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Summary:

Constructing a confidence interval for the ratio of bivariate normal means is a classical problem in 

statistics. Several methods have been proposed in the literature. The Fieller method is known as an 

exact method, but can produce an unbounded confidence interval if the denominator of the ratio 

is not significantly deviated from 0; while the delta and some numeric methods are all bounded, 

they are only first-order correct. Motivated by a real-world problem, we propose the penalized 

Fieller method, which employs the same principle as the Fieller method, but adopts a penalized 

likelihood approach to estimate the denominator. The proposed method has a simple closed form, 

and can always produce a bounded confidence interval by selecting a suitable penalty parameter. 

Moreover, the new method is shown to be second-order correct under the bivariate normality 

assumption, that is, its coverage probability will converge to the nominal level faster than other 

bounded methods. Simulation results show that our proposed method generally outperforms the 

existing methods in terms of controlling the coverage probability and the confidence width and 

is particularly useful when the denominator does not have adequate power to reject being 0. 

Finally, we apply the proposed approach to the interval estimation of the median response dose in 

pharmacology studies to show its practical usefulness.
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1. Introduction

The ratio estimate, defined as the ratio of means of two random variables, is often 

encountered in biomedical studies (Tin, 1965). Many problems reduce to forming a 

confidence interval (CI) for the ratio of two (asymptotically) normal random variables, 

such as non-inferiority and bioequivalence assessment, dose-response analysis, etc (Faraggi, 

Izikson, and Reiser, 2003; Pigeot et al., 2003; Vuorinen and Tuominen, 1994). Hence, 

several statistical methods have been proposed to address this problem (Choquet, L’ecuyer, 

and Léger, 1999; Fieller, 1954; Hayya, Armstrong, and Gressis, 1975; Wang, Wang, and 

Carroll, 2015). Among them, the Fieller method and the delta method are two commonly 

used analytic approaches (Herson, 1975; Hirschberg and Lye, 2010; Sherman, Maity, and 

Wang, 2011). The Fieller method, which gives an exact CI for achieving the required 

coverage probability (CP), is based on the inverting of the t statistic. This type of CI is 

asymmetric around the ratio estimate, which is a good property, as it reflects the skewness 

of the small-sample distribution of the ratio. However, when the denominator of the ratio is 

not significantly deviated from 0, the Fieller CI will be unbounded, being either the entire 

real line or the union of two disconnected infinite intervals (Fieller, 1954). Moreover, the 

Fieller method always has a positive unbounded probability (UP) even in large samples, and 

its UP increases when the significance level becomes smaller. That is, when the confidence 

level is set to be sufficiently close to 1, the Fieller CI can always be unbounded. On the other 

hand, the delta method directly adopts the first-order Taylor expansion by treating the ratio 

as a non-linear function of the numerator and the denominator. By assuming asymptotic 

normality in large samples, this method produces a symmetric and bounded CI in contrast to 

the Fieller method. However, the delta method often has an inaccurate CP and unbalanced 

tail errors even in a moderate sample size. Furthermore, previous studies have shown that 

the delta method has even poorer performance if the true value of the ratio has opposite 

sign to the correlation coefficient between the numerator and denominator (Hirschberg and 

Lye, 2010). Because the exact CI for a ratio estimate is naturally asymmetric, this method 

has been regarded having the “most serious error” in CI construction due to its enforced 

symmetry (Efron and Tibshirani, 1993). Although a method based on second-order Taylor 

expansion (Hayya et al., 1975) has also been proposed, it is rarely used because this method 

has the same disadvantages as the delta method, and its calculation is more involved. 

Because of the main drawbacks of the preceding methods, some numerical procedures have 

been proposed, such as the direct integral method, the parametric bootstrap (PB) method, the 

non-parametric bootstrap method, etc (Choquet et al., 1999; Wang et al., 2015). Although 

the CIs obtained from those iterative procedures are bounded, and generally have a better CP 

than the delta method, they usually result in a much wider confidence width (CW) and are 

more computationally intensive (Wang et al., 2015). It should be noted that all the preceding 

methods, other than the Fieller CI, are first-order correct (Wang et al., 2015). This fact 

indicates the relatively limited improvement of the numeric methods over the delta method, 

because they are of the same order correctness.

In this article, we propose a novel analytic approach for constructing the CI for the ratio 

estimate. Our method, the penalized Fieller (PF) method, uses the same principle as the 

Fieller method, but adopts a penalized likelihood approach to estimate the denominator. The 
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PF method always produces a bounded CI with an appropriately chosen penalty parameter. 

Moreover, the proposed method is second-order correct under the bivariate normality 

assumption. That is, its coverage probability will converge to the nominal level faster than 

other bounded methods. Simulation results show that the PF method generally outperforms 

the existing methods in terms of controlling the CP and the CW and is particularly useful 

when the denominator does not have adequate power to reject being 0. Finally, we apply the 

new approach to the interval estimation of the median response dose which is commonly 

used in pharmacology, to show its practical usefulness.

2. Method

2.1 Definitions

Suppose that a pair of random variables (X, Y ) jointly follow a bivariate 

normal distribution with marginal distributions respectively being N μ1, σ1
2  and 

N μ2, σ2
2 , and their covariance being σ12. Denote ρ = σ12/(σ1σ2) to be the 

correlation coefficient, and let (x1,y1)T, (x2,y2)T, · · ·, (xn, yn)T be an independent 

and identically distributed sample from the above distribution. Then, the sample 

means, variances, covariance, and correlation coefficient can be estimated by 

μ1 = ∑i = 1
n xi/n, μ2 = ∑i = 1

n yi/n, σ1
2 = ∑i = 1

n xi − μ1
2/(n − 1), σ2

2 = ∑i = 1
n yi − μ2

2/(n − 1), 

σ12 = ∑i = 1
n xi − μ1 yi − μ2 /(n − 1) and ρ = σ12/ σ1σ2 , respectively. Further, the variance 

and covariance of μ1 and μ2 respectively are v1 = σ1
2/n, v2 = σ2

2/n, and v12 = σ12/n with their 

estimates respectively being v1 = σ1
2/n, v2 = σ2

2/n and v12 = σ12/n. We assume that μ2 is a 

nonzero constant so that r = μ1/μ2 can be well defined. The commonly used point estimate 

for r is the ratio estimate r = μ1/μ2.

2.2 Overview of the Fieller Method

Because the PF method employs the same principle as the Fieller method, we first briefly 

introduce the latter. The Fieller CI is calculated by inverting the t statistic for testing the 

null hypothesis μ1 − rμ2 = 0. It is shown that μ1 − rμ2 / v1 − 2rv12 + r2v2 follows a t 

distribution with n − 1 degrees of freedom under the null hypothesis. Hence, the confidence 

region of the Fieller CI for r with the confidence level 1 − α is identical to the set of 

r which leads to the acceptance of the null hypothesis at the significance level α, and 

is determined by the inequality μ1 − rμ2 / v1 − 2rv12 + r2v2 < tα, where tα denotes the 

1 − α/2 quantile of the t distribution with n − 1 degrees of freedom. Rearranging this 

inequality results in the following quadratic inequality with respect to r: Ar2 +Br +C < 0, 

where A = μ2
2 − tα2v2, B = 2 tα2v12 − μ1μ2 , and C = μ1

2 − tα2v1. The solution of this inequality 

depends on the sign of A and Δ = B2 −4AC. Through simple calculation, Δ can be further 

expressed as 4tα2{ v2μ1 − ρ v1μ2
2 + Av1 1 − ρ2 }. Hence, A > 0 also implies Δ > 0. Let rf

L

and rf
U(rf

L < rf
U) be the two roots of the equation Ar2 + Br + C = 0 if Δ > 0. In the situation of 

A > 0, the Fieller CI is (rf
L, rf

U). Notably, A > 0 indicates that the denominator is significantly 

different from 0. However, if A < 0, the Fieller CI will be unbounded. For instance, if Δ < 
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0, the Fieller CI will be (−∞, +∞); otherwise, it will be (−∞, rf
L) ∪ (rf

U, + ∞). Meanwhile, it 

is clear to see that A will always be less than 0 (i.e., unbounded) for a sufficiently small α. 

