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ABSTRACT OF THE THESIS 

 

CapturEsports: A Multiplayer Data Aggregation Tool for Facilitating  

Esports Research and Analysis 

by 

Daniel Yao 

Master of Science in Software Engineering 

University of California, Irvine, 2020 

Professor André van der Hoek, Chair 

 

 

The growing prominence of esports and competitive gaming has not only attracted a global 

audience but captured the curiosity of academic researchers. With increased research interest, the 

necessity for tools to collect contextual game data has subsequently risen significantly. 

Currently, a combination of generalized software solutions such as keyloggers, screen recorders, 

and audio recorders can be used to gather artifacts regarding an individual player. However, 

these solutions are inadequate when used to support research questions concerning player 

interactions in a multiplayer context. To address this problem, I introduce CapturEsports, a 

software tool to facilitate research in esports by supporting the capture and organization of 

multiple streams of player data. Focusing on League of Legends developed by Riot Games as a 

proof of concept, CapturEsports enables researchers to capture screen video recordings, voice 

communication, keystrokes, and in-game contextual events (such as player kills, buildings 

destroyed, and item purchases) for multiple players simultaneously, thereby facilitating analysis 

of team behavior. CapturEsports performs data collection and provides access to the data 

remotely, allowing studies to be conducted in a distributed manner. In this thesis, I present the 
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motivation behind CapturEsports, an examination of alternative software tools, and a detailed 

description of the tool I developed. I also discuss the primary design decisions and underlying 

requirements, the overall architecture and organization of data structures, and a preliminary 

evaluation and analysis of CapturEsports as an esports research application. 
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Chapter 1

 

Introduction  

The esports industry has been on a continual rise to success in recent years, and its growing 

popularity has reached audiences worldwide. One hundred one esports tournaments were held in 

2009, which grew to 696 tournaments in 2012. Annual prize money also rose, from $2 million to 

$10 million, respectively (Phillips, 2020). Throughout this growth, multiple new game titles 

emerged, including Overwatch, Starcraft 2, Hearthstone, Dota 2, and League of Legends, each 

solidifying a unique and ever-expanding community around the game.  

As esports is gaining cultural popularity in society, its domain stretches into previously 

established industries unassociated with esports. For example, simulation racing (also known as 

“Sim Racing”) recreates the experience of real-world racing as an electronic sport, catching the 

attention of professional drivers, one of whom described it as getting “the same buzz as racing 

for real” (Barretto, 2020).  

In the world of cycling, professional cyclists are turning to virtual means, as it provides a greater, 

more versatile approach to practice. As the president of the Union Cycliste Internationale stated, 

“It is a new way of practicing cycling that is expanding rapidly and enables more athletes, 

whether beginners or more experienced, to train and race regardless of what the weather is like 

and where they live” (Cyclingnews, 2019). 

Given this popularity in professional industries, it is no surprise that esports has garnered the 

attention of the academic community. There are numerous opportunities of interest surrounding 
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the study of esports, whether it is understanding it as a cultural phenomena (Hamari, Sjöblom, 

2017), as a psychological dependency (Bányai, Griffiths, Király, Demetrovics, 2019) or as a 

source of data to examine human connection, interaction and team play (Lee, Ramler, 2019). 

With a spreading excitement for esports in professional contexts, researchers are motivated to 

better understand how the learned concepts can be expanded to various domains. Therefore, the 

significance of supporting such research is amplified to further this field of knowledge. 

In this thesis, I focus on League of Legends (League), a competitive game in the multiplayer 

online battle arena genre. League is a game in which two teams of five players compete to 

destroy each other’s base. Each player selects a character with unique abilities and must work 

together with others on their team to defeat the opposing team. League, created by Riot Games, 

has grown from a small, budding computer game to a blooming internet sensation enticing more 

and more players, in the process creating a global community of eight million concurrent daily 

players (Goslin, 2019). Since the inception of professional play in 2012, the League of Legends 

World Championship Finals, broadcasted online worldwide each year, grew from roughly 1 

million concurrent viewers in 2012 (Auxent, 2016) to a substantial 44 million concurrent viewers 

in 2019 (Staff, 2019).  

Many kinds of esports studies will require an analysis of gameplay data, such as sequences of 

actions a player makes or interpersonal communication with teammates. Therefore, it is 

important that we have the ability to collect data in a convenient and reliable manner. For 

instance, studying team performance and coordination might require observations at a level that 

clearly exemplifies interaction between players, such as a player verbally explaining their plan of 

attack to their teammates. As another example, to study individual behaviors and responses to 

integral moments of competitive stress, one may want to examine keystrokes that occur within a 
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short time frame to capture moments where a player frustratingly presses a key repeatedly when 

their character is killed. 

Existing tools already make it possible to capture certain data points from single-player play in 

League of Legends (see section 2). From a research perspective, however, this would be 

insufficient, as the overall context of decision-making processes as well as impetuses of team 

coordination are unavailable. Data regarding a single player is inadequate when asking questions 

that involve multiple player interactions. While it may be plausible to manually combine data 

traces from multiple individual players, subtle but important hurdles exist that make this a 

daunting and involved exercise. The most straightforward method involves physically 

transferring the observation files to an external storage device for every single machine used. 

Consequently, not only is this approach immensely time-consuming, the study would also 

require participants to be co-located within a close proximity. Thus, a cohesive automatic 

method of collecting raw observational data in a multiplayer context is needed to effectively 

support researchers interested in esports data.  

In this thesis, I present CapturEsports, a software tool that collects and synchronizes raw 

temporal data (such as player kills, ability usages, and item purchases), as well as audio 

recordings and screen capture videos from multiple players for the game League of Legends 

(League). The captured data is automatically brought together, synchronized, and stored in a 

central networked location. 

