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EXTREMAL METRICS ON RULED MANIFOLDS

ZHIQIN LU AND REZA SEYYEDALI

Abstract. In this paper, we consider a compact Kähler manifold with extremal
Kähler metric and a Mumford stable holomorphic bundle over it. We proved that,
if the holomorphic vector field defining the extremal Kähler metric is liftable to the
bundle and if the bundle is relatively stable with respect to the action of automor-
phisms of the manifold, then there exist extremal Kähler metrics on the projec-
tivization of the dual vector bundle.
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1. Introduction

Let (M,ω) be a Kähler manifold of dimensionm and L be an ample line bundle over

M such that ω ∈ 2πc1(M). Let π : E → M be a holomorphic vector bundle of rank

r ≥ 2. This gives a holomorphic fibre bundle PE∗ over M with fibre Pr−1. We denote

the tautological line bundle on PE∗ by OPE∗(−1) and its dual bundle by OPE∗(1). By

the Kodaira embedding theorem, for k ≫ 0, the line bundles OPE∗(1)⊗ π∗Lk on PE∗

are very ample.

In [10, 11], Hong proved that if E is Mumford stable; ω has constant scalar curva-

ture; andM does not admit any nontrivial holomorphic vector fields, then PE∗ admits
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cscK metric in the class of OPE∗(1)⊗π∗Lk for k ≫ 0. In [12], he generalized the result

to the case that the base manifold has nontrivial automorphism group. He proved

that if all Hamiltonian holomorphic vector fields on M can be lifted to holomorphic

vector fields on PE∗ and the corresponding Futaki invariants vanish, then PE∗ admits

cscK metrics in the class of OPE∗(1)⊗π∗Lk for k ≫ 0. The result was further general-

ized by replacing the liftiblity of holomorphic vector fields by a stability condition(cf.

[13]). Hong considered the action of Aut(M) on the space of holomorphic structures

on E and showed that if E is stable under this action, then there exist cscK metrics

on (PE∗,OPE∗(1) ⊗ π∗Lk) for k ≫ 0. The stability assumption is used to perturb

approximation solutions to genuine cscK metrics.

In this article, we generalize Hong’s result to the case that the base admits an

extremal metric. Our main theorem is the following

Theorem 1.1. Let (M,L) be a compact polarized manifold and ω∞ ∈ c1(L) be an

extremal Kähler metric. Let Xs be the gradient vector field of the scalar curvature of

ω∞, i.e. dS(ω∞) = ιXs
ω∞. Let E be a Mumford stable holomorphic vector bundle

over M . Suppose that the holomorphic vector field Xs can be lifted to a holomorphic

vector field on PE∗. If E is relatively stable under the action of Aut(M) in the sense

of Definition 6.5, then there exist extremal metrics on (PE∗,OPE∗(1) ⊗ π∗Lk) for

k ≫ 0.

We follow the ideas of [13,22]. Let G = Ham(M,ω∞) be the group of Hamiltonian

isometries of (M,ω∞) and g be its Lie algebra. Let GE be the subgroup of all Hamil-

tonian isometries of (M,ω∞) that can be lifted to automorphisms of PE∗. Let gE be

the Lie algebra of GE , i.e., space of all Hamiltonian holomorphic vector fields X on

M that are liftable to holomorphic vector fields X̃ on PE∗. Fix T ⊆ GE a maximal

torus and K ⊆ G the subgroup of all elements in G that commute with T . Let t and k

be the Lie algebras of T and K respectively. We denote the space of all Hamiltonians

whose gradient vector fields are in t and k by t̄ and k̄ respectively (including constant

functions). Suppose that E is Mumford stable. Then the Donaldson-Uhlenbeck-Yau

Theorem implies that E admits a Hermitian-Einstein metric h. The metric h induces

a hermitian metric g = ĥ on OPE∗(1). The restriction of the (1, 1)-form

ωg = i∂̄∂ log g = i∂̄∂ log ĥ

on fibres are Fubini-Study metrics and therefore ωg|Fiber is non-degenerate. Hence

for k ≫ 0, the (1, 1)-forms ωk = ωg + kω∞ define Kähler metrics. Finding extremal

metrics on (PE∗,OPE∗(1)⊗Lk) is equivalent to finding φ ∈ C∞(PE∗)T and f ∈ t̄ such
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that

(1.1) S(ωk +
√
−1 ∂̄∂φ) +

1

2
〈∇f,∇φ〉 = f,

where ∇ and 〈 , 〉 are taken with respect to ωk, and C∞(PE∗)T is the space of smooth

functions on PE∗ that are invariant under the action of T . To see that ωk+
√
−1 ∂̄∂φ

is an extremal metric, we assume that

df = ι(X)ωk

for some holomorphic vector field X . We write X = X1 + X̄1 for holomorphic (1, 0)

vector field X1. Then a straightforward computation shows that

∂̄S = ι(X1)(ωk +
√
−1 ∂̄∂φ).

Our strategy is to replace equation (1.1) with the one that is easier to solve and is

relating it to a finite dimensional GIT problem (cf. [13, 22]). The first step is to find

φ ∈ C∞(PE∗)T and b ∈ k̄ such that

(1.2) S(ωk +
√
−1 ∂̄∂φ) +

1

2
〈∇lk(b),∇φ〉 = lk(b),

where ∇ and 〈 , 〉 are taken with respect to ωk and lk(b) is a lift of b to PE∗ defined in

Definition 4.5. Note that if b ∈ t̄, then ωk+
√
−1 ∂̄∂φ is an extremal metric. Allowing

b to be in a slightly larger space makes it easier to solve the equation. In order to

solve equation (1.2), we first construct Kähler forms ωk,p in the class of ωk for any

positive integer p and k ≫ 0 as approximation solutions. We then apply contraction

mapping theorem.

Theorem 1.2. Let p ≥ 6 be an integer. Suppose that Xs ∈ t. Then for any k ≫ 0,

we can find φ ∈ C∞(PE∗)T and b ∈ k̄ such that

S(ωk,p +
√
−1 ∂̄∂φ) +

1

2
〈∇lk,p(b),∇φ〉 = lk,p(b).

Here ∇ and 〈 , 〉 are taken with respect to ωk,p. Moreover b has the following expan-

sion:

b = r(r − 1) + k−1S(ω)− k−2πN (ΣE) +O(k−3),

where πN : C∞(M) → ker(D∗D) and

ΣE =
2

r
Λ2(Ric(ω) ∧ tr(iFh))−

2

r(r + 1)
Λ2(tr(iFh) ∧ tr(iFh))

+
2

r + 1
Λ2tr(iFh ∧ iFh)− µS(ω) +

tr(uXs
)

r
.

