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EXTREMAL METRICS ON RULED MANIFOLDS

ZHIQIN LU AND REZA SEYYEDALI

ABSTRACT. In this paper, we consider a compact Ké&hler manifold with extremal
Kaéahler metric and a Mumford stable holomorphic bundle over it. We proved that,
if the holomorphic vector field defining the extremal Kéhler metric is liftable to the
bundle and if the bundle is relatively stable with respect to the action of automor-
phisms of the manifold, then there exist extremal Kéahler metrics on the projec-
tivization of the dual vector bundle.
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1. INTRODUCTION

Let (M, w) be a Kéhler manifold of dimension m and L be an ample line bundle over
M such that w € 2mwc¢y(M). Let m: E — M be a holomorphic vector bundle of rank
r > 2. This gives a holomorphic fibre bundle PE* over M with fibre P*~!. We denote
the tautological line bundle on PE* by Opg+(—1) and its dual bundle by Opg«(1). By
the Kodaira embedding theorem, for k& > 0, the line bundles Opg-(1) @ 7*LF on PE*
are very ample.

In [I0,IT], Hong proved that if £ is Mumford stable; w has constant scalar curva-
ture; and M does not admit any nontrivial holomorphic vector fields, then PE* admits
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cscK metric in the class of Opg«(1) @7*LF for k > 0. In [12], he generalized the result
to the case that the base manifold has nontrivial automorphism group. He proved
that if all Hamiltonian holomorphic vector fields on M can be lifted to holomorphic
vector fields on PE* and the corresponding Futaki invariants vanish, then PE* admits
cscK metrics in the class of Opp- (1) @7*L* for k > 0. The result was further general-
ized by replacing the liftiblity of holomorphic vector fields by a stability condition(cf.
[13]). Hong considered the action of Aut(M) on the space of holomorphic structures
on E and showed that if E is stable under this action, then there exist cscK metrics
on (PE*, Opp-(1) ® 7*L*) for k > 0. The stability assumption is used to perturb
approximation solutions to genuine cscK metrics.

In this article, we generalize Hong’s result to the case that the base admits an
extremal metric. Our main theorem is the following

Theorem 1.1. Let (M, L) be a compact polarized manifold and w., € ci1(L) be an
extremal Kdahler metric. Let X, be the gradient vector field of the scalar curvature of
Woo, B-€. dS(We) = Lx.Weo. Let E be a Mumford stable holomorphic vector bundle
over M. Suppose that the holomorphic vector field X, can be lifted to a holomorphic
vector field on PE*. If E is relatively stable under the action of Aut(M) in the sense
of Definition [6.3, then there exist extremal metrics on (PE*, Opp«(1) ® 7*L*) for
k> 0.

We follow the ideas of [I322]. Let G = Ham(M,w.,) be the group of Hamiltonian
isometries of (M,w,) and g be its Lie algebra. Let G be the subgroup of all Hamil-
tonian isometries of (M, ws,) that can be lifted to automorphisms of PE*. Let gg be
the Lie algebra of G, i.e., space of all Hamiltonian holomorphic vector fields X on
M that are liftable to holomorphic vector fields X on PE*. Fix T C G £ a maximal
torus and K C G the subgroup of all elements in G that commute with 7. Let t and £
be the Lie algebras of T" and K respectively. We denote the space of all Hamiltonians
whose gradient vector fields are in t and £ by t and € respectively (including constant
functions). Suppose that £ is Mumford stable. Then the Donaldson-Uhlenbeck-Yau
Theorem implies that £ admits a Hermitian-Einstein metric h. The metric A induces
a hermitian metric g = h on Opg+(1). The restriction of the (1,1)-form

w, = i001log g = i00 logﬁ

on fibres are Fubini-Study metrics and therefore wg|piper is non-degenerate. Hence
for k> 0, the (1, 1)-forms wy, = w, + kws define Kéahler metrics. Finding extremal
metrics on (PE*, Opp+(1) ® L*) is equivalent to finding ¢ € C>*°(PE*)T and f € t such



that
(1.1) S(wi +V—100¢) + %(W, Vo) = f,

where V and ( , ) are taken with respect to wy, and C>*(PE*)T is the space of smooth
functions on PE* that are invariant under the action of 7. To see that wy, ++/—1 00¢
is an extremal metric, we assume that

df = 1(X)wy

for some holomorphic vector field X. We write X = X + X, for holomorphic (1,0)
vector field X;. Then a straightforward computation shows that

0S = 1(X1)(wy, + V—=1009).

Our strategy is to replace equation (1)) with the one that is easier to solve and is
relating it to a finite dimensional GIT problem (cf. [13/22]). The first step is to find
¢ € C*(PE*)T and b € € such that

(1.2) Sl +V1000) + S(VIy(b), Vo) = l(h),

where V and ( , ) are taken with respect to wy and I (b) is a lift of b to PE* defined in
Definition 5l Note that if b € t, then wy ++/—100¢ is an extremal metric. Allowing
b to be in a slightly larger space makes it easier to solve the equation. In order to
solve equation (L2)), we first construct Kéhler forms wy, in the class of wy, for any
positive integer p and k£ > 0 as approximation solutions. We then apply contraction
mapping theorem.

Theorem 1.2. Let p > 6 be an integer. Suppose that X, € t. Then for any k > 0,
we can find ¢ € C*°(PE*)T and b € € such that

S(enp + VT 306) + 3 (Vihy(B), V) = e y0)

Here V and (, ) are taken with respect to wy.,. Moreover b has the following expan-
S10N:
b=r(r—1)+k1S(w) — k27n(ZE) + O(k™),
where my : C*(M) — ker(D*D) and
2
r(r+1)
tr(ux,)

Sy = §A2(Ric(w) Ate(iFy)) — N2(6e(iF) A te(iF}))

2
+ m/\%l‘(iFh A iFh) — ,US(CU) +

See Proposition[{.3 and[{.13 for the definition of ux, and ly, respectively.
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The metric wy, + v/—199¢ would have been an extremal metric if b were in t. If
not, we perturb the holomorphic structure on E so that the Hamiltonian b lies in t
after the perturbation. This can be done by applying implicit function theorem using
the stability assumption. In a recent paper, Bronnle [I], using the similar method,
proved that if the base is cscK without holomorphic vector fields and the bundle is
a direct sum of stable bundles with different slopes, then the projectivization admits
extremal metrics.

