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Abstract 
Pattern matching is the most time consuming process 

in text image compression with JBlG2. In this paper we 
propose three techniques to speed up the pattern matching 
process. By limiting the search range for matching symbols 
in the dictionaq the$rst technique saves 15% of encod- 
ing time with almost no bit rate penalty. By making early 
decisions about the pattern matching outcome, the second 
technique saves another 15% of encoding time with no cod- 
ing loss. The third technique looks at enhanced prescreen- 
ing using additional symbol features besides symbol size. 
Using certain topological features, enhanced prescreening 
can save up to 75% of encoding time with at most 1.6% of 
bit rate penalty. 

1 Introduction 
The JBIG2 standard [I, 2, 31 is the new international 

standard for bi-level image compression. Bi-level images 
have only one bit-plane, where each pixel takes one of two 
possible colors. A typical JBIG2 encoder first segments 
an image into different regions [4] and then uses different 
coding mechanisms for text and for halftones. In this pa- 
per, we are concerned with compressing text images with 
JBIG2. Text images consist mainly of repeated text char- 
acters and possibly some general graphics (e.g., line art). 
In JBIG2, the coding of text is based on pattern matching 
techniques [2, 31. JBIG2 defines two modes for text com- 
pression: pattern matching and substitution (PM&S) [5] 
and sofipattern matching (SPM) [6]. 

On a typical page of text, there are many repeated char- 
acters. The bitmap of a character instance on the page is 
called a “symbol.” We can extract symbols from the in- 
put image using connected component analysis [7]. Rather 
than coding all the pixels of all the symbols on the page, 
we code the bitmaps of a representative subset and put 
them into the symbol dictionary. Then, each symbol on the 
page is coded by giving its position on the page, the index 
of its best matching symbol in the dictionary, and, in the 
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SPM mode, possibly its actual bitmap which is refinement 
coded using its matching dictionary symbol [ l ,  21. This 
type of bitmap coding, called refinement coding, is done 
by context-based arithmetic coding using a context drawn 
from both the best match bitmap from the dictionary, and 
the already coded part of the current bitmap [8,6]. General 
graphic data not identified as text is encoded at the end us- 
ing a basic bitmap coder such as specified by JBIGl [9] or 
T.6 [lo]. 

A JBIG2 coding system for text images consists of 
several components: symbol extraction, pattern matching, 
arithmeticLHuffinan integerhitmap coding, and so on. To 
speed up arithmetic bitmap coding, JBIG2 allows typical 
prediction (TP) as specified in JBIGl [9] and typical pre- 
diction for residue (TPR) as proposed in [ 1 11. In this paper, 
we focus on reducing the encoding time spent on pattern 
matching. In our work we use the Hamming distance based 
matching criterion. We measure the percentage of differ- 
ent pixels between two symbols. For SPM-based JBIG2, 
even using our simple matching criterion, the time spent 
on pattern matching accounts for as much as 90% of the 
total encoding time. In this paper we propose three cate- 
gories of speedup techniques that can significantly reduce 
the amount of pattern matching time while causing only a 
very small loss in coding efficiency. 

This paper is organized as follows. In Section 2 we 
propose the three speedup techniques for pattern match- 
ing. In Section 3 we show experimental results on coding 
time saved and bit rate penalty incurred from using these 
speedup techniques. We conclude our paper in Section 4. 

2 Speedup techniques for JBIG2 encoding 
2.1 Limited dictionary symbol search 

We proposed the modified-class (MC) dictionary design 
for the SPM-based JBIG2 in [13]. Experiments showed 
that the MC dictionary achieves competitive coding per- 
formance with relatively low complexity. The design of 
an MC dictionary consists of two steps. At the first step, 

0-7803-7 147-X/01/$10.0002001 IEEE 80 1 

mailto:code.ucsd.edu


we point each symbol to its closest match among all other 
symbols; we only draw a pointer between a symbol and its 
best match if the mismatch between them is below the pre- 
set threshold. This way the entire symbol set is segmented 
into small connected graphs, each of which is called a 
class. We then choose one representative for each class 
as the symbol with the lowest average mismatch within 
the class. All class representatives go into the dictionary. 
The second design step decides the reference relationships 
among all dictionary symbols, i.e., class representatives. 
This is done by calculating the matching graphs for all 
dictionary symbols and forming minimum spanning trees 
(MSTs) out of these graphs [12, 131. 

