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A B S T R A C T

An Environmental Justice (EJ) analysis was carried out using full Chemical Transport Models (CTMs) over Los
Angeles, California, to determine how the combination of domain size and spatial resolution affects predicted air
pollution disparities in present day and future simulations when data support from measurements is not available.
One set of simulations used the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF/
Chem) with spatial resolution ranging from 250 m to 36 km, comparable to census tract sizes, over domains
ranging in size from 320 km2 to 10,000 km2. A second set of simulations used the UCD/CIT CTM with spatial
resolution ranging from 4 km to 24 km over domains ranging in size from 98,000 km2 to 1,000,000 km2. Overall
WRF/Chem model accuracy improved approximately 9% as spatial resolution increased from 4 km to 250 m in
present-day simulations, with similar results expected for future simulations. Exposure disparity results are
consistent with previous findings: the average Non-Hispanic White person in the study domain experiences PM2.5

mass concentrations 6–14% lower than the average resident, while the average Black and African American
person experiences PM2.5 mass concentrations that are 3–22% higher than the average resident. Predicted
exposure disparities were a function of the model configuration. Increasing the spatial resolution finer than
approximately 1 km produced diminishing returns because the increased spatial resolution came at the expense of
reduced domain size in order to maintain reasonable computational burden. Increasing domain size to capture
regional trends, such as wealthier populations living in coastal areas, identified larger exposure disparities but the
benefits were limited. CTM configurations that use spatial resolution/domain size of 1 km/103 km2 and 4 km/104

km2 over Los Angeles can detect a 0.5 μg m�3 exposure difference with statistical power greater than 90%. These
configurations represent a balanced approach between statistical power, sensitivity across socio-economic groups,
and computational burden when predicting current and future air pollution exposure disparities in Los Angeles.
1. Introduction

Exposure to outdoor air pollutants such as airborne particles with
aerodynamic diameter less than 2.5 μm (PM2.5) is estimated to cause 3.3
million premature deaths per year worldwide (Lelieveld et al., 2015).
California is home to six out of the ten most polluted cities in the United
States with respect to annual-average PM2.5 concentrations (American
Lung Association, 2019). This air pollution public health burden does not
fall evenly across all socio-economic classes, leading to cases of air
quality inequity (Anderson et al., 2018). For example, exposure to PM2.5
emitted from traffic and power generation is disproportionately higher
leeman).
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commits California to an additional 80% reduction below 1990 levels by
2050 (Schwarzenegger, 2005). The latest AB617 is focusing on devel-
oping and implementing new strategies to reduce exposure in commu-
nities most impacted by air pollution(California Air Resource Board,
2017). It is urgent that an EJ assessment be carried out to ensure that
these future benefits are distributed equitably across all members of so-
ciety. New frameworks are needed to evaluate air quality and Environ-
mental Justice (EJ) in future emissions scenarios.

Understanding the spatial distribution of air pollution fields is a
critical first step in any air quality EJ assessment. Exposure fields used in
EJ assessment can be obtained from Land Use Regression (LUR) models
(Ouyang et al., 2018; Su et al., 2012), dispersion models (Houston et al.,
2014), reduced complexity models (Tessum et al., 2019), chemical
transport models (CTM) (Izquierdo et al., 2020; Marshall et al., 2014),
data fusion methods that incorporate information from air quality
monitoring networks and/or satellites (Di et al., 2016; Donkelaar et al.,
2019; Hernandez et al., 2021; Kloog et al., 2014; Van Donkelaar et al.,
2016) and mobile monitoring networks that produce PM2.5 and black
carbon fields with high temporal and spatial resolution (Caubel et al.,
2019; Chambliss et al., 2021; Deshmukh et al., 2020; Krecl et al., 2020;
Messier et al., 2018; Minet et al., 2018). All of these methods can predict
historical exposure fields with very high spatial resolution, but only
CTMs work as well in future episodes as they do in historical episodes
because they are not reliant on data support from historical monitoring
data. Reliable future exposure fields are needed to support the increasing
demand for future air quality health impact/EJ assessment (Dimanchev
et al., 2019; Li et al., 2022; Wang et al., 2020; Zapata et al., 2017).

Measurements show that secondary aerosol formation accounts for
approximately 60–80% of PM2.5 in California (Heo et al., 2013; US EPA,
1999). The non-linear nature of atmospheric chemical reactions makes
the relationships between precursor gas-phase emissions and final
ambient particle-phase concentrations complex. Increasing precursor
emissions may either increase or decrease the final ambient concentra-
tion depending on the chemical regime. CTMs are based on fundamental
equations describing atmospheric physics and chemistry, and so they can
be used to predict exposure fields in situations where the underlying
emissions inventory changes, including scenarios where the atmospheric
chemical regime changes from NOx-rich to NOx-limited (Seinfeld and
Pandis, 2016). Full CTMs therefore provide the most accurate method to
predict future health impacts or EJ analyses in a changing world.