The remainder of this thesis is organized as follows: in section 2, I introduce the background 

motive and explore a few existing tools in the space of capturing esports gameplay data. In 

section 3, I describe the software requirements for CapturEsports. Section 4 discusses the high-
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level design decisions and implementation details and is followed in Section 5 by a preliminary 

assessment of CapturEsports. In the final section, I discuss prospective capabilities and future 

extensions for CapturEsports to improve upon the current prototype. 
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Chapter 2

 

Background 

Electronic sports (or more commonly known as esports) has been a massively growing industry 

in recent years. Video games have evolved from casual play with friends to a highly competitive 

profession. With many roots from traditional sports that feature a heavier emphasis on 

physiological fitness, esports expands the gameplay of sports to incorporate deeper cognitive 

factors that affect decision-making at the team and individual levels. Typically, competitive 

esports is comprised of a small two to five-person team where the players must work together 

towards a common objective or end goal. The players are not required to be in the same physical 

proximity, which emphasizes the necessity for clear and efficient communication among 

teammates.  

2.1 Esports Research 

Within the expanding realm of competitive esports, the academic community has also 

experienced a fast-growing interest in the research aspects this environment can provide. A 

prominent area of interest is team dynamics and the sociological facets surrounding esports 

teams, e.g., profiling successful team behaviors (Nascimento, Melo, Costa, Marinho, 2017). To 

support this type of research, different data must be captured depending on the type of 

phenomenon of interest. In the section below, we provide examples of prior studies, the data on 

which they relied, and the data collection techniques they used. 
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One study looked into measuring and utilizing collective intelligence or group ability between 

team members to predict performance (Kim et al., 2017). As social interactions are beginning to 

shift from the real-world to an online virtual world, developing methods of cultivating 

relationships that contribute to collectively intelligent teams provides an understanding of teams 

in diverse domains. Through an assessment of player statistics in League of Legends (such as 

rank, total wins, average number of kills, and hours played) as well as a test of collective 

intelligence, Woolley et al. discovered that collective intelligence predicted competitive 

performance and positively correlated with the average social perceptiveness of the team 

(Woolley, Chabris, Pentland, Hashmi & Malone, 2010). However, the dataset consisted of 

summative statistics and profile information, and was only available to the study through an 

approved collaboration with the developers of League. 

Although partnering with game developers is not always a viable option, certain games permit 

harvesting data through an API. In a paper examining team formations in the game Dota 2, 

Pobiedina et al. utilized a statistical approach to identify aspects of successful teams (Pobiedina, 

Neidhardt, Moreno, Grad-Gyenge, & Werthner, 2013). Through an API, game information was 

extracted from roughly 87,000 matches, including player profile data (signup date, country, list 

of friends, etc.) and match details (in-game damage, gold earned, skill level, etc.). The resulting 

dataset was used to train a logistic regression model to identify significant factors of successful 

teams. The authors found evidence positively influencing team success when players embraced 

diverse roles, played with friends, and selected a proper team leader. This study demonstrates the 

potential use of esports data and statistical techniques to discover patterns of social behavior. 

In another study examining player behavior, machine learning was utilized to identify distinct 

clusters of players exhibiting similar patterns of playing strategies and behavioral progression 
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(Sapienza, Bessi, & Ferrara, 2018). The League of Legends API was used to obtain historical 

game data for roughly 900 players, and this data was then used to investigate features such as 

gold income, types of damage dealt, and health restoration. Using k-means clustering from 

machine learning, players were characterized by groups of features such as kills and earned gold 

or assists and earned gold. The researchers then employed a technique called Non-negative 

Tensor Factorization (Sapienza et al., 2018) to discover data correlations in various dimensions 

of time. One group of players they identified would focus on earning gold and were 

characterized by both a high number of kills and an above-average death rate of themselves. 

Another group would focus on assists and was characterized by stronger social behavior 

resulting in higher team collaboration. From the analysis, this study revealed distinct playstyles 

for each group showing the potential of assessing chronologically indexed data to derive player 

behavior. 

As a final example, in a study of the game Starcraft 2, Bosc and colleagues investigated how 

employing sequential pattern mining algorithms can reveal hidden strategies to players and 

coaches (Bosc, Kaytoue, Raissi & Boulicaut, 2013). By gathering timestamped in-game events 

through web scraping game replays, ordered sequences of actions were compiled into a large 

database in which pattern mining algorithms, such as PrefixSpan (Han et al., 2001), discovered 

unique strategies from repeating sequences. Considering an example, one of the top fifty 

sequences involved rapidly building multiple instances of a defensive structure in the opponent’s 

base causing fatal damage. The pattern mining also revealed the opponent’s inability to 

effectively defend regardless of the number of resources dedicated in response. This indicated an 

imbalanced strategy within the game which could be heavily exploited. As a result, these kinds 
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of analyses not only aid game analysts but can also provide insight for developers to balance the 

game. 

2.2 Free-to-use and Commercial Tools 

The software tools currently used to capture esports data are limited to the collection of 

individual performance statistics. As game companies and developers typically do not build 

software to assist players with personal performance, third-party tools have been developed to 

reinforce player mechanics and game knowledge to the individual. These tools can output useful 

information to the player, such as average Actions per Minute (APM), instant short video replays 

of crucial moments in the game, and individual comparisons to relative community statistics. 

Despite having convenient and advantageous functionalities for individual play, these tools fall 

short when examining the context of the game from a team perspective. While gathering 

individual statistics is vital to assess performance, much of the team dynamics and decision-

making processes are lost to an inability to easily capture multiple data streams simultaneously 

as well as to an inability to provide context for interpersonal communication among team 

members. 
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2.2.1 LoLWiz 

LoLWiz is a third-party application running on the Overwolf platform. LoLWiz provides in-

game strategies (such as suggested item purchases), enables users to quickly scout the 

performance statistics of their teammates and opponents, and composes a short post-game video 

with highlights of important moments. While this tool is excellent for supporting players through 

a live game, the post-game output only contains summative and descriptive statistics regarding 

the most recent game. Since LoLWiz does not output specific user inputs or communication, it 

would be difficult to capture full observations, as it leaves gaps of contextual information 

required for a concrete analysis. 