See Proposition 4.3 and 4.13 for the definition of uXs
and lk,p respectively.
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The metric ωk,p +
√
−1 ∂̄∂φ would have been an extremal metric if b were in t̄. If

not, we perturb the holomorphic structure on E so that the Hamiltonian b lies in t̄

after the perturbation. This can be done by applying implicit function theorem using

the stability assumption. In a recent paper, Brönnle [1], using the similar method,

proved that if the base is cscK without holomorphic vector fields and the bundle is

a direct sum of stable bundles with different slopes, then the projectivization admits

extremal metrics.

The outline of the paper is as follows: In section 2, we go over some basic facts

and definitions. In section 3, we compute an expansion for the scalar curvature of

the metrics ωk. Section 4 is devoted to the construction of Kähler metrics ωk,p. In

Section 5, we prove Theorem 1.2. In the last section, we adopt Hong’s moment map

setting to our situation and prove the main theorem.

2. Preliminaries

Let V be a hermitian vector space of dimension r. The projective space PV ∗ can

be identified with the space of hyperplanes in V via f ∈ V ∗ → ker(f) = Vf ⊆ V .

There is a natural isomorphism between V and H0(PV ∗,OPV ∗(1)) which sends v ∈ V

to v̂ ∈ H0(PV ∗,OPV ∗(1)) such that for any f ∈ V ∗, v̂(f) = f(v).

Definition 2.1. For any hermitian inner product h on V , we use 〈 · , · 〉h to denote

the hermitian inner product induced by h and we use ‖ · ‖h to denote the norm with

respect to h on both V and V ∗. The hermitian inner product h induces a hermitian

metric on OPV ∗(1), which can be explicitly represented as follows: for v, w ∈ V and

f ∈ V ∗ we define

(2.1) 〈v̂, ŵ〉ĥ =
f(v)f(w)

‖f‖2h
.

We denote the induced metric on OPV ∗(1) by ĥ.

The following is a straightforward computation.

Proposition 2.2. For any v, w ∈ V we have

〈v, w〉h = C−1
r

∫

PV ∗

〈v̂, ŵ〉
ĥ

ωr−1
FS

(r − 1)!

where Cr is a constant defined by

(2.2) Cr =

∫

Cr−1

(
√
−1)r−1dξ ∧ dξ

(1 +
∑r−1

j=1 |ξj|2)r+1
=

(2π)r−1

r!
,

and (
√
−1)r−1dξ ∧ dξ = (

√
−1 dξ1 ∧ dξ1) ∧ · · · ∧ (

√
−1 dξr−1 ∧ dξr−1).
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Definition 2.3. For any v ∈ V and any hermitian inner product h on V , we define

an endomorphism λ(h) = λ(v, h) of V by

λ(v, h) =
1

‖v‖2h
v ⊗ v∗h,

where v∗h(·) = h(·, v) is the dual element of v with respect to the inner product h.

The above settings can be made into the following family version. Let (M,ω) be

a Kähler manifold of dimension m and E be a holomorphic vector bundle on M of

rank r ≥ 2. Let L be an ample line bundle on M endowed with a hermitian metric

σ so that i∂̄∂ log σ = ω. The configuration (M,ω, L, σ) is called a polarized Kähler

manifold. Let PE∗ be the projectivization of the dual bundle E∗ of E. A hermitian

metric h on E induces a hermitian metric ĥ on the line bundle OPE∗(1) by (2.1).

Let ωg be the (1, 1)-form on PE∗ defined by

ωg = i∂̄∂ log ĥ.

Let π : PE∗ → M be the projection map. Define the smooth functions f1, . . . fm ∈
C∞(PE∗) by

(2.3)
ωr−1+j
g

(r − 1 + j)!
∧ π∗ωm−j

(m− j)!
= fj

ωr−1
g

(r − 1)!
∧ π∗ωm

m!
.

Alternatively, fj’s can be generated by the following equation

(2.4) ωm+r−1
k =

(m+ r − 1)!

m!(r − 1)!

m∑

j=1

km−jfjω
r−1
g ∧ π∗ωm,

where

ωk = ωg + kπ∗ω.

Definition 2.4. Let X be a compact Kähler manifold with the Kähler metric ω.

Assume that the complex dimension of X is N . For any (j, j)-form α on X , we define

the contraction Λj
ωα of α with respect to the Kähler form ω by

N !

j!(N − j)!
α ∧ ωN−j = (Λj

ωα) ω
N .

In particular, we define

Λωα = Λ1
ωα.

Definition 2.5. We define the vertical subbundle V and the horizontal subbundle

H of the holomorphic tangent bundle T (PE∗) of PE∗ as follows: let u ∈ PE∗ and let
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π(u) = x.

Vu = Tu(PE
∗
x);

Hu = {ξ ∈ Tu(PE
∗) | ωg(ξ, w) = 0, ∀w ∈ Vu} .

Since the restriction of ωg to the fibre is the Fubini-Study metric of PE∗
x, ωg|Fibre

is non-degenerate. As a result, H is indeed a vector bundle of rank m, and we have

the following (holomorphic bundle) decomposition

T (PE∗) = H ⊕ V.

By the dimension consideration, we have H∗ = π∗(T ∗M), where H∗ is the dual bundle

of H . Let V ∗ be the dual bundle of V . Then we have

(2.5) T ∗(PE∗) = V ∗ ⊕ π∗(T ∗M).

Let
∧
(T ∗(PE∗)) be the bundle of differential forms of PE∗. Write

∧
(T ∗(PE∗)) = CH ⊕ CV ⊕ Cm,

where CH , CV and Cm are the bundles of horizontal, vertical, and mixed forms, re-

spectively. Note that CH = π∗(
∧
(T ∗M)). For any differential form α on PE∗, we

write α = αH + αV + αm, where αH , αV , αm are the horizontal, vertical, and mixed

components of α respectively.

Using the above notation, we have

Lemma 2.6. There is no mixed component of ωg.

Proof. This follows from (2.5).

�

If we write

ωg = (ωg)H + (ωg)V

as its horizontal and vertical parts. Then (2.3) can be written as

(2.6) fj π
∗(ωm) =

m!

j!(m− j)!
(ωg)

j
H ∧ π∗ωm−j.

Let Fh ∈ ∧1,1(Hom (E,E)) be the curvature tensor of h

Fh = ∂̄ (∂h · h−1).

From (2.6), we can prove the following
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Lemma 2.7. For any v ∈ E∗, we have

fj([v]) = Λj
ω

(√
−1Tr

(
λ(v, h)Fh

))j

,

where [v] ∈ PE∗ is the class of v in PE∗.