It should be emphasized that the null hypothesis μ1 − rμ2 = 0 is equivalent to r = μ1/μ2 only 

when μ2 ≠ 0. However, the Fieller method does not take this information into consideration. 

As such, the Fieller CI has the potential to overestimate the CW.

2.3 Penalized Estimate for the Denominator

The Fieller method can be unbounded when the denominator is not significantly different 

from 0. This scenario will occur if the denominator has a large variance. A natural idea to 

address this problem is to penalize the parameter μ2, so that we can reduce the variance of 

the denominator by introducing some bias. Specifically, by utilizing the information that μ2 

cannot be 0, we define a penalized log-likelihood function of μ2 as

pl = −
μ2 − μ2 2

2v2
+ λlog μ2 ,

where λ > 0 is the penalty parameter. It is shown in the Appendix that 

the preceding penalized log-likelihood function attains its maximum value when 

μ2 = μ2/2 + sign μ2 μ2
2/4 + λv2. Plugging v2 into the equation, we obtain the penalized 

estimate for μ2 as μ2 = μ2/2 + sign μ2 μ2
2/4 + λv2. Without loss of generality, we assume 

μ2 ≠ 0. It can be seen that μ2 reduces to be μ2 when λ = 0, and for λ > 0, μ2 is a biased 

estimator for μ2, and the bias is O(n−1). Through the penalty, μ2 always shrinks μ2 away 

from 0. Further, μ2 can be rewritten as μ2 = (1/2 + 1/4 + λcv2
2/n)μ2, where cv2 = σ2/μ2 is the 

sample coefficient of variation of Y. As such, μ2 tends to penalize the large coefficient of 

variation of the denominator. Once μ2 is obtained, a penalized ratio estimate for r can be 

proposed as r = μ1/μ2.

Note that μ2 can be viewed as a bivariate function of μ2 and v2, denoted by 

f μ2, v2 . By making a Taylor expansion for μ2 around μ2 and v2, it is not 

difficult to show that Var μ2 = ω ⋆ 2v2 + O n−3  and Cov μ1, μ2 = ω⋆v12 + O n−3 , where 

ω⋆ = ∂f
∂μ2 μ2, v2

= μ2
⋆/ 2μ2

⋆ − μ2  and μ2
⋆ = f μ2, v2 μ2, v2 = μ2/2 + sign μ2 μ2

2/4 + λv2. It 

is interesting that the error terms are only O(n−3) instead of the regular O(n−2). 

Notice that the magnitude of ω★ measures the extent of penalty with its range being 

(0.5, 1). Specifically, ω★ = 1 represents the case λ = 0 (i.e., no penalty), and 

ω★ = 0.5 corresponds to the scenario λ = +∞. As such, we asymptotically have 

Var μ2 < Var μ2 , which means that the variance of the denominator is reduced through 

the penalty. However, for the fixed penalty parameter λ, we have 1−ω★ = O(n−1). 

Notably, ω★ can also be written as (1/4 + 1/4 + λcv2
2/n/2)/ 1/4 + λcv2

2/n, where cv2 = 

σ2/μ2 is the coefficient of variation of Y. Hence, the value of ω★ only depends on λ 
and cv2/ n. Since ω★ and v2 are unknown, we estimate Var μ2  as v2 = ω2v2, where 
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w = (1/4 + 1/4 + λcv2
2/n/2)/ 1/4 + λcv2

2/n = μ2/ 2μ2 − μ2 . Similarly, we have ω ∈ (0.5, 1) 

and 1 − ω = Op(n−1).

2.4 Adjustment of the Numerator

Recall that the Fieller method is based on the inverting of the t statistic where the null 

hypothesis is μ1 −rμ2 = 0. To construct the test statistic, an unbiased estimator μ1 − rμ2 is 

used to estimate μ1 − rμ2 for the Fieller’s method. However, if we simply replace μ1 − rμ2
by μ1 − rμ2, then the latter is a biased estimator for any r ≠ 0. Further, it is shown that 

μ1 − rμ2 = μ1 − rμ2 − r μ2 − μ2 = μ1 − rμ2 + Op n−1 . Let ṙ be any of the root-n consistent 

estimates for r, and define μ1(ṙ) = μ1 + ṙ μ2 − μ2 . If we adjust μ1 by μ1(ṙ), it can be seen 

that μ1(ṙ) − rμ2 = μ1 − rμ2 − (r − ṙ) μ2 − μ2 = μ1 − rμ2 + Op n−3/2 . Hence, μ1(ṙ) − rμ2 is 

expected to have a smaller bias than μ1 − rμ2. Note that r = 0 is an exception, since μ1 − rμ2
is unbiased in this situation. If r ≠ 0, the bias of μ1 − rμ2, while the bias of μ1(ṙ) − rμ2 is 

generally O(n−2), which would be asymptotically smaller.

On the other hand, we need to select an appropriate point estimate ṙ so as to make the 

bias of μ1(ṙ) − rμ2 as small as possible. There are many kinds of point estimates for r that 

we can choose for such an adjustment (Tin, 1965). For simplicity, we only consider the 

commonly used ratio estimate r  and the proposed penalized ratio estimate r as the plug-in 

estimates in this article. It is shown that μ1(r) = 2 − ω−1 −1μ1 and μ1(r) = ω−1μ1. By the 

facts ω−1 = (2 − ω−1)−1 + Op(n−2) and 1 < ω−1 < (2 − ω−1)−1, we know that the difference 

between μ1(r) and μ1(r) should be small in large samples, but the latter provides a more 

conservative adjustment. In order to comprehensively compare the bias-corrected estimates 

μ1(r) and μ1(r), Web Table 1 and Web Table 2 provide the estimated biases of μ1(r) − rμ2, 

μ1(r) − rμ2, and μ1 − rμ2 under various simulation configurations. From those tables, we can 

see that μ1 − rμ2 usually has the smallest bias when r = 0, and μ1(r) − rμ2 generally has less 

bias than μ1(r) − rμ2 when λ is set at the recommended values (see Section 2.5), especially 

in the case of small n and large cv2. Based on these results, we recommend adjusting μ1
by μ1(r) (denoted by μ1). Moreover, μ1 has a dramatically simple expression, which also 

makes it easy to further evaluate its variance. Since 
∂μ1
∂μ1

= ω−1 and 
∂μ1
∂μ2

= − 2(1 − ω)r, we 

respectively estimate Var μ1  and Cov μ1, μ2  as v1 = ω−2v1 − 4 ω−1 − 1 rv12 + 4(1 − ω)2r2v2

and v12 = v12 − 2ω(1 − ω)rv2. Notice that 4(1 − ω)2r2v2 is only a term of Op(n−3), but we still 

keep it in v1 so that both v1 > 0 and |ρ | ⩽ 1 can always be guaranteed, where ρ = v12/ v1v2 is 

the estimated correlation coefficient for μ1 and μ2.

2.5 Selecting a Suitable Penalty Parameter

Before computing the PF CI, we need to select an appropriate penalty parameter λ. When 

λ = 0, the PF method reduces to the Fieller method. However, if λ → +∞, it is shown in 

the Appendix that the CW of the PF CI will tend to be 0, and the rate of convergence is of 
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order λ−1/2. This fact indicates that, when λ → +∞, the CP of the PF method converges to 

0 as well. Therefore, when λ is too small, the PF CI will still have a positive UP. However, 

if we select a very large λ, then the PF CI may risk underestimating the CP. Selecting λ is a 

trade-off between the UP and the CP. We have the following theorem.

Theorem 1: The PF CI has a lower UP than the Fieller CI, and specially, the former is 

always bounded (i.e., UP=0) if and only if the penalty parameter λ ⩾ tα2/4.