 

Figure 2.1: LoLWiz displaying opponent statistics and suggested item purchases 
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2.2.2 Mobalytics 

Mobalytics is a comprehensive analysis software designed for competitive players to analyze and 

improve their performance. Equipped with advanced filtering and responsive visualizations, 

Mobalytics presents users with clear metrics of where a player needs improvement. These 

include a user’s improvement of gold income rate, contribution to team damage, or survivability 

throughout a match. 

Additionally, by using the League of Legends API, this tool also implements machine learning to 

calculate unique statistics, such as player aggressiveness, consistency, and versatility. While the 

advantage of Mobalytics resides in its ability to identify player weaknesses, it does not provide 

raw unmanipulated data and only presents post-processed data. 

 

Figure 2.2: Personal statistics output from Mobalytics 
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2.2.3 Shadow.gg 

Shadow.gg is a paid application geared towards professional esports teams to analyze video 

replays and prepare for scrimmages against another team. Shadow.gg is capable of presenting 

complex data visualizations and breakdowns of a team’s performance as well as an individual 

player’s performance. Users can view the tendencies of opponents based on historical match 

information, such as typical item purchases or character navigation around the map. This tool is 

exceptionally useful to team coaches and analysts as it streamlines the logistic overhead of 

fetching player performance statistics, aggregates past game data, and provides specialized tools 

for analyzing video replays, such as gold earned within a time period. While the full capabilities 

of Shadow.gg are unavailable without a full license, its main advantage stems from its clear data 

visualizations and auto-compilation of historical context. However, a possible limitation of this 

tool is that it captures player actions as decided by the game, not keystrokes. As a result, a player 

could begin to cast an ability then cancel the ability cast by right-clicking, which would not be 

captured by Shadow.gg but may be important for researchers to understand. A second concern 

lies in its ability to support detailed analysis of the data, as it allows the user to breakdown video 

streams but does not permit the user to run important queries on the captured data. While 

Shadow.gg is useful for professionals to look into opponents and how players play, actual 

analysis of the captured data with the mentioned limitations makes this tool difficult to use as a 

basis for research purposes. 
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Chapter 3

 

Requirements 

While the existing esports data capture tools described in section 2 each have their advantages 

and disadvantages, none provide the ability to support data collection in a multiplayer context, 

store unmanipulated raw data, and submit database queries. In this section, I provide a list of 

requirements to fulfill the need to accurately capture multiplayer data in League matches. 

3.1 List of Software Requirements 

Each of the following requirements is inspired by informal conversations with a range of current 

researchers in esports, focusing on the types of studies they would like to perform and the 

observed shortcomings of existing research goals. 

1. Support data collection of multiple players in the same match 

As League pits five players against an opposing team of five players, CapturEsports needs to 

support gathering data for ten players simultaneously. The basic process of collecting data for 

a single player involves recording a stream of data from the beginning to the end of a match. 

CapturEsports must extend this functionality to capture ten streams of data simultaneously 

within the same match and aggregate all streams to a centralized location. This requirement 

enables researchers to observe player interactions in a distributed manner, discarding the 

need for participants to be located within close physical proximity. 
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2. Capture granular or raw data 

While League offers statistics at the end of each match, it is comprised of aggregated metrics 

that cannot be decomposed into smaller pieces of data. A core aspect of data collection is the 

ability to gather information at a high level of detail. We refer to this data as granular or raw 

data in which no analysis or manipulation has occurred between the time of collection and 

the time the data is stored. Examples of this data in the context of League include user 

keystrokes and mouse clicks or in-game events such as types of objectives taken, players 

killed, items used, etc.  

3. Compose media recordings of a match to bridge contextual holes 

Granular data stored, per the previous requirement, resides in a purely textual format, which 

can leave several unfilled contextual holes. In League, for instance, a player could hide in a 

bush without moving and wait to ambush an unsuspecting opponent. In this situation, the raw 

data being captured would be empty for some time since there is no actual input from the 

player. However, the player’s behavior indicates a deliberate decision to wait and not move. 

As a result, it is necessary to include the ability to record the player’s screen to capture the 

context of their interactions and output a video with audio that includes voice data. 

4. Time must be synchronized in the data across multiple players 

A major component of aggregating raw data for each individual involves synchronizing the 

timestamp of each data point to accurately reflect the events of a match. For instance, 

explosive action in a match can result in numerous events and inputs occurring in rapid 

succession. Logging the exact timestamps of interactions that occur in an accurate manner 
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relative to one another empowers researchers to sequence player interactions chronologically 

in short periods of time and investigate team dynamics at a microscopic level. 

5. Minimal interference with gameplay experience 

To decrease noise in the data, observed players must be performing in their natural state, and 

any disruptions that could interfere with their gameplay experience must be minimized. Once 

a match has started, CapturEsports should disappear from view and use as few resources as 

possible. It should be noted that on machines with lower performance capabilities, running 

multiple programs at the same time will potentially lower frame rates or cause slower 

network speeds. Therefore, CapturEsports intends to follow the optimal hardware 

requirements recommended by Riot Games, the developer of League, specifying at least 

3GHz of processing power and 4GB of RAM (Horse, 2014). 

6. Extensible support for evolving gameplay and data 

Unlike traditional sports where rule changes are infrequent, the rules of esports games can be 

relatively fluid. For example, in previous versions of League, killing a dragon rewarded a 

team with a flat amount of gold. However, in recent versions, killing a dragon rewards a team 

with a myriad of possible advantages, such as faster health regeneration, increased damage, 

and quicker movement. Our database schema must be flexible enough to support updated 

changes without modifying the structure of previously collected data. 

7. Support for non-game generated data 

Support for data beyond game generated data may hold significant value for certain types of 

research. Physiological and biometric data, such as heart rate or facial expressions, can also 

be variables of importance to consider. Although we currently do not have the capacity to 
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perform actual collection of this type of data, CapturEsports must be future designed to 

enable such capture seamlessly with collected game data. 

