
UC San Diego
UC San Diego Previously Published Works

Title
Speedup techniques for text image compression with JBIG2

Permalink
https://escholarship.org/uc/item/9q97r6tt

Journal
Signals, Systems and Computers, 2001. Conference Record of the Thirty-Fifth Asilomar
Conference on, 1

Authors
Ye, Y
Cosman, P

Publication Date
2007-11-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9q97r6tt
https://escholarship.org
http://www.cdlib.org/

Speedup Techniques for Text Image Compression with JBIG2

Yan Ye and Pamela Cosman
Electrical and Computer Engineering Department

University of California, San Diego
La Jolla, CA, 92093-0407

Emails: { y ye,pcosman} @code.ucsd.edu
Te1:(858)822-1250

Abstract
Pattern matching is the most time consuming process

in text image compression with JBlG2. In this paper we
propose three techniques to speed up the pattern matching
process. By limiting the search range for matching symbols
in the dictionaq the$rst technique saves 15% of encod-
ing time with almost no bit rate penalty. By making early
decisions about the pattern matching outcome, the second
technique saves another 15% of encoding time with no cod-
ing loss. The third technique looks at enhanced prescreen-
ing using additional symbol features besides symbol size.
Using certain topological features, enhanced prescreening
can save up to 75% of encoding time with at most 1.6% of
bit rate penalty.

1 Introduction
The JBIG2 standard [I, 2, 31 is the new international

standard for bi-level image compression. Bi-level images
have only one bit-plane, where each pixel takes one of two
possible colors. A typical JBIG2 encoder first segments
an image into different regions [4] and then uses different
coding mechanisms for text and for halftones. In this pa-
per, we are concerned with compressing text images with
JBIG2. Text images consist mainly of repeated text char-
acters and possibly some general graphics (e.g., line art).
In JBIG2, the coding of text is based on pattern matching
techniques [2, 31. JBIG2 defines two modes for text com-
pression: pattern matching and substitution (PM&S) [5]
and sofipattern matching (SPM) [6].

On a typical page of text, there are many repeated char-
acters. The bitmap of a character instance on the page is
called a “symbol.” We can extract symbols from the in-
put image using connected component analysis [7]. Rather
than coding all the pixels of all the symbols on the page,
we code the bitmaps of a representative subset and put
them into the symbol dictionary. Then, each symbol on the
page is coded by giving its position on the page, the index
of its best matching symbol in the dictionary, and, in the

Fk:(858)822-3426

SPM mode, possibly its actual bitmap which is refinement
coded using its matching dictionary symbol [l , 21. This
type of bitmap coding, called refinement coding, is done
by context-based arithmetic coding using a context drawn
from both the best match bitmap from the dictionary, and
the already coded part of the current bitmap [8,6]. General
graphic data not identified as text is encoded at the end us-
ing a basic bitmap coder such as specified by JBIGl [9] or
T.6 [lo].

A JBIG2 coding system for text images consists of
several components: symbol extraction, pattern matching,
arithmeticLHuffinan integerhitmap coding, and so on. To
speed up arithmetic bitmap coding, JBIG2 allows typical
prediction (TP) as specified in JBIGl [9] and typical pre-
diction for residue (TPR) as proposed in [1 11. In this paper,
we focus on reducing the encoding time spent on pattern
matching. In our work we use the Hamming distance based
matching criterion. We measure the percentage of differ-
ent pixels between two symbols. For SPM-based JBIG2,
even using our simple matching criterion, the time spent
on pattern matching accounts for as much as 90% of the
total encoding time. In this paper we propose three cate-
gories of speedup techniques that can significantly reduce
the amount of pattern matching time while causing only a
very small loss in coding efficiency.

This paper is organized as follows. In Section 2 we
propose the three speedup techniques for pattern match-
ing. In Section 3 we show experimental results on coding
time saved and bit rate penalty incurred from using these
speedup techniques. We conclude our paper in Section 4.