Proof. Let

(2.7) β =
√
−1 tr

(
λ(v, h)Fh

)
=

√
−1‖v‖−2

h 〈Fh(v), v〉h.
Let x = π(u). We assume that at x, {e1, · · · , er} is a normal frame. That is, under

this frame

hij̄(x) = δij , dhij̄(x) = 0.

Since there are no connection terms, by a straightforward computation, we obtain1

(2.8) ωg = π∗(β) + ωg|PE∗
x
.

Therefore,

(2.9) (ωg)H = π∗β.

The lemma follows from Definition 2.4.

�

Let α be a (1, 1)-form on PE∗. Define Λ̃ωg
αV by

Λ̃ωg
αV ∧ ((ωg)V )

r−1 = (r − 1)αV ∧ ((ωg)V )
r−2.

Therefore, we have

(Λ̃ωg
αV )ω

m+r−j−1
g ∧ π∗ωj = (m+ r − j − 1)αV ∧ ωm+r−j−2

g ∧ π∗ωj

for j ≥ 0.

Definition 2.8. For any smooth function f ∈ C∞(PE∗), define the operators ∆V ,∆H

and ∆̃H (and call them the Laplacians) by the following equations

(r − 1)
√
−1 ∂̄∂f ∧ ωr−2

g ∧ π∗ωm = ∆V fω
r−1
g ∧ π∗ωm,

m
√
−1 ∂̄∂f ∧ ωr−1

g ∧ π∗ωm−1 = ∆Hf ω
r−1
g ∧ π∗ωm,

∆̃Hf = ∆Hf − f1∆V f.

Remark 1. The Laplacians ∆H and ∆V are the same as ones defined in [10].

1Strictly speaking, β is a section of the sheaf C∞(PE∗) ⊗ A1,1(M). So the π∗ operation is only
acting on the second component.
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Definition 2.9. For any x ∈ M , we define Wx as the space of all eigenfunctions of

the Laplacian (on functions) on PEx (with respect to the metric ωg|PEx
) associated

to the first nonzero eigenvalue. Define the vector bundle W whose fibers are Wx(c.f.

[11]).

Let End0(Ex) be the space of traceless endomorphisms of Ex for any x ∈ M . The

first nonzero eigenvalue of the Laplacian is r. As is well-known,

Φ ∈ End0(Ex) → Tr
(
λ(h)Φ

)
∈ Wx

is a 1-1 correspondence. Define End0(E) to be the smooth vector bundle whose fibers

are End0(Ex) for any x ∈M . Thus we have W = End0(E).

3. Scalar curvature

The goal of this section is to find the asymptotic expansion for the scalar curvature

of the Kähler form ωk = ωg + kπ∗ω. The main result of this section is

Theorem 3.1. Let ω be a Kähler metric on M and h be a hermitian metric on E.

Let

ωk = ωg + kπ∗(ω),

where k is a large positive integer. Then we have the following expansion of the scalar

curvature Scal(ωk) of ωk

Scal(ωk) = r(r − 1) + k−1(π∗S(ω) + 2rΛω(Tr(λ(h)F
◦
h )))

+ k−2
(
2Λ2

ω((π
∗(Ric(ω)− Tr(iFh)) ∧ ωg)H)− f1(π

∗(S(ω)− Λω(Tr(iFh))))

+ ∆V (f2 −
1

2
f 2
1 ) + ∆̃Hf1 − rf 2

1 + 2rf2

)
+O(k−3),

where S(ω) is the scalar curvature of ω and F ◦
h = Fh − 1

r
tr(Fh) is the trace-less part

of the curvature tensor of h. (For the definition of f1, . . . fm, λ(h), ∆̃H , ∆V , Λω and

Λ2
ω, see (2.3), Definition 2.3, Definition 2.4 and Definition 2.8).

Let α = π∗α1 be a horizontal form of PE∗ (see footnote 1). Then we define

Λωα = π∗(Λωα1).

First we prove the following purely algebraic lemmas.

Lemma 3.2. Let α be a (1, 1)-form on PE∗. Then

Λωk
α = Λ̃ωg

αV + k−1ΛωαH + k−2
(
2Λ2

ω(α ∧ ωg)H − (ΛωαH)f1
)
+O(k−3).
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In particular if α ∈ ∧1,1(M), then

Λωk
α = k−1π∗(Λωα) + k−2

(
2Λ2

ω(α ∧ ωg)H − f1 π
∗(Λωα)

)
+O(k−3).

Proof. By definition, we have

(Λωk
α)ωm+r−1

k = (m+ r − 1)α ∧ ωm+r−2
k .

We define gj = gj(α) by the equation

1

(m+ r − 2)!
α ∧ ωm+r−2

k =
1

(r − 1)!m!
km(

m∑

j=0

k−jgj)ω
r−1
g ∧ ωm.

Let

α = αV + αH + αm

be the decomposition of α into its vertical, horizontal, and mixed components. Then

we have

(r − 1)!m!

(m+ r − 2)!
α ∧ ωm+r−2

k

= (Λ̃ωg
αV )((ωg)H + kπ∗ω)m ∧ ((ωg)V )

r−1

+mαH ∧ ((ωg)H + kπ∗ω)m−1 ∧ ((ωg)V )
r−1

=
∑

j

km−jgj((ωg)V )
r−1 ∧ π∗ωm.

Simple calculation shows that

g0 = Λ̃ωg
αV ;

g1 = ΛωαH + (Λ̃ωg
αV )f1;

g2 = 2Λ2
ω(α ∧ ωg)H + (Λ̃ωg

αV )f2.

By (2.4), the above equation implies

Λωk
α =

∑
k−jgj∑
k−jfj

= g0 + k−1(g1 − g0f1) + k−2(g2 − g1f1 − g0f2 + g0f
2
1 ) +O(k−3).

The lemma is proved.

�

Let ∆k be the Laplacian with respect to the metric ωk. That is,

∆kf = Λωk
(
√
−1 ∂̄∂f)

for smooth functions f on PE∗. Then we have the following asymptotics:
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Lemma 3.3. For any f ∈ C∞(PE∗), we have

∆kf = ∆V f + k−1∆̃Hf + k−2
(
− f1∆̃Hf + 2Λ2

ω(
√
−1 ∂̄∂f ∧ ωg)H

)
+O(k−3)

as k → ∞.

Proof. Let α =
√
−1 ∂̄∂f . Then we have

∆kf = Λωk
α.

By Lemma 3.2, we have

∆kf = Λ̃ωg
αV + k−1ΛωαH + k−2

(
2Λ2

ω(α ∧ ωg)H − (ΛωαH)f1
)
+O(k−3).