The proof of Theorem 1 is provided in the Appendix. From the theorem, λ = tα2/4 is the 

minimum value that guarantees the bounded property of the PF CI. As such, it is reasonable 

to believe that selecting λ = tα2/4 is a good choice for the trade-off between the UP and the 

CP. To verify this, Web Tables 3–6 provide the empirical results of the performance of the 

PF CI against various λ. As shown in these tables, the PF CI tends to have a narrower CW 

with a larger λ, but may have more chance to underestimate the CP as λ increases. For 

instance, despite being slightly conservative, the PF CI with λ = tα2/4 can control the CP well 

even when the UP of the Fieller CI is as large as 40%. We also find that the PF CI with 

λ = tα2/2 has nearly the same performance in terms of controlling the CP as the PF CI with 

λ = tα2/4 in our simulation study. However, when the UP of Fieller CI is larger than or equal 

to 10%, we have observed that the CP of the former is uniformly smaller than that of the 

latter. This observation indicates that the latter may maintain the valid CP in more situations. 

Further, when λ increases to tα2, the PF CI may have an inflated CP even when the UP of the 

Fieller CI is 20% as shown in Web Table 5 and Web Table 6, despite the fact that its CW 

is much narrower in some scenarios. In the case of λ ⩾ tα2/4, selecting λ becomes a trade-off 

between the CP and the CW. Because CP might be the most crucial criterion to evaluate a 

CI, we would rather select λ = tα2/4, which is shown to be the most conservative choice. Note 

that tα2/4 = O(1) with the pre-set confidence level. Hence, our previous conclusions are not 

affected by selecting λ = tα2/4. Further, λ = tα2/4 does not depend on the effect size, and can 

be pre-determined as long as we know the sample size n. In some circumstances, even when 

n is unknown, we can select zα2/4 as an approximation, where zα is the 1−α/2 quantile of 

the standard normal distribution. For example, when n = 20 and α = 0.05, λ should be 1.10. 

However, if we don’t know the sample size, we can simply use λ = 0.96 instead.

2.6 Penalized Fieller’s Confidence Interval

Once λ is determined, similar to the Fieller method, the confidence region of the PF 

method can be constructed by solving the following quadratic inequality: ar2 + br + c < 0, 

where a = μ2
2 − tα2v2, b = 2 tα2v12 − μ1μ2  and c = μ1

2 − tα2v1. Note that both a and b2 − 4ac = 

b2 − 4ac = 4tα2 v2μ1 − ρ v1μ2
2 + av1 1 − ρ2  will be greater than 0 with λ ⩾ tα2/4. As such, 

the PF CI is directly given by −b − b2 − 4ac /2a, −b + b2 − 4ac /2a .
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Like other bounded methods, the PF method provides an asymptotic CI. It is known that the 

delta and existing numeric methods are all first-order correct. However, for the PF method, 

we have the following theorem.

Theorem 2: Under the bivariate normality assumption, the proposed PF method is second-
order correct, that is, the differences of confidence limits between the PF method and the 
exact method are Op(n−3/2).

The proof of Theorem 2 is in the Appendix. It should be emphasized that second-order 

correct is stronger than second-order accurate, because the former implies the latter 

(DiCiccio and Efron, 1996). That is, the actual CP of the PF method should be the nominal 

level + O(n−1). To further elaborate on the second-order correctness of the PF method, Web 

Figures 1–3 plot the estimated CP of the PF, Fieller, delta, and PB methods under the setting 

of cv2 = 2.5 (very large variation for the denominator). It is clearly shown from these figures 

that the CP of the PF method generally converges to the nominal level faster than those of 

the delta and PB methods except when 1−α = 0.95 and r = 1 for the PB method, where 

the actual CP of the latter are only the nominal CP + O(n−1/2). Note that the Fieller method 

generally keeps an accurate CP regardless of the values of n, cv2, and 1−α, because it is 

an exact method in the bivariate normality case. However, this method can have a large UP 

in our settings. For example, when n = 40, the UP for the Fieller method are 30.60% and 

56.09% for 1 − α = 0.95 and 0.99, respectively, which are large proportions. Hence, the PF 

method has an excellent performance in terms of controlling the CP and the UP.

It should be noted that the second-order correctness of the PF method depends on the 

assumption of bivariate normality. Under this condition, the sample means of the numerator 

and denominator also exactly jointly follow the bivariate normal distribution. However, if 

the bivariate normality assumption is violated, the sample means are only asymptotically 

normal. In this situation, all the methods, including the PF and Fieller methods, are first-

order correct. However, it is well known that the t test is robust against non-normality, 

especially when the underlying distribution is symmetric. Because the PF method is based 

on the inverting of the t statistic, it is reasonable to believe that the PF CI can remain a valid 

CP under a wide range of scenarios. We evaluate how sensitive the PF CI is to the violation 

of the bivariate normality assumption in Section 3. In real applications, if the numerator 

and the denominator are known to be independent, we simply set v12 = 0 for computing the 

confidence limits of the PF method. Further, when the numerator and the denominator have 

different degrees of freedom, the Welch-Satterthwaite equation can be used to approximate 

the combined degree of freedom associated with the t statistic.

3. Simulation Study

3.1 Simulation Settings

To evaluate the proposed PF method, an extensive simulation study has been conducted for 

comparison with the Fieller, delta, and PB methods. For the PB method, we use a similar 

procedure to that in Wang et al. (2015) for calculating its confidence limits. The details of 

the delta and PB methods can be found in Web Appendix A. In our simulation study, we 
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fix the penalty parameter to be λ = tα2/4. The data are simulated from the bivariate normal 

distribution, the bivariate Laplace distribution, and the bivariate skew normal distribution. 

Notably, both the normal distribution and the Laplace distribution are symmetric, while the 

skew normal distribution is asymmetric. For the latter, we fix the shape parameter to be 

10, so that the skewness of such distribution is about 0.96. From simulation study (data 

not shown), we found that the value of r has little impact on the simulation results except 

when r = 0. Hence, r is fixed to be 1 and 0. We set the mean of the denominator μ2 to be 

1; otherwise, we can simultaneously divide the denominator and numerator by μ2 for any 

μ2 ≠ 1, so that the transformed denominator always has a mean of 1. For the numerator, 

its coefficient of variation cv1 is set to be 0.4 for r = 1, and when r = 0, we fix its 

variance σ1
2 to be 1. The sample size n is selected to be 20 and 50, and the confidence 

level 1 − α is set to be 0.95 and 0.99. Furthermore, we have a similar finding to that 

of Wang et al. (2015), that is, the power of the t test (denoted by Powert) for testing the 

denominator being 0 plays a prominent role in the performance of all the methods. We 

set Powert to be 1 − 10−15, 1 − 10−8, 0.99, 0.90, 0.80, 0.60, 0.40, and 0.20, where such 

power ranges from perfect to low. Notice that 1−Powert denotes the probability that the 

denominator is not statistically different from 0, which is also the theoretical UP for the 

Fieller method. Once n, 1 − α, and Powert are fixed, we can calculate cv2 by solving the 

equation Pt tα, n − 1, n/cv2 − Pt −tα, n − 1, n/cv2 = 1 − Powert, where Pt is the distribution 

function of the non-central t distribution with the non-central parameter being n/cv2. Web 

Table 7 gives the corresponding values of cv2 for various combinations of n, 1 − α, and 

Powert. It can be seen from Web Table 7 that the values of cv2 for α = 0.05 are uniformly 

larger than those for α = 0.01 when Powert is fixed. For the choice of the correlation 

coefficient ρ, we emphasize the scenario in which ρ has the opposite sign to r. Therefore, 

ρ is assigned to be 0, −0.4, and −0.8. We also conduct a simulation study (data not shown) 

considering ρ being 0.4 and 0.8, but we find that the performances of all the methods are 

similar to that of ρ being 0. Note that when generating the data from the bivariate skew 

normal distribution, we first need to perform a parameterization, and the details are given in 

Web Appendix B (Azzalini, 2005). Finally, the number of simulations k is set at 10,000.