2 Speedup techniques for JBIG2 encoding
2.1 Limited dictionary symbol search

We proposed the modified-class (MC) dictionary design
for the SPM-based JBIG2 in [13]. Experiments showed
that the MC dictionary achieves competitive coding per-
formance with relatively low complexity. The design of
an MC dictionary consists of two steps. At the first step,

0-7803-7 147-X/01/$10.0002001 IEEE 80 1

mailto:code.ucsd.edu

we point each symbol to its closest match among all other
symbols; we only draw a pointer between a symbol and its
best match if the mismatch between them is below the pre-
set threshold. This way the entire symbol set is segmented
into small connected graphs, each of which is called a
class. We then choose one representative for each class
as the symbol with the lowest average mismatch within
the class. All class representatives go into the dictionary.
The second design step decides the reference relationships
among all dictionary symbols, i.e., class representatives.
This is done by calculating the matching graphs for all
dictionary symbols and forming minimum spanning trees
(MSTs) out of these graphs [12, 131.

Suppose a symbol S belongs to a certain class C, whose
representative is symbol R, which, after the MST con-
struction procedure, lands in MST T . Therefore we know
that symbol S and symbol R are similar, and that sym-
bol R is similar (to different degrees) to the symbols in
tree T . Therefore, when symbol S searches for its best
match in the dictionary, we only search among all the sym-
bols that belong to MST T . To do this, for each symbol
on the page, we maintain a tree-ID value that specifies
the MST in which this symbol’s representative belongs.
Hence, in the previous example, symbols S and R and
all other symbols in the MST T will have the same tree-
ID. When the current symbol is matched with the dictio-
nary, it only searches among those dictionary symbols that
have the same tree-ID. This significantly reduces the num-
ber of dictionary symbols with which the current symbol is
matched. Whether this limited search algorithm will suf-
fer significant bit rate penalty depends on how many sym-
bols and their best dictionary matches actually belong to
the same MST. Section 3 shows that this limited search al-
gorithm can save encoding time at almost no coding loss.

2.2 Early jump-out based on previous best match

When matching one symbol with another, we save the
previous lowest mismatch score; the pattern matcher com-
pares on-the-fly the current accumulated mismatch score
against the previous lowest one. If the current mismatch is
already above the previous lowest, then we terminate the
current matching process. Computing the Hamming dis-
tance between two symbols is fast because it only requires
the exclusive-OR (XOR) operation and incrementing the
mismatch score accordingly. On the other hand, comparing
the two integer mismatch scores also takes time. There-
fore, we do the integer comparison of mismatch scores
only once for each row of pixels in the bitmap. At the end
of each row, the current accumulated mismatch is checked;
if it exceeds the previous lowest, the pattern matching pro-
cess terminates.

2.3 Enhanced prescreening
Before matching a pair of symbols, it is advantageous

to prescreen them by certain features. There is no need
to apply pattern matching to two symbols that are obvi-
ously dissimilar.- For example, symbols that differ greatly
in size (e.g. a capital “D’ and a comma “,”) obviously do
not match. The original SPM system as proposed in [6]
prescreens symbols using size; only symbols with similar
sizes (defined as not more than 2 pixels different in either
dimension) are given to the pattern matcher which com-
putes their mismatch score. Prescreening is intended to
reduce the number of unnecessary pattern matching calls
that will not return a match. At the same time, prescreening
should not rule out potentially good matches. Otherwise it
will incur a high bit rate penalty. Therefore, the ideal pre-
screening rules out all “unmatchable” symbols and passes
on all “matchable” symbols to the more expensive pattern
matching subroutine.

Other features can be used in prescreening besides sym-
bol size. One such example is to use symbol area and/or
perimeter [7, 141. However, these two features are not
particularly helpful for two reasons: they are correlated
with symbol size, and they are usually sensitive to scan-
ning noise and digitization parameters such as contrast [7].
According to our experiments, in the English language, us-
ing the Hamming distance based matching criterion, letter
pairs that are among the most easily confused include “b”
and “h,” “cy’ and “e,” and “2’ and “1.” In this paper we
propose two topological features for prescreening : num-
ber of holes and number of connected components [16].
Prescreening by these two features can effectively prevent
these symbol pairs from being handed over to the pattern
matcher (see Figure 1).