By Definition 2.8, we have

(Λ̃ωg
αV )ω

r−1
g ∧ π∗ωm = (r − 1)α ∧ ωr−2

g ∧ π∗ωm = (∆V f)ω
r−1
g ∧ π∗ωm.

Thus

Λ̃ωg
αV = ∆V f.

Similarly, we have

Λ̃ωg
αV f1 + ΛωαH = ∆Hf.

Thus we have

ΛωαH = ∆̃Hf.

The lemma is proved.

�

Proof of Theorem 3.1. we have the following exact sequence of holomorphic vector

bundles on PE∗.

0 → V → TPE∗ → π∗TM → 0.

The hermitian metric h on E induces a Fubini-Study metric hFS on V . The positive

(1, 1)-forms ωk and (ωg)H + kπ∗ω induce hermitian metrics on vector bundles TPE∗

and π∗TM respectively. As holomorphic hermitian vector bundles, the above exact

sequence splits in the smooth category:

(TPE∗, ωk) = (V, hFS)
⊕

(π∗TM, (ωg)H + kπ∗ω)

and in addition, we have

Ric(ωk) = Tr(iFhFS
) + Ric((ωg)H + kπ∗ω).

On the other hand, we have the following Euler sequence of holomorphic vector bun-

dles on PE∗.

0 → C → π∗E∗ ⊗OPE∗(1) → V → 0.
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This gives the following isometric isomorphism of holomorphic line bundles on PE∗.

(det(V ), det(hFS)) ∼= (det(π∗E ⊗OPE∗(1)), det(π∗h⊗ ĥ)).

Therefore (cf. (2.8)), Tr(iFhFS
) = rωg − π∗Tr(iFh), and we have

Ric(ωk) = rωg + Ric((ωg)H + kπ∗ω)− π∗Tr(iFh).

On the other hand, by (2.6), we have

k−m
(
(ωg)H + kπ∗ω

)m
= (1 + k−1f1 + · · ·+ k−mfm) π

∗ωm.

As a result,

Ric((ωg)H + kπ∗ω) =
√
−1 ∂̄∂ log((ωg)H + kπ∗ω

)m

=
√
−1 ∂̄∂ log(

m∑

j=0

k−jfj) + π∗(Ric(ω)).

Consequently,

(3.1) Ric (ωk) = rωg − π∗Tr(iFh) + π∗(Ric(ω)) +
√
−1 ∂̄∂ log(

m∑

j=0

k−jfj).

Taking trace of (3.1) with respect to ωk, we get

Scal(ωk) = Λωk
α+∆k log(

m∑

j=0

k−jfj),

where

α = π∗(Ric(ω)− Tr(iFh)) + rωg.

Let

b = π∗(S(ω)− Λω(Tr(iFh))).

Using Lemma 3.2, we get

Λωk
α = r(r − 1) + k−1(b+ rf1)

+ k−2(2Λ2
ω(π

∗(Ric(ω)− Tr(iFh)) ∧ ωg)H − f1b− rf 2
1 + 2rf2) +O(k−3).

By Lemma 3.3, we have

∆k log(

m∑

j=0

k−jfj) = k−1(∆V f1) + k−2(∆V (f2 −
1

2
f 2
1 ) + ∆̃Hf1) + O(k−3).
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Therefore, we have

Scal(ωk) = r(r − 1) + k−1(b+ rf1 +∆V f1)

+ k−2(2Λ2
ω(π

∗(Ric(ω)− Tr(iFh)) ∧ ωg)H − f1b

+∆V (f2 −
1

2
f 2
1 ) + ∆̃Hf1 − rf 2

1 + 2rf2) +O(k−3).

On the other hand, by the discussion at the end of the last section, we have ∆V f1 =

rf1 − ΛωTr(iFh). This concludes the proof.

�

An easy computation shows the following

Corollary 3.4 (c.f. [13]). Suppose that h is a Hermitian-Einstein metric on E with

respect to ω, i.e. Λω(iFh) = µIE, where µ is the ω−slope of the bundle E. Then for

any x ∈M , we have

1

(2π)r−1

∫

PE∗

x

Scal(ωk)ω
r−1
g = C(k) + k−1S(ω) + k−2

(2
r
Λ2

ω(Ric(ω) ∧ Tr(iFh))−

2

r(r + 1)
Λ2

ω(Tr(iFh) ∧ Tr(iFh)) +
2

r + 1
Λ2

ωTr(iFh ∧ iFh)− µS(ω)
)
+O(k−3),

where C(k) is a constant depends on k.

4. Construction of approximate solutions

In this section, we first compute the linearization of the scalar curvature operator

at the Kähler metrics ωk.

Proposition 4.1. [9] Let (Y, ω) be a Kähler manifold of dimension n. Then the

linearization of the scalar curvature operator at the Kähler metric ω is given by the

following formula.

L(φ) = (∆2 − S(ω)∆)φ+ n(n− 1)

√
−1 ∂̄∂φ ∧ Ric(ω) ∧ ωn−2

ωn
,

where φ is a smooth function on Y .

Applying the above proposition to (PE∗, ωk), we obtain the following.

Proposition 4.2. Let Lk be the linearization of the scalar curvature operator at

Kähler metrics ωk. Then we have the following

Lk = ∆V (∆V − r) +O(k−1).
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Proof. By (3.1), we have

√
−1 ∂̄∂φ ∧ Ric(ωk) ∧ ωn−2

k = Cn
r−3+n

√
−1 ∂̄∂φ ∧ ωg ∧ π∗ωn +O(kn−1).

Since Scal(ωk) = r(r − 1) +O(k−1) by Theorem 3.1, we have

(n+ r − 1)(n+ r − 2)

√
−1∂̄∂φ ∧ Ric(ωk) ∧ ωn+r−3

k

ωn+r−1
k

= r(r − 2)∆V +O(k−1).

The result follows from Proposition 4.1.

�

We make the following definition of a holomorphic vector field. Let X be a (1, 0)-

vector field such that ∂̄X = 0. Then X + X̄ is a real vector field and it is called a

holomorphic vector field. A holomorphic vector field generates a one-parameter group

of holomorphic automorphisms.

Let ω∞ be an extremal metric on M and Xs be the holomorphic vector field such

that dS(ω∞) = ιXs
ω∞.

Let G = Ham(M,ω∞) be the group of Hamiltonian isometries of (M,ω∞) and g be

its Lie algebra. Let GE be the subgroup of all Hamiltonian isometries of (M,ω) that

can be lifted to automorphisms of PE∗ and let gE be its Lie algebra. gE is the space

of holomorphic vector fields X on M such that

(1) there exist holomorphic vector fields X̃ of PE∗ such that π∗X̃ = X ;

(2) there exist real valued functions f such that df = ιXω∞.