8. The database can be queried using custom statements 

Since manually parsing through a large dataset can become cumbersome, researchers must 

have the ability to submit custom queries to our database. This creates a more sophisticated 

method of retrieving the collected data in addition to retrieving the data as a single batch 

load. Custom queries also permit users to retrieve subsets of data by specifying parameters, 

such as getting all data collected between two dates or all data for a single team. 
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Chapter 4

 

Software Design and Architecture 

In this section, I discuss the primary design decisions made that formed the structure of 

CapturEsports. I also provide further details about the different components and how each fulfills 

a role in the system architecture. 

4.1 Primary Design Decisions 

The overall organization of CapturEsports consists of a three-tiered architecture. As shown in 

Figure 4.1, the tiers are divided into the Client (or Presentation) Tier, the Service Tier, and the 

Database Tier. All three tiers work together to communicate and fulfill the requirements listed in 

the previous section. By implementing this separation of concerns, we are able to consolidate our 

design decisions by function, subsequently increasing the degrees of freedom for our system. 

This sets up a modular foundation that ensures our components are robust and decoupled and 

eases future development and maintenance. We begin our explanation of design decisions with 

the Database Tier, then discuss the Service Tier, and finally present the Client Tier. 
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Figure 4.1: High-level overview of the CapturEsports architecture 
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4.1.1 The Database Tier 

This tier is responsible for storing and organizing all the collected data and presenting users with 

methods for retrieval.  

• The database is semi-structured in order to handle multimodal data. Since the structure 

of our data is not constant, managing a database using a strict schema would prove to be 

difficult. Drawing from our requirements, the CapturEsports database storage must handle 

textual raw data, video and audio media recordings, and physiological data, such as heart rate 

and facial expressions. Considering that a use case is retrieving the collected data, our data 

model is designed to easily link new multimodal data with each corresponding participant. 

To implement this decision, the Apache AsterixDB Big Data Management System is 

employed. AsterixDB is a data storage platform with the purpose of analyzing and storing 

data pertaining to “evolving world models” (Behm, Borkar, Carey, Grover, Li, Onose, 

Tsotras, 2011). Using a NoSQL semi-structured model, the data can be queried using the 

language SQL++, which is derived from the traditional semantics of SQL. While traditional 

SQL syntax interacts with a flat relational schema, SQL++ is modified to better handle 

nested data types (Alsubaiee, et al., 2014). 

• Collected data can be retrieved through submitting custom queries or downloading 

through the browser. Our AsterixDB instance is purposefully designed to ease the amount 

of administrative overhead necessary for a researcher to supervise a study. After data 

collection, we enable researchers to submit custom SQL++ queries to retrieve textual raw 

data. These queries permit researchers to retrieve partitions of data or cross-reference with 

earlier stored data providing greater analytical power. However, due to the multimodal nature 
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of our data, storing large binary files (such as video) in the database would be resource-

intensive and highly inefficient. Thus, we employ Apache HTTP Server to run in conjunction 

with AsterixDB. Apache Web Server offers the ability to download files through the browser 

from a specific URL. While the internal organization of AsterixDB and Apache Web Server 

is different, the raw data is the same and accessible through both methods. 

• Collected data is anonymized to protect user identities. Due to the sensitive nature of our 

collected data, any personally identifiable information in our database is hashed. This 

includes a user’s login email as well as their password. Although we anonymize the data, we 

maintain an auto-assigned identifier used to associate data with a specific user. This 

methodology will be explained in more depth in later sections. 

4.1.2 The Service Tier 

This tier is responsible for facilitating the communication between the Database and Client tiers. 

A few examples of these responsibilities include managing user login and logout, retrieving 

collected data from clients, and submitting custom queries to the database. 

• The server communicates with the other tiers and components using the REST 

protocol. Each of our three tiers resides in separate locations, requiring us to communicate 

over a network. While there are many ways of sending and receiving messages across a 

network, we chose to use the REST protocol as it is a proven protocol that allows us to 

distinguish the valid entry points into the server. 

• Server access is limited through local network restrictions. We globally limit access to 

our service components to permit only clients within the same network. An extensive amount 
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of sensitive data tends to be stored within our system, and researchers may not necessarily 

want to share the data with the world. In addition to our efforts to protect user privacy, we 

built a safety valve where only certain users have access. Currently, the CapturEsports server 

resides in the network of an academic institution and only accepts connections originating 

from the same network. The collected data is also password protected to further prevent 

unauthorized access. 

• The server can support at least ten simultaneous client connections for data upload. 

Since a League match involves two teams of five players each, to collect observations from 

all players for a single match requires ten simultaneous connections to the server. While a 

constant stable connection is not needed, simultaneous data uploads would require a single-

process server to queue and write data synchronously. As a result, large data files are 

uploaded in small chunks and reconstructed by the server, and our server instance is multi-

processed to manage multiple data uploads asynchronously and prevent functionality from 

being blocked by a single connection.  

4.1.3 The Client Tier 

This tier is responsible for performing the actual data collection and runs on the local machine a 

participant is using. As displayed in Figure 4.1, the client tier runs in parallel with the game 

instance on the same machine. 

• The client collects data with minimal interference with the player’s gameplay 

experience. To provide researchers with the most accurate observations, we minimize the 

interference that CapturEsports could potentially reflect in the data. Since a subset of the data 
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pertains to human interactions within the observed game, any interactions with other installed 

software throughout the duration of a match can be mistakenly captured as well. Thus, we 

design CapturEsports to run in the background during a match and present a UI that only 

requires input before and after data collection. To achieve this, we use the Overwolf SDK, a 

platform for developing third-party applications to run alongside many different games. 

Overwolf provides a sophisticated API to hook into actively running games enabling access 

to real-time game data which is otherwise difficult to capture. A vital aspect of this platform 

is its ability to facilitate non-obtrusive gameplay to assure data integrity. By running in the 

background, events triggered throughout the game are logged. 

• Timestamps of collected data points are synchronized locally before uploading to the 

server. A major facet of gathering and organizing multiplayer data is synchronizing the 

temporal aspect of collected data. Because CapturEsports utilizes a machine’s internal epoch 

time to timestamp captured data points, typically negligible variations in clock time between 

machines become significant when precisely mapping the exact sequence of multiplayer 

interactions and events. For example, if the clocks of two machines are 300 milliseconds 

apart and two participants left-clicked at the exact same moment, our unsynchronized data 

would incorrectly reflect one player who left-clicked 300 milliseconds after the other player. 

