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Abstract

Purpose—Osteogenesis imperfecta (OI) predisposes to recurrent fractures, bone deformities, and 

short stature. There is a lack of large-scale systematic studies that have investigated growth 

parameters in OI.
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Methods—Using data from the Linked Clinical Research Centers, we compared height, growth 

velocity, weight, and body mass index (BMI) in 552 individuals with OI. Height, weight, and BMI 

were plotted on the Centers for Disease Control normative curves.

Results—In children, the median Z-scores for height in OI types I, III, and IV were −0.66, −6.91, 

and −2.79, respectively. Growth velocity was diminished in OI types III and IV. The median Z-

score for weight in children with OI type III was −4.55. The median Z-scores for BMI in children 

with OI types I, III and IV were 0.10, 0.91 and 0.67, respectively. Generalized linear model 

analyses demonstrated height Z-score positively correlated with severity of OI subtype (p<0.001), 

age, bisphosphonate use, and rodding (p<0.05).

Conclusions—From the largest cohort of individuals with OI, we provide median values for 

height, weight, and BMI Z-scores which can aid in evaluation of overall growth in the clinic 

setting. This study is an important first step in the generation of OI-specific growth curves.

Keywords

Osteogenesis Imperfecta; natural history study; growth; height; weight

INTRODUCTION

Osteogenesis imperfecta (OI), a group of Mendelian disorders of connective tissue, 

predisposes to recurrent fractures, bone deformities, and short stature1. Nearly 90% of 

individuals with OI have pathogenic variants in COL1A1 and COL1A2 that encode for the 

α1 and α2 chains of type I collagen, a major protein of the bone matrix2. Over the past 

decade, discovery of numerous genes as causes for OI has underscored the genetic 

heterogeneity of this disorder. However, the Sillence classification, which was proposed well 

before the genetic basis of OI was known, continues to be used for management and 

counseling purposes3. Accordingly, the autosomal dominant, type I collagen related-OI is 

classified into non-deforming (type I), perinatally lethal (type II), progressively deforming 

(type III), and common variable (type IV) forms.

Short stature is a hallmark of the moderate-to-severe forms of OI. Previous studies have 

demonstrated that the mean birth length and weight in individuals with OI are below the 

normative data from the general population4,5. Whereas final height is significantly 

restricted in those with OI types III and IV, even those with milder forms of disease, i.e., 

type I, have reductions in the overall height as compared to the general population5–8. To 

date, only few studies have systematically analyzed the growth parameters in OI. Most 

reports are limited either by the size of the cohort or the lack of data on adults with 

OI5,6,8–13. In fact, there are only two studies outlining the growth parameters in both 

children and adults with OI7,8. The largest cohort with both children and adults with OI 

described to date (144 children and 199 adults) revealed that in addition to decreased height, 

obesity was common in OI7. Detailed assessments of anthropometric measures in OI can 

have both diagnostic and management implications. Appropriate characterization of the 

growth parameters can help identify affected individuals who are not meeting the expected 

growth patterns and institute lifestyle modifications for weight control.
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In this report, we analyzed the cross-sectional growth parameters in a large cohort of 

individuals with OI from across North America (n=552; 408 children and 144 adults) who 

were enrolled in the observational study “Longitudinal Study of Osteogenesis Imperfecta” 

that was conducted by the OI Linked Clinical Research Centers (LCRC)14. The large sample 

size of the cohort allowed us to examine growth parameters in the various subtypes of OI 

and assess the potential correlations between height and the type of OI, surgical rodding, and 

bisphosphonate use.

MATERIALS AND METHODS

Study Population

The details about LCRC and the Longitudinal Study of Osteogenesis Imperfecta have been 

previously described14. The LCRC, comprised five clinical: Baylor College of Medicine 

(Houston, TX), Kennedy Krieger Institute (Baltimore, MD) with Nemours/Alfred I. DuPont 

Hospital for Children (Wilmington, DE), Oregon Health and Science University (Portland, 

OR), Shriners Hospital for Children (Chicago, IL), and Shriners Hospital for Children 

(Montreal, QC). The data collected from these clinical sites were coordinated and managed 

by the NIH Rare Disease Clinical Research Network’s (RDCRN) Data Management and 

Coordinating Center at the University of South Florida College of Medicine. The Collagen 

Diagnostic Laboratory at the University of Washington served as the center for molecular 

and biochemical analyses. The respective Institutional Review Boards of participating 

clinical sites approved the study. Informed consent was obtained from all subjects or their 

legal guardians.