We compare the performance of four types of CI based on CP, ML/(ML+MR), UP, and 

CW, where ML and MR respectively are the left and right tail errors missing the true 

value of r. CP is estimated by the proportion that the CI contains the true value of r 
among k replicates. ML and MR are calculated by ML = # r < rL ∩ rL ⩽ r ⩽ rU /k and 

MR = # r > rU ∩ rL ⩽ r ⩽ rU /k, respectively, where # denotes the counting measure, 

and rL and rU are the confidence limits of the estimated CI. Note that rL ⩽ r ⩽ rU means 

that the CI is bounded. As such, we only consider the bounded CIs when estimating the 

ML and the MR, since it is impossible to distinguish between the left side and the right 

side if the CI is the union of two disconnected infinite intervals. Further, UP is computed 

as 1 − # rL ⩽ r ⩽ rU /k. Note that the UPs of the PF, delta, and PB methods always stay 

at 0. On the other hand, since the Fieller CI may be unbounded (i.e., has infinite length), 

we use the median length of CIs among k replicates to estimate the CW. It is believed 

that a good CI should control the CP well, have a narrow CW, and have balanced ML and 

MR. We deem that underestimating the CP is undesirable because of the inflated size, while 
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slightly overestimating the CP can be acceptable. Further, if a balance between ML and MR 

is achieved, then ML/(ML+MR) should be close to 0.50.

3.2 Simulation Results

Table 1 and Table 2 respectively display the estimated UP, CP, CW, and ML/(ML+MR) of 

the two-sided 95% and 99% CIs for the PF, Fieller, delta, and PB methods when ρ = 0 and 

r = 1. From these tables, it can be seen that the estimated UP of the Fieller CI is generally 

around the theoretical UP in all the scenarios. The Fieller method has a very accurate CP 

in scenarios of symmetric distributions regardless of the values of n, 1 − α, and Powert. 

However, if the underlying distribution is skew normal, we have observed that the Fieller 

method can slightly underestimate the CP when Powert ⩽ 0.90. Unlike the Fieller method, 

the performances of the PF and delta methods seem to be less affected by the underlying 

distribution. The PF CI can control the CP well as long as Powert ⩾ 0.60, regardless of the 

sample size, the confidence level, and the underlying distribution. However, for the delta 

method, we find that its CP may be underestimated when Powert ⩽ 0.99. This fact indicates 

that the delta method can only control the CP when the denominator has the perfect power 

to reject being 0 (e.g., Powert ⩾ 1 − 10−8). We also observe that the CP of the PB method 

depends on the confidence level. When 1 − α = 0.95, the PB methods can control the 

CP, except for being a little conservative when the underlying distribution is skew normal. 

However, if the confidence level increases to 0.99, the PB method may underestimate the 

CP when Powert ⩽ 0.99, but its CP is still closer to the nominal level than that of the delta 

method. On the other hand, it can be seen that the delta method has the narrowest CW, 

while the CW of the PB method generally is the widest among all the bounded methods. 

The PF method typically has a width in between the delta method and PB method, and its 

CW is narrower than that of the Fieller CI when Powert ⩽ 0.99. In the case where the UP 

of the Fieller CI is larger than 50%, its median length becomes infinite as shown in Table 

1 and Table 2. From the values of ML/(ML+MR), we find that the delta and PB methods 

demonstrate the unbalanced tail errors on the left and right, because almost all the values of 

ML/(ML+MR) are far away from 0.50, while the PF and Fieller methods have much more 

balanced tail errors. This is not surprising because both the delta and PB methods are based 

on the normality assumption of the ratio estimate, which may not always be appropriate as it 

generally has a skewed distribution even in moderate samples. When the UP of Fieller’s CI 

ranges from small to large, the tail errors of all the methods tend to be more skewed.

Notably, when Powert ⩾ 1 − 10−8, all the methods have nearly the same CP and the 

same CW in all the scenarios; but if Powert ⩽ 0.40, all the methods uniformly show poor 

performance. The interesting scenarios lie on the parameter space that Powert is between 

0.60 and 0.99. For simplicity, we restrict our following discussion to this parameter space. 

It can be seen that the PF method can overestimate the CP in some cases, but its CW still 

grows much slower than those of the Fieller and PB methods as the Powert decreases. For 

the PB method, in the situation of 1−α = 0.95, where it can control the CP, its CW is even 

wider than the Fieller CI. Hence, the PF method is superior to the Fieller and PB methods 

because its CI is narrower while still remaining a valid CP. Note that the delta method has a 

narrower CW than the PF method, but its CP is underestimated at the nominal level. When 

looking at 95% CI, we find that when Powert decreases 0.10, the under-coverage of the delta 
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CI will increase about 0.005 to 0.01 (10% to 20% inflation in type 1 error), and the CW of 

the PF CI is nearly 15% wider than the delta CI. When Powert reduces from 0.99 to 0.60, the 

under-coverage of the delta method can range from 0.01 to 0.05 (20% to 100% inflation in 

type 1 error), despite the fact that its CW is about 15% to 60% narrower than that of the PF 

method. For the 99% CI, the delta method has an even worse CP (100% to 300% inflation in 

type 1 error), but the PF method still maintains the correct level. Recall the fact that the delta 

method typically has unbalanced tail errors. Hence, this method seems to narrow its width 

by sacrificing the accuracy of CP, and, to some extent, the accuracy of the left and right tail 

errors. Moreover, from Web Tables 3–6, we find that the PF method with penalty parameter 

λ = 3tα2/4 demonstrates a similar CW to the delta method, but the former has a much better 

CP and more balanced tail errors than the latter.

3.3 Additional Simulation Results and Conclusions

All the other results of UP, CP, CW, and ML/(ML+MR) with ρ = −0.4 and −0.8, or r = 0 

are provided in Web Tables 8–17. From Web Tables 8–11, it can be seen that ρ has little 

impact on the performance of the PF and Fieller methods. But when ρ changes from 0 

to −0.4, and −0.8, we find that the delta and PB methods tend to have more skewed tail 

errors, although their CPs seem to be less affected. Web Tables 12–17 display the results 

for r = 0. From these tables, we find that the PF method performs even better in terms of 

controlling the CP when r = 0 in the symmetric distribution scenarios, because it can still 

have an accurate CP even when Powert = 0.20. However, both the PF and Fieller methods 

can slightly underestimate the CP in the case of skew normal distribution. It can also be seen 

that the delta and PB methods tend to seriously overestimate the CP. However, the CW of 

the delta method is still the narrowest. The simulation results suggest that the delta method 

seems to be preferred only when r = 0, which, however, is just a special case.

In summary, in nearly all the simulation settings that we considered, the Fieller method 

generally keeps a good CP, but its CW can be overlong and even infinite; the PF method 

can generally control the CP well as long as the Fieller CI has a finite median CW (i.e., 

UP < 50%), while providing a competitive confidence length; although the delta method 

has the narrowest CW among all the methods, this may be due to its inaccurate CP and 

unbalanced tail errors; and the PB method generally has the worst performance among all 

the methods, because its CW is nearly as long as that of the Fieller method, but it can still 

underestimate the CP in some scenarios like the delta method. Further, the PB method is 

a resampling-based approach, and is more computationally intensive than other methods. 

Based on all the results, the PF method generally outperforms the existing methods in terms 

of controlling the CP and the CW and is particularly useful when the denominator does not 

have adequate power to reject being 0.

4. Application to the Interval Estimation of the Median Response Dose

4.1 Background

The median response dose is frequently used in pharmacology studies, especially in toxicity 

experiments, such as the median effective dose (ED50, the dose of a drug that produces a 

desired effect in 50% of a tested population) or the median lethal dose (LD50, the dose 
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required to kill half the tested population after a specified duration). In such experiments, 

a small group of animals is exposed to a measurable stimulus at each of a small number 

of given doses, usually evenly distributed on a logarithmic scale. After that, the outcome 

of interest, usually a binary trait, such as death or affected, is recorded for each animal. 