To solve this time inconsistency among all players within a single match, we identify a point 

in time in the match that becomes our absolute truth. For League, the point we identified is a 

“minion spawn time,” which occurs exactly 65 seconds after the match starts. Using this fact, 

we apply an offset formula to synchronize every data point relative to the official match start 
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time retrieved from the Riot API (provided by the developers of League). With this 

information, our offset formula to resynchronize the data is: 

𝑆𝑦𝑛𝑐𝑒𝑑 𝑇𝑖𝑚𝑒 𝑚𝑠 = (𝐷𝑎𝑡𝑎 𝑃𝑜𝑖𝑛𝑡 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) +  (𝑅𝑖𝑜𝑡 𝐴𝑃𝐼 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 + 65000𝑚𝑠) 

− (𝐿𝑜𝑐𝑎𝑙 𝑀𝑖𝑛𝑖𝑜𝑛 𝑆𝑝𝑎𝑤𝑛 𝑇𝑖𝑚𝑒)  

Once the collected data has been resynchronized, it is sent to the server to be inserted into the 

database. We chose to synchronize data locally first due to the varying differences specific to 

each local machine and to offload processing power from the server to the client. 

4.2 CapturEsports Database Architecture 

The organization of our AsterixDB instance currently contains five datasets with three core 

datasets required for CapturEsports to function properly. Presented in Figure 4.2, the three core 

datasets are EsportsUserSet, StudySet, and LeagueDataSet.  

From a high-level perspective, a CapturEsports participant creates an account and joins a study 

where the data from every match played is stored and linked with the study. The EsportsUserSet 

creates an anonymized identifier for each CapturEsports user and the LeagueDataSet is a 

comprehensive repository of all collected match data for every match observed by 

CapturEsports. The StudySet keeps track of a specific subset of CapturEsports users and links 

the collected data to the LeagueDataSet. Each dataset will be discussed in more detail in the 

subsections below. 
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Figure 4.2: Overall database architecture for CapturEsports 

 

  



 

24 

4.2.1 Database Schemas 

In this section, I will explain the type definitions of each dataset and clarify how certain fields 

are associated with each dataset. It is important to note that the type definitions in our AsterixDB 

instance are defined as “open,” meaning datasets are permitted to carry extra fields that are not 

explicitly defined. 

• EsportsUserSet 

The EsportsUserSet stores all information regarding participants and researchers who have 

registered accounts through CapturEsports. An email and password are required to create an 

account with optional information that can be entered at the user’s discretion, such as age or 

preferred gender. To ensure the privacy of our participants, emails and passwords are hashed 

using the MD5 algorithm to obfuscate the plain-text user input before inserting it into the 

database.  

Once a user has created an account, an autogenerated universally unique identifier (UUID) 

userID is assigned to their account, which becomes a foreign key to associate the user with 

other datasets. A userRole is also assigned to identify if a user is a researcher or a participant. 

Researcher roles are given full access to the collected data, whereas participant roles can only 

upload their own data. To restrict access, newly created users default to a participant role and 

researcher roles must be authorized and manually created by an existing researcher or 

CapturEsports developer. The remaining fields totalPlayTimeMinutes, dateJoined, and 

lastAccessed are optional fields that provide basic metadata regarding a user. 
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• LeagueDataSet 

The LeagueDataSet contains the granular data of every study collected from each participant, 

as well as game data retrieved from the Riot API regarding each League match played while 

being captured by CapturEsports. Each match has an associated match identifier number 

assigned by Riot and is used in conjunction with a user’s UUID to identify a participant’s 

collected match data. For each participant in each match, their raw textual data includes four 

data fields: MatchSummary, MatchTimeline, EventLog, and KeystrokeLog. 

The MatchSummary holds the end game statistics for the entire game. This includes items 

such as total gold, largest damage, and dragons killed. MatchTimeline contains data 

regarding the timeline of major events that occur throughout the game such as when a player 

is killed or when an objective is taken. Both of these fields are provided by the game 

developers and retrieved through the Riot API.  

The EventLog and KeystrokeLog are different from the previous fields as they are collected 

on the client machine using the Overwolf SDK. The EventLog contains event data performed 

by an individual player. While similar to MatchTimeline, the EventLog differs by including 

all events in addition to major events, such as when an ability is used or when an item is 

consumed. Unlike the other data fields, the KeystrokeLog contains data non-specific to 

League. Throughout a match, it logs every time a key is pressed and released regardless of 

the input result. All raw data is stored in a JSON format (or as a dictionary) meaning that 

each raw data element is stored as a key/value pair. 
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• StudySet 

The StudySet consists of specific logistic information regarding a conducted research study. 

A researcher generates an alphanumeric study code that is used to identify which players 

participated and which collected data is associated. The creation of study codes is restricted 

to only registered researcher users to limit access to the database, and each created study 

code is an inputted string that is automatically converted to all uppercase to enforce case-

insensitivity and avoid study code name collisions. Within a single StudySet entry, a list of 

researcher userIDs is stored to specify authorized researchers from accessing the study data. 

A dictionary of participants is also stored where each participant is assigned an autogenerated 

display ID as their unique identifier throughout the duration of the study. Finally, a dictionary 

of match IDs is stored in chronological order with each match ID retrieved from the Riot API 

used to reference the collected data in the LeagueDataSet. 

• Other Datasets 

The CapturEsports database also contains two additional datasets, the GameMediaSet and the 

PhysiologicalDataSet. Currently, both datasets are not implemented or populated, as they are 

not essential for fulfilling the system requirements. The presence of these datasets primarily 

sets up the database to support new data types in the future. GameMediaSet holds the 

information for locating additional media data associated with participants in the filesystem, 

which could include video recordings of body language or pre-game team discussions. 