Another useful feature for prescreening is introduced
in [7]. We call it the quadrant centroid distance. It is
calculated as follows. We divide each symbol into four
quadrants and calculate the centroid for each quadrant. To
prescreen two symbols, we calculate the distance between
each pair of corresponding quadrant centroids, sum the
four distances and compare the total to a threshold, which
is preset to 3 pixels in our implementation. A small total
distance means that the two symbols have similar mass dis-
tribution in all four quadrants; only such symbol pairs are
passed on to pattern matching to be further examined.

3 Experimental results
In this section we show experimental results on the three

speedup techniques proposed, the limited dictionary search
algorithm based on tree-ID (TID), early jump-out (EJO),
and enhanced prescreening (PRESCRN). We consider two
figures of merit, the encoding time saved and the bit rate
penalty incurred.

Our experiments use a set of twelve test images, two

802

Table 1. Using the proposed three speedup techniques in SPM JBIG2.

NONE
EJO

PRESCRN S+H+C
S+Q

total time match time coded size
sec % gain sec % gain bytes % loss

- - 2 4 . 0 5 1 0 . 7 8 41 ,404 -

1 6 . 2 8 32 2.86 73 4 1 , 7 3 0 0 . 8
1 9 . 4 8 1 9 6.22 42 4 1 . 5 6 6 0 . 4

2 2 . 8 1 5 9.53 1 2 4 1 , 4 0 4 0

S+Q+H+C I
ALL I

Table 3. Prescreening pass rates when differ-
ent features are used.

I 1 1 S I S+Q I S+H+C I S+O+H+C I

~, ~

1 6 . 0 7 3 3 2 . 6 1 7 6 41 ,925 1 . 3
1 6 . 0 4 33 2 . 6 0 7 6 41 ,925 1 . 3

- I - 1

I % passes 1) 1 9 . 7 1 4 . 7 I 1 1 . 8 I 4 .0 I
1 - ,I I I I I

features together with symbol size (S+Q+H+C), we can re-
duce the prescreening pass rate to 4%.

Over a channel of fixed bandwidth, transmission of a
bigger file takes longer time. Some applications, e.g., send-
ing an international fax, favor the shortest channel time
possible. For such applications, achieving the best com-
pression is the most important, even if it takes some ex-
tra encoding time. Other applications, especially real-time
applications, can only tolerate a small delay between the
sender and receiver. For these applications, the goal is to
achieve the best compression within a short encoding time.
However, better compression usually requires longer en-
coding time. Figure 2 shows the trade-off between cod-
ing time and coding efficiency by plotting compression
achieved as a function of total encoding time spent. The
SPM system is shown as an example. Similar observations
are made for the PM&S system. From Figure 2 we clearly
see the trade-off between these two figures of merit. The

3.68

3.67
20 30 40 SO 60 70 80 90 1W

MDfNQ TIME (SEC)

Figure 2. Trade-offs between encoding
time and coding efficiency using different
speedup techniques, for the SPM system.

lower boundary of the convex hull, as shown by the dashed
line segments, represents the best trade-off that our tech-
niques can achieve between coding time and efficiency.
Although the H and C features are not as efficient as the
Q feature in terms of this trade-off (the PRE(S+Q) marker
lies on the lower boundary but the PRE(S+H+C) marker
does not), in [171 we showed that the H and C features can
help effectively control the reconstructed image quality in

803

(a) “b” has one internal hole; “h” has none

(b) ‘5’’ has two connected components;
“1” has only one

Figure 1. Examples of similar bitmaps that
have different features. Bitmaps “b” and “h”
differ in the number of holes; and bitmaps
‘T’ and “I” differ in the number of connected
components.

standard CCITT images fO1 and f04 (resolution 200 dpi),
and ten images from the University of Washington Doc-
ument Image Database I [15] (resolution 300 dpi). The
computer system used is a Pentium Pro 200MHz, running
Red Hat Linux 6.0, with 64MB physical memory. We
measure encoding time (in sec) using the C library func-
tion “clock().” Our code was not specifically optimized for
speed. All coding results given are averaged over all test
images.