CTMs properly account for complex atmospheric chemistry, but their
high computation burden limits their spatial resolution and/or domain
size (the size of study area), which can introduce errors into health
impact assessments (Fenech et al., 2018; Jiang and Yoo, 2018; Thompson
et al., 2014; Thompson and Selin, 2012) and EJ assessment (Paolella
et al., 2018). Previous EJ studies in the US have shown that populations
with lower socio-economic status are more likely to live near pollution
emissions sources and therefore in zones with sharp pollution spatial
gradients (Sheppard et al., 1999). Analyzing air pollution exposure in
these regions requires high-resolution emissions inventories (Cohan
et al., 2006; Markakis et al., 2015; Pan et al., 2017; Tan et al., 2015;
Zheng et al., 2017) but even with these inventories in place, the analysis
may be limited by the tradeoffs between spatial resolution and domain
size. Many studies show that gradients in pollutant concentrations and
socio-economic status over intermediate and large spatial scales can be
key factors in the analysis of environmental inequity, making the choice
of domain size (city-, county-, state-, or national-wide) an important
consideration in the EJ assessment (Baden et al., 2007; Chakraborty
et al., 2011; Walker, 2009). CTMs applied for EJ assessment therefore
need to use a sufficiently large domain size combined with an appro-
priately fine spatial resolution to capture sharp spatial gradients to bring
the critical EJ issues into focus. The goal of this study is to find an
appropriate balance between these competing requirements.

CTM computational time and energy consumption generally increase
in proportion to the number of active model grid cells (¼spatial domain
size/grid cell size) in the calculation. The computational burden of CTMs
2

limits their reasonable application to some maximum number of active
grid cells. If the resolution of the CTM grid cells increases (smaller cells)
then the spatial domain size must decrease to maintain the target number
of active cells. Improvements in computational abilities continue to push
these limits higher over time, but this factor continues to act as a practical
limit to the configuration of CTM studies now and in the near-term
future. It is necessary to find a balance between the target domain size
and spatial resolution before starting an EJ assessment so that the results
are sufficiently reliable and the calculations are computationally effi-
cient. Here we explore how various combinations of (grid resolution x
spatial domain size) influence CTM air pollution EJ studies over Southern
California. Spatial resolutions ranging from 100's of meters (comparable
to census tract levels) up to 36 km are investigated, with associated
domain sizes ranging from 320 km2 to 10,000 km2. The number of active
model grid cells for 4 km, 1 km, and 250 m domains were 27� 27, 40�
40, and 80� 64, respectively. Domains with higher spatial resolution are
nested inside of coarse parent domains, and so the time and energy re-
quirements are cumulative. The computational burden normalized to the
4 km domain is 3.2 times higher for the 1 km domain and 10.2 times
higher for the 250 m domain. In this study, the ability of each CTM
configuration to bring EJ issues into focus is analyzed, and the rela-
tionship between spatial resolution, domain size, and statistical power is
identified. The results guide the design for future CTM studies to support
EJ assessment in California, and the methods provide a roadmap for the
design of similar CTM–EJ studies in other regions.

2. Materials and methods

Emissions inventories with spatial resolutions of 36 km, 12 km, and 4
km were first processed with the Sparse Matrix Operator Kernel Emis-
sions (SMOKE) model. Major point sources were specified at their exact
latitude and longitude so that these sources can easily be incorporated
into fine-scale emissions inventories (1 km/250 m). The locations of area
source (non-point source) and mobile emissions inventories were then
specified at finer scales using spatial surrogates that were correlated with
the true emissions activity. The base year 2016 California Air Resource
Board (CARB) emissions inventory (California Air Resources Board,
2019) that served as the starting point for these downscaling calculations
used spatial surrogates with a default resolution of 4 km. Emissions are
described for six criteria pollutants: PM, NOx, SOx, TOG, CO and
ammonia. The emissions within each 1 km/250 m subset of the parent 4
km cell were assigned in proportion to a refined spatial surrogate
developed in previous work (Li et al., 2020) as summarized in (Table S1).
This methodology is consistent with the standard approach used to
downscale county-level emissions to 4 km resolution in the National
Emission Inventory (NEI) and CARB emissions inventories. The accuracy
of the technique ultimately depends on the accuracy and suitability of the
spatial surrogates used to represent the emissions. Further details are
provided in the sections below. CARB raw inventories are described at
the hourly level usingmonthly, weekly, and diurnal time profiles for each
emission source.

2.1. High resolution area emissions

Fourteen spatial surrogates grouped in seven source categories were
used to describe the location of emissions with 1 km/250 m resolution:
(1) service and commercial employment and single-family housing
(emissions from off-road gasoline engines); (2) off-road construction
equipment, farm road vehicle miles travel (VMT), industrial-related/
industrial employment (emissions from off-road diesel engines); (3)
residential wood burning (emissions from biomass combustion); (4)
restaurant sale volume (emissions from food cooking); (5) residential
heating gas, industrial-related/industrial employment, service and com-
mercial employment (emissions from natural gas combustion); (6) pri-
mary road, secondary road, unpaved road (emissions from road dust); (7)
off-road/on-road construction equipment, industrial-related, farm road
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VMT, total population (emissions frommiscellaneous sources). Surrogate
data sources and algorithms are listed in Table S1.
2.2. High resolution mobile emissions

Mobile emissions include both tailpipe emissions and tire/brake wear
emissions. Tailpipe emissions can be further divided into gasoline mobile
(light-duty vehicles) and diesel mobile (medium- and heavy-duty trucks)
by engine type. Surrogates for each of these three subcategories are
discussed below.