Although our usage of Apache HTTP Server allows users to download video recordings 

directly from the filesystem, handling several media files per user can become cumbersome 

and this dataset organizes multiple files in order for CapturEsports to scale. 
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The purpose of the PhysiologicalDataSet is to store any biometric data that researchers may 

have collected. While CapturEsports is not capable of capturing this data type, we want to 

enable the storage of physiological data collected through other means. Examples of 

physiological data include, but are not limited to, a participant’s heart rate, facial expressions 

and emotion data, or skin conductivity sensors. Although the current format of the data is 

unknown, the "heartrateData” and “facialEmotion” fields in the PhysiologicalDataSet are 

string file paths to the location of a binary file. 

4.3 CapturEsports Server 

The CapturEsports server is the sole point of network interaction, responsible for routing 

connection requests received from users and maintaining authorized access to the database. The 

web server is implemented in Python and utilizes the Flask library to abstract core server 

functionalities, such as binding to ports and listening for requests. This section describes the 

main responsibilities of the server in greater detail.  

Employing REST calls, all requests and responses are formatted in JSON due to its 

straightforward integration with web applications. When a participant first logs into 

CapturEsports, their hashed email, hashed password, and plain-text study code are sent to the 

server. The server then checks the existence of the hashed email and study code in the database 

to ensure the user is indeed a valid participant as logged by the study organizer. Once verified, 

the user’s CapturEsports UUID and their assigned display ID specific to the provided study code 

are returned to the client. These two IDs anonymously identify the user throughout the entire 
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CapturEsports system and duration of a study, respectively. For all following requests, the client 

includes the UUID for the server to verify the authenticity of the user request. 

CapturEsports has the option to record gameplay video and audio, typically outputting a file of a 

size roughly 300-500MB for a 40-minute game of League. The server is built with the 

Resumable library to enable large files to be uploaded in smaller chunks to a temporary folder. 

Each chunk is uniquely identified and linked to a specific output file by a substring in the 

filename. Once the server receives the final piece to a file, all chunks are consolidated, joined 

together, and moved to a directory accessible through the Apache HTTP Server. Uploading files 

as such provides researchers with remote accessibility to observational data in an organized 

manner almost immediately after a study has concluded. 

While the architecture of our server component does not immediately impact the end user, it 

greatly affects the future maintenance of CapturEsports. Implementation using the Python 

programming language enables our server to easily separate functionalities into distinct modules. 

Currently, the server is divided into five modules, with Figure 4.3 providing an explanation of 

each individual server component. Because of this modular structure and the inherent nature of 

Python, common functionality can be developed in separate files which can be imported easily. 

This facilitates the integration of new features and support for separate games in distinct 

modules. 
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Figure 4.3: Explanation of Individual Server Components 
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4.4 CapturEsports Client Application and Software Components 

Our client application runs on a participant’s local machine concurrently with League. Following 

the classic Model-View-Controller design paradigm, the client application offers two different 

interfaces: one for a participant user and one for a researcher user. Taking a closer look at the 

Client Tier mentioned in Figure 4.1, Figure 4.4 provides a detailed diagram of the client 

architecture, entailing three major software components: the App Connection Controller, the 

League Collector Module, and the Researcher Module, each with a corresponding UI view to 

handle user input and interactions. Since participant and researcher roles have distinct sets of use 

cases, distinguishing each role with separate components organizes our system by use case rather 

than functionality. Common operations utilized by both roles exist in the App Connection 

controller and the more specialized methods for each user role reside in their respective modules. 

As a result, the components loaded at runtime are based upon the role of the user after they login. 
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Figure 4.4: CapturEsports client architecture built using the Overwolf SDK 
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Figure 4.5: CapturEsports Login Page 

 

The App Connection controller is the main component for connecting the client to the server 

instance to enable the functionality of sending and receiving REST calls. Correspondingly, this 

component is responsible for networking actions such as logging in, registering new users, and 

uploading data. The CapturEsports login page in Figure 4.5 allows users to login as a participant, 

login as a researcher, or register a new account. Depending on the login, the user is redirected to 

the view corresponding with their role. Along with the login, participants can join a specific 

study using a code created by the researcher. If no study code is entered, the user is defaulted to 

the study “NOSTUDY” in which data can still be collected in an unsupervised setting. This 
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allows participants to contribute to our growing database of games for analysis at their own 

discretion. 

 

Figure 4.6: CapturEsports Participant Interface 

 

The League Collector Module is the component that performs the actual in-game data collection 

and is loaded at runtime by the Game Data Collector. While our current implementation only 

supports the game League, this design permits future iterations to easily support other game titles 

by swapping out the League Collector Module. However, our current participant view as 

displayed in Figure 4.6 is specific to League to simplify the development of our prototype. The 

top header section provides logistic information to the participant, showing the study they joined, 

their temporary assigned display identifier, and the status of whether League is running on their 
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machine. In step 1, pressing the large green circular button indicates a user is ready to begin the 

study, however CapturEsports does not begin recording until an actual League match begins. 

Step 2 requires the participant to input the match ID number provided by the researcher to 

correctly pull data from the Riot API and upload textual data. Finally, step 3 prompts the 

participant to navigate to the location in their filesystem where their recorded gameplay is saved 

and upload the video. 

 

Figure 4.7: CapturEsports Researcher Interface 

 

The Researcher Module provides basic functionality for researchers to conduct a study with 

CapturEsports. When a user with a researcher role logs in, they are currently presented with two 

performable actions. Figure 4.7 illustrates the ability to View Active Users for a study. When a 
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participant clicks the “Start Recording” button in their interface, their ready status is updated in 

this researcher view, changing their ready value and status color signifying the participant is 

ready for the study to commence. In addition, the Create/Delete Study option enables the ability 

to create new studies and delete existing studies with the caveat that they are a researcher on the 

study and no data had been collected yet. This is enforced by the “researchers” field in the 

StudySet presented by Figure 4.2 indicating users with access to the study.  
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Chapter 5

 

Preliminary Evaluation 

In this section, I present a preliminary evaluation of the requirements implemented by 

CapturEsports. First, I describe an alpha test of CapturEsports involving current game 

researchers at the University of California, Irvine and examine the tangible output that resulted. 