The outline of the paper is as follows: In section 2, we go over some basic facts
and definitions. In section 3, we compute an expansion for the scalar curvature of
the metrics wy. Section 4 is devoted to the construction of Kéhler metrics wy,. In
Section 5, we prove Theorem [[L2l In the last section, we adopt Hong’s moment map
setting to our situation and prove the main theorem.

2. PRELIMINARIES

Let V be a hermitian vector space of dimension r. The projective space PV* can
be identified with the space of hyperplanes in V' via f € V* — ker(f) = Vy C V.
There is a natural isomorphism between V and H°(PV*, Opy (1)) which sends v € V
to © € H(PV*, Opy+(1)) such that for any f € V* o(f) = f(v).

Definition 2.1. For any hermitian inner product h on V| we use (-, - ), to denote
the hermitian inner product induced by h and we use || - ||, to denote the norm with
respect to h on both V' and V*. The hermitian inner product h induces a hermitian
metric on Opy+(1), which can be explicitly represented as follows: for v,w € V and

f € V* we define
(21) () = L)
h
We denote the induced metric on Opy-«(1) by h.
The following is a straightforward computation.
Proposition 2.2. For any v,w € V we have

r—1
w
—C’ AA FS

where C.. is a constant defined by

B (V=I)y-ldendE  (2m) !
(2.2) Cr—/(cﬂ T T

and (v/—=1)""'dE NdE = (V/=1d&y NdE) A -+ A (V—=1dE—1 NdE, ).
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Definition 2.3. For any v € V' and any hermitian inner product A on V', we define
an endomorphism A(h) = A(v, h) of V by

Ao, h) = B H U @ v,
h

where v* () = h(-,v) is the dual element of v with respect to the inner product h.

The above settings can be made into the following family version. Let (M,w) be
a Kéhler manifold of dimension m and E be a holomorphic vector bundle on M of
rank r > 2. Let L be an ample line bundle on M endowed with a hermitian metric
o so that i00logo = w. The configuration (M, w, L, o) is called a polarized Kihler
manifold. Let PE* be the projectivization of the dual bundle E* of E. A hermitian
metric h on E induces a hermitian metric A on the line bundle Opg+(1) by (2.1I).

Let wy be the (1, 1)-form on PE* defined by

= i00log h.
Let m : PE* — M be the projection map. Define the smooth functions fi,... f,, €
C>(PE*) by
wT—l-‘rj oM 7 wT—l ™

2.3 ! A = fi—L—A :
(23) (r—=1+7)!" (m—j)! fj(r—l)! m!

Alternatively, f;’s can be generated by the following equation

(m+7r—1)!

24 m—+r— 1_
(24) i m!(r — 1)!

Z KM fiwn” LA™
where
W = Wy + kW,
Definition 2.4. Let X be a compact Kéhler manifold with the Kéahler metric w.

Assume that the complex dimension of X is N. For any (7, j)-form o on X, we define

the contraction AJ« of o with respect to the Kéahler form w by
———a AWV = (A a) W,
JHN =)

In particular, we define
Aya = Ao

Definition 2.5. We define the vertical subbundle V' and the horizontal subbundle
H of the holomorphic tangent bundle T'(PE*) of PE* as follows: let u € PE* and let
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H,={ € T,(PE") |wy(§,w) =0,Vw € V,, }.

Since the restriction of w, to the fibre is the Fubini-Study metric of PE?, w|pibre
is non-degenerate. As a result, H is indeed a vector bundle of rank m, and we have
the following (holomorphic bundle) decomposition

T(PE*)=H® V.

By the dimension consideration, we have H* = 7*(T*M), where H* is the dual bundle
of H. Let V* be the dual bundle of V. Then we have

(2.5) T (PE*) =V* @ " (T*M).
Let A\(T*(PE*)) be the bundle of differential forms of PE*. Write
AT (PE")) = Cu & Cy & Cp,

where Cy, Cy and C), are the bundles of horizontal, vertical, and mixed forms, re-
spectively. Note that Cy = 7*(A\(T*M)). For any differential form o« on PE*, we
write o = ag + ay + ,,, where ag, ay, a,, are the horizontal, vertical, and mixed
components of «a respectively.

Using the above notation, we have

Lemma 2.6. There is no mized component of w,.

Proof. This follows from (2.5).

If we write
wg = (wg)u + (wy)v

as its horizontal and vertical parts. Then (23] can be written as

(2.6) fim(W™) = m(wg)fq ATrwm
Let Fj, € A" (Hom (E, E)) be the curvature tensor of h
F,=0(0h-h™1).

From (2.6]), we can prove the following



Lemma 2.7. For any v € E*, we have

) = 22 (VT A0 W) )

where [v] € PE* is the class of v in PE*.

Proof. Let

(2.7) B =v=1tr(Av, h)F,) = V=1[v|,*(Fa(v), v}

Let x = m(u). We assume that at z, {e1, - ,e.} is a normal frame. That is, under
this frame

hij(x) = by, dhg(x) = 0.

Since there are no connection terms, by a straightforward computation, we obtainEI

(2'8) Wg = W*(ﬁ) + w9|]11>E*z .
Therefore,
(2.9) (wyg)g =" B.

The lemma follows from Definition 2.4]

Let a be a (1,1)-form on PE*. Define A, ay by
/~\wgav A ((w)v) ™t = (r = Day A ((wy)v) 2
Therefore, we have
(Aw,av) WA T W = (m+ 1 — § — Day Awl™ T2 AW
for 7 > 0.