2.2.1. Gasoline and diesel tailpipe emissions
Explicit traffic counts collected by the U.S. Highway Performance

Monitoring System (HPMS) were used to distribute the majority of the
tailpipe emissions to highways and other principal arterial roads.
McDonald et al. (2014) showed that approximately 70% of gasoline and
approximately 80% of diesel vehicle fuel consumption in California oc-
curs on roads with traffic count information. Emissions on these roads
can be represented by VMT (i.e., traffic count x road length). The
remaining approximately 30% of gasoline and approximately 20% of
diesel vehicle activity can use road length as a spatial surrogate. This
approximate treatment for the residual portion of the tailpipe emissions
should be done separately for urban and rural areas to ensure rural
emissions are not overestimated (Brondfield et al., 2012). In California,
the approximately 30% of the residual gasoline activity occurs mostly in
urban areas (90%) with the balance in rural areas. Data sources can be
found in SI Section 1.1. The final mobile gasoline and diesel surrogates
were calculated using Eqs. (1) and (2):

Surr ðGasolineÞ¼ 70%�ðAADT � LenÞnormalized þ 30%� ðLen0 Þnormalized

(1)

Surr ðDieselÞ¼80%�ð AADT 0 � LenÞnormalized þ20%� ðLen00Þnormalized (2)

Len00 ¼ 90% � Len urbanþ 10% � Len rural (3)

where Surr ðGasolineÞ is the Gasoline mobile surrogate; Surr ðDieselÞ is the
Diesel mobile surrogate; AADT is the Annual Average Daily Traffic;
AADT0 is the Truck Annual Average Daily Traffic; Len is the Road length
with AADT; Len’ is the Road length without traffic accounts; Len’’ is the
Truck road length without traffic accounts, which can be calculated by
Eq. (3); Len_urban is the Urban road length; and Len_rural is the rural
road length.

2.2.2. Tire and brake wear emissions
Tire and brake wear emissions were estimated as a fixed fraction of

tailpipe emissions for all engine types. The CARB SIP 2016 emissions
inventories California Air Resource Board, specify that gasoline/diesel
emissions account for 86%/14% of total mobile emissions. Thus, the tire
and brake wear spatial surrogate was calculated using Eq. (4):

Surr ðTire and Brake wearÞ¼ 86%� SurrðGasolineÞnormalized þ14%

� SurrðDieselÞnormalized (4)

where Surr ðTire and Brake wearÞ is the Tire and Brake wear surrogate.
2.3. Chemical transport model configuration

Annual-average exposure fields over Southern California for the year
2016 were generated using the source-oriented WRF/Chem (SOWC-HR)
CTM (Joe et al., 2014; Zhang et al., 2014) coupled with high-resolution
emissions inventories summarized above. This version of SOWC used
Large Eddy Simulation (LES) to simulate domains with spatial resolution
as fine as 250 m. LES predicts turbulent mixing at fine scales where
traditional first order closure models are not valid. The Thompson
3

graupel scheme was used for the microphysics option (mp_physics ¼ 8).
ACSM2 was used for the boundary-layer option (bl_pbl_physcis ¼ 7).
Kain-Fritsch scheme was used for the cumulus option (cu_physics ¼ 1).
The SPRAC11 chemical mechanism was used for the gas-phase chemistry
option. Multiple domain settings were used (Figure S1) to explore the
effects of domain size and spatial resolution. The largest domain with 36
km resolution (D01) covered the entire state of California. A slightly
smaller domain with 12 km resolution (D02) covered the South Coast Air
Basin (SoCAB). More highly resolved domains with 4 km (D03), 1 km
(D04), and 250 m (D05) spatial resolution (employing LES) were nested
over Los Angeles. The domain with the highest resolution D05 (250 m)
was centered on the community of East Los Angeles, Boyle Heights, West
Commerce that has been identified for special study under California's
Assembly Bill 617 (AB617). WRF/Chem was configured with two-way
nesting between 36 km-12 km–4 km domains and one-way nesting be-
tween 4 km-1 km-250 m domains.

A second set of exposure fields was also developed using the Uni-
versity of California Davis/California Institute of Technology (UCD/CIT)
CTM (Kleeman and Cass, 2001). The UCD/CIT model was configured
with one parent 24 km statewide domain and one nested 4 km domain
covering the SoCAB (Figure S1). One-way nesting was used between the
domains. UCD/CIT model simulations employed a different set of emis-
sions inventories. Primary dust emissions used by the WRF/Chem model
are higher than the dust emissions used by the UCD/CIT model. Com-
parison of the concentration fields predicted by bothmodels suggests that
different dust emissions can account for a change in predicted PM2.5 mass
concentrations of approximately 1.5 μg m�3. The UCD/CIT model used
standard 4 km CARB mobile emissions developed using travel demand
models combined with the EMFAC model. The WRF/Chem model used
mobile emissions with 1km spatial resolution developed using the
methods summarized in Section 2.2. In addition to having different
spatial resolutions, the different approaches used to develop these in-
ventories yield slightly different spatial patterns for the mobile emissions.
Results from WRF/Chem and the UCD/CIT model will be compared to
identify common trends.