Afterwards, I explore the potential data analyses made possible by CapturEsports. 

5.1 CapturEsports Alpha Test 

Throughout the development of CapturEsports, we periodically conducted various trials to verify 

the correctness of individual components and ensure proper system communication. This 

gradually led to a trial of eight volunteers, which allowed us to discover reliability and 

performance bugs. Although many trivial bugs were discovered, such as small syntax errors and 

conflicting filenames, the majority of critical errors were uncovered as a result of supporting 

multiple players. For instance, in previous builds, when multiple participants attempted to upload 

data, an incorrect configuration caused the server to unintentionally overwrite existing data. 

Through incremental testing, CapturEsports improved upon server stability, client-side 

functionality, and overall security and robustness.  

At the culmination of our testing process, we conducted an alpha test consisting of ten players 

over the course of two hours of gameplay to simulate a real study setting. All players were 

located in their homes and installed CapturEsports on their machines. The players then created 

accounts and logged into CapturEsports with a specific study code. Once all players were logged 
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in and ready, they were randomly assigned to two teams and tasked to compete against each 

other. At the end of the match, five files were produced for each player, four of which were the 

raw textual data fields for the LeagueDataSet: MatchSummary, MatchTimeline, EventLog, and 

KeystrokeLog. The last file was a video file containing the player’s screen recording and their 

voice communication. Following the actions outlined earlier in Figure 4.5, each player uploaded 

all collected textual and video data streams (with a total size averaging 300-500MB per player) 

within fifteen minutes from the end of the match. Figure 5.1 illustrates a raw data entry in the 

KeystrokeLog indicating a single keystroke, which includes the name of the key, whether the key 

was pressed or released, the XY mouse coordinates relative to the player’s monitor, and 

timestamp data provided in the standard epoch format. 

 

Figure 5.1: Raw data indicating a logged keystroke 
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5.1.1 Integrity of Captured Data 

Given that our data is primarily used for research analysis, the accuracy of the collected granular 

observations is a crucial requirement to fulfill. Considering the variability of game states in 

League, we employed manual verification of data accuracy. 

 

Figure 5.2: Visual representation of a dragon kill in the video recording 

  

 

Figure 5.3: Textual representation of a dragon kill in the MatchTimeline file 
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Figure 5.2 and Figure 5.3 present an example of an in-game event from the captured video and 

how it is reflected in the granular data. Figure 5.2 observes two players moments before killing a 

dragon at time 12 minutes 53 seconds. The glowing circle symbol on the left of Figure 5.2 

specifically denotes the dragon type is water.  Figure 5.3 corroborates this event where a water 

dragon was killed at time 773516 milliseconds, converted to 12 minutes 53 seconds and 516 

milliseconds. Since the precision of the displayed video time is in seconds and the precision of 

the granular data time is in milliseconds, there exists a one-second ambiguity when verifying the 

data. Throughout multiple games, random spot-checking was performed on at least 20 instances 

of in-game events and cross-referenced with the recorded video. All instances had correctly 

reflected in-game actions within the bounds of the one-second ambiguity. This confirmed that 

despite the varying levels of detail, all checked instances showed the video timestamp was 

equivalent to the granular data timestamp down to the minute and second. 

5.2 Potential Data Analysis 

We also considered how CapturEsports permits a researcher to view and query the collected data 

after the conclusion of a study. To demonstrate, I present three potential scenarios of how 

researchers can query the granular data and perform exploratory analyses. It is important to 

emphasize that these three scenarios are not based on known or proven phenomena; they 

represent early manifestations of potential approaches of studying the data based on assumptions 

and hypotheses that may or may not be true. Nevertheless, CapturEsports allows the verification 

of unanswered hypotheses in a convenient manner and empowers researchers to structurally 

capture and study data across multiple games. 
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Scenario 1: A researcher aims to explore differences in playstyles among participants of varying 

expertise through specific aggregate statistics. 

The disparity between experienced and novice participants is often most apparent to people with 

existing knowledge of League and may not be entirely discernable to others. However, there 

exist some hypotheses by which others have shown that the behavior of experts and novices 

differ. While these could be evident in varying durations of visual fixations (Kasarskis, 

Stehwien, Hickox, Aretz, & Wickens, 2001) or differing physical responses in keyboard presses, 

the distinction of expert players from novice players can also manifest empirically in their 

interactions and playstyles. Figure 5.4 shows a SQL++ query submitted to AsterixDB that 

calculates the total number of keystrokes for every player in a match with ID number 

3402192685.  

The top participant exhibits a keystroke count almost double or triple the count of other players 

in the game, implicating a different playstyle. Although expertise cannot be derived exclusively 

from keystroke count, additional SQL++ queries can be constructed to further explore this 

hypothesis. Figure 5.5 presents a query counting all keystrokes excluding mouse clicks in the 

first ten minutes of the game. Notice that the top participant has changed in Figure 5.5, indicating 

keystroke count may not be sufficient enough to distinguish an expert playstyle from a novice 

playstyle as other undiscovered factors are involved. This shows that to a researcher, 

CapturEsports can be useful when exploring these types of patterns since multiple queries can be 

submitted in succession. This also shows that the preliminary conclusion drawn from Figure 5.4 

that expert players have higher keystroke count may not be correct. Thus, further investigation is 

necessary to discover any correlations between keystrokes and expertise. 
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Figure 5.4: Player keystroke count for an entire match 

  

SELECT s.userID, ARRAY_COUNT((keys)) AS keyCount 
FROM LeagueDataSet AS s, s.keystrokeLog AS keys 
WHERE s.matchID="3402192685" 
GROUP BY s.userID ORDER BY keyCount DESC; 
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Figure 5.5: Player keystroke count excluding mouse clicks in the first ten minutes  

SELECT s.userID, COUNT((keys)) AS NonMouseKeys 

FROM LeagueDataSet AS s, s.keystrokeLog AS keys 
WHERE s.matchID="3402192685"  

AND NOT CONTAINS(keys.keyName, "MOUSE") 

AND keys.syncedInGameTime<"10:00:00" 
GROUP BY s.userID ORDER BY NonMouseKeys DESC; 
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Scenario 2: A researcher is interested about player behaviors through specific interactions taken 

during stressful moments of the game or within a certain period of time. 