Suppose a symbol S belongs to a certain class C, whose 
representative is symbol R, which, after the MST con- 
struction procedure, lands in MST T .  Therefore we know 
that symbol S and symbol R are similar, and that sym- 
bol R is similar (to different degrees) to the symbols in 
tree T .  Therefore, when symbol S searches for its best 
match in the dictionary, we only search among all the sym- 
bols that belong to MST T .  To do this, for each symbol 
on the page, we maintain a tree-ID value that specifies 
the MST in which this symbol’s representative belongs. 
Hence, in the previous example, symbols S and R and 
all other symbols in the MST T will have the same tree- 
ID. When the current symbol is matched with the dictio- 
nary, it only searches among those dictionary symbols that 
have the same tree-ID. This significantly reduces the num- 
ber of dictionary symbols with which the current symbol is 
matched. Whether this limited search algorithm will suf- 
fer significant bit rate penalty depends on how many sym- 
bols and their best dictionary matches actually belong to 
the same MST. Section 3 shows that this limited search al- 
gorithm can save encoding time at almost no coding loss. 

2.2 Early jump-out based on previous best match 

When matching one symbol with another, we save the 
previous lowest mismatch score; the pattern matcher com- 
pares on-the-fly the current accumulated mismatch score 
against the previous lowest one. If the current mismatch is 
already above the previous lowest, then we terminate the 
current matching process. Computing the Hamming dis- 
tance between two symbols is fast because it only requires 
the exclusive-OR (XOR) operation and incrementing the 
mismatch score accordingly. On the other hand, comparing 
the two integer mismatch scores also takes time. There- 
fore, we do the integer comparison of mismatch scores 
only once for each row of pixels in the bitmap. At the end 
of each row, the current accumulated mismatch is checked; 
if it exceeds the previous lowest, the pattern matching pro- 
cess terminates. 

2.3 Enhanced prescreening 
Before matching a pair of symbols, it is advantageous 

to prescreen them by certain features. There is no need 
to apply pattern matching to two symbols that are obvi- 
ously dissimilar.- For example, symbols that differ greatly 
in size (e.g. a capital “D’ and a comma “,”) obviously do 
not match. The original SPM system as proposed in [6] 
prescreens symbols using size; only symbols with similar 
sizes (defined as not more than 2 pixels different in either 
dimension) are given to the pattern matcher which com- 
putes their mismatch score. Prescreening is intended to 
reduce the number of unnecessary pattern matching calls 
that will not return a match. At the same time, prescreening 
should not rule out potentially good matches. Otherwise it 
will incur a high bit rate penalty. Therefore, the ideal pre- 
screening rules out all “unmatchable” symbols and passes 
on all “matchable” symbols to the more expensive pattern 
matching subroutine. 

Other features can be used in prescreening besides sym- 
bol size. One such example is to use symbol area and/or 
perimeter [7, 141. However, these two features are not 
particularly helpful for two reasons: they are correlated 
with symbol size, and they are usually sensitive to scan- 
ning noise and digitization parameters such as contrast [7].  
According to our experiments, in the English language, us- 
ing the Hamming distance based matching criterion, letter 
pairs that are among the most easily confused include “b” 
and “h,” “cy’ and “e,” and “2’ and “1.” In this paper we 
propose two topological features for prescreening : num- 
ber of holes and number of connected components [16]. 
Prescreening by these two features can effectively prevent 
these symbol pairs from being handed over to the pattern 
matcher (see Figure 1). 

Another useful feature for prescreening is introduced 
in [7]. We call it the quadrant centroid distance. It is 
calculated as follows. We divide each symbol into four 
quadrants and calculate the centroid for each quadrant. To 
prescreen two symbols, we calculate the distance between 
each pair of corresponding quadrant centroids, sum the 
four distances and compare the total to a threshold, which 
is preset to 3 pixels in our implementation. A small total 
distance means that the two symbols have similar mass dis- 
tribution in all four quadrants; only such symbol pairs are 
passed on to pattern matching to be further examined. 