2.4. Socio-economic data

Socio-economic data were obtained from the American Community
Survey (ACS) 2012–2016 (United State Census Bureau, 2020). The
dataset describes four race/ethnicity groups that were analyzed in detail
in the current study: Black (Black and African American alone), Hispanic
(Hispanic or Latino, regardless of race), Asian (Asian alone), and
non-Hispanic White (White, not Hispanic or Latino). Population maps for
these race/ethnicity groups are shown in Figures S2 and S3 with a
summary for each model domain presented in Table S2. The Hispanic
fraction of the population increases as the model domains becomes more
focused on central Los Angeles, rising from 38% in D01 to 67% in D05.
Conversely, the Non-Hispanic White fraction of the population decreases
steadily from 38% in D01 to 10% in D05. Asian (13–16%) and Black and
African American (6–10%) population fractions are more constant across
the model domains D01 through D05. The ACS dataset also includes
seven income categories spanning the range from less than 50% of the
poverty level to greater than twice the poverty level. Income distributions
across the model domains D04 and D05 are summarized in Table S3.
Intermediate income levels are similar across domains, but 28% of the
population in D05 is below the poverty level compared to 20% in D04,
and only 42% of the population is more than 2� above the poverty level
in D05 compared to 57% in D04. These statistics illustrate that the inner
D05 modeling domain employed in the current study contains a larger
fraction of the poorest population. D05 is a subset of D01–D04, but the
larger regions contain areas with cleaner air and a higher proportion of
white residents. Thus, analysis carried out over D01–D04 dilutes the
disparities experienced by the poorest residents.

EJ assessments were done for nine combinations of domain size and
spatial resolution, including D01–36 KM, D02—12 KM, D03—12 KM,
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D03—4 KM, D04—4 KM, D04—1 KM, D05—4 KM, D05–1 KM and
D05—250 M. The domain size-resolution combinations selected for
analysis were constrained by the computational burden at fine spatial
resolution and sufficiently large sample size at coarse resolution. Fine-
scale domains with more than 10,000 grid cells were not used in order
to maintain reasonable computational burden. Coarse-scale domains
with fewer than 20 grid cells were not used to maintain sufficiently large
sample size.

Socio-economic data with census tract resolution were used for the
analysis. Within the primary study region (Los Angeles D02), 51% of
census tracts are below 1 km resolution and 72% of census tracts are
below 1.2 km resolution. A histogram of census tract size is shown in
Figure S4. The resolution of the socio-economic data is well matched
with the resolution of the model domains in the current study. Population
data used in EJ assessment were regirded into spatial resolutions that
were comparable to the CTM exposure fields.

Population weighted concentration were calculated for four race/
ethnicity groups and two poverty level categories. Both absolute
disparity and relative disparity were analyzed. Relative disparity results
are expressed as the percentage difference relative to the total population
average (（PWCrace=income � PWC）=PWC*100%).

2.5. Statistical power

EJ assessments were performed using several combinations of domain
size and spatial resolution. Statistical power was used as a metric to
Figure 1. Year 2016 predicted annual mean PM2.5 mass concentration (μ

4

evaluate the capability of each combination to detect a given disparity
value and therefore to determine whether the combination of domain
size and spatial resolution was suitable for future studies. Statistical
power is calculated using standard statistical procedures involving Type
II error during a test of the means in two samples. Type II error occurs
when the null hypotheses is not rejected even though it is false. A lower
probability of a Type II error (β) generates a higher statistical power (1 �
β), which can be interpreted as a more sensitive test. Statistical power
and Type II error for tests of the means are related to four parameters:
mean of two samples (two races/ethnicities or two income groups);
standard deviation of two samples; sample size, and Alpha level (α),
which were provided in SI Section 2.3. We chose α ¼ 0.01 in this study.
The statistical power results are presented in Section 3.4.

3. Results and discussion

3.1. CTM exposure fields and model performance

Figure 1(a, b, c, d) shows the annual mean PM2.5 mass concentration
predicted by WRF/Chem in the year 2016 at spatial resolutions of 12 km
(D02, Figure 1(a)), 4 km (D03, Figure 1(b)), 1 km (D04, Figure 1(c)) and
250 m (D05, Figure 1(d)). Annual mean concentrations of PM2.5
Elemental Carbon (EC), PM2.5 Organic Carbon (OC), PM2.5 primary
aerosol mass, and PM2.5 secondary aerosol mass are shown in
Figures S5—S8. Thin gray lines in Figure 1 panels b,c,d represent state
highways, black lines in panels a, b, c represent California GAI
g=m3) at 12 km (a), 4 km (b), 1 km (c), 250 m (d) spatial resolution.
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(Geographic Area Index) boundaries, which combine county boundaries
and air basin boundaries. Pollutants with shorter atmospheric lifetimes
(such as primary particles) have concentrations that rapidly decay
downwind of emissions locations (Karner et al., 2010). Higher spatial
resolution therefore reveals sharper concentration spatial gradients
around major traffic corridors and large stationary emissions sources.
Maximum concentrations and the number of “hotspots” both increase
with finer spatial resolution in Figure 1, yielding a more complex expo-
sure field that captures the influence of both local sources as well as
regional background concentrations.

Figure 2(a, b, c, d) shows annual-mean concentrations of PM2.5 EC,
PM2.5 OC, PM2.5 primary mass, and PM2.5 secondary mass predicted at 1
km (D04) and 250 m (D05) spatial resolution. Figure 2 shows that PM2.5
EC concentrations are elevated around major transportation corridors,
with sharper spatial gradients coming into focus at finer spatial resolu-
tion (Figure 2(a), D04 vs. D05). Increased PM2.5 EC concentrations can
also be observed around major surface streets at 250 m resolution
(Figure 2(a), D05). Predictions at 12 km and 4 km spatial resolution are
too coarse to detect elevated PM2.5 EC concentrations adjacent to high-
ways or major roadways, but these coarser predictions do still capture the
general increase over the urban area (Figure S5). PM2.5 OC concentration
fields are smoother than PM2.5 EC concentration fields at all spatial res-
olutions (Figure 2(b) vs. Figure 2(a) and Figure S6 vs. Figure S5). Primary
PM2.5 OC (Figure 2(b)) is emitted by a larger number of sources (food
cooking, traffic, biomass combustion) than PM2.5 EC (primarily traffic) in
the current simulations. Secondary reactions in the atmosphere also
produce PM2.5 OC over periods of hours to days, which smooths the
resulting concentration fields. Primary PM2.5 mass (Figure 2(c)) con-
sisting of EC, primary OC, metals, and other crustal elements responds to
spatial resolution similarly to EC, with sharper spatial gradients revealed
at higher resolution. In contrast, secondary PM2.5 mass (Figure 2(d) and
Figure 2. Year 2016 annual mean PM2.5 EC, PM2.5 OC, PM2.5 primary, and PM2.5 se
(domain D05) spatial resolution. Dashed line is state highway.