Tables 1 and 2 give the total encoding time, time spent
on pattern matching, and coded file size for each individual
technique and several combinations of them, for SPM- and
PM&S-based JBIG2, respectively. In SPM (see Table l),
the encoding time spent on pattern matching accounts for
up to 90% of the total encoding time. The rest of the en-
coding time (spent on symbol extraction, arithmetic bitmap
and integer coding, etc.) is a-fixed value of 8.6 seconds.
For the PM&S mode (see Table 2), the time spent on pat-
tern matching accounts for up to 45% of the total encoding
time. The rest of the encoding time is a bigger fixed value
of 13.3 seconds. Compared to the first row (NONE) where
no speedup techniques are used and prescreening is only by
symbol size, the TID row (limited dictionary search tech-
nique) in Table 1 saves about 15% of the pattern matching
time, while causing almost no coding loss. Note that the
TID technique is only applicable in the SPM mode. The
early jumpout technique (EJO) saves 16% and 12% of

the pattern matching time in SPM and PM&S, respectively,
while incurring no bit rate penalty at all. In SPM, we can
combine TID and EJO together to achieve a time gain of
3 1 % with no coding loss. For the PRESCRN rows, adding
the quadrant centroid distance (S+Q) to prescreening saves
almost 3/4 of the pattern matching time, while incurring a
bit rate penalty of around 1 %. Using the numbers of holes
and connected components together (S+H+C) saves 40%
of the pattern matching time, which is less efficient than
the Q feature. However, the bit rate penalty incurred is
only half as big (0.5%). Combining all these speedup tech-
niques together (the ALL rows in the two tables) saves 8 1 %
and 76% of the pattern matching time in SPM and PM&S,
respectively. In terms of total encoding time, these num-
bers translate into savings of 74% and 33%, respectively.
The bit rate penalty incurred is relatively small, 1.7% for
SPM and 1.3% for PM&S.

Without the TLD technique, each symbol searches
among all dictionary symbols for its best match. For our
test image set, on average the dictionary contains 638 sym-
bols. If prescreening uses only symbol size, then about
20% of dictionary symbols or 128 symbols will pass pre-
screening and be handed to the pattern matcher (see Table
3). With the TID method, however, experiments show that
a symbol needs to search among an average of only 34 dic-
tionary symbols, most of which will pass prescreening as
they are very similar to the current symbol. Comparing 34
symbols with 128 symbols, we see a 75% reduction. In
terms of the time spent on finding dictionary matches for
all symbols, this translates to a reduction from 19.66 sec-
onds without TID to 5.30 seconds with TID.

Without the EJO technique, the pattern matcher will ex-
amine in full every pair of symbols passed on to it, i.e., it
will go over 100% of the bitmap area before making a de-
cision. With EJO, however, experiments show that on av-
erage only 44% of the bitmap area will be examined. Fur-
thermore, on average 89% of all the pattern matching calls
result in early termination. Although EJO has to spend ex-
tra time comparing integer mismatch scores, it still reduces
the average number of CPU clocks used to match two sym-
bols from 68 to 60. An important advantage of the TID and
EJO techniques is that they save encoding time almost “for
free,” meaning without bit rate penalty (see Tables 1 and
2) .

To see how enhanced prescreening helps effectively rule
out unlikely matches, we list the percentages of prescreen-
ing passed in Table 3. Using the symbol size (S) feature
alone is not efficient enough; around 20% of the sym-
bol pairs will still be given to the pattern matching pro-
cess. Adding the number of holes and number of connected
components (S+H+C) reduces the pass rate to 12%; adding
the quadrant centroid distance (S+Q) only 5% of the sym-
bol pairs can pass prescreening. By combining all three

804

lossy coding by reducing the number of character substitu-
tions.