3 Experimental results 
In this section we show experimental results on the three 

speedup techniques proposed, the limited dictionary search 
algorithm based on tree-ID (TID), early jump-out (EJO), 
and enhanced prescreening (PRESCRN). We consider two 
figures of merit, the encoding time saved and the bit rate 
penalty incurred. 

Our experiments use a set of twelve test images, two 
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Table 1. Using the proposed three speedup techniques in SPM JBIG2. 

NONE 
EJO 

PRESCRN S+H+C 
S+Q 

total time match time coded size 
sec % gain sec % gain bytes % loss 

- - 2 4 . 0 5  1 0 . 7 8  41 ,404 - 

1 6 . 2 8  32  2.86 73  4 1 , 7 3 0  0 . 8  
1 9 . 4 8  1 9  6.22 42  4 1 . 5 6 6  0 . 4  

2 2 . 8 1  5 9.53 1 2  4 1 , 4 0 4  0 

S+Q+H+C I 
ALL I 

Table 3. Prescreening pass rates when differ- 
ent features are used. 

I 1 1  S I S+Q I S+H+C I S+O+H+C I 

~, ~ 

1 6 . 0 7  3 3  2 . 6 1  7 6  41 ,925 1 . 3  
1 6 . 0 4  33  2 . 6 0  7 6  41 ,925 1 . 3  

- I -  1 

I % passes 1) 1 9 . 7  1 4 . 7  I 1 1 . 8  I 4 .0  I 
1 -  ,I I I I I 

features together with symbol size (S+Q+H+C), we can re- 
duce the prescreening pass rate to 4%. 

Over a channel of fixed bandwidth, transmission of a 
bigger file takes longer time. Some applications, e.g., send- 
ing an international fax, favor the shortest channel time 
possible. For such applications, achieving the best com- 
pression is the most important, even if it takes some ex- 
tra encoding time. Other applications, especially real-time 
applications, can only tolerate a small delay between the 
sender and receiver. For these applications, the goal is to 
achieve the best compression within a short encoding time. 
However, better compression usually requires longer en- 
coding time. Figure 2 shows the trade-off between cod- 
ing time and coding efficiency by plotting compression 
achieved as a function of total encoding time spent. The 
SPM system is shown as an example. Similar observations 
are made for the PM&S system. From Figure 2 we clearly 
see the trade-off between these two figures of merit. The 

3.68 

3.67 
20 30 40 SO 60 70 80 90 1W 

MDfNQ TIME (SEC) 

Figure 2. Trade-offs between encoding 
time and coding efficiency using different 
speedup techniques, for the SPM system. 

lower boundary of the convex hull, as shown by the dashed 
line segments, represents the best trade-off that our tech- 
niques can achieve between coding time and efficiency. 
Although the H and C features are not as efficient as the 
Q feature in terms of this trade-off (the PRE(S+Q) marker 
lies on the lower boundary but the PRE(S+H+C) marker 
does not), in [ 171 we showed that the H and C features can 
help effectively control the reconstructed image quality in 

803 



(a) “b” has one internal hole; “h” has none 

(b) ‘5’’ has two connected components; 
“1” has only one 

Figure 1. Examples of similar bitmaps that 
have different features. Bitmaps “b” and “h” 
differ in the number of holes; and bitmaps 
‘T’ and “I” differ in the number of connected 
components. 

standard CCITT images fO1 and f04 (resolution 200 dpi), 
and ten images from the University of Washington Doc- 
ument Image Database I [15] (resolution 300 dpi). The 
computer system used is a Pentium Pro 200MHz, running 
Red Hat Linux 6.0, with 64MB physical memory. We 
measure encoding time (in sec) using the C library func- 
tion “clock().” Our code was not specifically optimized for 
speed. All coding results given are averaged over all test 
images. 