5

Figure S8) has relatively smooth spatial gradients that do not change
significantly as spatial resolution is increased. The overall results illus-
trated in Figure 2(a, b, c, d) show that finer spatial resolution captures the
sharp gradients associated with primary pollutants such as EC but reveals
few additional features for secondary aerosol.

Predicted concentrations of PM2.5 mass, PM2.5 EC, and PM2.5 OC
were compared to all available measurements during the study period
(Figures S12 and S13). Daily PM2.5 mass, Mean Fractional Bias (MFB)
and Mean Fractional Error (MFE) of the CTM predictions at 12 km, 4
km, 1 km and 250 m are calculated at ten available sites. Daily PM2.5
EC, OC MFB and MFE are calculated at one site (downtown Los
Angeles). Monthly mean/daily predicted and measured PM2.5 mass,
PM2.5 EC, PM2.5 OC at Downtown Los Angeles site are shown in SI
(Figure S10 and Figure S11). In general, simulations at all spatial res-
olutions capture time trends in PM2.5 mass, PM2.5 EC, and PM2.5 OC
concentrations. PM2.5 mass, PM2.5 EC, PM2.5 OC were slightly over
predicted in summer months due to an under prediction of wind speed.
All MFB are �60% and MFE values are �75%, meeting typical CTM
performance criteria(Boylan and Russell, 2006). Three out of four sites
that used 1 km spatial resolution met typical CTM performance goal-
s(Boylan and Russell, 2006) (MFB �30% and MFE �50%). Model per-
formance (both MFB and MFE) improved by 5% when the spatial
resolution was increased from 4 km to 1 km; model performance
improved an additional 4% when the spatial resolution was increased
from 1 km to 250 m. It is noteworthy that model performance degrades
slightly as spatial resolution increases from 12 km to 4 km, and then
improves as spatial resolution increases from 4 km to 1 km to 250 m at
the available measurement sites. UCD/CIT Model performance is sum-
marized in Figure S9. UCD/CIT model results meet typical CTM per-
formance goals (Boylan and Russell, 2006) (MFB �30% and MFE
�50%) for all available measurement sites.
condary aerosol mass concentration (μg=m3) at 1 km (domain D04) and 250 m
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Model performance as a function of location was analyzed by
comparing annual-mean predicted concentration to measurements across
the study domain as recommended by Paolella et al. (2018) The
reasonably high correlation coefficient calculated in this analysis (R2 ¼
0.61 in Figure S14) shows that predicted concentration fields have a
spatial pattern that is consistent with measured concentrations.

While the CTM error analysis builds confidence in the accuracy of the
overall modeling system, it does not address the key issue of the appro-
priate combination of domain size and spatial resolution to capture a
sufficiently large population with enough concentration contrast to best
support epidemiological studies.
3.2. EJ analyses at different CTM domain size and spatial resolution

Results are stratified by the population socio-economic class infor-
mation available in the public ACS datasets. Annual-average population-
weighted concentrations (PWC) of PM2.5 mass, PM2.5 EC, PM2.5 OC,
PM2.5 primary mass, and PM2.5 secondary mass are calculated to repre-
sent exposures for each socio-economic group across all CTM domains
and spatial resolutions (Figure S15 for race-income D04, 05, Figure S16
for race-income D01,02,03, Figure S17 for income alone D04-D05).

Absolute and relative disparities of PM2.5 mass and its components
were calculated across all WRF/Chem CTM domains and for their
intersection with UCD/CIT CTM domains, including statewide 24 km, 4
km on D03 (UCD/CIT, D03-4 KM), and 4 km on D04 (UCD/CIT, D04-
4KM). UCD/CIT results were developed independently from WRF/
Chem results and so they serve as a comparison group to identify trends
common across model platforms.
Figure 3. Pollutant exposure difference between the maximum disparity groups. All s
Black and African American below poverty level vs. non-Hispanic White above pover
who are less than 0.5� the poverty level vs. people who are more than 2� the pove
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In general, Los Angeles residents in lower socio-economic groups are
predicted to experience higher exposure to air pollutants, especially
primary pollutants, regardless of CTM domain size and spatial resolution.
This finding is consistent with the results from previous studies over Los
Angeles (Cushing et al., 2015; Paolella et al., 2018; Tessum et al., 2019).
However, the current study predicts that exposure to secondary PM2.5
mass was similar across all races and income categories. Below we
discuss further details of the combined effects of CTM domain size and
spatial resolution on the EJ results and the statistical power of the
analysis.