4 Conclusion
In this paper we propose three techniques to speed up

the pattern matching process in text image compression
with JBIG2. Experiments show that the limited dictionary
symbol search technique and the early jump-out technique
can each bring about 15% of savings in encoding time
without loss in coding efficiency. Depending on the spe-
cific features used, the enhanced prescreening technique
can save up to 75% of encoding time while only suffering
a small bit rate penalty of at most 1.6%. These speedup
techniques are effective for both SPM-based and PMBrS-
based JBIG2.

Acknowledgements
This research was supported by the Center for Wireless

Communications at UCSD and by the CoRe program of
the State of California.

References
[l] ISOAEC JTCl/SC29/WGl N1545. JBIG2 Final Draft

International Standard, Dec. 1999.

[2] P. Howard, E Kossentini, B. Martins, S . Forchhammer,
W. Rucklidge, E Ono. The Emerging JBIG2 Standard.
IEEE Trans. on Circuits and Systems for Video Tech-
nology, pp. 838-48, Vol. 8, No. 5, Sept. 1998.

[3] F. Ono, W. Rucklidge, R. Arps, C. Constantinescu.
JBIG2 -the Ultimate Bi-level Image Coding Standard.
Proc. of the 2000 IEEE Intl. Con$ on Image Process-
ing (ICIP), Vancouver, Canada, Sept. 2000.

[4] D. Tompkins and F. Kossentini. A Fast Segmenta-
tion Algorithm for Bi-level Image Compression Using
JBIG2. Proc. of the 1999 IEEE International Confer-
ence on Image Processing (ICIP), pp. 224-228, Kobe,
Japan, Oct. 1999.

[5] R.N: Ascher and G. Nagy. Means for Achieving a High
Degree of Compaction on Scan-digitized Printed Text.
IEEE Trans. on Computers, pp. 1174-79, Nov. 1974.

[6] P. Howard. Lossless and Lossy Compression of Text
Images by Soft Pattern Matching. In J.A. Storer and
M. Cohn, editors, Proc. of the 1996 IEEE Data Com-
pression Conference (DCC), pp. 210-19, Snowbird,
Utah, March 1996.

[7] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gi-
gabytes. Morgan Kaufmann, 1999.

[8] K. Mohiuddin, J. Rissanen, and R. Arps. Lossless Bi-
nary Image Compression Based on Pattern Matching.
International Conference on Computers, Systems and
Signal Processing, pp. 447-5 1, Bangalore, India, Dec.
1984.

[9] CCI'IT. Progressive Bi-level Image Compression.
CCITT Recommendations T82, 1993.

[lo] CCITT. Facsimile Coding Schemes and Coding
Control Functions for Group 4 Facsimile Apparatus.
CCITT Recommendations T6, 1984.

[1 I] C. Constantinescu and R. Arps. Fast residue coding
for lossless textual image compression. Proc. 1997
IEEE Data Compression Conference (DCC), pp. 397-
406, Snowbird, Utah, March 1997.

[I21 Y. Ye and P. Cosman. Dictionary design for text im-
age compression with JBIG2. IEEE Trans. on Image
Processing, Vol. 10, No. 6, pp. 818-828, June 2001.

[131 Y. Ye and P. Cosman. Fast and memory efficient
JBIG2 encoder. Proc. 2001 IEEE Intl. Con$ on Acous-
tics, Sound, and Signal Processing (ICASSP), Salt
Lake City, Utah, May 2001.

[14] W. K. Pratt, P. J. Capitant, W. Chen, E. R. Hamilton
and R. H. Wallis. Combined symbol matching facsim-
ile data compression system. Proc. of the IEEE, pp.
786-796, Vol. 68, No. 7, July 1980.

[15] E. S. Askilsrud, R. M. Haralick and I. T. Phillips. A
quick guide to UW English Document Image Database
I, version 1 .O. CD-ROM. Intelligent Systems Lab, Uni-
versity of Washington. August 1993.

[16] B. Horn. Robot Vision, Chapter 3. MIT Press. 1986.

[171 Y. Ye and P. Cosman. Feature monitored shape unify-
ing for lossy SPM-JBIG2. Proc. of the Sixth IEEE Intl.
Symposium on Signal Processing ana' its Applications
(ISSPA 2001), Kuala Lampur, Malaysia, August 2001.

805