Let h be a Lie sub algebra of g. We denote the space of all Hamiltonians (including

constant functions) whose gradient vector fields are in h by h̄. Fix T ⊆ GE a maximal

torus and K ⊆ G the subgroup of all elements in G that commute with T . Let t and

k be the Lie algebras of T and K respectively. Suppose that b ∈ k̄. By definition,

there exists a holomorphic vector field X on M such that db = ιXω∞. If we further

assume that b ∈ t̄, then there exists a unique holomorphic vector field X̃ on PE∗

such that π∗X̃ = X . As a result, we are able to define the Hamiltonian functions

lk(b) on PE∗ such that kd(lk(b)) = ιX̃ωk. However, if b does not belong to t̄, then the

corresponding holomorphic vector field does not lift to a holomorphic vector field on

PE∗. Nevertheless, we are still able to define lk(b). In order to do that, we use the

following proposition proved in [13].
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Proposition 4.3. For any holomorphic vector field X on M , there exists a unique

smooth uX ∈ Γ(End(E)) such that

Λω∞
∂(∂̄uX − ιXFh) = 0,

∫

M

tr(uX)ω
m
∞ = 0.

Moreover, there exists a holomorphic vector field X̃ on PE∗ such that π∗X̃ = X if

and only if ∂̄uX − ιXFh = 0.

If f ∈ ḡE and X be the gradient vector field corresponding to b, we can explicitly

compute lk(b) in terms of uX . Indeed, we have the following.

Lemma 4.4. Suppose that holomorphic vector field X has a holomorphic lift X̃ to

PE∗, then ιX̃ωg = dθX , where θX = Tr(uXλ(h)). Moreover, if f ∈ ḡE such that

df = ιXω∞, then d(θX + kf) = ιX̃ωk.

Inspired by the proceeding lemma, we define the lift of elements of ḡ to PE∗.

Definition 4.5. We define

lk : ḡ → C∞(PE∗)

f ∈ ḡ 7→ lk(f) = f + k−1θX ,

where X is the holomorphic vector field on M such that ιXω = df and θX =

Tr(uXλ(h)).

Suppose that Xs ∈ t. Then there exists a holomorphic vector field X̃s on PE∗ so

that π∗X̃s = Xs. Moreover from the definition of the function f → lk(f), we conclude

that dlk(S(ω∞)) = k−1ιX̃s
ωk.

Let A be a vector space on which the group T acts. Let AT be the subspace of

T invariant elements of A. The main goal of this section is to prove the following

proposition.

Proposition 4.6. Let hHE be the Hermitian-Einstein metric on E with respect to

ω∞, i.e. Λω∞
F(E,hHE) = µIE, where µ is the slope of the bundle E. Then there

exist η0, η1, · · · ∈ C∞(M)T , Φ0,Φ1, · · · ∈ Γ(M,W )T , ϕ0, ϕ1, · · · ∈ C∞(PE∗)T and

b0, b1, · · · ∈ k̄ such that for any positive integer p, if

ϕk,p =

p∑

j=2

ηjk
−j+2 +

p∑

j=2

Φjk
−j+1 +

p∑

j=2

ϕjk
−j,
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and

bk,p =

p∑

j=0

k−jbj ,

then

S(ωk +
√
−1 ∂̄∂ϕk,p) +

1

2
〈∇lk(bk,p),∇ϕk,p〉 − lk(bk,p) = O(k−p−1).

Here the gradient and inner product are computed with respect to the Kähler metrics

ωk. Moreover b0 = r(r − 1) and b1 = S(ω∞).

Define A1(ω, h) = S(ω)IE + i
2π
ΛωF

0
h and S1(ω, h) = Tr(A1(h, ω)λ(h)), where F

0
h is

the traceless part of Fh.

Proposition 4.7. Suppose that ω∞ ∈ 2πc1(L) is an extremal Kähler metric on M

and hHE is a Hermitian-Einstein metric on E with the ω∞-slope µ. Then we have

A1,1 :=
d

dt

∣∣∣
t=0
A1(ω∞ + it∂∂η, hHE(I + tφ))

=
(
D∗Dη − 1

2
〈∇ω∞

S(ω∞),∇ω∞
η〉ω∞

)
IE

+
i

2π

{
(Λω∞

∂∂Φ + 2Λ2
ω∞

(FhHE
∧ (i∂∂η)))

}0

,

where D∗D is Lichnerowicz operator (cf. [7, Page 515]) and {Σ}0 is the traceless part

of Σ, i.e. {Σ}0 = Σ− 1
r
tr(Σ). Note that we use the operator ∂ to denote the covariant

derivative of sections of the bundle End(E).

Proof. Define f(t) = Λω∞+it∂∂ηF(hHE(I+tφ)). Then we have

mF(hHE(I+tφ)) ∧ (ω∞ + it∂∂η)m−1 = f(t)(ω∞ + it∂∂η)m.

Differentiating with respect to t at t = 0, we obtain

m∂∂φ ∧ ωm−1
∞ +m(m− 1)FhHE

∧ (i∂∂η) ∧ ωm−2
∞ = f ′(0)ωm

∞ +mf(0)(i∂∂η) ∧ ωm−1
∞ .

Since f(0) = µIE, we get f ′(0) = Λω∞
∂∂φ + 2Λ2

ω∞

(FhHE
∧ (i∂∂η)) − µΛω∞

(i∂∂η)IE .

On the other hand (cf. [7, pp. 515, 516].)

d

dt

∣∣∣
t=0
S(ω∞ + it∂∂η) = D∗Dη − 1

2
〈∇ω∞

S(ω∞),∇ω∞
η〉ω∞

.

The proposition follows from the above two equations. �

Lemma 4.8. Suppose that ω∞ ∈ 2πc1(L) is an extremal metric on M and hHE be a

Hermitian-Einstein metric on E, i.e. Λω∞
F(E,hHE) = µIE, where µ is the ω∞-slope of
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the bundle E. We have

S1,1 :=
d

dt

∣∣∣
t=0
S1(ω∞ + it∂∂η, hHE(I + tφ))

= D∗Dη − 1

2
〈∇ω∞

S(ω∞),∇ω∞
η〉ω∞

+
i

2π
Tr

({
Λω∞

∂Dφ+ 2Λ2
ω∞

(FhHE
∧ (i∂∂η))

}0
λ(hHE)

)
.

Proof. The proof follows from the previous proposition and the fact that

{Λω∞
F(E,hHE)}0 = 0.