3.2.1. Absolute disparity
Figure 3(a and b) summarizes the exposure difference between the

largest disparity groups across all combinations of CTM domain size and
resolution as a function of race-income (Figure 3(a)) and income alone
(Figure 3(b)). The largest absolute disparity in the current study was
observed between low-income Black and African American and high-
income non-Hispanic White groups, except at the statewide domain
level D01, 36 km (see caption in Figure 3(a)). Observed race-income
related maximum exposure disparities were 1.63–5.18 μg=m3 for PM2.5

mass; 0.12 to 0.4 μg=m3 for PM2.5 EC; 0.63 to 2.0 μg=m3 for PM2.5 OC;
1.25 to 4.25 μg=m3 for primary mass; 0.12 to 0.75 μg=m3 for PM2.5
secondary. The choice of model domain size at a constant resolution
changed calculated absolute disparity values by 12%–28%. The choice of
model spatial resolution at a constant domain size changed calculated
absolute disparity values by 1%–6%. Changing the domain size has
relatively larger effect on absolute disparity. Note that income level did
not have a statistically significant effect on air pollution exposure over
pecies analyzed here are in the PM2.5 size fraction. Comparison groups in (a) are
ty level except for D01, 36 KM result. Comparison groups in panel (b) are people
rty level. CTM domains are shown in Figure S1.
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the largest domain (D01) that employed the coarsest spatial resolution.
When exposures were analyzed without regard to income level, the
maximum disparity between race groups decreased approximately 8%
(D01) to 18% (D04) (shaded area in Figure 3(a)).

Absolute exposure disparities between different racial groups calcu-
lated by WRF/Chem and the UCD/CIT model are compared across
statewide, D03-4KM, and D04-4KM domains in Figure S19. The trends in
exposure disparity as a function of domain size and domain resolution are
consistent between the two CTM predictions. Absolute values of exposure
disparities calculated with themodels are in better agreement when over-
predictions in dust emissions in the WRF/Chem model were subtracted
from the predicted concentration fields. The agreement between results
produced by these independent models builds confidence in the exposure
disparities identified in the current study.

Hypothesis tests were conducted for population-weighted PM2.5 mass
exposures across race and poverty levels to further investigate poverty-
related disparity. The population-weighted exposures are calculated
with a finite number of grid cells with a total count that is far smaller than
the number of people in the study region. The calculated population
exposure can therefore be viewed as a sub-sample of the individualized
population exposure (that is impractical to calculate). Test statistics were
calculated using the weighted mean and the weighted standard deviation
for each population exposure across all available model grid cells (sum-
marized in Tables S4–S8). Further details of the calculation approach are
provided in SI Section 2.3 and in SI Tables S9–S10. P-values were
calculated to test the hypothesis that each paired comparison group had
the same exposure. Three stratifications were considered: (i) combined
race and poverty level; (ii) race only; and (iii) poverty level only. Sta-
tistically significant maximum exposure disparities (p-values< 1%) were
identified in most CTM configurations when considering race and
poverty level together or race alone, except for the comparison between
low-income Asian and high-income White groups. The dependence on
CTM domain size and spatial resolution became more apparent when
testing the smaller effects of poverty alone. Statistically significant dif-
ferences by poverty level were only detected at higher resolution
regional/community-level domain (4 km at D03, 1 km at D04 and 250 m
at D05) that had sufficient combined size and resolution. All of the
subsequent tests involving income levels will focus on regional/
community-level domains in order to maintain statistical power at a
meaningful level.

The largest air pollution exposure disparities based on income occur
between the highest and the lowest income categories, but the maximum
income exposure disparities (Figure 3(c)) were approximately 50%
smaller than maximum race exposure disparities (shaded bar in
Figure 3(a)) over the income categories tested. The effect of income was
further analyzed by comparing exposure disparities between households
with income greater than $200,000/yr and households with income
below $10,000/yr in D03, D04, and D05 (see Table S11). Exposure
disparity for PM2.5 mass is 1.5–4 times higher when comparing these
more divergent income categories, with similar increases for the expo-
sure disparities in the components of PM2.5 mass. These results suggest
that income is an important factor in air pollution exposure disparity, but
it must be recognized that income and race are often highly correlated
(see Paolella et al., 2018 for discussion on this topic). More than 80% of
the households with income greater than $200,000/yr in the current
study are non-Hispanic White, making it is difficult to separate income
vs. race contributions to exposure disparity.

Figure 3(a and b) illustrates how maximum exposure disparity for
primary and secondary PM responds to CTM domain size and spatial
resolution. The largest statewide domain (D01) has the lowest maximum
exposure disparity for primary PM due to the corresponding coarse
spatial resolution. In contrast, exposure disparities for secondary PM
increase with domain size regardless of spatial resolution since spatial
gradients for secondary pollutants occur over larger distances. Maximum
exposure disparity for all PM2.5 mass and components increased from
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source-oriented WRF/Chem statewide D01 to region-level D03, then
decreased from D03 to D05.

Two trends are apparent when comparing results with different
spatial resolutions but the same domain size (D03, 04, and D05) in
Figure 3. Within the community-level domain (D05), the exposure
disparity increased with spatial resolution (4km, 1km, 250m). The
opposite trend is observed in the regional domain (D03 and D04), where
the exposure disparity slightly decreased with spatial resolution (12km,
4km, 1km). D03 and D04 include more coastal areas that inherently have
lower exposures because they have fewer upwind sources. Thus, analysis
conducted in D03 and D04 captures the increased disparity between
those who live closer to the coast (non-Hispanic White or wealthy peo-
ple) and those who live in inland (other non-White categories). In this
case, the effects of the larger domain size overwhelm the effects of the
higher spatial resolution.