At the clinical sites, demographic data, medical history, anthropometric measures of height, 

weight, and arm-span were collected and recorded in a uniform fashion by trained personnel. 

Height, weight, and arm-span were recorded as single measurements. The data were 

collected at every clinical site in accordance to the instructions outlined in the Manual of 

Operations and were reported using online case report forms.

• Height, defined as the vertical distance between crown of head and soles of feet, 

was measured using a wall-mounted stadiometer and recorded to the nearest 0.1 

cm. When participants could not stand, supine length was measured from the 

heels to the top of the head.

• Weight was measured on an upright calibrated digital or beam scale to the 

nearest 0.1 kg. In individuals who were too young to stand alone, infant scale 

was used. When children could not stand on the scales, they were weighed while 

being held by a parent and weight of the child was calculated by subtracting the 

weight of the parent from the total weight. Body mass index (BMI) was 

calculated as weight in kg/ (height in m)2.

• Arm span was measured as the distance from one furthermost fingertip to the 

other furthermost fingertip when the participant’s arms were stretched out 

horizontally using a non-stretching long measuring tape to the nearest 0.1 cm. 

Arm span was measured in a single measure and not in parts which were then 

added together.
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Overall, 552 participants were enrolled; this included 244 with OI type I, 110 with OI type 

III, 150 with OI type IV, 15 with OI type V, 12 with OI type VI, 5 with OI type VII, and 16 

with an unclassified type (Table 1). The classification of OI was based on clinical features 

outlined in the Manual of Operations; however, genotypic information was used to reclassify 

patients when available. Data collected for analyses included age at enrollment, sex, OI type, 

family history of OI, history of bisphosphonate use (yes or no), history of rodding (yes or 

no), self-reported parental height, subject height, weight, and arm span. To analyze height 

within particular genotypes, we classified the type I collagen mutations as glycine 

substitution mutations within the triple helix domain (n=160), loss of function (nonsense, 

deletion, frameshift or splicing; n=144) mutations, and non-glycine missense variations 

(n=9). Given the small number of individuals with OI types V, VI and, VII, they were 

excluded from further formal statistical evaluations. The height, weight, and BMI data 

presented here were collected at the initial enrollment visit.

Statistical analysis

For participants below 20 years (OI type I, n=163; OI type III, n=83; OI type IV, n=123), the 

Centers for Disease Controls (CDC) growth curves were utilized to plot the height, weight, 

and BMI. The Z-scores were calculated using the L, M, S parameters based on the 

methodology described previously15. The Z-scores were computed using the AGD library in 

R. For comparison of Z-scores for height, weight, and BMI, between the OI types, 

Komogrov-Smirnov test was performed to evaluate for normal distribution; ANOVA or 

ANOVA on ranks were used as appropriate. When comparing Z-scores for height, weight, 

and BMI between OI types, we categorized individuals into age groups of 0–5 years, 5–10 

years, 10–15 years, 15–20 years, and above 20 years. Z-scores for height and weight for 

individuals above 20 years of age were calculated using normative values from 20 year-old 

individuals. The differences in proportions of individuals below the 3rd percentile for height 

and weight between the OI types were analyzed using Fisher exact tests. For adult 

participants in the study (OI type I, n=81; OI type III, n=27 ; OI type IV, n=27) expected 

mid-parental height was calculated from self-reported parental heights and 5 cm was 

considered as one standard deviation from the mean as previously published 16. The 

differences in proportions of individuals with final heights below 2 standard deviations from 

the expected height were analyzed using Fisher’s exact test. The growth velocity between OI 

subtypes was assessed and the proportion of individuals falling outside of 2 standard 

deviations from the mean based on normative data were ascertained 17.