Note that

d

dt

∣∣∣
t=0

Tr
(
{Λω∞+it∂∂ηF(hHE(I+tφ))}0λ(hHE(I + tφ))

)

= Tr
( d
dt

∣∣∣
t=0

{Λω∞+it∂∂ηF(hHE(I+tφ))}0λ(hHE)
)

+ Tr
(
{Λω∞

FhHE
}0 d
dt

∣∣∣
t=0
λ(hHE(I + tφ))

)

= Tr
(
A1,1(η, φ)λ(hHE)

)
.

�

Since T is a compact group, by the uniqueness of the Hermitian-Einstein metric, h

is invariant under T .

Lemma 4.9. Suppose that E is Mumford stable and h is a Hermitian-Einstein metric

with respect to ω∞, i.e. Λω∞
Fh = µIE. Then h is invariant under the action of T .

Corollary 4.10. The scalar curvature of ωk is invariant under the action of T .

The above two results follows from the uniqueness of the Hermitian-Einstein metric.

Corollary 4.11. The map

C∞(M)⊕ Γ(M,W )⊕ ḡ → C∞
0 (M)⊕ Γ(M,W )

(η,Φ, b) 7→ S1,1(η,Φ) +
1

2
〈∇ω∞

S∞,∇ω∞
η〉ω∞

− b

is surjective. Here S∞ = S is the scalar curvature of ω∞ and C∞
0 (M) is the space of

smooth functions η on M such that
∫

M

ηωm
∞ = 0.
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Moreover, the equivariant version is also valid, that is,

C∞(M)T ⊕ Γ(M,W )T ⊕ k̄ → C∞
0 (M)T ⊕ Γ(M,W )T

(η,Φ, b) 7→ S1,1(η,Φ) +
1

2
〈∇ω∞

S∞,∇ω∞
η〉ω∞

− b

is surjective.

Lemma 4.12. Let η ∈ C∞(M) and ϕ ∈ C∞(PE∗). Then

〈∇ωk
ϕ,∇ωk

η〉ωk
= O(k−1).

Moreover if ϕ ∈ C∞(M), then

〈∇ωk
ϕ,∇ωk

η〉ωk
= k−1〈∇ω∞

ϕ,∇ω∞
η〉ω∞

+O(k−2).

Before we give the proof of proposition, we explain how to find ϕk,2 and bk,2. We

can write

S(ωk) = r(r − 1) + S1k
−1 + S2k

−2 + . . . .

Note that Corollary 4.10 implies that S(ωk) is invariant under the action of T . Thus,

Si ∈ C∞(PE∗)T , where S1 = S1(ω∞, hHE). For any smooth function ϕ on PE∗, we

have

S(ωk + k−1
√
−1 ∂̄∂ϕ) = r(r − 1) + (S1 +△V (△V − r)ϕ)k−1 +O(k−2),

S(ωk + k−2
√
−1 ∂̄∂ϕ) = r(r − 1) + S1k

−1 + (S2 +△V (△V − r)ϕ)k−2 +O(k−3).

Hence for η ∈ C∞(M), Φ ∈ Γ(M,E) and ϕ ∈ C∞(PE∗), we have

S(ωk +
√
−1 ∂̄∂η + k−1

√
−1 ∂̄∂Φ + k−2

√
−1 ∂̄∂ϕ)

= r(r − 1) + S1k
−1 + (S2 + S1,1(η,Φ) +△V (△V − r)ϕ)k−2 +O(k−3).

Therefore

S(ωk +
√
−1 ∂̄∂η + k−1

√
−1 ∂̄∂Φ + k−2

√
−1 ∂̄∂ϕ)− l(r(r − 1) + k−1S(ω) + k−2b2)

= k−2
(
S2 +△V (△V − r)ϕ+ S1,1(η,Φ)− b2 −Θs

)
+O(k−3)

for some smooth function Θs. On the other hand

〈∇l(r(r − 1) + k−1S(ω∞) + k−2b2),∇(η + k−1Φ + k−2ϕ2)〉
= k−2〈∇ω∞

S(ω∞),∇ω∞
η〉ω∞

+O(k−3).

Now we can find ϕ2 ∈ C∞(PE∗)T such that

△V (△V − r)ϕ2 − b2 −Θs ∈ C∞(M)⊕ Γ(M,W ).
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Lemma 4.12 implies that Θs is invariant under the action of T . Applying Lemma 4.8

implies that there exist η2 ∈ C∞(M)T and φ2 ∈ Γ(M,W )T and b2 ∈such that

S1,1(η2,Φ2) +
1

2
〈∇ω∞

S(ω∞),∇ω∞
η2〉ω∞

= △V (△V − r)ϕ2 − b2 −Θs.

Hence

S(ωk)− l(r(r − 1) + k−1S(ω)) = O(k−2),

S(ωk +
√
−1 ∂̄∂ϕk,2) +

1

2
〈∇l(bk,2),∇(ϕk,2)〉 − l(bk,2) = O(k−3),

where ϕk,2 = η2 + k−1Φ2 + k−2ϕ2 and bk,2 = r(r − 1) + k−1S(ω) + k−2b2. Note that

ϕk,2 ∈ C∞(PE∗)T , since η2, φ2 and ϕ2 are invariant under the action of T .

Proof of Proposition 4.6. We prove it by induction on p. Suppose that we have cho-

sen η2, . . . ηp−1 ∈ C∞(M)T , Φ2, . . .Φp−1 ∈ Γ(M,W )T , ϕ2, . . . ϕp−1 ∈ C∞(PE∗)T and

b0, . . . bp−1 ∈ such that

S(ωk +
√
−1 ∂̄∂ϕk,p−1) + 〈∇l(bk,p−1),∇ϕk,p−1〉 − l(bk,p−1) = k−pǫp +O(k−p−1).

We have

S(ωk,p−1 + k−p+2
√
−1 ∂̄∂ηp + k−p+1

√
−1 ∂̄∂Φp + k−p

√
−1 ∂̄∂ϕp)

= S(ωk,p−1) + k−p(△V (△V − r)ϕp + S1,1(ηp,Φp)) +O(k−p−1).

On the other hand,

〈∇l(bk,p−1 + k−pbp),∇(ϕk,p−1 + k−p+2ηp + k−p+1Φp + k−pϕp)〉 − l(bk,p−1 + k−pbp)

= 〈∇l(bk,p−1),∇ϕk,p−1〉 − l(bk,p−1) + k−p(〈∇ω∞
S(ω∞),∇ω∞

η〉ω∞
− bp) +O(k−p−1).

Corollary implies that we there exist ηp ∈ C∞(M)T ,Φp ∈ Γ(M,W )T , ϕp ∈ C∞(PE∗)T

and bp ∈ such that

△V (△V − r)ϕp + S1,1(ηp,Φp) +
1

2
〈∇ω∞

S(ω∞),∇ω∞
η〉ω∞

− bp − ǫp = Constant.

