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Abstract
The brain is highly dynamic, reorganizing its activity at different interacting spatial and temporal

scales, including variation within and between brain networks. The chronnectome is a model of

the brain in which nodal activity and connectivity patterns change in fundamental and recurring

ways over time. Most literature assumes fixed spatial nodes/networks, ignoring the possibility

that spatial nodes/networks may vary in time. Here, we introduce an approach to calculate a

spatially fluid chronnectome (called the spatial chronnectome for clarity), which focuses on the

variations of networks coupling at the voxel level, and identify a novel set of spatially dynamic

features. Results reveal transient spatially fluid interactions between intra- and internetwork

relationships in which brain networks transiently merge and separate, emphasizing dynamic seg-

regation and integration. Brain networks also exhibit distinct spatial patterns with unique tempo-

ral characteristics, potentially explaining a broad spectrum of inconsistencies in previous studies

that assumed static networks. Moreover, we show anticorrelative connections to brain networks

are transient as opposed to constant across the entire scan. Preliminary assessments using a

multi-site dataset reveal the ability of the approach to obtain new information and nuanced

alterations that remain undetected during static analysis. Patients with schizophrenia

(SZ) display transient decreases in voxel-wise network coupling within visual and auditory net-

works, and higher intradomain coupling variability. In summary, the spatial chronnectome repre-

sents a new direction of research enabling the study of functional networks which are transient
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at the voxel level, and the identification of mechanisms for within- and between-subject spatial

variability.

KEYWORDS

brain spatial dynamics, dynamic segregation and integration, large-scale networks, resting state

fMRI (rsfMRI), schizophrenia, spatial chronnectome, spatial coupling, spatial states,

spatiotemporal transition matrix

1 | INTRODUCTION

Neuroimaging modalities provide unique opportunities to model and

investigate brain functional connectivity at a large/macro scale. One

key finding is a set of replicable large-scale functional brain networks

(Biswal et al., 2010; Buckner et al., 2009; Franco, Pritchard, Calhoun, &

Mayer, 2009; Guo et al., 2012; Shehzad et al., 2009; Zuo et al., 2010).

Brain networks and groups of temporally coherent activity within net-

works, called functional domains, have been studied and validated

using various analytical approaches (Calhoun, Kiehl, & Pearlson, 2008;

Smith et al., 2009; van den Heuvel, Mandl, Kahn, & Hulshoff Pol,

2009; Van Dijk et al., 2010; Yeo et al., 2011). Of these approaches,

independent component analysis (ICA) enables simultaneous extrac-

tion of both the spatial patterns of functional domains and their tem-

poral activity. Studies of brain networks and functional domains

demonstrate alterations in their spatial/temporal patterns under dif-

ferent physiological and psychological conditions (Arbabshirani, Plis,

Sui, & Calhoun, 2017; Garrity et al., 2007; Greicius, 2008; Iraji et al.,

2015; Menon, 2011; Seeley, Crawford, Zhou, Miller, & Greicius, 2009;

Sorg et al., 2007). However, these studies hold a common assumption

that each brain network is comprised of a fixed set of brain regions

with a static pattern of activity over time. This is an oversimplification,

as the brain is highly dynamic, with variations in associated regions

and spatial patterns of brain functional organizations including brain

networks (Calhoun, Miller, Pearlson, & Adali, 2014). As such, many

recent studies have demonstrated the ability of fMRI to capture time-

varying brain connectivity (Calhoun et al., 2014; Hutchison et al.,

2013; Preti, Bolton, & Van De Ville, 2017). For instance, studying

whole-brain dynamic connectivity demonstrates variations in tempo-

ral coupling, both within and between functional domains (Allen et al.,

2014; Damaraju et al., 2014). Examining temporal coupling between

brain regions reveals strong correlations between regions known to

be part of one network with regions of other networks at particular

moments in time. This suggests “isolated” brain networks are only

transiently isolated. Additionally, despite recent developments in

detecting the dynamic behavior of brain activity using fMRI, spatio-

temporal variations of brain networks have been underappreciated.

Previous time-varying studies have focused on either (a) dynamic tem-

poral coupling among fixed spatial nodes/networks, which ignore the

importance of spatial variations (Allen et al., 2014; Barttfeld et al.,

2015; Chen, Cai, Ryali, Supekar, & Menon, 2016; Ciric, Nomi, Uddin, &

Satpute, 2017; Damaraju et al., 2014; Hutchison et al., 2013; Leonardi

et al., 2013; Sakoglu et al., 2010; Shine, Koyejo, & Poldrack, 2016;

Yaesoubi, Adali, & Calhoun, 2018) or (b) the dominant spatial pattern at

any given timepoint. While these approaches highlight snapshots of spa-

tial patterns at the voxel level, they do not capture the dynamics of spa-

tial variation within and between co-evolving functional networks

(Karahanoglu & Van De Ville, 2015; Liu & Duyn, 2013; Preti & Van De

Ville, 2017; Tagliazucchi, Balenzuela, Fraiman, & Chialvo, 2012; Trapp,

Vakamudi, & Posse, 2018; Vidaurre, Smith, & Woolrich, 2017). Kiviniemi

and his colleagues presented work highlighting spatial variation in the

default mode network using sliding-window ICA (Kiviniemi et al., 2011).

Other work investigated fluctuation in spatial couplings between spatial

components derived from independent vector analysis (Ma, Calhoun,

Phlypo, & Adali, 2014). While these present intriguing early evidence, to

date with the exception of our recent work (Iraji et al., 2018), there has

not been an approach that evaluating the spatial fluidity within and/or

between functional brain networks. Spatial fluidity is defined as the tran-

sitory spatial pattern of a given functional organization over time at the

finest scale or measurement (voxels). Spatially fluid brain networks evo-

lve in their voxel-wise spatial patterns over time which includes their

integration and separation with one another.

The chronnectome is a model of the brain in which nodal activity

and connectivity patterns change in fundamental and recurring ways

through time (Calhoun et al., 2014). Here, we introduce an approach

allowing for a spatially fluid chronnectome (called the spatial

chronnectome) which advances current analytical methods by provid-

ing novel, space/time-varying information of individual brain networks

at the voxel level. Encapsulating transient voxel-wise network cou-

pling allows researchers to capture the spatially fluid behaviors of

brain networks. To investigate the spatiotemporal variations of brain

networks, we calculate the relationship (via temporal correlation) of

each individual brain network with every voxel of the brain. Because

the time course of each brain network obtained from ICA represents

the network's temporal activity, its temporal correlation with each

brain voxel provides information about the involvement of the voxel

with the brain network. Using correlation (rather than multiple regres-

sion) allows us to capture the association of each voxel to a given net-

work to a full extent regardless of its contribution to other networks.

The spatiotemporal variations of a brain network were encapsulated

through measuring the coupling (temporal correlation) between every

brain voxel and the given brain network at different moments using a

sliding-window approach. Preliminary assessments demonstrate that

spatial patterns of brain networks evolve continuously over time and

also highlight the ability of the approach to obtain new information of

brain function. A new set of spatially relevant features can be
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calculated and used to study brain function. For instance, we intro-

duce a metric called the “spatiotemporal transition matrix” to summa-

rize the spatiotemporal information of each brain network. For each

brain network, we also characterize distinct, highly replicable spatial

states with unique temporal characteristics. Using spatial states, the

dynamic properties of each brain network can also be assessed by cal-

culating temporally derived indices such as mean dwell time or frac-

tion time for individual brain networks (Damaraju et al., 2014).