Definition 2.8. For any smooth function f € C*(PE*), define the operators Ay, Ay
and Ay (and call them the Laplacians) by the following equations

(r —1)vV/—=100f A wy PAT W = Ay fwp T ATW™,
my/—100f A w;_l AT*w™ ™ = A f w;_l A Trw™,
Auf=Anf— fHAv].

Remark 1. The Laplacians Ay and Ay are the same as ones defined in [10].

IStrictly speaking, /8 is a section of the sheaf C>®°(PE*) @ A“1(M). So the 7* operation is only
acting on the second component.
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Definition 2.9. For any x € M, we define W, as the space of all eigenfunctions of
the Laplacian (on functions) on PE, (with respect to the metric wy|pg,) associated
to the first nonzero eigenvalue. Define the vector bundle W whose fibers are W, (c.f.

[L1).

Let Endg(E,) be the space of traceless endomorphisms of FE, for any = € M. The
first nonzero eigenvalue of the Laplacian is r. As is well-known,

® € Endo(E,) = Tr(A(h)®) € W,

is a 1-1 correspondence. Define Endy(F) to be the smooth vector bundle whose fibers
are Endg(E,) for any x € M. Thus we have W = Endy(E).

3. SCALAR CURVATURE

The goal of this section is to find the asymptotic expansion for the scalar curvature
of the Kéhler form wy = w, + km*w. The main result of this section is

Theorem 3.1. Let w be a Kdahler metric on M and h be a hermitian metric on E.
Let

Wy = wy + k¥ (w),

where k is a large positive integer. Then we have the following expansion of the scalar
curvature Scal(wg) of wy

Scal(wk) =r(r— 1)+ k(7" S(w) + 2r Ay (Tr(A(R)FY)))

(
(2/\2 (" (Ric(w) = Tr(iFn)) Awg)m) = fr(m"(S(w) = Au(Tr(iFh))))

+Av<f2—31>+AHf1—rf1+2rf2)+0< '),

where S(w) is the scalar curvature of w and Fy = F}, — Ltr(Fy) is the trace-less part
of the curvature tensor of h. (For the definition of fi,... fm, Nh), Ag, Ay, A, and

A2, see [23)), Definition[2.3, Definition[2.4) and Definition [2.8).

Let o = 7y be a horizontal form of PE* (see footnote[l). Then we define
Aya = 7" (Ayay).
First we prove the following purely algebraic lemmas.
Lemma 3.2. Let « be a (1,1)-form on PE*. Then
Ao = Awgav + k7 Aoy + k2 (2Ai(a Awy)m — (AwaH)fl) + O(k™3).



In particular if o € /\I’I(M), then
Auo = k7 lm* (Ayar) + k2 (2/\3(@ Awg)pr — fi (Awa)> + Ok,

Proof. By definition, we have
(A @)™ V= (m+7r — Da w2

We define g; = g;(«) by the equation

Let
o=y +oag + Qo
be the decomposition of « into its vertical, horizontal, and mixed components. Then
we have
(r—1)I'm!
(m+r—2)!
= (Au,av)(wg)m + km*w)™ A ((wg)v)™!
+may A (wyg) i + km*w)™ A ((wy)y) ™

=D K" gi((wev) T AT
J

m-+r—2
a N\ wy,

Simple calculation shows that

g0 = Ay, av;
g1 = A,om + (/N\ngéV)fl;
go = 202 (a A Wy)m + (/NXwgon)f2.
By (24)), the above equation implies
k=g,
= go+ k(g1 — gof1) + k72(92 — g1.f1 — gofo + 9of7) + O(k™2).

The lemma is proved.

Let A, be the Laplacian with respect to the metric wy. That is,

for smooth functions f on PE*. Then we have the following asymptotics:
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Lemma 3.3. For any f € C*(PE"), we have
Auf = Avf 4k Anf + k72 (= [Bnf + 202 (VT00f Awy)r) +Ok™)
as k — oo.
Proof. Let o = v/—100f. Then we have
Apf = A, 0
By Lemma [B.2] we have
Apf = Ay av + k7 Ay + k72 (202 (0 Awg) i — (Awar) f1) + O(K73).
By Definition 2.8 we have
(]\wgav)w;_l AT*W™ = (r—1)aA w;_z ANTrw™ = (Avf)w;_l AT W™,
Thus
]\wgav =Ayf.
Similarly, we have
Ay, av fi + Apag = Ag f.
Thus we have
Aoag = Axf.

The lemma is proved.
O

Proof of Theorem[J 1. we have the following exact sequence of holomorphic vector
bundles on PE*.

00—V —=>TPE* - 7"TM — 0.
The hermitian metric h on F induces a Fubini-Study metric hrpg on V. The positive
(1,1)-forms wy and (w,)y + k7*w induce hermitian metrics on vector bundles TPE*
and mT M respectively. As holomorphic hermitian vector bundles, the above exact
sequence splits in the smooth category:

(TPE",wi) = (V, hps) @D (7" TM, (wy) i + kr*w)
and in addition, we have
Ric(wy) = Tr(iF,.) + Ric((wy) g + km*w).

On the other hand, we have the following Euler sequence of holomorphic vector bun-
dles on PE*.

0—>C—7"E"®Opp-(1) >V = 0.
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This gives the following isometric isomorphism of holomorphic line bundles on PE™*.
(det(V), det(hpg)) = (det(n*E @ Opg«(1)), det(7*h @ h)).
Therefore (cf. ([28), Tr(iFp,,) = rwy, — 7*Tr(iF},), and we have
Ric(wy) = rwy + Ric((wy) g + km*w) — 7 Tr(iFy,).
On the other hand, by (2.0, we have

k‘m((wg)H + kﬂ*w)m =(1+ E i+ k=™ ) T w™.

As a result,
Ric((wy) i + km*w) = V=100 1log((wy) g + km*w)™
-V To0t0a(> k) + 7 (Ricw).
j=0
Consequently,
(3.1) Ric (wy) = 1w, — 7 Tr(iF},) + 7*(Ric(w)) + v/ —100 log(i k77 f;).
j=0

Taking trace of (Bl with respect to wy, we get
Scal(wg) = Ay, + A log(z kK7 £y,
=0
where
a = 7" (Ric(w) — Tr(iFy)) + rw,.
Let
b=7"(S(w) — Au(Tr(iF}))).