Tables 1 and 2 give the total encoding time, time spent 
on pattern matching, and coded file size for each individual 
technique and several combinations of them, for SPM- and 
PM&S-based JBIG2, respectively. In SPM (see Table l), 
the encoding time spent on pattern matching accounts for 
up to 90% of the total encoding time. The rest of the en- 
coding time (spent on symbol extraction, arithmetic bitmap 
and integer coding, etc.) is a-fixed value of 8.6 seconds. 
For the PM&S mode (see Table 2), the time spent on pat- 
tern matching accounts for up to 45% of the total encoding 
time. The rest of the encoding time is a bigger fixed value 
of 13.3 seconds. Compared to the first row (NONE) where 
no speedup techniques are used and prescreening is only by 
symbol size, the TID row (limited dictionary search tech- 
nique) in Table 1 saves about 15% of the pattern matching 
time, while causing almost no coding loss. Note that the 
TID technique is only applicable in the SPM mode. The 
early jumpout technique (EJO) saves 16% and 12% of 

the pattern matching time in SPM and PM&S, respectively, 
while incurring no bit rate penalty at all. In SPM, we can 
combine TID and EJO together to achieve a time gain of 
3 1 % with no coding loss. For the PRESCRN rows, adding 
the quadrant centroid distance (S+Q) to prescreening saves 
almost 3/4 of the pattern matching time, while incurring a 
bit rate penalty of around 1 %. Using the numbers of holes 
and connected components together (S+H+C) saves 40% 
of the pattern matching time, which is less efficient than 
the Q feature. However, the bit rate penalty incurred is 
only half as big (0.5%). Combining all these speedup tech- 
niques together (the ALL rows in the two tables) saves 8 1 % 
and 76% of the pattern matching time in SPM and PM&S, 
respectively. In terms of total encoding time, these num- 
bers translate into savings of 74% and 33%, respectively. 
The bit rate penalty incurred is relatively small, 1.7% for 
SPM and 1.3% for PM&S. 

Without the TLD technique, each symbol searches 
among all dictionary symbols for its best match. For our 
test image set, on average the dictionary contains 638 sym- 
bols. If prescreening uses only symbol size, then about 
20% of dictionary symbols or 128 symbols will pass pre- 
screening and be handed to the pattern matcher (see Table 
3). With the TID method, however, experiments show that 
a symbol needs to search among an average of only 34 dic- 
tionary symbols, most of which will pass prescreening as 
they are very similar to the current symbol. Comparing 34 
symbols with 128 symbols, we see a 75% reduction. In 
terms of the time spent on finding dictionary matches for 
all symbols, this translates to a reduction from 19.66 sec- 
onds without TID to 5.30 seconds with TID. 

Without the EJO technique, the pattern matcher will ex- 
amine in full every pair of symbols passed on to it, i.e., it 
will go over 100% of the bitmap area before making a de- 
cision. With EJO, however, experiments show that on av- 
erage only 44% of the bitmap area will be examined. Fur- 
thermore, on average 89% of all the pattern matching calls 
result in early termination. Although EJO has to spend ex- 
tra time comparing integer mismatch scores, it still reduces 
the average number of CPU clocks used to match two sym- 
bols from 68 to 60. An important advantage of the TID and 
EJO techniques is that they save encoding time almost “for 
free,” meaning without bit rate penalty (see Tables 1 and 
2) .  

To see how enhanced prescreening helps effectively rule 
out unlikely matches, we list the percentages of prescreen- 
ing passed in Table 3. Using the symbol size ( S )  feature 
alone is not efficient enough; around 20% of the sym- 
bol pairs will still be given to the pattern matching pro- 
cess. Adding the number of holes and number of connected 
components (S+H+C) reduces the pass rate to 12%; adding 
the quadrant centroid distance (S+Q) only 5% of the sym- 
bol pairs can pass prescreening. By combining all three 
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lossy coding by reducing the number of character substitu- 
tions. 

4 Conclusion 
In this paper we propose three techniques to speed up 

the pattern matching process in text image compression 
with JBIG2. Experiments show that the limited dictionary 
symbol search technique and the early jump-out technique 
can each bring about 15% of savings in encoding time 
without loss in coding efficiency. Depending on the spe- 
cific features used, the enhanced prescreening technique 
can save up to 75% of encoding time while only suffering 
a small bit rate penalty of at most 1.6%. These speedup 
techniques are effective for both SPM-based and PMBrS- 
based JBIG2. 
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