It is worth mentioning that the spatial states are also related to

NC states (temporally network connectivity states) identified by utiliz-

ing the time courses of intrinsic connectivity networks (ICNs) associ-

ated with a given large-scale network (Ciric et al., 2017). However,

the spatial states take advantage of both spatial and temporal infor-

mation to estimate distinct spatial dynamic patterns of a given brain

network. The spatial states of large-scale networks can also be related

to interdigitated networks previously only observed in single subject

analysis (Braga & Buckner, 2017; Laumann et al., 2015). The goal of

this study is to introduce the spatial chronnectome and propose sev-

eral novel spatial dynamic features. We also demonstrate the utility of

the spatial chronnectome by evaluating the sensitivity of spatial

chronnectome properties to differences between schizophrenia

(SZ) patients versus healthy controls. We hypothesized that the spatial

chronnectome would allow us to detect nuanced and meaningful

alterations in the brain networks of patients with SZ which would not

be detected during static analyses. Results show that transient

decreases in voxel-wise networks couplings are significantly more pro-

nounced than reductions in static functional connectivity. Furthermore,

our approach detected alterations in brain networks that are not

identified when a spatially static analysis was performed. Using a

variation-based analysis, we demonstrate, for the first time, high cou-

pling variability and different spatiotemporal transition patterns across

various brain networks. We conclude that utilizing the spatial aspects of

brain dynamics, which have been overlooked by focusing on variations

in temporal coupling among fixed spatial nodes/networks, can unveil

typically overlooked features of the dynamic brain and potentially

improve our understanding of cognitive and behavioral neuroscience.

2 | METHODS

2.1 | Outline of our approach

Our approach assessing spatiotemporal variations of individual brain

networks includes the following steps (Figure 1a):

1. Spatial independent component analysis (sICA) is applied to

obtain large-scale brain networks and their associated time

courses (Figure 1a Step 1). The time course of each brain network

obtained from sICA represents the temporal activity of that large-

scale brain network. Details can be found in Section 2.4. Identify-

ing large-scale brain networks: Spatial ICA.

2. Temporal coupling and sliding-window approaches were employed to

capture spatiotemporal variations of the large-scale brain networks.

For each brain network and time window, we calculated the correla-

tion between the time course of the brain network and the time

courses of every voxel of the brain. The resulting correlation values

represent the association (involvement) of all voxels across the brain

to the given network at each time window (Figure 1a Step 2). This

results in one dynamic coupling map (dCM) per window for each brain

network. This approach, unlike its predecessors, such as whole brain

dynamic functional network connectivity (dFNC) and co-activation

patterns (CAP), provides nuanced information regarding temporal vari-

ations of spatial patterns of multiple brain networks simultaneously at

the level of the voxel. Details can be found in Section 2.5. Calculating

dCMs for each brain network using a sliding-window approach.

3. Time-varying properties were evaluated for each brain network

(Figure 1a Step 3). First, the dCMs of each individual network were

clustered into a set of distinct spatial patterns called spatial states

on which multiple dynamic metrics were calculated and investigated

(see Section 2.6. Calculating the spatial states of each brain network

and their dynamic patterns). Next, the spatially-continuous varia-

tions of each brain network over time were evaluated by calculating

voxel-wise changes in their dCMs (See Section 2.7. Evaluating the

spatial variations of each brain network over time).

2.2 | Data collection

Data collection was performed at 7 imaging sites across the United

States, and all analyzed data passed data quality control. All partici-

pants are at least 18 years old and gave written informed consent prior

to enrollment. Data were collected from 160 healthy participants,

including 46 females and 114 males (average age: 36.71 ± 10.92;

range: 19–60 years), and 149 age- and gender-matched patients with

SZ, including 36 females and 113 males (average age: 37.95 ± 11.47;

range: 18–60 years). The imaging data were collected on a 3-Tesla Sie-

mens Tim Trio scanner for six of the seven sites and on a 3-Tesla Gen-

eral Electric Discovery MR750 scanner at one site. Resting state fMRI

(rsfMRI) data were acquired using a standard gradient echo-planar

imaging (EPI) sequence with following imaging parameters: repetition

time (TR) = 2,000 ms, echo time (TE) = 30 ms, flip angle (FA) = 77�,

field of view (FOV) = 220 × 220 mm, matrix size = 64 × 64, mm, pixel

spacing size = 3.4375 × 3.4375 mm, slice thickness = 4 mm, slice

gap = 1 mm, number of excitations (NEX) = 1, and a total of 162 vol-

umes. During rsfMRI scans, participants were instructed to keep their

eyes closed and rest quietly without falling asleep. Further details on

this dataset can be found in our earlier work (Damaraju et al., 2014).

2.3 | Preprocessing

The preprocessing was performed primarily using SPM (http://www.fil.

ion.ucl.ac.uk/spm/) and AFNI (https://afni.nimh.nih.gov) software pack-

ages. The pipeline includes brain extraction, motion correction using the

INRIAlign, slice-timing correction using the middle slice as the reference

time frame, and despiking using AFNI's 3dDespike. The data of each sub-

ject was subsequently warped to the Montreal Neurological Institute

(MNI) template using nonlinear registration, resampled to 3 mm3 isotropic

voxels, and spatially smoothed using a Gaussian kernel with a 6 mm full

width at half maximum (FWHM = 6 mm). Finally, voxel time courses were
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z-scored (variance normalized) as it has been shown in our analysis to bet-

ter estimate brain networks relative to other scaling methods for ICA.

2.4 | Identifying large-scale brain networks:
Spatial ICA

Spatial ICA (sICA) was applied to the fMRI data to obtain brain net-

works (Calhoun & Adali, 2012; Calhoun, Adali, Pearlson, & Pekar,

2001a). ICA was performed using the GIFT software package (http://

mialab.mrn.org/software/gift/) in the following steps similar to our

previous work (Iraji et al., 2016): (a) Subject-level principal component

analysis (PCA) was applied and the 30 principal components account-

ing for the maximum variance in each individual dataset were

retained. (b) All subject-level principal components were concatenated

together across the time dimension, and group-level spatial PCA was

applied on 9,270 (30 × Subject) concatenated components. (c) The

FIGURE 1 Summary of processing steps. (a) Cartoon of the analysis pipeline. First, spatial independent component analysis (sICA) is applied to

obtain brain networks and their associated times courses. ICA consists of several steps including data reduction (PCA), group-level sICA, and
subject-level sICA. Following ICA, whole brain dCMs of each network for every subject are obtained by calculating windowed-correlation values
between the time course of the network and every brain voxel. Finally, time-varying properties of each network are investigated by evaluating
spatial variation of dCMs over time and estimating spatial states. Details of the spatiotemporal variation analysis can be found in Sections 2.6 and
2.7. (b) a toy model of calculating the spatiotemporal transition matrix. First, we discretize the correlation value. For visualization purpose, we
present three bins here. However, 10 bins were used in the analysis of the real data in which each bin represents a range of correlation value
(e.g., 0.2–0.3). Next, we count the number of transitions from one bin to another between time windows at a given interval. An interval of one
refers to evaluating changes between consecutive spatiotemporal transition matrices. An interval of two evaluated changes between every two

spatiotemporal transition matrices with distance equal to two TRs
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first 20 group-level principal components with the highest variance

were selected as input for the infomax algorithm to estimate the

20 group independent components (Bell & Sejnowski, 1995; Correa,

Adali, & Calhoun, 2007; Correa, Adali, Li, & Calhoun, 2005). Infomax

ICA algorithm was repeated 100 times on the 20 group-level principal

components using ICASSO framework in order to obtain a stable and

reliable estimation of independent components (Himberg, Hyvarinen,

& Esposito, 2004), and the most representative run was selected for

further analysis (Ma et al., 2011). (d) The subject-specific independent

components and component time courses were calculated using

group information guided ICA (GIG-ICA; Du et al., 2015; Du & Fan,

2013). (e) The 12 independent components were identified as brain

networks based on the spatial and temporal properties and prior

knowledge from previous studies.