Using Lemma B2 we get

Aja=rr—=1)+k'(b+rf)

+ k2 (202 (7 (Ric(w) — Tr(iFp)) Awy)m — fib— i +2rfa) + O(k™?).
By Lemma B3] we have

Alog(3_ K1) = K (B ) + K2 (Bv(fy = 3 fD) + Aufy) + O).
j=0
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Therefore, we have

Scal(wy) =7(r — 1) + k7 b+ rfi + Ay fi)
+ k72202 (7*(Ric(w) — Tr(iF)) A wy)g — fib

FAV(a— 3+ Bufy— i+ 20f) + O,

On the other hand, by the discussion at the end of the last section, we have Ay f; =
rfi — A,Tr(iFy,). This concludes the proof.
O

An easy computation shows the following

Corollary 3.4 (c.f. [13]). Suppose that h is a Hermitian-Einstein metric on E with
respect to w, i.e. N, (iFy) = ulg, where u is the w—slope of the bundle E. Then for
any x € M, we have

1

(2m) =t Jpps

2 2 . . 2 2 . . _3
Ty TR GR) ATHGE) + S AVTGE A ) - uS(w)) +O(k™),

where C(k) is a constant depends on k.

Seal(wy) !t = C(k) + k1S (w) + k2 (%Ag(mc(m A Tr(iFp))—

4. CONSTRUCTION OF APPROXIMATE SOLUTIONS

In this section, we first compute the linearization of the scalar curvature operator
at the Kahler metrics wy,.

Proposition 4.1. [9] Let (Y,w) be a Kdihler manifold of dimension n. Then the
linearization of the scalar curvature operator at the Kdhler metric w is given by the
following formula.

V—109¢ A Ric(w) A w"?

wTL

L(¢) = (A* = S(w)A)¢ +n(n — 1)

Y

where ¢ is a smooth function on 'Y .
Applying the above proposition to (PE*, wy), we obtain the following.

Proposition 4.2. Let L; be the linearization of the scalar curvature operator at
Kahler metrics wi. Then we have the following

Lk = Av(AV — 7’) + O(l{i_l)
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Proof. By B1]), we have
V—=100¢ A Ric(wg) Aw > = Cl" 5 ,V—=100¢ Nwy, AT w" + O(K™1).
Since Scal(wy,) = r(r — 1) + O(k™!') by Theorem B.I], we have

/19 . n+r—3
m+r—1)n+r—2) 109¢ A Eiffik) ALt =r(r—2)Ay +O(k™).
W

The result follows from Proposition E11
O

We make the following definition of a holomorphic vector field. Let X be a (1,0)-
vector field such that 9X = 0. Then X + X is a real vector field and it is called a
holomorphic vector field. A holomorphic vector field generates a one-parameter group
of holomorphic automorphisms.

Let ws be an extremal metric on M and X, be the holomorphic vector field such
that dS(wee) = tx,Weo-

Let G = Ham(M, w) be the group of Hamiltonian isometries of (M, w.) and g be
its Lie algebra. Let G be the subgroup of all Hamiltonian isometries of (M, w) that
can be lifted to automorphisms of PE* and let gg be its Lie algebra. gg is the space
of holomorphic vector fields X on M such that

(1) there exist holomorphic vector fields X of PE* such that m, X = X;
(2) there exist real valued functions f such that df = txweo.

Let b be a Lie sub algebra of g. We denote the space of all Hamiltonians (including
constant functions) whose gradient vector fields are in b by h. Fix T C Gz a maximal
torus and K C G the subgroup of all elements in GG that commute with T". Let t and
¢ be the Lie algebras of 7" and K respectively. Suppose that b € €. By definition,
there exists a holomorphic vector field X on M such that db = txw,. If we further
assume that b € f, then there exists a unique holomorphic vector field X on PE*
such that 7,X = X. As a result, we are able to define the Hamiltonian functions
l1(b) on PE* such that kd(l,(b)) = tywi. However, if b does not belong to t, then the
corresponding holomorphic vector field does not lift to a holomorphic vector field on
PE*. Nevertheless, we are still able to define [(b). In order to do that, we use the
following proposition proved in [13].
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Proposition 4.3. For any holomorphic vector field X on M, there exists a unique
smooth ux € I'(End(E)) such that

Awwa(éux - Lth) = 0,
/ tr(ux)wh = 0.
M

Moreover, there exists a holomorphic vector field X on PE* such that m,.X = X if
and only if Oux — txF), = 0.

If f € gp and X be the gradient vector field corresponding to b, we can explicitly
compute I (b) in terms of uy. Indeed, we have the following.

Lemma 4.4. Suppose that holomorphic vector field X has a holomorphic lift X to
PE*, then 13w, = dfx, where Ox = Tr(uxA(h)). Moreover, if f € gg such that
df = txWeo, then d(0x + kf) = tgwg.

Inspired by the proceeding lemma, we define the lift of elements of g to PE*.

Definition 4.5. We define
lp 9 — COO(]PE*)
fearL(f)=f+k"0x,

where X is the holomorphic vector field on M such that (xw = df and 0x =
Tr(uxA(h)).

Suppose that X, € t. Then there exists a holomorphic vector field X, on PE* so
that m. X, = X,. Moreover from the definition of the function f — lk(f), we conclude
that dlk(S(ww)) = k_lb)gswk.

Let A be a vector space on which the group T acts. Let AT be the subspace of
T invariant elements of A. The main goal of this section is to prove the following
proposition.

Proposition 4.6. Let hyp be the Hermitian-FEinstein metric on E with respect to
Woos 46 Ny FEhym = le, where p is the slope of the bundle E. Then there
exist no,n1, - € CO(M)T |, &g, Py,--- € T(M, W)L, g, 01,--- € C°(PE*)T and
bo, b1, - - € € such that for any positive integer p, if

p p p
kp =D kD Oy ok,
=2 =2 j=2
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and
p

bip =Y _k7b;

7=0
then
5 1
S(wr + V=100p1,) + 5 (Vik(brp), Vprp) = (b)) = O(™7).