This concludes the proof.

�

Definition 4.13. Define ωk,p = ωk+
√
−1 ∂̄∂ϕk,p. For any positive integer p and any

b ∈ ḡ, we define lk,p(b) = lk(b)− 1
2
〈∇lk(b),∇ϕk,p〉ωk,p

.

The following lemma is straightforward.

Lemma 4.14. Let b ∈ ḡE and X be the holomorphic vector fields on M such that

db = ιXω. Suppose that X̃ is the holomorphic lift of X to PE∗. Then k−1dlk,p =

ιX̃ωk,p.
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Corollary 4.15. We have

S(ωk,p)− lk,p(bk,p) = O(k−p−1).

5. Proof of Theorem 1.2

The goal of this section is to prove Theorem 1.2. We closely follow [1,12,22]. Before

we give the proof, we go over some estimates from Hong and Brönnle. Let’s fix a

large positive integer p. In this section, the operators l = lk,p, D∗D and ∇ and inner

products are with respect to the metrics ωk,p.

Proposition 5.1 (c.f. [1]). Let L2
4 = H4,2 be the Sobolev space of functions whose up

to 4-th derivatives are in L2 and (L2
4)

T is the subspace of T -invariant functions.

(1) Let p be a fixed positive integer. There exists a constant C independent of k

such that the operators

Gk,p : (L
2
4)

T × k̄ → (L2)T ,

Gk(φ, b) = D∗Dφ− 1

2
〈∇S(ωk,p),∇φ〉 −

1

2
〈∇lk,p(bk,p)),∇φ〉 − lk,p(b)

has right sided inverses Pk satisfying ||Pk||op ≤ Ck3. Note that Gk,p is the

linearization of the extremal operator at (ωk,p, bk,p).

(2) There exists a constant C independent of k such that

||Qk,p(φ, b)−Qk,p(ψ, b
′)||L2

≤ Cmax(||(φ, b)||L2
4
, ||(ψ, b′)||L2

4
)||(φ, b)− (ψ, b′)||L2

4
,

where

Qk,p(φ, b) = S(ωk,p +
√
−1 ∂̄∂φ) +

1

2
〈∇lk,p(bk,p + b),∇φ〉 − lk,p(bk,p + b)−Gk,p

is the nonlinear part of the extremal operator at (ωk,p, bk,p).

Remark 2. Our setting is slightly different from the setting in [1]. In [1], Brönnle

studied non-simple bundles over a base that does not admit nontrivial holomorphic

vector field. However, the same proof as in [1] works in our setting.

Proof of Theorem 1.2 . We want to solve the following equation for φ ∈ C∞(PE∗)T

and b ∈ k̄.

S(ωk,p +
√
−1 ∂̄∂φ) +

1

2
〈∇l(bk,p + b),∇φ〉 = l(bk,p + b).

We can write it as the sum of linear and non-linear parts.

Gk,p(φ, b) +Qk,p(φ, b) = 0.
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Then in order to solve the equation, it suffices to solve the fixed point problem

Qk(φ, b) = (φ, b),

where Q(φ, b) = −Pk(Qk,p(φ, b)). We prove that the map Q is a contraction on the

set

B := {(φ, b) ∈ L2
4 × k̄ | ||(φ, b)||L2

4
≤ 2C1k

−p+2}

for p ≥ 6 and k ≫ 0. First note that

||Q(0, 0)||L2 = ||Pk(Qk,p(0, 0))||L2 ≤ Ck3||Qk,p(0, 0)||L2

= Ck3||S(ωk,p)− lk,p(bk,p)||L2 ≤ C1k
−p+2.

Let (φ, b), (φ′, b′) ∈ B. We have

||Q(φ, b)−Q(φ′, b′)||L2 ≤ ||Pk||op||Qk,p(φ, b)−Qk,p(φ
′, b′)||L2

≤ Ck3||Qk,p(φ, b)−Qk,p(φ
′, b′)||L2

≤ Ck5−p||(φ, b), (φ′ − b′)||L2
4
.

Therefore,

||Q(φ, b)−Q(0, 0)||L2 ≤ Ck5−p||(φ, b)||L2.

This implies that

||Q(φ, b)||L2 ≤ ||Q(0, 0)||L2 + Ck5−p||(φ, b)||L2 ≤ 2C1k
−p+2,

for k ≫ 0 and p ≥ 6. Hence Q(φ, b) : B → B is a contraction for k ≫ 0 and p ≥ 6.

Therefore, we can solve the equation for φ ∈ L2
4 and b ∈ k̄. Now elliptic regularity

implies that φ is smooth.

�

An immediate consequence of Theorem 1.2 is the following.

Corollary 5.1. Let (M,L) be a compact polarized manifold and ω∞ ∈ c1(L) be an

extremal Kähler metric. Let Xs be the gradient vector field of the scalar curvature

of ω∞, i.e. dS(ω∞) = ιXs
ω∞. Let E be a Mumford stable holomorphic vector bundle

overM . Suppose that all holomorphic vector fields onM can be lifted to holomorphic

vector fields on PE∗. Then there exist extremal metrics on (PE∗,OPE∗(1) ⊗ Lk) for

k ≫ 0.
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6. Hong’s moment map setting and proof of Theorem 1.1

In this section, we follow [13] to prove Theorem 1.1. As before, let (M,ω∞) be a

Kähler manifold of dimension m and G be the group of Hamiltonian isometries of

(M,ω∞). Note that the Lie algebra of G is the space of Hamiltonian vector fields on

(M,ω∞). Define

N = {f ∈ C∞(M) | ιXω∞ = df for some X ∈ g} = Ker(D∗D).

Any ξ ∈ g defines a holomorphic vector field ξ# on M . For any ξ ∈ g, there exists

a unique smooth function fξ ∈ C∞(M) such that

(6.1) ιξ#ω∞ = dfξ and

∫

M

fξω
m
∞ = 0.

The following is a straightforward computation.

Proposition 6.1. The map ξ ∈ g → fξ is an isomorphism of Lie algebras. Moreover,

for any g ∈ G and ξ ∈ g, we have

fAd(g)ξ = fξ ◦ σg−1 ,

where σg :M →M is defined by σg(x) = g.x.

Corollary 6.2. A function f ∈ N is in the center of N if and only if f is G-

invariant. Moreover, if f ∈ C∞(M) is a G-invariant function, then πN (f) is in the

center of N , where πN : C∞(M) → N is the orthogonal projection.