2.5 | Calculating dCMs for each brain network using
a sliding-window approach

The spatiotemporal variations of each brain network can be captured

by evaluating its dynamic coupling at a voxel-wise level. For this pur-

pose, we calculated the temporal coupling between the brain network

and every voxel of the brain using the sliding-window correlation

approach. Temporal correlations have been used as the primary metric

to measure functional connectivity, fully capturing the relationship

between a given voxel and the brain network without regard to its

contributions of other networks. For instance, if a given voxel is highly

correlated with two networks, using correlation allows detecting both

of these associations. As a result, we compute dCMs for a given net-

work, which encapsulates the spatiotemporal variations of that brain

network at a voxel-wise level. The same cleaning procedure that has

previously demonstrated its effectiveness in improving the detection

of dynamic patterns (Allen et al., 2014; Damaraju et al., 2014) was first

performed on the time courses of brain networks and every voxel of

the brain to reduce noise. The cleaning procedure includes orthogo-

nalizing with respect to estimated subject motion parameters, linear

detrending, despiking, and band-pass filtering using a fifth-order But-

terworth filter (0.01–0.15 Hz). It is worth mentioning that to evaluate

the noise effect, we performed various cleaning procedures including

various bandpass filtering methods with different frequency bands,

and these approaches resulted in almost identical spatial states. Fur-

ther details of different cleaning procedures can be found in our

recent work (Iraji et al., 2018). We used the tapered window obtained

by convolving a rectangle (width = 30 TRs; see the discussion for our

reasoning for the specific window length chosen) with a Gaussian

(σ = 3 TRs) and the sliding step size of one TR resulting in 131 win-

dows per subject (Allen et al., 2014; Damaraju et al., 2014).The spatial

evolution (i.e., continuous spatial variations) of brain networks were

evaluated using different metrics including spatial states and spatio-

temporal variation analyses.

2.6 | Calculating the spatial states of each brain
network and their dynamic patterns

First, we modeled the spatiotemporal fluctuations of each brain net-

work as temporal variations in a set of distinct spatial patterns called

spatial states. Clustering approaches can be used to summarize the

dCMs of each brain network into a set of spatial states which allows

us to investigate the spatiotemporal variations of the brain network

via temporal variations of these distinct spatial states. Here, k-means

clustering was employed to detect the spatial states of each brain net-

work. For each brain network, k-means clustering was applied on the

40,479 (309 subjects × 131 windows) dCMs of the brain network. k-

means clustering was repeated 100 times with different initializations

using the k-means++ technique to increase chances of escaping local

minima (Arthur & Vassilvitskii, 2007). The correlation distance metric

was used to measure the similarity between data points (i.e., the

dCMs), as it is more effective in the detection of spatial patterns

irrespective of voxel intensities. However, an exploratory analysis

using Euclidean distance demonstrated almost identical results.

k-means clustering was performed for 3–10 clusters, and the spatial

maps of the cluster centroids were compared (Supporting Information

S1). For each brain network, the maximum number of clusters that

provides distinct spatial maps for centroids were selected by visual

inspection for further analysis. Thus, each network includes multiple

spatial states as defined by the cluster centroids, and the number of

spatial states (centroids) can vary between networks. We also com-

pared our numbers of clusters with the estimated number of clusters

using the elbow criterion (Damaraju et al., 2014; Yaesoubi, Miller, &

Calhoun, 2017). With the exception of the left frontoparietal and sub-

cortical domains, in which the elbow criterion estimates a higher num-

ber of clusters than those chosen by visual inspection, the estimated

cluster numbers using elbow criterion were the same as the expert

selections. Using temporal profiles of the spatial states, various state

level and meta-state level dynamic indices can be calculated for each

brain network. For example, the mean dwell time (the average of the

amount of time that subjects stay in a given state once entering that

state) and the fraction time (the proportion of time subjects stay in a

given state) can be calculated for each networks. Here, we compared

mean dwell time and fraction time between healthy subjects and

patients with SZ to show the feasibility of the approach.

2.7 | Evaluating the spatial variations of each brain
network over time

2.7.1 | Coupling variability map

Coupling variability for each network is defined as the amount of vari-

ations in network coupling over time, which is obtained by measuring

voxel-wise changes in dCMs using the L1 norm distance (sum of abso-

lute differences). For each voxel, the L1 norm distance represents the

variations in a voxel's membership to a given brain network over time

by measuring changes in the sliding-window correlation values

between the time courses of a given voxel and the brain network

across time. For example, if the correlation values for a given voxel for

seven consecutive time windows are c1, c2, ..., and c7, the changes in

correlation values will be d1 = |c2 − c1|, d2 = |c3 − c2|, … d6 = |c7 − c6|.

Therefore, the coupling variability for a given voxel will be equal to

d1 + d2 + … + d6 (Supporting Information S2). The coupling variability

map quantifies the overall spatial behavior of a given brain network

varying across time. Voxel-wise comparisons were further applied
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comparing coupling variability maps for each network between healthy

subjects and patients with SZ.

2.7.2 | Spatiotemporal transition matrix

To further evaluate spatiotemporal variations of each brain network, we

exploit the gray-level co-occurrence (spatial dependence) matrix method

in the field of image processing that is used to extract Haralick textural fea-

tures from images (Haralick, Shanmugam, & Dinstein, 1973). Figure 1b

shows a toy model of this approach. First, the network coupling

(i.e., voxel-to-network correlation) values are discretized to n bins (10 equal

bins in this study). The spatiotemporal transition matrix is constructed by

counting the number of voxels transitioning from one bin to another

between time windows at a given interval. We calculate this spatiotempo-

ral transition matrix for an interval of one TR, (i.e., by counting the number

of transitions between every two consecutive spatial maps), and for larger

intervals. The maximum interval would be the total number of windows

per subject minus 1 (i.e., 130). The spatiotemporal transition matrix was

normalized (divided) by the total number of transitions to allow us to com-

pare across different interval values. Several global indices such as con-

trast, correlation, energy, entropy, and homogeneity can be calculated

from spatiotemporal transitionmatrix to provide summary statistics of spa-

tiotemporal variations of brain networks (Haralick et al., 1973). Here, for

example, the energy index was calculated to evaluate spatiotemporal uni-

formity. The energy index, also known as angular second moment (ASM),

is defined as
P

i, jp i, jð Þ2 where p(i, j) is the (i,j)th element of the spatio-

temporal transition matrix. The energy index is between zero and one,

and smaller energy values represent higher spatiotemporal uniformity.

The energy index of each network was compared between healthy

subjects and patients with SZ. The energy indices of the networks

which show significant differences between the two groups were fur-

ther analyzed to understand the relationships between the spatiotem-

poral variations and cognitive scores. For this purpose, we used the

domains of the computerized multiphasic interactive neurocognitive

system (CMINDS) scores including speed of processing, attention/

vigilance, working memory, verbal learning, visual learning, and reasoning/

problem solving. Further details of CMINDS and preprocessing steps can

be found in (van Erp et al., 2015).