For simplicity, we assume that the experiment comprises q dose levels with the base-10 

log-doses l1, l2, · · ·, lq, and for each dose level, we respectively have the replications m1, m2, 

· · ·, mq. The number of the response animals at the ith level is denoted by si. Consequently, 

s1, s2, · · ·, sq are mutually independent binomial random variables with si ∼ bin(mi, ϕi). We 

further assume that the probability ϕi is related to the log-dose li through the logistic model,

logit ϕi = log
ϕi

1 − ϕi
= β0 + βli = β li − γ ,

where γ = −β0/β represents the median response dose. For fixed γ, the slope β determines 

the shape of the response curve. When β ranges from 0 to +∞, the response curve will 

become steeper and steeper. In the extreme cases of β → 0 and +∞, ϕi will uniformly tend 

to be 0.5 and 1 for all the dose levels, respectively. In both situations, the data contain little 

information about γ. By fitting the standard logistic model, it is easy to obtain β0, β , and 

their covariance matrix. The point estimate of γ is given by γ = − β0/β . It can be seen that 

both the numerator and denominator of γ  come from the logistic regression coefficients. 

Because both β0 and β  asymptotically follow normal distributions, we will show how the 

proposed PF method can be applied to the interval estimation of γ to three real-world 

datasets - the Hewlett data, the Puerperants data, and the Beetles data. It should be noted that 

the covariance matrix of β0 and β  is based on large sample theory. Hence, tα is replaced by 

zα when calculating the CIs for all the methods.

4.2 Real-world Datasets

The Hewlett data is a classical data example with nine dose levels, a relatively moderate 

sample size, and a steep response curve. This dataset was first used in a paper by 

Abdelbasit and Plackett (1983) where the authors stated that it was obtained from a 

personal communication with P.S. Hewlett without any more details. Subsequently, it was 

further studied in several related papers (Sitter and Wu, 1993; Faraggi et al., 2003; Paige, 

Chapman, and Butler, 2011). The Puerperants data was collected to estimate the ED50 of 

levobupivacaine for labor analgesia (Sia et al., 2005). This dataset has five dose levels, and a 

steep response curve, but a relatively small sample size. In this data, 50 parturients in early 

labor were randomly assigned to receive one of the five doses studied. Effective analgesia 

is defined as a pain score (0 –100 visual analog scale) of less than 10 within 15 minutes of 

injection, lasting for 45 minutes or more after the induction of analgesia. The Beetles data 

studied the toxicity of beetles to insecticide. This dataset has six dose levels, and a moderate 

sample size, but a relatively flat response curve. It is taken from Hewlett and Plackett 

(1950), and has been further discussed by Zelterman (1999) and Faraggi et al. (2003). In 

this study, groups of beetles were exposed to various concentrations of the insecticide. After 

a short period, the number of deaths within each group was reported. Web Tables 18–20 
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respectively provide the details of all three datasets. Further, we fit the standard logistic 

regression to each of the three datasets, and the summary statistics are displayed in Table 3.

4.3 Further Simulation Study Based on the Hewlett Data

For the real data described in Section 4.2, both β0 and β  are estimated from binary data, 

but such case has not been studied in the simulation study in Section 3. It is known that 

the mean and the variance of the logistic regression coefficient are correlated especially 

in small samples. Therefore, based on the Hewlett data, we further conduct an extensive 

simulation study, with various slopes and sample sizes, to investigate the performance of the 

PF method in this scenario, and the details are provided in Web Appendix C. Based on the 

new simulation results in Web Table 21 and Web Table 22, we conclude that the PF method 

has the overall best performance in terms of coverage, width, and location, and thus is still 

recommended in the binary data case (see description from Web Appendix C).

4.4 Data Analysis

Table 4 displays the CIs estimated from all four methods based on the Hewlett data, the 

Puerperants data, and the Beetles data. In addition, we also evaluate the performance of all 

the methods in the scenario where the parameters li, mi, γ, and β are taken or estimated 

from each of the datasets. From Table 4, we observe that both the PF and Fieller methods 

generally have a valid CP, but the former can provide a narrower CW than the latter, when 

the sample size is small or the response curve is flat. Meanwhile, it is not surprising to 

see that the delta method has the narrowest CW among all the methods. However, this 

method should be used with caution, because it may underestimate the CP even in moderate 

samples. For the Beetles data, which has a relatively flat response curve, although the delta 

method seems to have the best performance, this method can seriously overestimate the CP 

and may not be reliable as discussed in Web Appendix C. Further, it can be seen that the PB 

method has the worst performance and thus is also not recommended for practical use.

In conclusion, the PF method performs well as long as the sample size at each dose is not 

very small and the response curve is neither extremely flat nor extremely steep. However, if 

such conditions are violated, all four methods may not work well. This is probably because 

the covariance matrix for the numerator and the denominator cannot be estimated accurately. 

Under this circumstance, the likelihood-based CI may be more reliable (Williams, 1986). It 

is therefore of interest to generalize the PF method to the penalized likelihood method. We 

leave this for future research.

5. Discussion

In this article, we have developed the penalized Fieller method to construct the CI for the 

ratio estimate. Like the Fieller method, the proposed approach is based on the inverting of 

the t statistic, and thus it is an analytic approach and naturally allows an asymmetric CI. 

Further, to overcome the unbounded issue of the Fieller CI, we adopt a penalized likelihood 

approach to estimate the denominator while adjusting the numerator accordingly to reduce 

the bias of the t statistic. By using a suitable penalty parameter, the PF method always 

produces a bounded CI. Moreover, we show theoretically that the PF method is second-order 
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correct under the bivariate normality assumption, better than other bounded methods, which 

are all first-order correct. Simulation results demonstrate that the PF method has good 

performance in terms of controlling the CP and the CW. Hence, we recommend using the PF 

method for its robustness and analytic advantage.

Note that we obtain the penalized estimator μ2 by directly plugging v2 into it. By using this 

strategy, we can get a much simpler expression of μ2, and therefore simplify the subsequent 

statistical inferences as well. We can also obtain the joint estimates μ̇2 and v̇2 by maximizing 

the full penalized likelihood, and the details are provided in Web Appendix D. It is seen 

that μ̇2 is much more complicated but will converge to μ2 as n → +∞. Note that the forms 

of μ̇2 and μ2 only differ at the variance estimate. For the variance estimate v̇2, it is related 

to the penalty parameter λ only at the third order. This fact indicates that it makes little 

difference to consider a penalty when estimating v2. Therefore, we directly plug v2 into μ2
for mathematical convenience.

It should be emphasized that the PF method is not an exact method. That is, if the sample 

size is extremely small, and the denominator has a very large variation (the case in which 

the Fieller method has a very large UP), then the PF method still has the possibility of 

underestimating the CP as shown in the simulation results. Although the Fieller method is 

an exact method in the bivariate normality case, and is generally guaranteed to achieve the 

nominal level, this is at the potential cost of having intervals of infinite length. Further, the 

Fieller method ignores the information that the denominator can not be 0. By excluding 

the case of μ2 = 0, it is not surprising that the PF method has a narrower CW than the 

Fieller method. Notably, the denominator being not statistically different from 0 also means 

that the CI of the denominator covers 0. Because 0 is a singular point for the denominator 

of a ratio, it is expected that the Fieller CI will be unbounded in this case. However, the 

true value of the ratio must be a real number. Therefore, the unbounded interval is not as 

informative as the bounded interval because the latter always provides finite length and is 

much more common in practice. On the other hand, the PF method obtains the bounded CI 

by shrinking the CI of the denominator away from 0 through penalty, while adjusting the CI 

of the numerator simultaneously.

Notice that the PF method is second-order correct only in the bivariate normality case. 