Here the gradient and inner product are computed with respect to the Kahler metrics
wi. Moreover by = r(r — 1) and by = S(weo).

Define A (w, k) = S(w)Ig + 5=A,F}) and Sy(w, h) = Tr(A;(h,w)A(h)), where F} is
the traceless part of Fj,.

Proposition 4.7. Suppose that wo, € 2mei(L) is an extremal Kdhler metric on M
and hgg is a Hermitian-FEinstein metric on E with the we.-slope p. Then we have

d
A= —
L1 dt

1
= (D*Dn — §<Vwoos(woo)7 vwooTI)woo)IE

Ay (Woo + 110N, hyp(I + to))

t=0

A, D 2 on)) L’
+ 5-{ (A P00 +202_(Fy,,, 7 (D0m)) }

where D*D is Lichnerowicz operator (cf. [7, Page 515]) and {3}° is the traceless part
of B, i.e. {£}°=3X—1tr(X). Note that we use the operator O to denote the covariant
derivative of sections of the bundle End(E).

Proof. Define f(t) = A, zont (hus(1+t¢))- Then we have

ME s (1+16)) N (Woo + 1200N)™ ™ = f(t)(woo + it0IN)™.
Differentiating with respect to ¢t at ¢ = 0, we obtain
madp A W™t +m(m — 1)y, A (i001) Aw™ 2 = f(0)w™ 4+ mf(0)(i0dn) A w™ ™t
Since f(0) = pulp, we get f/(0) = Ay 00¢ 4+ 2A2_(Fiyp A (100n)) — ply, (1000) 5.
On the other hand (cf. [7, pp. 515, 516].)

S(em, + itDON) = DDy — %(V%OS(%O>, Vo)

oo *

dt li=o
The proposition follows from the above two equations. U

Lemma 4.8. Suppose that we, € 2mci(L) is an extremal metric on M and hyp be a
Hermitian-Einstein metric on E, i.e. Ay Flg ) = ilp, where p is the w-slope of
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the bundle E. We have

5171 = Sl(woo + zt5877, hHE(I + t¢))

il
dt lt=0
1
=D"Dn — §<VwooS(W00)a AR
+ %Tr({A%ﬁng + 202 (Fpp A (z‘éan))}oA(hHE)>.
Proof. The proof follows from the previous proposition and the fact that

{Awos Fip py) }° = 0.
Note that

d
yr tZOTr<{Aww+it53nF(hHE(1+t¢)>}OA(hHE(I + t¢)))
d
= 1Ir <£ ‘t:o{Awoo+it58nF(hHE(I+t¢))}OA(hHE)>
d
0_
T ({Aa Fre )| Alhe7 +0)) )

— Tt (Am(n, qS))\(hHE)).

U

Since T is a compact group, by the uniqueness of the Hermitian-Einstein metric, h
is invariant under 7.

Lemma 4.9. Suppose that E is Mumford stable and h is a Hermitian-FEinstein metric
with respect t0 Weo, 1.€. Ay, Fyp = plp. Then h is invariant under the action of T

Corollary 4.10. The scalar curvature of wy, is invariant under the action of T.
The above two results follows from the uniqueness of the Hermitian-Einstein metric.
Corollary 4.11. The map
C*(M)eT(M,W)eg— C(M)e(MW)
(07.2,8) = 51201, 9) + 5(Ves Suc, Vo), =

is surjective. Here Soo = S is the scalar curvature of wo and C3°(M) is the space of
smooth functions n on M such that

/ nwoy = 0.
M
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Moreover, the equivariant version is also valid, that is,

(M aTM W) et — (M) oT (M, W)

00,9.0) 5 S0 (0, ®) + 5(Ver S Ve b
18 surjective.
Lemma 4.12. Letn € C*°(M) and p € C*°(PE*). Then

(Var @, Var)w, = O(k7).

Moreover if ¢ € C*(M), then

(Vart, Vo), = k™ (Voo @, Ve Mo + O(677).

Before we give the proof of proposition, we explain how to find ¢y and by . We
can write

S(wp) =r(r—1) + Sk + Sok ™2+ . ...

Note that Corollary EL10 implies that S(wy) is invariant under the action of 7. Thus,
S; € C2(PE*)T, where S; = S)(Wao, hug). For any smooth function ¢ on PE*, we
have

S(wp + k7'V=100¢) =r(r — 1) + (S1 + Lv(Ay — r)p)k™" + O(k™2),

S(wp 4+ k2V/=180p) = r(r — 1) + S1k™" + (S2 + Av(Ay — r)e)k ™2 + O(k™3).
Hence for n € C°(M), ® € I'(M, E) and ¢ € C*(PE*), we have
S(wp + V=100 + k=100 + k~2/—190)
=r(r—1)+ Sk + (Sy + S1.1(n, @) + Av(Ay — 1))k 2 + O(k™3).
Therefore
S(wi + V=100 + k™ =100 + k~2/=100¢) — l(r(r — 1) + k71 S(w) 4+ k~2by)
= k72(S2+ DDy = 1)p + S$11(0, @) — by = ©, ) + Ok ™)
for some smooth function @;. On the other hand
(VI(r(r —1) + k71 S(woo) + k72by), V(n + k710 + k%))
=k (Vo S(Woo)s Vi M. + O(k72).
Now we can find py € C*°(PE*)” such that
Av(Dy —1)ps — by — Oy € C®(M) & (M, W).
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Lemma implies that O, is invariant under the action of T'. Applying Lemma [4.8
implies that there exist 7, € C*°(M)" and ¢o € T'(M, W)™ and by €such that

1

S1,1(n2, P2) + §<Vwoo5(woo), Vi 2)wo = Dv(Dy —1)pa — by — O,

Hence

S(we) —Ur(r — 1)+ k7 1S(w)) = O(k™2),

- 1
S(wk + v -1 88@;@72) + §<Vl(bk72), V(g@k,g» - l(bk72) = O(k‘_g),

where @ =1y + k71 @y + k2py and by o = r(r — 1) + k~1S(w) + k~2by. Note that
ora € C¥(PE*)T since ny, ¢ and p, are invariant under the action of T'.