2.8 | Statistical analysis: Dynamic alterations among
patients with SZ

The spatiotemporal variations of brain networks were evaluated by

comparing group differences between patients with SZ and healthy

subjects, and statistical comparisons for each analysis were separately

corrected for multiple comparisons based on the total number of com-

parisons that we performed in that analysis. P-values of all statistical

analyses were corrected for multiple comparisons using the 5% false

discovery rate (FDR) (Benjamini & Hochberg, 1995). For each statisti-

cal comparison, we used a general linear model (GLM) that included

age, gender, site, and the mean framewise displacement (meanFD) as

covariates. MeanFD was added as a covariate to mitigate against the

effects of motion (Power, Barnes, Snyder, Schlaggar, & Petersen,

2012). To evaluate the relationship between energy indices and

CMINDS scores, correlation analyses were conducted separately for

healthy subjects and patients with SZ after regressing out age, gender,

site, and meanFD. CMINDS scores and energy indices were mean-

centered for each group to mitigate group differences in either

CMINDS scores and/or energy indices introduced into the correla-

tions. The group difference in correlation coefficients of the relation-

ship between energy indices and CMINDS scores was also evaluated

between the two groups. Outliers were removed using the scaled

median absolute deviation.

3 | RESULTS

3.1 | Large-scale brain networks

We applied spatial ICA with 20 components on rsfMRI data from

309 individuals. The ICA algorithm ran several times and clustering

the resulting components revealed a high level of compactness

(a cluster quality index greater than 0.8), indicating the reliability of

the independent components (Himberg et al., 2004). Twelve indepen-

dent components were identified as neuronal activity related compo-

nents, or brain networks (Erhardt, Allen, Damaraju, & Calhoun, 2011),

based on their temporal and spatial properties and knowledge from

previous studies. The time courses of the selected components are

dominated by low-frequency fluctuations, which were evaluated using

the dynamic range and the ratio of low-frequency to high-frequency

power (Allen et al., 2011). Their spatial maps have significant overlap

with gray matter, their peak activations fall within gray matter, and

low spatial overlap with known ventricular, motion, and susceptibility arti-

fact components (Allen et al., 2011). Furthermore, the selected compo-

nents have high spatial similarity with one of the established ICNs (Allen

et al., 2011; Beckmann, DeLuca, Devlin, & Smith, 2005; Damoiseaux

et al., 2006; Fox, Corbetta, Snyder, Vincent, & Raichle, 2006; Iraji et al.,

2016; Smith et al., 2009; Yeo et al., 2011; Zuo et al., 2010). The identified

brain networks are the auditory, cerebellar, default mode, (dorsal)

attention, left and right frontoparietal, somatomotor, language,

salience, subcortical, primary visual, and secondary visual networks

(Figure 2). The group spatial maps of networks obtained from the full

dataset were used as the reference to calculate the spatial maps of

networks and their associated time courses for each individual. This

procedure prevents biasing the spatial maps of networks toward

one group. Furthermore, using the same reference for both groups

guarantee that the subject-level networks of the two groups are in

the same space and comparable. Note performing sICA on each

group, healthy subjects and patients with SZ, separately showed a

high level of spatial similarly with the networks obtained from the full

dataset. The average and standard deviation of spatial similarity (cor-

relation) for healthy subjects and patients with SZ are (0.91 ± 0.07)

and (0.90 ± 0.09), respectively. After identifying the brain networks,

the time courses of individual networks were used to calculate their

dCMs (one dCM per window for each brain network).

3.2 | Spatial state evaluation

To evaluate the time-varying information of brain networks, k-means

clustering was applied on the dCMs of each network to group them
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into a set of distinct spatial patterns called spatial states. This allows

us to visualize and quantify the variations in spatial patterns of brain

networks. An example of variations in spatial patterns of brain net-

works and the regions associated with them can be seen in Figure 3,

in which three selected spatial states for each brain network represen-

ted as red, blue, and green additive color overlays. Regions in white

indicate association to a given network in all three states. For

instance, the posterior cingulate cortex (PCC) is the central hub of the

default mode (Andrews-Hanna, 2012; Leech & Sharp, 2014) and is

expected to be part of the default mode all of the time, which is con-

firmed by being involved in all three states as well as the fourth state,

which is not included in Figure 3. However, the thalamus is associated

with the default mode in one of the three states (represented in red),

and the frontal regions are involved in either one (represented in blue

or red) or two states (represented in purple). These findings could

explain inconsistencies in previous findings regarding the membership

of certain regions to brain networks. For instance, different spatial

patterns for the default mode have been observed within the litera-

ture (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010;

Braga & Buckner, 2017; Fox et al., 2005). While most of the original

studies did not report the thalamus as part of the default mode

(Buckner, Andrews-Hanna, & Schacter, 2008; Fox et al., 2005;

Greicius, Krasnow, Reiss, & Menon, 2003), recent studies have shown

conflicting results (Lee & Xue, 2018; Shirer, Ryali, Rykhlevskaia,

Menon, & Greicius, 2012; Wang et al., 2014). Moreover, different

parts of the frontal and prefrontal lobes have been reported as part of

the default mode across studies (Braga & Buckner, 2017; Buckner

et al., 2008; Damoiseaux et al., 2006; Garrity et al., 2007; Shirer et al.,

2012). Similarly, different patterns of regional memberships have

been observed across other brain networks (Braga & Buckner, 2017;

Damoiseaux et al., 2006; Zuo et al., 2010). Therefore, we suggest that

different regions are associated with brain networks at different time

points, and only overall patterns of brain networks during data acqui-

sition are identified in the static analysis.

3.2.1 | Anticorrelated brain networks

Evaluating the spatial chronnectome using dCMs also provides new

information relating to anticorrelated brain networks (negative

FIGURE 2 Static group spatial functional connectivity maps of the 12 brain networks obtained from spatial independent components analysis.

Spatial maps are plotted as z-score and thresholded at Z > 1.96 [Color figure can be viewed at wileyonlinelibrary.com]
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associations between brain networks). Previous static studies have

observed negative associations between brain networks and their

associated regions (Allen et al., 2011; Fox et al., 2005; Fox, Zhang,

Snyder, & Raichle, 2009; Uddin, Kelly, Biswal, Castellanos, & Milham,

2009). For instance, regions of different brain networks (including

salience and sensorimotor) are suggested to be negatively correlated

FIGURE 3 RGB additive color-code presentation of three arbitrarily-selected spatial states for brain networks. Red, blue, and green represent the

strength of three spatial states. Thus, for instance, white represents the areas in which the brain network is strong in all three spatial states, and
yellow shows strong association in red and green spatial states. It is worth mentioning that the spatial states of different brain networks were
identified independently; therefore, for example, the first spatial state of networki is not correspondent with the first spatial state of networkj
(i 6¼ j) [Color figure can be viewed at wileyonlinelibrary.com]
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with the default mode regions (Allen et al., 2011; Fox et al., 2005,

2009; Uddin et al., 2009). Our analysis reveals that different, anti-

correlated patterns occur at different moments in time. For example,

each of the previously reported networks and its associated regions

become negatively associated with the default mode for a specific

spatial state, and there are moments in which no negative associations

exist (Figure 4). In other words, anticorrelative relationships identified

across previous default mode static analyses all exist, but in differing

segments of time. We further observed new anticorrelated patterns

across different networks, including the left and right frontoparietal,

salience, somatomotor, and secondary visual networks (Supporting

Information S3). This finding emphasizes the importance of time-

varying properties that may not be fully captured during static

analyses.