As objectives are often key moments of stress, the time around securing an objective can provide 

insight into a player’s behavior. Observing the same match in the previous scenario, a turret is 

destroyed at 17:04 (17 minutes 4 seconds into the match). Using this event as a stressful moment, 

specific interactions surrounding this period of time can be examined through SQL++ queries 

and manual inspection.  

In League, a player is able to use abilities or issue commands, and typically each command 

requires a single keystroke. Figure 5.6 queries AsterixDB for all abilities used by each player one 

minute before and after the 17:04 timestamp. Queries empower the researcher to ask questions 

based on specific conditions and specific time periods. While the query provides an aggregated 

view of abilities used, flattening the data by converting to .CSV files presents a clearer temporal 

perspective of the data. After the turret is destroyed, observing the “usedAbility” events in the 

EventLog in Figure 5.7 reflects ability usage in roughly ten-second intervals, whereas the 

“MOUSE right” key in the KeystrokeLog in Figure 5.8 reflects repeated keystrokes within 

milliseconds. Since issuing commands require only a single input, spamming or repeatedly 

issuing keystrokes in quick succession can be indicative of erratic behavior in response to a 

stressful event. 
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Figure 5.6: Abilities used one minute before & after a stressful event 

 

SELECT s.userID, COUNT(evt) AS abilitiesUsed 

FROM LeagueDataSet AS s, s.eventLog AS e,    
     e.events AS evt 

WHERE s.matchID="3402192685" 

AND evt.name="usedAbility" 

AND e.syncedInGameTime>="16:04:00"  

AND e.syncedInGameTime<="18:04:00" 
GROUP BY s.userID ORDER BY abilitiesUsed DESC; 
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Figure 5.7: CSV EventLog of a player’s ability usage after a turret is destroyed 

 

 

Figure 5.8: CSV KeystrokeLog of a player’s keystrokes after a turret is destroyed 
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Scenario 3: A researcher would like to perform an exploratory analysis to potentially infer 

significant moments in play. 

There are moments within a match where the intentionality of players can be observed. However, 

due to the high variability of the game, the intention of a player or team can be inferred in 

numerous ways. Moving towards an enemy could indicate an intention to attack or buying 

healing items could indicate a rationale to support teammates. By examining the average number 

of abilities used, we investigate the possibility of defining a significant moment based on 

players’ intentions to spend larger amounts of resources. 

In this particular match, the Red team was comprised of players ranked Silver and lower and the 

Blue team was comprised of players ranked Silver and higher. After employing a combination of 

multiple SQL++ queries based on the previous scenarios, Table 5.1 presents the average number 

of abilities used per player on a team, partitioned into time periods distinguished by secured key 

objectives. Considering the second entry of Table 5.1, the Blue team averaged 23.2 ability uses 

per player and as each ability requires a limited resource (such as energy, mana, or cooldown 

time), multiple abilities used between destroying the Top Outer Turret and killing the Rift Herald 

suggest a moment had occurred where the team determined an objective as valuable enough to 

expend a large number of resources. Although a significant moment cannot be concretely 

deduced from Table 5.1, the high number of abilities used implies players had identified the 

existence of a substantial in-game event relative to the other in-game events.  
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Objective 

A 

Objective 

A Time 

Objective 

B 

Objective 

B Time 

Avg 

abilities 

used (Blue) 

Avg 

abilities 

used (Red) 

Objective 

B Taken 

Mid Outer 

Turret 

12:14 Top Outer 

Turret 

13:01 8.4 2.4 Red 

Top Outer 

Turret 

13:01 Rift Herald 14:32 23.2 8 Blue 

Rift Herald 14:32 Mid Inner 

Turret 

15:39 14.4 5.2 Blue 

Mid Inner 

Turret 

15:39 Air Dragon 16:30 16.2 6.2 Blue 

Air Dragon 16:30 Top Inner 

Turret 

17:04 11 2 Blue 

 

Table 5.1: Average ability use per player on the same team 
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Chapter 6

 

Conclusion and Future Work 

In this thesis, I contributed CapturEsports as a novel software tool for capturing and storing 

multiple data streams to support esports researchers conducting studies involving team dynamics, 

such as cognition, motivation, player communication, and performance under stress. As current 

commercial tools mainly focus on individual performance and lack the ability to collect raw 

unmanipulated data, I explored the feasibility of capturing gameplay observations of entire teams 

at a high level of detail by developing a prototype with respect to the popular online game 

League of Legends.  

Aimed at becoming an extensible and openly available research tool, CapturEsports currently 

rests on several key design decisions. Due to the evolving nature of esports, I utilized AsterixDB 

as a database management system to handle frequently changing data structures. The Apache 

HTTP server and a custom web server were employed to enable secure remote access to the 

collected data through a web browser and to support multiple network connections in order to 

conduct studies in a distributed manner. A user interface was also developed to allow 

participants and researchers to interact with the system in an organized manner. 

Through an alpha test, CapturEsports was shown to succeed in its purpose of enabling 

researchers the ability to collect player keystrokes, in-game events, and video recordings for ten 

players simultaneously within the same match. This data was captured at millisecond intervals, 

synchronized chronologically across all ten players, and uploaded without issues to a centralized 

server.  
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In the future, the development of CapturEsports is devoted to facilitating research in the realm of 

competitive gaming. Although SQL++ enables customizable queries, the learning curve for 

inexperienced users can be daunting. Thus, building out a comprehensive and domain specific 

query interface would empower researchers with better analysis functionality with a lower 

barrier to entry. Furthermore, as researchers explore multiple facets of data when testing various 

hypotheses, expanding the capability of capturing additional multimodal data, such as 

physiological or biological responses, would increase the overall amount of empirical evidence. 

Finally, with a large selection of game titles in esports, extending CapturEsports to support 

competitive games other than League of Legends opens up opportunities to conduct research in 

other virtual contexts.  
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