Proof of Proposition [{.6 We prove it by induction on p. Suppose that we have cho-
sen 1, ...1Mp—1 € C(M)T, ®y,... 0, 1 € T(M, W), 0q,...0,-1 € C*(PE*)T and
by, ...by—1 € such that

S(wk +v—-1 58&]”,_1) + <Vl(bk7p_1), VQOk,p_1> — l(bk,p_l) = k:_pep + O(k‘_p_l).
We have

S(wip—1 + kP2 =100n, + k7T =100®, + k™P/—100y,)
= S(wip-1) + kP (Dv(Bv = r)op + S1,1(0p, ) + O(k™7).
On the other hand,
(Vi(brp—1+ k770y), V(orp1 + kP20, + kPO, + E7Ppp)) — (b1 + k7PDy)
= (VI(brp-1), Vrp-1) = Ubrp-1) + k7 (Ve S(Weo), Varg s — bp) + Ok,
Corollary implies that we there exist 1, € C*(M)", ®, € I(M, W), ¢, € C*(PE*)T
and b, € such that
Ay (Dy — 1), + S11(np, ©p) + %(waS(woo), Ve wse — by — €, = Constant.

This concludes the proof.
O

Definition 4.13. Define wy,, = wy, +v/—1 93¢y . For any positive integer p and any
b € g, we define [y ,(b) = I (b) — %(Vlk(b), Vgok,p)wk’p.

The following lemma is straightforward.

Lemma 4.14. Let b € gg and X be the holomorphic vector fields on M such that
db = 1xw. Suppose that X is the holomorphic lift of X to PE*. Then k~'dl, =

Lkam.
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Corollary 4.15. We have
S(Wip) = lep(brp) = O™,
5. PROOF OF THEOREM

The goal of this section is to prove Theorem[[.21 We closely follow [1l[12,22]. Before
we give the proof, we go over some estimates from Hong and Bronnle. Let’s fix a
large positive integer p. In this section, the operators [ = [ ,, D*D and V and inner
products are with respect to the metrics wy .

Proposition 5.1 (c.f. [1]). Let L3 = H*? be the Sobolev space of functions whose up
to 4-th derivatives are in L* and (L2)T is the subspace of T-invariant functions.

(1) Let p be a fized positive integer. There exists a constant C independent of k
such that the operators

Gyt (L) x €= (L*)7,
Gr(6,b) = D*Do — L (VS (), V) — 1 (Vi (b)), V) — Iy (1)

has right sided inverses Py satisfying ||Pyllo, < Ck®. Note that Gy, is the
linearization of the extremal operator at (wy p, by p)-
(2) There exists a constant C independent of k such that

|Qkp(6,0) = Qrep(eh, V)] 2
< Cmax(|[(¢, )]z, [[(&, ) 22)11(¢,b) — (&, )] 2,

where
Qrp(9,0) = S(wrp + V- 88¢) <Vlk,p(bk,p +0), Vo) =l p(brp +b) — Grp
s the nonlinear part of the extremal operator at (W p, br.p)-

Remark 2. Our setting is slightly different from the setting in [I]. In [I], Bronnle
studied non-simple bundles over a base that does not admit nontrivial holomorphic
vector field. However, the same proof as in [I] works in our setting.

Proof of Theorem[I.2 . We want to solve the following equation for ¢ € C>®(PE*)T
and b € €.

S(Wk’p + \/—_158¢) + %(Vl(bk,p + b), V¢> = l(bk,p + b)

We can write it as the sum of linear and non-linear parts.

Grp(9,0) + Qrp(d,b) =0
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Then in order to solve the equation, it suffices to solve the fixed point problem

Qk(¢7 b) = (¢7 b)7
where Q(¢,b) = —P(Qkp(¢,b)). We prove that the map Q is a contraction on the
set
B:={(6,b) € Li x € | |[(¢,0)l]12 < 2C:k77+2}

for p > 6 and k > 0. First note that

1900, 0122 = || Pi(@rp(0, 0)) |2 < CK?[| Qi (0, 0|2
= CK*[|S(wip) = lip(brp)llze < Cok7P2

Let (¢,b), (¢',b') € B. We have

1Q(¢,b) — Q& V)2 < || Pillopl|Qup(0,0) — Qup(¢, V)| 2
< Ck3||@k,p(¢a b) - Qk,P(QSI, b/)HL2
< CR77)|(9,0), (¢ — V)| 2.

Therefore,
1Q(¢.b) — Q(0,0)||z2 < CE*7[|(¢,0)]] 2.

This implies that
1Q(8,0)llz2 < 11Q(0,0)[[z2 + CE*P[[(, b)[| 12 < 2C1k77H2,

for k> 0 and p > 6. Hence Q(¢,b) : B — B is a contraction for £ > 0 and p > 6.
Therefore, we can solve the equation for ¢ € L? and b € &. Now elliptic regularity

implies that ¢ is smooth.
O

An immediate consequence of Theorem is the following.

Corollary 5.1. Let (M, L) be a compact polarized manifold and w,, € ¢;(L) be an
extremal Kahler metric. Let X, be the gradient vector field of the scalar curvature
of Weo, 1.6. dS(Wao) = tx.Weo. Let E be a Mumford stable holomorphic vector bundle
over M. Suppose that all holomorphic vector fields on M can be lifted to holomorphic
vector fields on PE*. Then there exist extremal metrics on (PE*, Opg-(1) @ L¥) for
k> 0.
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6. HONG’S MOMENT MAP SETTING AND PROOF OF THEOREM [L.1]

In this section, we follow [I3] to prove Theorem [Tl As before, let (M, w.,) be a
Kahler manifold of dimension m and G be the group of Hamiltonian isometries of
(M,ws). Note that the Lie algebra of G is the space of Hamiltonian vector fields on
(M, ws). Define

N ={f eC®M)| ixws = df for some X € g} = Ker(D*D).