3.2.2 | Cerebellar contribution

Despite the important role of the cerebellum, it is often overlooked in

brain network analysis. One reason is that the cerebellum is not usu-

ally recognized as an integral part of the connectome, with some

exceptions, across studies using static analyses. Our analysis reveals

significant contributions of the cerebellum to multiple brain networks,

but these contributions are not constant over time (see Figure 3).

Different patterns of cerebellar contribution emerge at particular

timepoints or states. This highlights a challenge in detecting the role of

the cerebellum in brain networks in static analysis. Overall, two major

patterns are (a) primarily negative associations between cerebellar

regions with sensorimotor networks (e.g., including somatomotor,

auditory, and visual networks) and (b) positive associations of cerebel-

lar regions with the subcortical and left and right frontoparietal

networks.

3.2.3 | Brain networks are not isolated

Studying spatial chronnectome through spatial states supports the

proposition that brain networks are not isolated, and there is strong

cross talk between “isolated” brain networks. Spatial chronnectome

suggests that regions assigned to one network using static analysis

are also involved with other networks at particular points in time. This

is observed across all networks but is more dominant in sensorimotor

networks, including visual, somatomotor, and auditory networks

(Figure 3). The finding that brain networks sometimes merge, or inter-

network coupling increases, are consistent with a dynamic interplay

between segregation and integration.

3.2.4 | Statistical comparison

The dCMs of brain networks were compared between healthy sub-

jects and patients with SZ. We initially hypothesized networks' dCMs

would allow identify nuanced alterations in brain networks in patients

with SZ relative to healthy subjects which would not be present in

static analyses. This hypothesis was evaluated first by comparing the

results of voxel-wise comparisons using spatial states (obtained by

applying k-means clustering on the dCMs of each brain network) and

static connectivity maps (static spatial maps of networks obtained by

applying sICA). The results of voxel-wise comparisons are presented

in Figure 5a. Both static and spatial state approaches reveal group dif-

ferences in the cerebellar, subcortical, language, and salience net-

works. The pattern of differences in these networks is similar

between static and spatial states analyses. Static comparison revealed

lower static functional connectivity in patients with SZ compared to

healthy subjects across these networks except for the putamen in

the subcortical network. Similarly, spatial states analyses detected

decreases in dynamic couplings across the same networks with the

same exception in the subcortical network. In contrast, different and

larger regions within networks were found to be altered in patients

with SZ compared to healthy subjects in the spatial state analysis

compared to the static analysis. Additionally, spatial state analysis

shows similar patterns of differences between patients with SZ and

healthy subjects in the auditory, primary and secondary visual,

somatomotor, default mode, (dorsal) attention, and left frontoparietal

networks (Figure 5a). The similarity between static and state analysis

patterns further supports the idea that alterations observed in state

analysis driven by group differences between patients and healthy

subjects. This suggests our spatial state analyses can detect nuanced

alterations within patient groups absent in static analyses. For

instance, an alteration in a small region of the primary visual network

FIGURE 4 The spatial states of the default mode. Hot and cold colors

represent positive and negative associations to the default mode,
respectively. The results show that sensorimotor areas are anti-correlated
with the default mode during State 2, and the salience network is anti-
correlated with the default mode during State 4. Importantly, States 1 and
3 do not exhibit an anticorrelative relationship with the default mode
[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Voxel-wise statistical comparisons between healthy subjects and patients with schizophrenia (SZ). Each of the analyses, that is, static, spatial

states, and traveling distance (coupling variability), were separately corrected for multiple comparisons using a %5 FDR (Benjamini & Hochberg, 1995). For
instance, spatial states were corrected for the total number of comparisons that were performed in spatial states analysis. Only comparisons that show
significant differences after FDR corrections are presented here. (a) Spatial maps displaying significant differences between healthy subjects and patients
with SZ. Blue and red colors represent lower and higher associations of regions to the networks in patients with SZ relative to healthy subjects, respectively.
Yellow and green colors indicate lower and higher coupling variability, that is, variation over timemeasured by the L1 norm distance, in patients relative to
healthy subjects. Networks are separated with solid white colors, while different types of analyses including static functional connectivity, coupling

variability (L1 norm distance), and spatial states are separated by dashed white color lines. (b) Summary of voxel-wise comparisons of spatial states. The
t-values indicate the degree of statistical differences between patients with SZ vs. healthy subjects. Cold and hot colors show decreased and increased
association (network coupling) in patients with SZ relative to healthy subjects, respectively. The Y-axis includes the list of the spatial states of the networks
with significant differences between the two groups. The regions that show significant differences in a given spatial state were identified to be part of
(i.e., assigned to) different brain networks in static analysis. The X-axis indicates the static network labeling of the regions that show significant differences in
state analysis. For instance, the cell labeled with “†” represents the voxels that show a significant difference with reduced dynamic network coupling in
patients with SZ (t-value) in State 1 of the language network (Y-axis). These voxels are assigned to (labeled as) the primary visual network in the static
analysis (X-axis) [Color figure can be viewed at wileyonlinelibrary.com]

IRAJI ET AL. 3067

http://wileyonlinelibrary.com


can also be seen in static analyses if we apply less restrictive criterion

that is, using smaller cluster size threshold (Supporting Information

S4). Previous studies suggest these networks and associated areas are

affected in patients with SZ (Baker et al., 2014; Calhoun, Eichele, &

Pearlson, 2009; Garrity et al., 2007; Jafri, Pearlson, Stevens, & Cal-

houn, 2008; Zeng et al., 2018), which indicates the ability of the

approach to both detect known patterns of alterations and also iden-

tify novel patterns of patient-based alterations.

It is important to highlight some of the regions within a given net-

work that show differences in the state analysis were not recognized

as being part of the same network in the static analysis. In other

words, Region w is assigned to the Network j in the static analysis;

however, the dynamic analysis reveals that Region w is part of Net-

work i at State k and displays a significant difference between healthy

subjects and patients with SZ in State k of Network i. Figure 5b repre-

sents a summary of spatial state voxel-wise comparisons and their

static labeling. The Y-axis includes the spatial states of the networks

illustrating significant differences between healthy subjects and

patients with SZ. The X-axis indicates the static network assignment

of the regions that show significant differences. For instance, the lin-

gual gyrus is assigned to primary visual network in static analysis, but

it is also part of (associated with) the language domain at State 1. This

region shows a reduction in its association with State 1 of the lan-

guage domain in patients with SZ. This emphasizes the advantage of

capturing dynamic information about network integration.

While the spatial states of brain networks provide important details

of their spatial dynamic, their temporal profiles provide further informa-

tion regarding the temporal dynamic nature of brain networks. Statistical

analyses of mean dwell time and fraction time showed statistically signifi-

cant differences between patients with SZ and healthy subjects across all

networks after FDR correction (Figure 6). In patients with SZ, networks

tend to spend more time in spatial states which have high correlations,

negative or positive, with sensorimotor regions, particularly within pri-

mary visual areas. They include State 1 of the right frontoparietal

network, State 3 of the primary visual network, State 1 of the

somatomotor network, State 2 of the subcortical network, State 2 of

the default mode network, State 2 of the cerebellar network, State 1 of

the salience network, State 1 of the left frontoparietal network, State

2 of the attention network, and State 1 of the language network.