To further evaluate the potential effects of age, history of orthopedic rodding, history of 

bisphosphonate use, and sex on height, we performed generalized linear model (GLM) 

analyses using backward elimination strategy with the ‘step’ function in R. The height Z-

score was the dependent variable while the independent categorical variables included OI 

type (type I, III, or IV), sex (male or female), history of rodding (yes or no), and history of 

bisphosphonate therapy (yes or no); age was included as a continuous numeric variable. P 
values were calculated using the likelihood ratio test and correlations present with p<0.05 

were tested for evidence of interaction.
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The arm span to height ratio between OI subtypes were compared by one-way ANOVA 

among the age groups <10 years, 10–20 years, and >20 years. These age categories were 

chosen based on previous normative data that show increase in arm span to height after 10 

years of age 18.

RESULTS

The characteristics of individuals enrolled in the study are outlined in Table 1. The 

autosomal dominant forms of type I collagen-related OI accounted for over 90 percent of all 

enrolled individuals.

Height in OI

In the pediatric population (age < 20 years), the median (interquartile range or IQR) Z-

scores for height in OI types I, III, IV, V, and VI were −0.66 (−1.43 to −0.02), −6.91 (−8.41 

to −5.17), −2.79 (−3.95 to −1.69), −1.65 (−2.16 to −0.77), and −1.72 (−2.36 to −1.38), 

respectively (Figure 1). For the type I collagen-related OI, as expected, across all age groups, 

individuals with OI type III had diminished height compared to OI type I and OI type IV, 

and individuals with OI Type IV had decreased height compared to OI type I (p<0.05) 

(Figure 1). When plotted on the CDC growth curves, 9.5% of males and 18.1% of females 

with OI type I, 97.4% of males and 95.5% of females with OI type III, and 70.4% of males 

and 68.9% of females with OI type IV were below the third percentile for height (Figure 2). 

The odds ratio (95% confidence interval or CI) for being below the third percentile was 219 

(50.5–953.4) for OI type III (p<0.001) and 11.7 (6.5–20.9) for OI type IV (p<0.001) as 

compared to type I. For OI type III the odds ratio for being below the third percentile was 

18.76 (4.37–80.45) as compared to OI type IV (p<0.001).

In adults with OI, the median (IQR) Z-scores for height were −1.10 (−1.90 to −0.38), −8.67 

(−9.99 to −6.85) and −3.58 (−5.88 to −2.30), in OI types I, III, and IV, respectively. Pairwise 

comparisons revealed significant differences between OI subtypes (p<0.05). In adults 

without a family history of OI, we calculated the expected mid-parental height based on self-

reported parental height. The final adult height was affected in all OI subtypes with 48% 

with OI type I, 100% with OI type III, and 58% with OI type IV below 2 standard deviations 

from the expected mid-parental height. Fisher’s exact test demonstrated a severe diminishing 

of final adult height for type III as compared to type IV OI (p <0.001) and type I OI (p < 

0.01); however, no statistically significant difference was noted between OI types I and IV.

We correlated the height Z-scores to mutation type in individuals who had demonstrated 

pathogenic variants in either COL1A1 or COL1A2. For individuals with glycine substitution 

mutations, the median height Z-score (IQR) was −4.7 (−6.7 to −2.1), for individuals with 

other missense variants the median was −3.5 (−1.7 to −5.2) and for loss of function variants 

the median was −1.28 (−2.2 to −0.72). Height was significantly diminished in individuals 

with glycine substitutions compared to loss of function (p<0.001). Furthermore, we 

examined whether different glycine substitutions had an effect on height. Individuals with 

glycine-to-serine substitutions had a median height Z-score of −5.6 (−6.7 to −3.1), whereas 

the median heights in glycine-to-aspartate and glycine-to-another amino acid were −3.5 
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(−5.5 to −3.2) and −3.2 (−6.8 to −1.7), respectively. While the median was lower for glycine 

to serine substitutions, this difference did not reach statistical significance.