Any ¢ € g defines a holomorphic vector field £# on M. For any & € g, there exists
a unique smooth function fe € C*(M) such that

6.1 Le#Woo = dfe and few™ = 0.
M
The following is a straightforward computation.

Proposition 6.1. The map § € g — f¢ is an isomorphism of Lie algebras. Moreover,
for any g € G and £ € g, we have

faaye = feo g,
where o, : M — M s defined by o4(x) = g.x.

Corollary 6.2. A function f € N s in the center of N if and only if f is G-
invariant. Moreover, if f € C>*(M) is a G-invariant function, then myx(f) is in the
center of N', where mwp : C°(M) — N is the orthogonal projection.

Let Y be a Kéhler manifold (open or compact without boundary). Suppose that
the Lie algebra g acts on Y. Then [¢}, €] = [£1,&)* for all &,& € g. Integrating
the action of g, we obtain an action of G (an open neighborhood of identity in )
on Y. Therefore, there exists an equivariant moment map p¥ : Y — g. Compose
p¥ with the map £ € g — f¢ defined by (G.I), we have an equivariant moment map
1Y Y — N. We apply this setting to the case when Y is the smooth locus of moduli
space of Hermitian-Einstein connections M on a smooth complex vector bundle £
and the action of G on Y. More precisely, let £ be a smooth complex vector bundle of
rank 7 on M and h be a fixed hermitian metric on £. We fix a holomorphic structure
on det(£). Let G be the group of unitary gauge transformations of (€,h). Let A
be the space of Hermitian-Einstien connections A on € such that (£,0,4) is a simple
holomorphic vector bundle and A induces the fixed holomorphic structure on det(€)
modulo the action of the unitary gauge group det(&).
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Now we define the moduli space of simple Hermitian-Einstein metrics on & as
follows:

A
M—E.

One can compute the tangent space to A and the moduli space M (c.f. [15]): for any
A € A, we have

Ty A= {a € QY(M,End(E,h)) | Vi € Q' and AVAa =0}.
Moreover if [A] € M is a smooth point of M, then

{a € QY(M,End(&,h)) | VAa € QY and AVAa =0}
{Vas|sel(MEnd(E, h))}
Note that the moduli space M is not smooth in general. However, one can define an

action of g on A as follows: Proposition tells that for any A € A and any X € g,
there exists a unique ux € I'(M, End(€)), depending on A, such that

AOs(Oqux — txFy) =0 and / tr(uy)w™ = 0.
M

For any A € A and X € g, define
Ox(A) = —(—0agx + 0agx — txFa) € TAA.

Note that the vector field 0x is the infinitesimal vector field on A induced by the
action of X. Hong proved that the vector field fx can be descended to the moduli
space M. Moreover, he proved that

[ex,ey] — Q[X,y] € dAF(M, End(é'))

This implies that on the moduli space M, we have [fx,0y] = 0xy]. Therefore we
have an action of the Lie algebra g on M.

Proposition 6.3. ([13]) The map p®: M — N given by
1 ([A]) = mp (A*tr(iFa A iFa))
s an equivariant moment map for the action of G on M.

By the definition of A, any connection A € A induces the fixed holomorphic struc-
ture on det(€) up to the action of the gauge group. Therefore the function

2
r(r+1)

tr(ux,)

%Az(Ric(w) A te(iFy)) — A2(te(iF) A tr(iFs)) — pS(w) +
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is independent of the choice of A € A. We define the moment map u : M — N as
follows:

p(lA]) = pe([A))

+ 7TN<§A2(R1C(W) Atr(iFa)) — -

r(r—+1)

A2 (tr(iFq) Atr(iFy)) — pS(w) + @)

Lemma 6.4. The moment map p is equivarent if c1(L) = Aeq(E) for some constant
A€ L.

Proof. Since ¢;(L) = Aci(E), there exists a smooth function ¢ on M such that
M1(iFy)) —weo = V/—100¢. Taking the trace with respect to wa, we have ru\ —m =
Ay, where p is the slope of E. Using the Hermitian-Einstein condition, we obtain
that ¢ is constant and therefore Atr(iF4)) = weo. Therefore

2(tr(s , tr(ux,)
ot 1)A (tr(iFq) Atr(iFy)) — 1S (weo) + .

is invariant under the action of GG since w, is invariant under the action of G.

T (Ric(wme) A (iF)

Following [13], we define the following.

Definition 6.5. A holomorphic structure A is called stable relative to the maximal
torus T if there exists a connection A, in the orbit of [A] € M such that [A.] is a
smooth point of M, u([Ax]) € t and

ol ¢
SLAD T - ¢

is surjective.

Remark 6.6. The moment map p is not equivariant in general. If ¢, (L) = Aci(E), then
the notion of relative stability defined above is a GIT notion of stability introduced by
Székelyhidi ([21]). However, it is not clear how the notion of stability defined above
is related to a GIT notion of stability in general .

Proof of Theorem[1.1. Theorem implies that for any A € A, we can find ¢* €
C>®(PE*,) and b” € £ such that

S(wit, +vV—-100¢") + %(Vl(bf‘), Vo) = 1(bY).

Moreover b has the following expansion.