3.3 | Spatial variation evaluation

3.3.1 | Coupling variability map

Brain networks are spatially fluid, and this spatiotemporal dynamism

can be captured and analyzed by calculating coupling variability maps

over time. Figure 7 shows variations in the dynamic coupling of asso-

ciated voxels to a given network over time. Green represents coupling

variability, indicating variations in dynamic coupling of each voxel to a

given network over time. Red represents static functional connectivity

strength. For instance, our results show the PCC that is always associ-

ated with the default mode has lower variation over time. However,

the thalamus and frontal areas reveal higher variations over time. Eval-

uating variation in regions' association to brain networks can provide

further information about their roles in brain networks. Performing

voxel-wise comparisons of coupling variability maps reveal significant

differences between healthy subjects and patients with SZ in cerebel-

lar, subcortical, language, auditory, and primary and secondary visual

networks (Figure 5a). Thus, we observe higher coupling variability, in

addition to lower network coupling strength, among patients with

SZ. Collectively, these results suggest both coupling strength and vari-

ability are altered in patients with SZ, but the implications of these

factors on the SZ phenotype must be explored in future research.

3.3.2 | Spatiotemporal transition matrix

While voxel-wise analysis is important to assess the spatial variations of

brain networks, the spatiotemporal transition matrix can quantify and

summarize dynamic spatiotemporal properties of individual brain net-

works. While the variability map captures the overall variations of the

functional coupling over time, the spatiotemporal transition matrix

FIGURE 6 The ability of dynamic temporal indices calculated from spatial states to distinguish different cohorts. Two indices including fractional

time and mean dwell time were calculated for spatial states of brain networks and compared between healthy subjects and patients with
SZ. Statistically significant differences after FDR correction for multiple comparisons were observed between patients with SZ and healthy
subjects. The results suggest the ability of the approach to detect patient-based alterations [Color figure can be viewed at wileyonlinelibrary.com]
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provides the details of how these time-varying properties occur. Because

of the smoothing effect of the sliding window, the spatiotemporal

dynamic properties become easier to distinguish as the interval value

increases. However, the pattern of transitions is consistent across interval

values (See examples in Supporting Information S5). In Figure 8, we pre-

sent the findings for the interval value of 30 (the length of the interval =

30 × TR = 60 s), which is the amount of transitions between two win-

dows with almost no overlap (Figure 8a). Evaluating the spatiotemporal

dynamic properties allows us to detect changes in brain networks such as

the default mode which are not detected via a static analyses, as well as

in the networks that do show differences in a static analysis. Performing

statistical comparisons on the elements of the spatiotemporal transition

matrix demonstrate statistically significant differences between healthy

subjects and patients with SZ (Figure 8b). Patients with SZ have higher

transitions (greater percentages of transitions between windows) in

higher bins, that is, bins with higher dynamic coupling values, and healthy

subjects have higher transitions in lower bins (lower dynamic coupling

values), with the exception of the default mode, which shows the oppo-

site pattern. Significant differences were observed between healthy sub-

jects and patients with SZ in all networks except the left and right

frontoparietal networks. Examples of the comparisons for all possible

interval values for multiple networks are included in Supporting Informa-

tion S6, which display similar patterns for different interval values. The

spatiotemporal transition matrix can further be utilized to extract abstract

global measures to summarize the dynamic properties of each network.

For instance, evaluating spatiotemporal uniformity using the energy index

FIGURE 7 Additive color-code representation of networks' coupling variability. Green represents coupling variability estimated by the L1 norm

distance of variations in the membership (pairwise correlation) of each voxel to a given network over time. Red represents static functional
connectivity strength. Thus, yellow represents the regions with both high coupling variability over time and static strength. The figure indicates
extensive variations in spatial patterns of brain networks. Previous work typically ignores levels of variability and the degree to which a voxel

contributes to a given network over time, which is captured using this method [Color figure can be viewed at wileyonlinelibrary.com]
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shows a significant difference between the two groups, specifically, heal-

thy subjects demonstrated higher spatiotemporal uniformity (i.e., lower

energy index) compared to SZ patients (Figure 8c).

Evaluating the relationship between CMINDS and the energy

indices displays significant correlations between the energy index of

the subcortical domain from the imaging data and attention/vigilance

CMINDS domain in the healthy subjects (ρ = −0.27; p < 0.0011,

FDR = 0.049) but not patients with SZ (ρ = 0.12; p < 0.1561, FDR =

0.962). Furthermore, the group difference of the correlation between

the energy index of the subcortical domain from the imaging data and

Attention/Vigilance CMINDS domain approached statistical signifi-

cance (p < 0.0012, FDR = 0.059).

4 | DISCUSSION

Static analysis of fMRI data (i.e., computing correlations based on all

timepoints) has provided important information about the brain;

FIGURE 8 Examples of spatiotemporal transition matrices and statistical analysis. (a) The average spatiotemporal transition across all subjects.

The spatiotemporal transition matrix for each network summarizes the variation of the network's dCMs (expressed as a correlation between
0 and 1) by discretizing the dynamic coupling values (correlations) into 10 bins. Warm colors represent the percentage of the transition compared
to the total number of transitions between every two windows with 60 s distance. For instance, if the number of transitions were uniform, the
value of each array would be 1% because there are 100 arrays in the transition matrix. (b) t-statistics for group comparisons by diagnosis. Only
comparisons which show significant differences after multiple comparison corrections are presented. Blue (cold) and red (hot) colors represent
lower and higher transition values in patients with SZ compared to healthy subjects, respectively. (c) Energy index comparison, with greater
spatiotemporal uniformity toward the center of the chart. The energy index was measured for the spatiotemporal transition matrix and compared

between healthy subjects and patients with SZ. Blue and red colors represent healthy subjects and patients with SZ, respectively. Green asterisks
indicate the statistical significant differences between the two groups after multiple comparisons correction using a %5 FDR [Color figure can be
viewed at wileyonlinelibrary.com]
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however, the assumption that resting brain activity can be represen-

ted by static activity across time is a gross oversimplification which

may obscure the true dynamic nature of the brain. The recent findings

reveal the ability of fMRI to capture time-varying information about

brain connectivity; however, these studies mainly overlook the spatial

aspect of brain dynamics. Here, we propose a spatial chronnectome

approach which examines the variations in the spatiotemporal cou-

pling of networks at the voxel level. The findings of our study identify

spatially fluid behaviors of inter- and intranetwork brain relationships,

which have the potential to quantify dynamic interplay between infor-

mation segregation and integration of functional connections across

the brain. Our approach shows that brain networks evolve spatially

over time by capturing spatiotemporal variations within brain net-

works. For instance, our approach identified variability in the brain

network membership of a given brain region over time.

For discussion purposes, regions associated with a given brain

network can be divided into two categories. The first includes regions

which are repeatedly or occasionally reported to be parts of a given

network in static analysis. The second category contains brain regions

known to be parts of other networks in static analyses based on previ-

ous research. Findings related to the first category may explain incon-

sistent observations regarding the spatial patterns of brain networks.