3.2.2. Relative disparity
Figure 4(a, b, c, d, e, f) illustrates deviations from the total population

average concentrations estimated for each socio-economic group for
PM2.5 total mass, PM2.5 primary mass, and PM2.5 secondary mass (similar
results for PM2.5 EC and OC are presented in Figure S18). Overall, Black
and African American and Hispanic residents experience higher than
average exposure to PM2.5 total mass (2%–23%) and to PM2.5 secondary
aerosol (1%–10%); Non-Hispanic White and Asian residents experience
lower than average exposure to PM2.5 total mass (4%–13%) and to PM2.5
secondary aerosol (1%–6%). People with income lower than twice the
poverty level generally experience similarly higher air pollution expo-
sures, whereas people with income more than twice the poverty level
experience lower air pollution exposure. Further refinement of income
categories at higher levels would likely reveal even greater levels of
exposure disparity.

Relative exposure disparities between different racial groups calcu-
lated by WRF/Chem and the UCD/CIT model are compared across
statewide, D03-4 KM, and D04-4 KM domains with results provided in
Figure S20. Trends in exposure disparities across different racial groups
are in strong agreement between the two model predictions. Black and
African American and Hispanic residents consistently have higher than
average exposure to total PM2.5, while non-Hispanic White residents
consistently have lower than average exposure. Asian residents have
exposure levels that are very close to average. The biological significance
of the PM2.5 exposure disparities can be quantified using the methods
that are used to estimate the public health burden of air pollution
exposure. The mortality risk ratio (RR) associated with air pollution
exposure is often represented using Eq. (5):

RR¼ eβðCexposure�CbackgroundÞ (5)

where C_exposure is the exposure concentration and C_background is the
background concentration for the pollutant of interest. Krewski et al.
(2009) performed a follow-up analysis of the American Cancer Society
(ACS) cohort and derived a β value of 1.036 for exposure to PM2.5 mass.
Applying Eq. (5) to the population-weighted-concentrations experienced
by each racial group in domain D04-4KM yields a risk ratio for Black and
African American residents that is approximately 30% higher than the
risk ratio for the Non-Hispanic White group. It should be noted that the
risk ratio calculation is non-linear and so a more exact treatment would
apply Eq. (5) separately for residents in different exposure bands and
then combine the results. The current analysis provides a rough estimate
of health impacts, with a more exact treatment described in other work
(see for example Li et al., 2022).

CTM domain size and spatial resolution combine to influence the
exposure disparities illustrated in Figures 3 and 4. Maximum exposure
disparities generally come into clearest focus when intermediate com-
binations of domain size and spatial resolution are used since this
balanced configuration captures exposure gradients for both primary and



Figure 4. Exposure difference relative to population average for (a,d) PM2.5 mass, (b,e) primary PM2.5 mass, and (c,f) secondary PM2.5 mass as a function of domain
size and resolution. Upper panels analyze race/ethnicity and lower panels analyze income.
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secondary PM. The exception to this finding in the current study is that
Hispanic exposure disparities were highest in the largest domain (D01)
that covered the entire state of California. Results for exposure disparity
based on income shown in the lower panels of Figure 4 do not include the
largest spatial domain because these findings were not statistically sig-
nificant (see Tables S9-S10 and associated discussion), but the interme-
diate combinations of domain size and spatial resolution once again bring
the largest exposure disparities into clearest focus.

The asymmetry of the exposure disparities in Figure 4(a, b, c, d, e, f)
are noteworthy. Within larger domains (D01-D03), the maximum expo-
sure disparities based on race wereþ23% for the highest exposure group
and �13% for the lowest exposure group. Within smaller domains (D04-
8

405), the asymmetry pattern reversed, with þ6% for the highest expo-
sure group and �10% for the lowest exposure group based on race.
Similar asymmetry patterns were observed for maximum exposure dis-
parities based on income: þ4% for the highest exposure group and �3%
for the lowest exposure group within the larger domain D04. Smaller but
similar deviations (þ2%/�2%) were observed for the highest and lowest
exposure groups within the smaller domain D05. This asymmetry was
largely driven by exposure to primary PM, with substantially lower
exposure disparities associated with secondary PM. Smaller domains
have higher average concentrations that can reduce the maximum
exposure disparities. The combined trends illustrated in Figures 3 and 4
emphasize the need for a balanced selection of domain size and spatial



Figure 5. PM2.5 mass exposure distribution across racial-ethnic population. (a), (b), (c), (d) focus on spatial resolution and domain scope changes on racial-ethnic
population exposure distribution. Population profile at a given concentration level can be found by following a horizontal line across each sub-panel and
comparing results from lines with the same color across panels.
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resolution when quantifying exposure disparities, with slightly higher
priority given to selection of a sufficiently large domain to represent the
large-scale exposure features. Increasing the spatial resolution beyond
approximately 1 km appears to produce diminishing returns in the cur-
rent study.
Figure 6. Power of detecting a 0.5 μg=m3 maximum exposure disparity between
groups for each combination of spatial resolution and domain scope, including
both source oriented WRF/Chem (dot) and UCD/CIT (triangle) CTM results. A
power of 90% indicates that there is a 90% probability of correctly concluding
that exposures are different between the groups.
3.3. Exposure distribution

