbe545bd82cc5bbe749636af1-Abstract
.html.

[31] R. Verheyen, Event generation and density estimation with
surjective normalizing flows, SciPost Phys. 13, 047 (2022).

[32] J. Ho, X. Chen, A. Srinivas, Y. Duan, and P. Abbeel,
Flowþþ: Improving flow-based generative models with
variational dequantization and architecture design, in
International Conference on Machine Learning (PMLR,
2019), pp. 2722–2730.

MORPHING ONE DATASET INTO ANOTHER WITH MAXIMUM … PHYS. REV. D 108, 096018 (2023)

096018-13

https://doi.org/10.1002/cpa.21423
https://doi.org/10.1002/cpa.21423
https://arXiv.org/abs/1912.02762
https://doi.org/10.3389/fdata.2023.899345
https://doi.org/10.3389/fdata.2023.899345
https://doi.org/10.1103/PhysRevD.107.096025
https://doi.org/10.1103/PhysRevD.107.096025
https://arXiv.org/abs/2305.04646
https://doi.org/10.1038/s41598-022-10966-7
https://arXiv.org/abs/2308.12339
https://arXiv.org/abs/2308.12339
https://doi.org/10.1103/PhysRevD.101.075042
https://arXiv.org/abs/2012.11638
https://arXiv.org/abs/2012.11638
https://doi.org/10.1103/PhysRevD.106.055006
https://proceedings.neurips.cc/paper_files/paper/2019/hash/7ac71d433f282034e088473244df8c02-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/7ac71d433f282034e088473244df8c02-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/7ac71d433f282034e088473244df8c02-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/7ac71d433f282034e088473244df8c02-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/7ac71d433f282034e088473244df8c02-Abstract.html
https://doi.org/10.5281/zenodo.4296287
https://doi.org/10.5281/zenodo.4296287
https://arXiv.org/abs/1608.03983
https://doi.org/10.1038/s42254-022-00455-1
https://arXiv.org/abs/2107.02821
https://doi.org/10.5281/zenodo.4536624
https://doi.org/10.1088/1361-6633/ac36b9
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1016/j.physletb.2006.08.037
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1007/JHEP03(2011)015
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1140/epjc/s10052-008-0798-9
https://openreview.net/forum?id=te7PVH1sPxJ
https://openreview.net/forum?id=te7PVH1sPxJ
https://arXiv.org/abs/2006.00104
https://arXiv.org/abs/2006.00104
https://proceedings.neurips.cc/paper_files/paper/2020/hash/9578a63fbe545bd82cc5bbe749636af1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/9578a63fbe545bd82cc5bbe749636af1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/9578a63fbe545bd82cc5bbe749636af1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/9578a63fbe545bd82cc5bbe749636af1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/9578a63fbe545bd82cc5bbe749636af1-Abstract.html
https://doi.org/10.21468/SciPostPhys.13.3.047