These findings argue that the spatial chronnectome (the temporal vari-

ations of the coupling patterns of brain networks) could reflect incon-

sistencies in the spatial patterns of brain networks and the variability

in brain regions' memberships which are obscured in the signal aver-

aging used in static analyses. For example, the thalamus and frontal

regions show high variations in their associations to the default mode,

even dissociating from the default mode at particular times. The PCC,

however, shows a more robust and constant association to the default

mode over time, which may reflect its role as the central hub (core) of

the default mode. The small amount of variation/variability of the

PCC association with the default mode suggests that the cores of

brain networks have smaller variations in their dynamic couplings to

the associated networks over time. Categorizing regions based on

their time-varying associations with brain networks, and evaluating

the multifactorial roles and relationship between them may provide

new information about the interaction within and between networks.

It is worth mentioning that there is both a high-level of similarity

and major differences between the spatial states and the interdigitated

networks observed in previous single-subject analysis (Braga & Buckner,

2017) which can be seen, in our opinion, as an alternative interpretation

for the observed inconsistency in the spatial patterns of brain networks.

The concept of the spatial chronnectome within brain networks does

not exclude the existence of a set of parallel networks within each

large-scale network, as these also can be identified via brain dynamic

analysis. Because a brain region's association to a given large-scale net-

work varies over the time, the associated parallel networks can be cap-

tured using the time points during which they contribute to the

dominant patterns within the given large-scale networks.

The second category highlights that brain networks are not iso-

lated and exhibit significant cross talk. Regions in different networks

join and dissociate from other networks over time. This pattern of

integration and segregation occurs across various regions and all

investigated networks. These findings reflect an extension of the

classical views of information processing in the brain based on static

functional connectivity analyses by providing novel metrics of tran-

sient coupling. This approach may have the potential to detect new

information about the functional activity of brain regions. For exam-

ple, the primary visual area, in addition to its role in the visual net-

work, is transiently associated (coupled) with multiple networks which

do not typically include visual areas. In our analysis, the primary visual

area demonstrates significant positive or negative associations to at

least one state of all identified brain networks, suggesting it has a

major role in network cross talk. These significant associations may

suggest that the primary visual area has significant contribution to

brain activities in addition to its role of receiving and delivering visual

information from retinal input. There is significant evidence to support

the potential role of the primary visual area in other brain functions.

While the primary visual area receives most of the retinal input (90%;

Sincich, Park, Wohlgemuth, & Horton, 2004), neuronal tracing and

neuronal recording investigations demonstrated feedback connections

between the primary visual area and many cortical areas (Bullier,

Hupe, James, & Girard, 2001; Felleman & Van Essen, 1991; Hupe

et al., 2001). For instance, the primary visual area receives information

from a wide range of sensory and nonsensory cortices such as the pri-

mary auditory, parietal, and frontal cortices (Markov et al., 2011).

Moreover, transcranial magnetic stimulation (TMS) interference on

the primary visual area introduced impairments to working memory

processing (van de Ven, Jacobs, & Sack, 2012). However, the classic

view of the primary visual cortex can be well studied by fMRI because

fMRI can detect changes associated with higher cognitive function

and indirect functional connectivity. fMRI research provides the strik-

ing evidence that the primary visual cortex is involved in higher

cognitive functions (Bressler, Fortenbaugh, Robertson, & Silver, 2013;

Harrison & Tong, 2009; Lars, 2010; Muckli & Petro, 2013; Roelfsema &

de Lange, 2016). While our findings are intriguing, it is worth highlight-

ing that they only suggest significant dynamic interplay in temporal

coupling measured by the BOLD signal. Further investigation and direct

neural activity measurements are needed to establish a concrete under-

standing of functions for primary visual cortex outside of receiving and

delivering visual information from the retinal input. Further validation

studies are needed to confirm and extend this work. To conclude, vari-

ability in a given region's association to a given brain network highlights

a dynamic interplay between segregation and integration, providing a

new perspective on the function of well-known brain areas. Our results

suggest evaluating time-varying properties of brain network interplay is

thus a vital issue for future research to understand the multifactorial

role of brain networks.

Studying patterns of brain networks using spatial states also

reveals interesting findings regarding anticorrelative patterns of brain

networks. Similar to our finding that different brain regions are

involved with different brain networks over time, various ant-

icorrelative relationships were detected at different time points. Using

a spatial state analysis, the default mode shows anticorrelated rela-

tionships with sensorimotor and salience networks at States 2 and

4, respectively, but the anticorrelated pattern attenuates in States

1 and 3. Dynamic anticorrelative patterns for regions associated with

the default mode have been previously reported which further sup-

port our findings (Chang & Glover, 2010; Yang, Craddock, Margulies,
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Yan, & Milham, 2014). Our findings suggest dynamic anticorrelative

relationships are not limited to the default mode. We identified a new

set of anticorrelated patterns for various networks and illustrate that

anticorrelative relationships occur at specific moments rather than

persisting over time. This finding suggests the need for new investiga-

tions and potential revision to proposed causality or modulatory rela-

tionships between brain networks such as between the salience and

default mode.

Studying dCMs of brain networks also accentuates the role of the

cerebellum in different networks. The cerebellum has widespread poly-

synaptic connections to the cerebral cortex which all pass through the

thalamus (Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011; Kelly &

Strick, 2003; Krienen & Buckner, 2009; Strick, Dum, & Fiez, 2009). This

phenomenon can explain the role of the cerebellum in a wide range of

motor and cognitive functions (Lars, 2010; Muckli & Petro, 2013;

Stoodley & Schmahmann, 2009). While the polysynaptic connections

make reconstructing the topography of cerebro-cerebellar connections

by anatomical methods relatively difficult, functional connectivity is

an indirect effective way to map cerebro-cerebellar connections

(Krienen & Buckner, 2009; O'Reilly, Beckmann, Tomassini, Ramnani, &

Johansen-Berg, 2010). Our observations, similar to previous fMRI stud-

ies, demonstrate stronger contralateral connectivity patterns between

the cerebellum and cerebral cortex compared to ipsilateral connectivity

patterns, which is consistent with known contralateral polysynaptic

connections between the cerebral cortex and the cerebellum (Buckner

et al., 2011; Kelly & Strick, 2003;Krienen & Buckner, 2009 ; O'Reilly

et al., 2010). In general, previous rsfMRI studies agree on the relation-

ship of the cerebellum with the thalamus, motor area, and regions asso-

ciated with the frontoparietal networks (Krienen & Buckner, 2009;

O'Reilly et al., 2010). Our dynamic network analysis corroborates these

results.

Despite the unique ability of rsfMRI to measure cerebro-

cerebellar connectivity, the role of the cerebellum in brain network

analysis is often overlooked. This is in part because it is not usually

recognized as an integral part of the connectome, and its static func-

tional connectivity to brain networks is typically weaker compared to

cortical connectivity limiting the visibility of the cerebellum due to lim-

itations in statistical power. In earlier work, Buckner and his colleagues

estimated specific cerebellar topography patterns for cerebral net-

works by assigning each cerebellar voxel to a network with the

highest correlation values (Buckner et al., 2011). Although their

approach had limitations preventing concrete conclusions, their work

provides a striking result regarding different functional connectivity

patterns across the cerebellum. Using a dynamic analysis, our findings

suggest the evaluation of time-varying contributions of cerebellar

regions to different brain networks conjointly can provide a great deal

of knowledge about the role of the cerebellum in functional networks.

Our analysis showed positive associations between cerebellar regions

and the subcortical network, which may be explained by the relay role

of the thalamus in cerebro-cerebellar connections. We also observed

positive associations between cerebellar regions and both the left

and right frontoparietal networks that relate to fronto-cerebellar cir-

cuitry (Kelly & Strick, 2003; Krienen & Buckner, 2009; O'Reilly et al.,

2010). For the first time, we observe negative associations between

cerebellar regions and certain sensorimotor networks. These include

somatomotor, auditory, and visual networks. This negative association

could be related to modulating the connection between the thalamus

and cortex in cerebellar thalamic cortical circuits.