Growth Velocity in OI

We utilized the longitudinal aspect of the cohort to examine growth velocity in participants 

between the ages 3 and 16 years. We selected individuals that had at least two height 

measurements that were separated by 6 to 18 months. The velocity of growth was calculated 

as cm/year and the value obtained was plotted against normative data. In individuals with 

three or more measurements, the value between two consecutive measurements were 

considered as distinct data points and thus plotted separately. In total, there were 127 

individuals with OI type I (n=61 male; n=66 female; n=259 growth velocity measurements), 

46 individuals with OI type III (n=20 male; n=26 female, n=79 growth velocity 

measurements), and 76 individuals with OI type IV (n=37 male, n=39 female, n=148 growth 

velocity measurements) that were included in these analyses. In OI type I, 12.4% of growth 

velocities (32/259) were 2 standard deviations below the mean or lower for growth velocity 

whereas in OI types III and IV, this proportion was 51.9% (41/79), and 31.1% (46/148), 

respectively. This corresponds to increased odds ratio (95% CI) of having diminished growth 

velocity of 7.65 (4.30–13.61) in OI type III compared to type I, and of 3.20 (1.92–5.32) in 

OI type IV compared to type I (p<0.0001).

Weight in OI

The median (IQR) Z-scores for weight in the pediatric population in OI types I, III, IV, V, 

and VI were −0.41(−1.14 to 0.56), −4.55 (−6.40 to −2.85), −1.55 (−2.37 to −0.31), 

−0.31(−1.81 to 0.32) and −0.99(−1.68 to 0.08), respectively (Supplementary Figure 1). 

ANOVA on ranks demonstrated significant differences between the OI subtypes across all 

age groups with weight in OI type III being significantly lower than in OI types I and IV 

(p<0.05). We observed significant differences for weight between OI type IV and OI type I 

only in age groups of 0–5 years and 10–15 years (p<0.05, Supplementary Figure 1). As in 

height, a similar relationship was seen for weight where 11.8% males and 16.9% of females 

with OI type I, 35.8% of males and 33.3% of females with OI Type IV, and 94.7% of males 

and 84.8% of females with OI type III were below the third percentile (p<0.001; Figure 3). 

The odds ratio (95% CI) for being below the third percentile was 43.20 (19.50–95.69) for OI 

type III (p<0.001) and 15.76 (7.32–33.95) for OI type IV (p<0.001) as compared to type I. 

For individuals with OI type III compared to OI type IV, the odds ratio for being below the 

third percentile was 2.74 (1.52–4.94) (p<0.005).

BMI in OI

The median (IQT) of Z-scores for BMI in the pediatric population in OI types I, III, IV were 

0.10 (−0.58 to 0.94), 0.91 (0.42 to 1.61) and 0.67 (−0.18 to 1.33) (Supplementary Figure 2). 

When BMI was calculated by using measured height, individuals with OI type III had 

increased BMI as compared to OI types I and IV in adults and in children in the age groups 

5–10 years and 15–20 years (p<0.05; Figure 4 and Supplementary Figure 2).
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Arm span to height ratio in OI

The arm span to height ratio is an indicator of the relative severity of linear growth 

abnormalities of the axial and/or lower limb as compared to the upper limbs. The adult arm 

span is typically 5 cm greater in males and 2 cm greater in females as compared to height18. 

Arm span/height ratio changes with age wherein arm span is less than height in early 

childhood, equal to height by about 10 years in males and 12 years in females, and greater 

than height thereafter 18. Thus, we compared the arm span/height ratio in age groups of <10 

years, 10–20 years, and >20 years. Only in the >20 years group, we observed significant 

increased arm span/height in OI types III and IV compared to type I (p<0.001 and p<0.05, 

respectively) (Supplementary Figure 3).