Vi=r(r—1)+k'S(w) — k7 2u(A) + k3R,
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One can easily see through the computation that wlﬁp, ¢4 and b depend smoothly
on A. Suppose that A, is in the orbit of F and p(A.) € t. Define ®(A,t) =

1(A) + tR*. Then ®(A,0) € tand p;(22(Ax,0)) is surjective, where p; : & — £ is
the quotient map. Therefore applying the implicit function theorem, we find A; for
small ¢ such that p(A;) +tRA € t for ¢ small enough; hence for k =t~ >> 0, we have
b = r(r — 1) + tS(w) — t?u(A;) + 2 R4 = r(r — 1) + tS(w) € t. This implies that
w:’;ﬂ ++1/=100¢"1 are extremal metrics for k > 0. Note that A1 are compatible

with the holomorphic structure of E since they are all in the orbit of A.
O

An holomorphic vector bundle & is called projectively flat, if the curvature of E is
of the form ¢ - Id ® w, where ¢ is a constant and w is the Kahler metric of the base
manifold (M, L). Assume that (M, L) is an extremal K&hler manifold. Then by our
result, for & > 0, there are extremal Kahler metrics in the classes Opp-+(1) ® 7 (LF)
on PE*.

REFERENCES

[1] T. A. Bronnle, Fxtremal Khler metrics on projectivised vector bundles. larXiv:1301.7045
[math.DG].

[2] R. Berman, B. Berndtsson, and J. Sjostrand, A direct approach to Bergman kernel asymptotics
for positive line bundles, Ark. Mat. 46 (2008), no. 2, 197-217, DOI 10.1007/s11512-008-0077-x.
MR2430724 (2009k:58050)

[3] D. Burns and P. De Bartolomeis, Stability of vector bundles and extremal metrics, Invent. Math.
92 (1988), no. 2, 403-407, DOT 10.1007/BF01404460. MR936089 (89d:53114)

[4] D. Catlin, The Bergman kernel and a theorem of Tian, Analysis and geometry in several com-
plex variables (Katata, 1997), Trends Math., Birkhduser Boston, Boston, MA, 1999, pp. 1-23.
MR1699887 (2000e:32001)

[5] S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom.
18 (1983), no. 2, 269-277. MR710055 (85a:32036)

, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector

bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1-26, DOI 10.1112/plms/s3-50.1.1.
MR765366 (86h:58038)
, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), no. 3,
479-522. MR1916953 (2003j:32030)
, Scalar curvature and projective embeddings. 11, Q. J. Math. 56 (2005), no. 3, 345-356,
DOT 10.1093/qmath /hah044. MR2161248 (2006£:32033)

[9] J. Fine, Constant scalar curvature Kdihler metrics on fibred complex surfaces, J. Differential
Geom. 68 (2004), no. 3, 397-432. MR2144537 (2005m:32045)

[10] Y.-J. Hong, Ruled manifolds with constant Hermitian scalar curvature, Math. Res. Lett. 5
(1998), no. 5, 657-673. MR1666868 (2000j:32039)

[11] . Constant Hermitian scalar curvature equations on ruled manifolds, J. Differential

Geom. 53 (1999), no. 3, 465-516. MR1806068 (2001k:32041)



http://arxiv.org/abs/1301.7045

25

[12] , Gauge-fixing constant scalar curvature equations on ruled manifolds and the Futaki
invariants, J. Differential Geom. 60 (2002), no. 3, 389-453. MR1950172 (2004a:53040)
[13] , Stability and existence of critical Kdhler metrics on ruled manifolds, J. Math. Soc.

Japan 60 (2008), no. 1, 265-290. MR2392011 (2008m:53086)

[14] L. Hérmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland
Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR1045639
(91a:32001)

[15] S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical
Society of Japan, vol. 15, Princeton University Press, Princeton, NJ, 1987. Kanflex o Memorial
Lectures, 5. MR909698 (89e:53100)

[16] H. Luo, Geometric criterion for Gieseker-Mumford stability of polarized manifolds, J. Differen-
tial Geom. 49 (1998), no. 3, 577-599. MR1669716 (2001b:32035)

[17] 1. Morrison, Projective stability of ruled surfaces, Invent. Math. 56 (1980), no. 3, 269-304, DOI
10.1007/BF01390049. MR561975 (81¢:14007)

[18] D. H. Phong and J. Sturm, Stability, energy functionals, and Kdihler-Einstein metrics, Comm.
Anal. Geom. 11 (2003), no. 3, 565-597. MR2015757 (2004k:32041)

, Scalar curvature, moment maps, and the Deligne pairing, Amer. J. Math. 126 (2004),
no. 3, 693-712. MR2058389 (2005b:53137)

[20] J. Ross and R. Thomas, An obstruction to the existence of constant scalar curvature Kdhler
metrics, J. Differential Geom. 72 (2006), no. 3, 429-466. MR2219940 (2007¢:32028)

[21] G. Székelyhidi, Eztremal metrics and K -stability, Bull. Lond. Math. Soc. 39 (2007), no. 1,
76-84, DOI 10.1112/blms/bd1015. MR2303522 (2008¢:32032)

[22] G. Székelyhidi, On blowing up extremal Khler manifolds. larXiv:1010.5130v2 [math.DG].

[23] K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in sta-
ble wvector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257-5293, DOI
10.1002/cpa.3160390714. Frontiers of the mathematical sciences: 1985 (New York, 1985).
MRR861491 (88i:58154)

[24] X. Wang, Balance point and stability of vector bundles over a projective manifold, Math. Res.
Lett. 9 (2002), no. 2-3, 393-411. MR1909652 (2004{:32034)

, Canonical metrics on stable vector bundles, Comm. Anal. Geom. 13 (2005), no. 2,
253-285. MR2154820 (2006b:32031)

[26] S. Zelditch, Szegd kernels and a theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317—
331, DOI 10.1155/5107379289800021X. MR1616718 (99¢:32055)

[27] S. Zhang, Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), no. 1,
77-105. MR1420712 (97m:14027)

[25]

UNIVERSITY OF CALIFORNIA, IRVINE, DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE, IRVINE, CA 92697,
USA
E-mail address, Zhiqin Lu: zlu@uci.edu

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO,
N2L 3G1, CANADA
E-mail address, Reza Seyyedali: rseyyeda@uwaterloo.ca


http://arxiv.org/abs/1010.5130

	1. Introduction
	2. Preliminaries
	3. Scalar curvature
	4. Construction of approximate solutions
	5. Proof of Theorem 1.2
	6. Hong's moment map setting and proof of Theorem 1.1
	References