Otherwise, all the existing methods, including the PF and Fieller methods, are first-order 

correct. Like the Fieller method, despite the fact that the PF method is proposed based on 

the bivariate normality assumption, we have demonstrated its usefulness in a wide range 

of scenarios through simulation study and real data application. These scenarios include 

the ratio of means from both the bivariate normal and non-normal distributions as well 

as the ratio of the non-linear regression coefficients. However, in certain cases, when the 

underlying distribution is very skewed, the PF method may not work well, just like almost 

all the existing methods. This is probably due to two reasons. First, the mean estimator may 

need a much larger sample size in order to converge to a normal distribution. Second, using 

the mean to estimate the location parameter is no longer appropriate. In the case of very 

skewed distributions, the CI based on inverting of the non-parametric statistic may be more 

useful, but this needs further research. On the other hand, it is known that the MOVER-R 
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(method of variance estimate recovery for a ratio) is a generalization of the Fieller method 

to the non-normal case (Donner and Zou, 2012; Newcombe, 2016). So, developing the 

penalized MOVER-R is another possible direction for future research.

Recall the fact that we only use the penalized estimate for the denominator by shrinking 

it away from 0. Because the numerator generally has the possibility to be 0, we do not 

penalize both the denominator and the numerator simultaneously. For example, considering 

the median response dose γ = −β0/β, it is possible that the numerator β0 can equal 0. This 

corresponds to the scenario of γ = 0. Because γ is generally on a logarithmic scale, the 

original median response dose will be 1. In some cases, if we know the information that 

the numerator cannot be 0, we can use the penalized estimate for both the numerator and 

denominator. By using more information, it is possible to get a narrower CW. However, how 

to obtain a second-order correct CI in this situation is not at all clear.

Finally, we use the penalized ratio estimate r to estimate r in μ1. Note that there exists other 

point estimates for r that we can select to plug into μ1 (Tin, 1965), which might be better 

than r. However, further studies are needed to investigate their performance, especially when 

the denominator does not have adequate power to reject being 0.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Maximum Point of the Penalized Log-Likelihood

Treating v2 as known and taking the first derivative with respect to μ2, we obtain

dpl
dμ2

=
−μ2

2 + μ2μ2 + λv2
μ2v2

= −
μ2 − x1 μ2 − x2

μ2v2
,

where x1 = μ2/2 − μ2
2/4 + λv2 and x2 = μ2/2 + μ2

2/4 + λv2. It is easy to see that x1 < 0 < x2 

regardless of the sign of μ2. Therefore, the penalized log-likelihood will increase when μ2 ∈ 
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(−∞, x1] ∪ (0, x2]. That is, the penalized log-likelihood can only attain its maximum value 

at the point x1 or x2. Further,

pl x1 = −
x2

2

2v2
+ λlog x1 and pl x2 = −

x1
2

2v2
+ λlog x2 .

If μ2 > 0, we have |x1| < |x2|, which implies pl(x1) < pl(x2). However, if μ2 < 0, we obtain 

pl(x1) > pl(x2). Hence, the penalized log-likelihood attains its maximum value at the point 

μ2 = μ2/2 + sign μ2 μ2
2/4 + λv2.

Confidence Width of the Penalized Fieller Method When λ → +∞

Let CWpf denote the CW of the PF CI. According to Section 2.6, it is 

seen that CWpf = b2 − 4ac/a when λ is greater than or equal to tα2/4, where 

a = μ2
2 − tα2v2, b = 2 tα2v12 − μ1μ2 , and c = μ1

2 − tα2v1. In order to avoid confusion, we use the 

notation Oλ to represent the order with respect to λ. It is easy to see that a = Oλ(λ), b = 

Oλ(λ1/2), and c = Oλ(1). Hence, CWpf = Oλ(λ−1/2). That is, when λ → +∞, we have CWpf 

→ 0, and the rate of convergence is of order λ−1/2.

Proof of Theorem 1

Let UPpf and UPf denote the UP of the PF and Fieller methods, respectively. According to 

Fieller’s theorem, the PF CI is unbounded if and only if

μ2
2/v2 < tα2 μ2

2/ω2 < tα2v2 2μ2 − μ2 2 < tα2v2

Substituting 2μ2 − μ2 = sign μ2 μ2
2 + 4λv2 into the above inequality, we have

μ2
2/v2 < tα2 μ2

2/v2 < tα2 − 4λ

Therefore,

UPpf = P μ2
2/v2 < tα2 = P μ2

2/v2 < tα2 − 4λ < P μ2
2/v2 < tα2 = UPf .

Specially, UPpf = 0 can always be guaranteed if and only if the penalty parameter λ ⩾ tα2/4.

This completes the proof.

Proof of Theorem 2

Under the bivariate normality assumption, the Fieller method is known as the only exact 

method (Koschat, 1981). Without loss of generality, let rpf and rf respectively denote the 

confidence limit for the PF and Fieller methods which satisfy
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μ1 − rpfμ2 = tα v1 − 2rpfv12 + rpf
2 v2, (A.1)

μ1 − rfμ2 = tα v1 − 2rfv12 + rf
2v2 . (A.2)

When μ2 > 0, both rpf and rf are lower limits; otherwise, they are upper limits. To prove the 

theorem, we need to show that rpf − rf = Op(n−3/2).

Because μ2 is a nonzero constant, we have μ2 = Op(1) and μ2 = Op(1). From Equation (A.1), 

we know that r − rpf = Op n−1/2 . Therefore,

μ1 − rpfμ2 = μ1 − rpfμ2 + r − rpf μ2 − μ2 = μ1 − rpfμ2 + Op n−3/2 .

Using the above equation, we rewrite the Equation (A.1) as

μ1 − rpfμ2 = tα v1 − 2rpfv12 + rpf
2 v2 + Op n−3/2 . (A.3)

Note that

v1 − 2rfv12 + rf
2v2 − v1 − 2rpfv12 + rpf

2 v2 =

v1 − 2rfv12 + rf
2v2 − v1 − 2rfv12 + rf

2v2 + v1 − 2rfv12 + rf
2v2 − v1 − 2rpfv12 + rpf

2 v2 .

The first part of the above equation is Op(n−3/2) and the second part can be expressed as 

κ(rpf − rf), where

κ =
2v12 − rpf + rf v2

v1 − 2rfv12 + rf
2v2 + v1 − 2rpfv12 + rpf

2 v2
= Op n−1/2 .

Equation (A.2) minus Equation (A.3) becomes

rpf − rf μ2 − κtα = Op n−3/2 .

By the fact μ2 − κtα = Op(1), we can see rpf − rf = Op(n−3/2), which completes the proof.
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Table 1

Estimated UP (%), CP (%), CW, and ML/(ML+MR) of the two-sided 95% CI when ρ = 0, r = 1, cv1 = 0:4, and 

n = 20 and 50 for the PF, Fieller, delta, and PB methods based on 10,000 replicates. UPf denotes the estimated 

UP of the Fieller method and the UP for all the remaining methods always stays at 0.