Potential correlates affecting height in OI

Previous studies have shown that individuals with severe forms of OI can have “flattening” 

of their height curves so that the height Z-scores worsen with age7,8. With the widespread 

use of bisphosphonates, the effect of the medications on linear growth has been assessed in 

short-term studies without conclusive answers19–23. In order to understand the correlations 

between some co-variates and the height Z-scores, we performed a GLM analyses. As 

expected, OI subtype had a strong correlation with the height Z-scores through all pediatric 

ages (p<0.001). Increasing age correlated with reduced height Z-scores (p<0.05). 

Independent correlations were also observed for history of rodding (p<0.01) and use of 

bisphosphonates (p<0.05), where both of these co-variates correlated with overall reduced Z-

scores. However, there were significant interactions between the OI subtype, history of 

rodding and bisphosphonate use. Thus, we could not independently assess the effects of 

these covariates on height.

DISCUSSION

OI is a clinically heterogeneous disorder characterized by increased predisposition to 

recurrent fractures and bone deformities3. Whereas it is well recognized that growth 

deficiency can be found in patients with severe forms of OI, there is a lack of large-scale 

studies on growth parameters in various subtypes of OI. In this study, we have included the 

largest cohort of children and adults with OI from multiple clinical centers in North 

America.

The height measurements in this cohort are consistent with the expected phenotypes in OI 

and the growth patterns that were observed in other studies 3,5–8. Height in OI type III is 

more severely affected as compared to OI types I and IV. Whereas some individuals with OI 

type I and IV can have heights within the normal ranges, the overall adult height is affected 

in all subtypes. Even in OI type I, the mildest form, the final height in nearly half of 

individuals is 2 standard deviations below the expected mid-parental height. Given these 

distinct patterns of height, height Z-scores could be utilized for clinical classification of type 

I collagen-related OI.

The etiology for short stature in OI is multifactorial. Scoliosis, kyphosis, vertebral fractures, 

recurrent long bone fractures, and bone deformities are important contributing factors. The 

Jain et al. Page 7

Genet Med. Author manuscript; available in PMC 2019 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incidence of scoliosis and the rate of progression of curvature are significantly higher in the 

more severe forms of OI 24. In a retrospective study of over 300 children with OI, 

Anissipour and colleagues found that the rates of progression of scoliosis were 6°, 4°, and 

1°, in OI types III, IV, and I, respectively. The spinal deformities in the severe forms of OI 

can lead to reduction in truncal height. Similarly, fractures and bowing of femur and tibia, 

fractures occurring through the growth plates, and abnormalities of the epiphyses in the 

severe forms of OI lead to decreased limb length and overall height. The varying severity of 

involvement of the axial and appendicular skeleton can be reflected by the arm span to 

height ratio. In this study, we observed that arm span to height ratio, was increased in adults 

with types III and IV OI as compared to type I. These results are consistent with previous 

observations by Lund and colleagues and Aglan and colleagues6,8. Collectively, these 

findings suggest that truncal height is relatively more reduced than the length of the long 

bones in the more severe forms of OI.

However, clinical experience and previous studies have demonstrated that the overall height 

can be affected even in individuals without significant bone deformities7,8. Thus, it has been 

hypothesized that the primary matrix and cellular abnormalities may have a role in the 

decreased growth rates in OI. Decreased responsiveness to growth hormone/insulin-like 

growth factor 1 has been suggested as one of the mechanisms in few studies25,26. More 

recently, it was discovered that excessive transforming growth factor-beta (TGF-β) signaling 

is an important driver of the bone and extra-skeletal abnormalities in moderate-to-severe 

forms of OI27. The collagen over modification in severe forms of OI affects the interaction 

of type I collagen with small leucine-rich proteoglycans that bind TGF-β and thus results in 

increased availability of the ligand 27–30. Increased TGF-β signaling in the growth plate 

could affect bone growth. In a mouse model of deficiency of E-selectin ligand, a negative 

regulator of TGF-β, Yang and colleagues demonstrated reduced chondrocyte proliferation 

and delayed terminal differentiation31. Thus, it is possible that increased TGF-β signaling 

could contribute to the abnormal growth in OI. While final adult height is affected across all 

types of OI, using the longitudinal nature of the data set, we also demonstrate that the 

growth velocity is affected. Current information on growth velocity in OI patients is rather 

limited, and studies that have addressed this have done in the context of therapy11,32,33. It is 

not known whether the decreased growth velocity in OI type III and IV is driven by the 

recurrent fractures or intrinsic abnormalities of the bone and cartilage.