Figure 5(a, b, c, d) illustrates the distribution of PM2.5 mass exposure
disparities across different race/ethnicity groups as a function of the CTM
domain and spatial resolution. Calculations using different CTM domain
size and spatial resolution are shown as different colors within each panel
of Figure 5. Exposure distributions are divided into concentration deciles
and exposures for each race/ethnicity group are expressed on a relative
scale within each decile. Similar exposure distributions for PM2.5 EC,
PM2.5 OC, PM2.5 primary mass and PM2.5 secondary mass are presented
in the SI (Figure S21). The results in Figure 5 and Figure S21 illustrate
which race/ethnicity groups experience the highest and lowest PM ex-
posures in California. For reference, the PM2.5 mass racial/ethnicity
compositions of absolute concentration deciles for each domain-
resolution combination are shown in Figure S22. It should be noted
that each race/ethnicity group comprises a different fraction of domain
total population, and so it is not expected that exposure distributions
would be equal when comparing between race/ethnicity groups. Rather,
the most equitable distribution of exposures in Figure 5(a, b, c, d) would
be for each race/ethnicity group to have relatively uniform exposure
across all concentration deciles (straight vertical line).

The sloped exposure distributions illustrated in Figure 5(a, b, c, d)
reflect the disparities discussed in the previous sections. Results vary
slightly with domain size, but Hispanic and Black and African American
racial groups experience increased exposure to the highest deciles of PM
concentration while the non-Hispanic White group experiences lower
exposure to the highest concentration. Balanced combinations of domain
size and domain resolution once again bring the disparities (slope of each
line) into sharpest focus. Domain size generally does not change the slope
of the exposure distribution lines for Hispanic and non-Hispanic White
groups because their populations are distributed more uniformly across
California (De La Cruz-Viesca et al., 2016). Domain size has a larger in-
fluence on the shape and slope of the exposure distribution lines for Asian
and Black and African American groups because these populations are
more concentrated in urban areas.
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Figure 5 shows that lower spatial resolution, especially 4 km, 12 km
and 36 km, generates larger fluctuations across the exposure distribution
because the coarse resolutions cannot adequately resolve the combined
population and concentration spatial gradients. A larger grid cell in-
corporates a larger fraction of the population into one decile. Breaking
large grid cells into small grid cells divides the same population among
multiple concentration deciles resulting in a smoother (and more real-
istic) exposure distribution. This same issue will influence the calculated
average exposure for each socio-economic group shown in Figures 3 and
4, emphasizing the need for a sufficiently fine spatial resolution to
resolve EJ issues.

3.4. Statistical power

The analysis presented in the previous sections shows that CTM cal-
culations for EJ assessment that balance both domain size and spatial
resolution in the context of race and income patterns can obtain mean-
ingful results with reduced computational burden. This finding is illus-
trated with an example in Figure 6 showing the statistical power of
different CTM configurations over Southern California to correctly
identify PM2.5 mass exposure disparities between groups in cases where
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the true disparity is 0.5 μg=m3. The horizontal axis of Figure 6 represents
increasing spatial resolution to the right, while the vertical axis repre-
sents increasing active domain area (CTM grid cells with non-zero pop-
ulation) towards the top. Statistical power to detect the indicated
concentration difference between maximum disparity groups is shown as
color, with statistical power above 90% shown in red. Figure 6 shows that
EJ statistical power can be increased by either increasing the domain size
or increasing the spatial resolution. Achieving statistical power above
90% in our target area requires 4 km spatial resolution with a domain
size greater than 104 km2, 1 km spatial resolution with domains size
greater than 103 km2, or 250 m spatial resolution with domain size
greater than 102 km2.

4. Conclusions

Increasing the spatial resolution of CTM calculations should increase
the accuracy of the predicted concentration fields. In the current study,
simulations with higher spatial resolution were able to better resolve
sharp spatial gradients downwind of major transportation corridors and
large point sources. Model performance improved by approximately 5%
when the spatial resolution was increased from 4 km to 1 km; model
performance improved an additional approximately 4% when the spatial
resolution was increased from 1 km to 250 m. This overall approximately
9% increase in model performance must be weighed against the need to
reduce the spatial domain size from approximately 10,000 km2 (4 km
resolution) to approximately 320 km2 (250m resolution) in order to keep
the computation burden manageable. The limited coverage of the 250 m
simulations reduces the population in the study region and it prevents an
analysis of the concentration gradients that occur over lengths of 100's of
km.

Environmental disparities by race/ethnicity groups and poverty
groups were done at nine resolution-domain combinations. A regional
analysis with 4 km or 1 km spatial resolution appears to bring EJ issues
into focus across the different scales in Southern California. In the current
study, 4 km spatial resolution with a domain size greater than 104 km2 or
1 km spatial resolution with domains size greater than 103 km2 identify
PM2.5 exposure disparities as large as 17.5% that translates into a 30%
increase in the mortality risk ratio. The air pollution domains balance the
accuracy of model predictions vs. measurements, they include pop-
ulations in all important subregions, and they maximize the accuracy of
the exposure distributions across all socio-economic groups.

The statistical power for each domain-resolution combination calcu-
lated in the current study is determined by the spatial distribution of
pollution and the demographics of regional housing patterns within each
domain. The shape of the relationship between statistical power vs.
domain-resolution identified in the current study is expected to be typical
for other regions, but the exact thresholds for achieving a target level of
statistical power at a relevant level of exposure disparity will need to be
recalculated for each new study domain. The current study provides a
single data point that fine-scale spatial resolution below 1km may not be
needed (or even optimal if it requires diminished domain size). Similar
studies should be carried out in other geographic regions in order to
determine the appropriate CTM domain size and spatial resolution for EJ
assessment in the context of their spatial distributions for race and
income.
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