CP CW ML
ML + MR

Powert UPf PF Fieller Delta PB PF Fieller Delta PB PF Fieller Delta PB

n=20

(a) Bivariate Normal Distribution

1 – 10−15 0 95.26 95.23 95.11 95.59 0.55 0.55 0.54 0.55 0.47 0.47 0.21 0.19

1 – 10−8 0 95.01 94.93 94.80 95.47 0.67 0.67 0.63 0.66 0.46 0.48 0.11 0.07

0.99 0.88 95.73 94.90 93.62 94.93 1.15 1.22 0.97 1.23 0.33 0.44 0 0

0.90 9.88 96.63 95.12 92.91 94.96 1.64 1.93 1.25 2.32 0.14 0.14 0 0

0.80 20.54 97.06 95.23 92.09 95.07 2.03 2.80 1.44 5.22 0.03 0.05 0 0

0.60 40.30 96.17 95.25 90.82 95.20 2.91 8.27 1.79 19.86 0.01 0 0 0.01

0.40 60.50 92.90 94.66 88.44 95.07 4.60 +∞ 2.35 44.71 0 0 0 0.02

0.20 79.97 83.71 95.04 84.11 95.85 9.00 +∞ 3.41 61.97 0 0 0 0.07

(b) Bivariate Laplace Distribution

1 – 10−15 0 94.77 94.71 94.99 95.28 0.54 0.54 0.53 0.54 0.52 0.53 0.25 0.22

1 – 10−8 0 95.25 95.18 94.98 95.69 0.64 0.64 0.61 0.64 0.45 0.47 0.10 0.07

0.99 2.02 95.92 95.17 93.95 95.14 1.08 1.13 0.93 1.14 0.34 0.44 0.01 0.01

0.90 10.96 97.01 95.64 93.03 95.15 1.53 1.77 1.19 1.99 0.15 0.21 0 0

0.80 19.39 96.30 94.99 91.09 94.36 1.86 2.39 1.36 3.77 0.11 0.14 0 0

0.60 36.97 95.96 95.17 90.60 95.21 2.65 5.80 1.69 14.90 0.02 0.03 0 0.01

0.40 56.36 93.34 95.42 88.63 95.34 4.16 +∞ 2.21 38.76 0 0.01 0 0.02

0.20 77.78 84.65 95.35 83.96 96.21 8.12 +∞ 3.18 59.74 0 0 0 0.10

(c) Bivariate Skew Normal Distribution with Shape Parameter 10

1 – 10−15 0 95.24 95.24 94.65 95.12 0.55 0.55 0.53 0.55 0.50 0.50 0.26 0.25

1 – 10−8 0 95.24 95.19 94.59 95.41 0.66 0.66 0.63 0.66 0.60 0.61 0.23 0.22

0.99 0.02 95.20 94.68 94.88 96.50 1.17 1.23 0.98 1.25 0.68 0.74 0.02 0

0.90 4.37 95.95 94.41 93.63 96.45 1.69 2.02 1.28 2.50 0.60 0.65 0 0

0.80 13.61 96.99 93.99 93.20 96.56 2.07 2.89 1.46 5.44 0.40 0.37 0 0

0.60 39.07 97.76 94.40 92.04 97.09 3.04 9.41 1.85 21.51 0.03 0.02 0 0

0.40 63.81 95.45 94.37 90.28 97.43 4.75 +∞ 2.40 47.96 0 0 0 0.04

0.20 84.87 85.21 93.99 85.77 97.57 9.33 +∞ 3.53 68.23 0 0 0 0.16

n=50

(a) Bivariate Normal Distribution

1 – 10−15 0 95.20 95.14 94.83 95.48 0.47 0.47 0.45 0.47 0.50 0.51 0.14 0.11

1 – 10−8 0 95.06 94.94 94.74 95.46 0.59 0.60 0.56 0.60 0.44 0.46 0.04 0

0.99 1.04 96.14 94.84 93.31 94.76 1.12 1.18 0.94 1.24 0.31 0.42 0 0

0.90 9.42 97.17 95.14 91.66 94.66 1.65 1.96 1.24 2.81 0.01 0.03 0 0
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CP CW ML
ML + MR

Powert UPf PF Fieller Delta PB PF Fieller Delta PB PF Fieller Delta PB

0.80 20.18 96.71 94.75 91.02 94.65 2.03 2.78 1.42 6.74 0 0.01 0 0

0.60 40.27 95.76 94.89 89.85 95.15 2.93 8.44 1.79 23.11 0 0 0 0.01

0.40 59.90 92.55 94.94 88.11 95.61 4.43 +∞ 2.29 47.06 0 0 0 0.06

0.20 79.81 82.93 94.84 83.19 96.18 8.88 +∞ 3.34 62.33 0 0 0 0.11

(b) Bivariate Laplace Distribution

1 – 10−15 0 95.05 94.99 95.62 95.90 0.46 0.46 0.45 0.46 0.54 0.55 0.13 0.09

1 – 10−8 0 95.10 94.94 94.83 95.43 0.58 0.59 0.55 0.59 0.49 0.51 0.03 0.02

0.99 1.52 96.20 95.02 93.16 94.99 1.09 1.14 0.92 1.19 0.31 0.44 0 0

0.90 10.33 96.87 95.16 91.76 94.63 1.58 1.85 1.20 2.53 0.07 0.10 0 0

0.80 19.72 96.64 94.88 90.56 94.22 1.93 2.58 1.37 5.55 0.01 0.02 0 0

0.60 39.06 95.28 94.77 89.82 94.72 2.85 7.52 1.75 20.99 0 0 0 0.02

0.40 57.87 92.32 95.44 87.92 95.58 4.25 +∞ 2.21 43.86 0 0 0 0.03

0.20 78.77 83.57 95.37 83.64 96.38 8.31 +∞ 3.21 60.10 0 0 0 0.12

(c) Bivariate Skew Normal Distribution with Shape Parameter 10

1 – 10−15 0 94.81 94.76 94.79 95.21 0.47 0.47 0.45 0.47 0.66 0.66 0.29 0.29

1 – 10−8 0 94.85 94.83 94.72 95.86 0.60 0.60 0.57 0.60 0.66 0.68 0.19 0.11

0.99 0.16 95.76 94.93 93.93 95.96 1.13 1.19 0.95 1.25 0.59 0.68 0 0

0.90 6.57 97.38 94.67 92.76 95.98 1.64 1.95 1.24 2.79 0.29 0.31 0 0

0.80 16.84 97.88 94.80 92.56 96.23 2.05 2.86 1.44 7.23 0.03 0.01 0 0

0.60 38.29 96.78 94.47 90.87 96.20 2.93 8.56 1.79 23.38 0 0 0 0

0.40 62.34 93.94 94.89 89.04 96.69 4.66 +∞ 2.36 49.74 0 0 0 0.04

0.20 83.09 83.85 94.58 84.57 97.24 9.64 +∞ 3.57 63.90 0 0 0 0.20
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Table 2

Estimated UP (%), CP (%), CW, and ML/(ML+MR) of the two-sided 99% CI when ρ = 0, r = 1, cv1 = 0:4, and 

n = 20 and 50 for the PF, Fieller, delta, and PB methods based on 10,000 replicates. UPf denotes the estimated 

UP of the Fieller method and the UP for all the remaining methods always stays at 0.