Let Y be a Kähler manifold (open or compact without boundary). Suppose that

the Lie algebra g acts on Y . Then [ξ♯1, ξ
♯
2] = [ξ1, ξ2]

♯ for all ξ1, ξ2 ∈ g. Integrating

the action of g, we obtain an action of G (an open neighborhood of identity in G)

on Y . Therefore, there exists an equivariant moment map µY : Y → g. Compose

µY with the map ξ ∈ g → fξ defined by (6.1), we have an equivariant moment map

µY : Y → N .We apply this setting to the case when Y is the smooth locus of moduli

space of Hermitian-Einstein connections M on a smooth complex vector bundle E
and the action of G on Y . More precisely, let E be a smooth complex vector bundle of

rank r on M and h be a fixed hermitian metric on E . We fix a holomorphic structure

on det(E). Let G be the group of unitary gauge transformations of (E , h). Let A
be the space of Hermitian-Einstien connections A on E such that (E , ∂̄A) is a simple

holomorphic vector bundle and A induces the fixed holomorphic structure on det(E)
modulo the action of the unitary gauge group det(E).
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Now we define the moduli space of simple Hermitian-Einstein metrics on E as

follows:

M =
A
G .

One can compute the tangent space to A and the moduli space M (c.f. [15]): for any

A ∈ A, we have

TAA = {α ∈ Ω1(M,End(E , h)) | ∇Aα ∈ Ω1,1 and Λ∇Aα = 0}.

Moreover if [A] ∈ M is a smooth point of M, then

T[A]M =
{α ∈ Ω1(M,End(E , h)) | ∇Aα ∈ Ω1,1 and Λ∇Aα = 0}

{∇As | s ∈ Γ(M,End(E , h))} .

Note that the moduli space M is not smooth in general. However, one can define an

action of g on A as follows: Proposition 4.3 tells that for any A ∈ A and any X ∈ g,

there exists a unique uX ∈ Γ(M,End(E)), depending on A, such that

Λ∂A(∂̄AuX − ιXFA) = 0 and

∫

M

tr(uX)ω
m = 0.

For any A ∈ A and X ∈ g, define

θX(A) = −(−∂Ag∗X + ∂̄AgX − ιXFA) ∈ TAA.

Note that the vector field θX is the infinitesimal vector field on A induced by the

action of X . Hong proved that the vector field θX can be descended to the moduli

space M. Moreover, he proved that

[θX , θY ]− θ[X,Y ] ∈ dAΓ(M,End(E)).

This implies that on the moduli space M, we have [θX , θY ] = θ[X,Y ]. Therefore we

have an action of the Lie algebra g on M.

Proposition 6.3. ([13]) The map µe : M → N given by

µe([A]) = πN
(
Λ2tr(iFA ∧ iFA)

)

is an equivariant moment map for the action of G on M.

By the definition of A, any connection A ∈ A induces the fixed holomorphic struc-

ture on det(E) up to the action of the gauge group. Therefore the function

2

r
Λ2(Ric(ω) ∧ tr(iFA))−

2

r(r + 1)
Λ2(tr(iFA) ∧ tr(iFA))− µS(ω) +

tr(uXs
)

r
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is independent of the choice of A ∈ A. We define the moment map µ : M → N as

follows:

µ([A]) = µe([A])

+ πN

(2
r
Λ2(Ric(ω) ∧ tr(iFA))−

2

r(r + 1)
Λ2(tr(iFA) ∧ tr(iFA))− µS(ω) +

tr(uXs
)

r

)
.

Lemma 6.4. The moment map µ is equivarent if c1(L) = λc1(E) for some constant

λ ∈ Z.

Proof. Since c1(L) = λc1(E), there exists a smooth function ϕ on M such that

λtr(iFA))−ω∞ =
√
−1 ∂̄∂ϕ. Taking the trace with respect to ω∞, we have rµλ−m =

∆ϕ, where µ is the slope of E. Using the Hermitian-Einstein condition, we obtain

that ϕ is constant and therefore λtr(iFA)) = ω∞. Therefore

1

r
Λ2(Ric(ω∞) ∧ tr(iFA))−

1

r(r + 1)
Λ2(tr(iFA) ∧ tr(iFA))− µS(ω∞) +

tr(uXs
)

r

is invariant under the action of G since ω∞ is invariant under the action of G.

�

Following [13], we define the following.

Definition 6.5. A holomorphic structure A is called stable relative to the maximal

torus T if there exists a connection A∞ in the orbit of [A] ∈ M such that [A∞] is a

smooth point of M, µ([A∞]) ∈ t and

∂µ

∂A
([A∞]) : T[A∞] →

k̄

t̄

is surjective.

Remark 6.6. The moment map µ is not equivariant in general. If c1(L) = λc1(E), then

the notion of relative stability defined above is a GIT notion of stability introduced by

Székelyhidi ([21]). However, it is not clear how the notion of stability defined above

is related to a GIT notion of stability in general .

Proof of Theorem 1.1. Theorem 1.2 implies that for any A ∈ A, we can find φA ∈
C∞(PE∗

A) and b
A ∈ k̄ such that

S(ωA
k,p +

√
−1 ∂̄∂φA) +

1

2
〈∇l(bA),∇φA〉 = l(bA).

Moreover bA has the following expansion.

bA = r(r − 1) + k−1S(ω)− k−2µ(A) + k−3RA.
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One can easily see through the computation that ωA
k,p, φ

A and bA depend smoothly

on A. Suppose that A∞ is in the orbit of E and µ(A∞) ∈ t. Define Φ(A, t) =

µ(A) + tRA. Then Φ(A∞, 0) ∈ t̄ and p1(
∂Φ
∂A

(A∞, 0)) is surjective, where p1 : k̄ → k̄
t̄
is

the quotient map. Therefore applying the implicit function theorem, we find At for

small t such that µ(At) + tRA ∈ t̄ for t small enough; hence for k = t−1 ≫ 0, we have

bAt = r(r − 1) + tS(ω)− t2µ(At) + t3RAt = r(r − 1) + tS(ω) ∈ t̄. This implies that

ω
A

k−1

k,p +
√
−1 ∂̄∂φA

k−1 are extremal metrics for k ≫ 0. Note that Ak−1 are compatible

with the holomorphic structure of E since they are all in the orbit of A∞.

�

An holomorphic vector bundle E is called projectively flat, if the curvature of E is

of the form c · Id ⊗ ω, where c is a constant and ω is the Kähler metric of the base

manifold (M,L). Assume that (M,L) is an extremal Kähler manifold. Then by our

result, for k ≫ 0, there are extremal Kähler metrics in the classes OPE∗(1) ⊗ π∗(Lk)

on PE∗.
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