Bisphosphonates are currently considered a standard-of-care and are widely used for the 

treatment of individuals with OI19–23,33–37. Whereas the effects of bisphosphonates on 

fracture risk in OI are difficult to address, the results have been inconclusive19–23,33–37. Few 

studies have addressed the effects of bisphosphonates on height in OI. Zeitlin and colleagues 

showed that 4 years of therapy with pamidronate increased height Z-scores in children with 

moderate-to-severe OI11. Similarly, it has also been shown that bisphosphonate therapy 

decreases the rate of progression of scoliosis in type III OI, if treatment is started before the 

age of six years24; however recent meta-analyses have not shown a significant effect of 

bisphosphonates on height38,39. In this study, we tried to find correlations between height Z-

scores and the use of bisphosphonates. In our cohort, 30% of individuals with OI type I, 

84% with OI type III, and 76% with OI type IV had received IV bisphosphonate at some 

time and 15% had received oral bisphosphonates in each subtype. However on GLM 
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analyses, there was a significant interaction between the OI subtype and the use of 

bisphosphonates, and the proportion of individuals with severe OI who were naïve to 

bisphosphonates was very low precluding independent assessment of the effect of 

bisphosphonates on the height.

Weight in OI has not been studied as extensively as height. In this report, we observed that 

individuals with OI type III continue to fall below third percentile of the CDC growth curves 

across all age groups. These results are consistent with the previous publications that report 

underweight in individuals with severe OI6. However, in spite of the lower weight, 

calculated BMI in OI tends to be higher, especially in OI type III. Using peripheral 

quantitative computed tomography, Palomo and colleagues have shown that the fat cross 

sectional area at the forearm in individuals with OI is similar to the control population40. 

These data imply that “increased BMI” is a result of the small value of the denominator 

during calculation and may not portend increased metabolic risks. It may thus be more 

important and practical to monitor serial weight in OI, especially in adults. Future studies 

that systematically measure body composition in OI may be helpful in risk stratification and 

further management.

Disorder-specific growth charts can be very helpful in monitoring growth in the clinic. To 

our knowledge, the only growth charts that have been developed in OI are for OI type I 13. 

One challenge in creating standard growth charts for all subtypes of OI is the great 

variability in the clinical presentations. The experience gained for the studies in the OI 

LCRC was pivotal in establishing the Brittle Bone Disorders Consortium (BBDC). The data 

being collected in the BBDC would be helpful in generating OI-specific growth curves for 

all subtypes of OI.

In summary, our analyses of the largest cohort of individuals with OI demonstrates that 

individuals with severe forms of OI have reduced height as well as weight as compared to 

those with type I OI. This important study would be a significant first step in the 

construction of growth curves in this disorder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Height Z-scores in OI
Box plots showing the median and the IQR for height Z-scores in the various age groups in 

type I collagen-related OI demonstrate significantly lower Z-scores in individuals with OI 

type III and type IV as compared to OI type I. The number of participants in types V, VI, and 

VII were limited and the pooled data have been represented.
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Figure 2. 
Cross sectional height measurements for participants in the cohort plotted on the CDC 

growth curves. Each circle represents one participant. Open circles represent individuals 

who were naïve to bisphosphonate treatment while black circles represent individuals who 

have received bisphosphonate at some point in their life.
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Figure 3. 
Cross sectional weight measurements for participants in the cohort plotted on the CDC 

growth curves. Each circle represents one participant. Open circles represent individuals 

who have naïve to bisphosphonate treatment while black circles represent individuals who 

have received bisphosphonate at some point in their life.
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Figure 4. 
Cross sectional BMI for participants in the cohort plotted on the CDC growth curves. Open 

circles represent individuals who were naïve to bisphosphonate treatment while black circles 

represent individuals who have received bisphosphonate at some point in their life.
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