CP CW ML
ML + MR

Powert UPf PF Fieller Delta PB PF Fieller Delta PB PF Fieller Delta PB

n = 20

(a) Bivariate Normal Distribution

1 – 10−15 0 99.19 99.17 99.15 99.14 0.73 0.73 0.70 0.71 0.43 0.45 0.08 0.06

1 – 10−8 0 98.90 98.88 98.60 98.68 0.86 0.87 0.80 0.83 0.46 0.48 0.05 0.05

0.99 0.92 99.39 99.11 98.19 98.54 1.43 1.56 1.16 1.34 0.34 0.55 0.01 0

0.90 9.91 99.46 99.10 97.54 98.14 1.93 2.49 1.41 1.88 0.11 0.11 0 0

0.80 20.42 99.25 98.86 96.93 97.94 2.33 3.61 1.59 2.46 0.05 0.09 0 0

0.60 40.64 99.21 99.02 96.28 97.69 3.12 11.18 1.90 5.37 0 0 0 0

0.40 60.48 98.50 98.88 95.54 97.44 4.28 +∞ 2.25 17.69 0 0 0 0

0.20 79.85 96.47 99.02 93.75 96.87 6.83 +∞ 2.92 52.34 0 0 0 0.04

(b) Bivariate Laplace Distribution

1 – 10−15 0 99.32 99.30 99.06 99.15 0.71 0.71 0.68 0.70 0.47 0.50 0.09 0.08

1 – 10−8 0 99.34 99.31 98.85 98.97 0.84 0.84 0.78 0.81 0.42 0.46 0.03 0.02

0.99 2.51 99.26 99.14 97.90 98.32 1.34 1.45 1.11 1.26 0.30 0.41 0 0

0.90 12.00 99.45 99.27 97.53 98.23 1.81 2.23 1.36 1.74 0.24 0.35 0 0

0.80 20.17 99.47 99.19 97.25 97.91 2.14 3.04 1.51 2.17 0.08 0.14 0 0

0.60 36.56 99.25 99.14 96.44 97.65 2.83 7.15 1.78 3.96 0.01 0.02 0 0.01

0.40 55.10 98.72 99.29 95.28 97.46 3.86 +∞ 2.12 12.51 0 0 0 0.02

0.20 76.23 96.07 99.20 94.12 97.33 6.18 +∞ 2.77 43.09 0 0 0 0.04

(c) Bivariate Skew Normal Distribution with Shape Parameter 10

1 – 10−15 0 99.01 99.02 98.58 98.73 0.72 0.72 0.69 0.70 0.51 0.53 0.18 0.16

1 – 10−8 0 98.92 98.91 98.45 98.55 0.85 0.86 0.79 0.82 0.59 0.62 0.14 0.15

0.99 0.01 98.89 98.74 98.26 98.77 1.42 1.55 1.15 1.33 0.70 0.78 0.03 0.02

0.90 3.22 99.14 98.51 97.80 98.58 1.97 2.54 1.44 1.92 0.72 0.83 0 0

0.80 12.48 99.52 98.78 97.62 98.51 2.36 3.70 1.61 2.51 0.44 0.55 0 0

0.60 37.88 99.66 98.48 97.10 98.60 3.18 12.13 1.93 5.58 0.26 0.12 0 0

0.40 64.08 99.39 98.35 96.08 98.30 4.34 +∞ 2.29 17.97 0.02 0 0 0.01

0.20 86.16 97.22 98.06 94.74 98.41 7.39 +∞ 3.11 59.03 0 0 0 0.06

n = 50

(a) Bivariate Normal Distribution

1 – 10−15 0 99.19 99.18 98.80 98.92 0.60 0.61 0.57 0.59 0.48 0.50 0.03 0.04

1 – 10−8 0 99.12 99.06 98.37 98.55 0.75 0.76 0.69 0.73 0.50 0.53 0 0

0.99 0.98 99.42 99.11 97.51 98.27 1.35 1.49 1.09 1.30 0.09 0.30 0 0
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CP CW ML
ML + MR

Powert UPf PF Fieller Delta PB PF Fieller Delta PB PF Fieller Delta PB

0.90 10.29 99.32 98.86 96.51 97.63 1.90 2.46 1.37 1.99 0 0.02 0 0

0.80 19.82 99.20 98.82 96.02 97.41 2.28 3.57 1.54 2.76 0 0 0 0

0.60 39.52 99.05 99.09 95.38 97.18 3.03 10.24 1.83 7.40 0 0 0 0

0.40 60.37 98.36 99.03 94.35 97.15 4.22 +∞ 2.23 23.13 0 0 0 0.02

0.20 79.14 95.65 99.04 92.65 96.99 6.76 +∞ 2.89 57.08 0 0 0 0.04

(b) Bivariate Laplace Distribution

1 – 10−15 0 98.97 98.98 98.77 98.85 0.59 0.59 0.56 0.58 0.45 0.46 0.06 0.04

1 – 10−8 0 99.16 99.11 98.50 98.67 0.74 0.75 0.69 0.72 0.54 0.59 0 0

0.99 1.74 99.40 99.11 97.58 98.23 1.32 1.44 1.07 1.27 0.12 0.29 0 0

0.90 10.23 99.34 98.98 96.64 97.70 1.80 2.27 1.32 1.85 0.03 0.09 0 0

0.80 20.64 99.37 99.16 96.28 97.63 2.21 3.32 1.51 2.58 0 0 0 0

0.60 38.80 99.13 99.11 95.68 97.50 2.95 9.04 1.80 6.74 0 0 0 0

0.40 58.17 98.36 99.17 94.41 97.04 4.16 +∞ 2.20 21.16 0 0 0 0.01

0.20 78.76 95.56 99.18 93.00 97.15 6.84 +∞ 2.91 55.41 0 0 0 0.07

(c) Bivariate Skew Normal Distribution with Shape Parameter 10

1 – 10−15 0 98.84 98.83 98.68 98.78 0.60 0.60 0.57 0.59 0.66 0.68 0.17 0.15

1 – 10−8 0 98.95 98.95 98.73 98.91 0.76 0.77 0.70 0.73 0.63 0.66 0.04 0.03

0.99 0.05 99.27 98.79 97.68 98.41 1.36 1.49 1.09 1.31 0.58 0.79 0 0

0.90 5.52 99.65 98.86 97.53 98.54 1.92 2.48 1.38 1.99 0.23 0.22 0 0

0.80 15.22 99.58 98.75 96.93 98.08 2.32 3.67 1.56 2.91 0 0 0 0

0.60 38.83 99.56 98.64 95.69 97.87 3.12 11.49 1.87 7.98 0 0 0 0

0.40 62.65 99.01 98.76 95.76 98.15 4.28 +∞ 2.25 24.71 0 0 0 0.01

0.20 84.11 96.03 98.53 93.35 97.94 7.42 +∞ 3.11 65.07 0 0 0 0.05
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Table 3

Summary statistics estimated from the Hewlett data, the Puerperants data, and the Beetles data. Listed in the 
parentheses are the standard errors. ρ is the estimated correlation coeffcient between −β0 and β .

Dataset γ β β0 ρ

Hewlett data −0.0173 28.2422 (3.3554) 0.4892 (0.2495) −0.5195

Puerperants data 0.1472 16.0936 (4.5516) −2.3687 (0.9458) 0.8524

Beetles data 1.2355 3.8930 (1.3151) −4.8098 (1.6210) 0.9974
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Table 4

95% and 99% CIs of the median response dose γ for the PF, Fieller, delta, and PB methods for the Hewlett 
data, the Puerperants data, and the Beetles data. We also simulate the estimated UP (%), CP (%), CW, and 
ML/(ML+MR) for all four methods in the scenarios where the parameters li, mi, γ, and β are taken or 
estimated from each of the datasets. The simulation is based on 10,000 replicates.

1 − α = 0:95 1 − α = 0:99

Method CI UP CP CW ML
ML + MR

CI UP CP CW ML
ML + MR

Hewlett data

PF (−0.0322, −0.0001) 0 95.52 0.0321 0.50 (−0.0368, 0.0063) 0 99.19 0.0431 0.57

Fieller (−0.0322, 0) 0 95.61 0.0322 0.51 (−0.0368, 0.0065) 0 99.21 0.0434 0.58

Delta (−0.0329, −0.0017) 0 93.93 0.0312 0.31 (−0.0378, 0.0032) 0 98.33 0.0409 0.25

PB (−0.0333, −0.0013) 0 94.68 0.0319 0.32 (−0.0384, 0.0037) 0 98.68 0.0419 0.26

Puerperants data

PF (0.0628, 0.2076) 0 96.97 0.1473 0.39 (0.0182, 0.2270) 0 99.81 0.2122 0.16

Fieller (0.0577, 0.2101) 14.49 97.37 0.1554 0.44 (−0.0112, 0.2379) 14.50 99.94 0.2628 0

Delta (0.0847, 0.2097) 0 90.80 0.1271 0.74 (0.0651, 0.2293) 0 95.38 0.1670 0.90

PB (0.0810, 0.2134) 0 84.81 0.1587 0.98 (0.0602, 0.2342) 0 86.05 0.2085 0.99

Beetles data

PF (1.1356, 1.2860) 0 95.12 0.1552 0.18 (1.0001, 1.2880) 0 99.00 0.2903 0.05

Fieller (1.1610, 1.3197) 14.36 94.88 0.1696 0.49 (1.0953, 1.4144) 33.73 98.91 0.3610 0.52

Delta (1.1761, 1.2949) 0 98.46 0.1236 0.35 (1.1575, 1.3135) 0 99.93 0.1624 0.14

PB (1.1125, 1.3585) 0 99.65 0.2263 0.23 (1.0738, 1.3972) 0 100 0.2974 −
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