It is also worth mentioning that functional relationship between

the cerebellum and somatosensory and motor/premotor cortex has

been frequently reported, but there is some disagreement over the

relationship between the cerebellum and both the primary auditory

and visual cortices (Krienen & Buckner, 2009; O'Reilly et al., 2010).

O'Reilly et al. (2010) suggested the relationship between the cerebel-

lum and primary auditory and visual areas probably reflects the impor-

tance of visual and auditory information in motor control which was

demonstrated in earlier experiments. Interestingly, the motor area is

positively associated with the states of the primary visual and auditory

networks that have a negative association with the cerebellum. This

also emphasizes the importance of our finding that different networks

have cross talk.

While the goal of this work is to introduce an approach to measure

the spatial chronnectome, we also evaluate the diagnostic utility of

spatial chronnectome by examining the ability of several spatial chro-

nnectome features to differentiate between healthy subjects and

patients with SZ. For this purpose, statistical comparisons were per-

formed, and results were corrected for multiple comparisons. To have a

fair assessment of each feature's ability to distinguish between two

groups, a 5% FDR correction (Benjamini & Hochberg, 1995) was applied

based on the total number of the comparisons performed for each fea-

ture. Results demonstrate similar patterns of alterations for static and

spatial chronnectome analyses, but the spatial chronnectome analyses

can capture statistically significant alterations within patient groups mis-

sed by a static analyses. Furthermore, the results highlight that the signif-

icant differences between healthy controls and patients with SZ are

highly similar and consistent across spatial chronnectome features, fur-

ther supporting the observed findings. Our results are also consistent

with and extend findings from previous studies (Baker et al., 2014; Cal-

houn et al., 2009; Damaraju et al., 2014; Erdeniz, Serin, Ibadi, & Tas,

2017; Garrity et al., 2007; Gavrilescu et al., 2010; Jafri et al., 2008;

Skudlarski et al., 2010; Vercammen, Knegtering, den Boer, Liemburg, &

Aleman, 2010; Zeng et al., 2018).

Our approach emphasizes distinct features in both the spatial and

temporal realms. Regarding spatial patterns of brain networks, the spa-

tial chronnectome procedure allows us to detect atypical brain patterns

in patients with SZ which are not detected with a static analysis includ-

ing statistical alteration in dCMs. Moreover, spatial chronnectome ana-

lyses detect important variations in temporally fluid patterns. With

respect to temporal dynamic properties, preliminary investigations

reveal significant differences in both mean dwell time and fraction time

between patients with SZ and healthy subjects. Additional independent

studies will be needed to comprehensively investigate the temporal

properties of brain networks through networks' state and meta-state

indices. Furthermore, our approach provides a unique opportunity to

investigate the variations of networks' couplings which is not feasible in

static analysis. In general, we observe higher coupling variability and

lower network coupling strengths among patients with SZ. This is

aligned with the dysconnectivity or disconnection hypothesis of SZ

(Friston, 1998). Reduced functional connectivity has been consistently

reported in patients with SZ (Damaraju et al., 2014; Erdeniz et al., 2017;
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Gavrilescu et al., 2010; Skudlarski et al., 2010; Vercammen et al., 2010),

and higher fluctuations of brain connectivity within brain networks in

SZ could be related to the brain's effort to compensate for dys-

connectivity and/or unbalancing of brain circuitries (Cazorla, Kang, &

Kellendonk, 2015).

While the proposed approach can capture the spatial fluidity of

networks' couplings, new indices are also needed to quantify the spa-

tiotemporal patterns of individual brain networks. For this purpose, the

spatiotemporal transition matrix and associated features were intro-

duced to summarize the time-varying properties. Statistical compari-

sons between healthy subjects and patients with SZ reveal statistically

significant differences which were consistent across interval values.

With the exception of the default mode, the patterns of alterations are

similar across networks in which patients with SZ have higher transi-

tions in higher dynamic coupling values, while healthy subjects display

higher transitions in lower dynamic coupling values. The opposite pat-

tern found in the default mode could be related to its activity pattern

in relation to other networks and mental and physical activities. It is

known that static functional connectivity within the default mode

decreases as the static functional connectivity of the other networks

increases. For instance, during a task, the connectivity value within the

default mode reduces. Thus, it is expected that variations in lower

dynamic coupling values of the default mode are associated with varia-

tions in higher dynamic coupling of other networks. Significant differ-

ences between healthy subjects and patients with SZ were also

observed in networks' spatiotemporal uniformity. Future work should

also examine how spatiotemporal dynamic information can improve

classification accuracy of patients into diagnostic categories. More

importantly, significant associations were detected between spatiotem-

poral uniformity indices obtained from the spatiotemporal transition

matrix and attention/vigilance cognitive domains of CMINDS. Previ-

ously, van Erp et al. (2015), found patients with SZ display significantly

large impairments in the speed of processing and the attention/vigi-

lance of CMINDS compared to healthy subjects, more so than other

CMINDS domains. As such, our findings that there is a strong differ-

ence in the links between subcortical and CMINDS attention/vigilance

domain may reflect a true disruption in subcortical domains relative to

attention/vigilance in patients with SZ, but lack the statistical power

for confirmation. Future work is needed to identify the nature of the

relationship between spatiotemporal indices and neuropsychological

variables in both SZ and other patient groups, but our preliminary

results demonstrate promising relationships between the spatial

chronnectome metrics and cognitive scores.

4.1 | Limitations and future directions

In this study, we selected specific values for different steps of the pro-

posed pipeline based on existing knowledge from previous studies;

although there are many possible avenues for the pipeline. For

instance, the proposed approach uses a sliding-window size of 60 s to

follow recommendations from previous research, which suggests that

data lengths between 30 and 60 s is a good choice to successfully

capture dynamic properties (Allen et al., 2014; Preti et al., 2017) and

estimate cognitive states (Shirer et al., 2012). The impact of various

window lengths on spatially dynamic properties should be evaluated

in future studies. Furthermore, while the sliding-window approach

(Allen et al., 2014; Damaraju et al., 2014; Sakoglu et al., 2010) is the

most commonly used approach to study time-varying properties of

brain networks, we highlight the importance of capturing the dynamic

information of BOLD signals to its full potential, that is, up to the max-

imum frequency that exists in the data (Trapp et al., 2018; Vidaurre

et al., 2017; Yaesoubi et al., 2018). Therefore, the approach should be

improved to capture the full amount of time-varying information in

the data. The other drawback of this work is the spatial resolution of

the data, which limits the spatially dynamic specificity. The spatial res-

olution has a more severe impact when brain regions with very dis-

tinct functional roles, like sub-regions of the cerebellum, are located in

close proximity to one another. We applied a minimum level of spatial

smoothing, that is, FWHM smaller than the width of two voxels, to

preserve spatial specificity while reducing the effect of noise; how-

ever, data with higher spatial and temporal resolutions can provide

better insight into spatiotemporal variations of brain functional orga-

nizations. The use of surface-based registrations for high spatial reso-

lution data instead of volume-based registration could potentially

enhance functional specialization on the cortex.

In this study, we investigated the spatiotemporal variations of the

brain networks, that is, spatially independent functional organizations;

however, another set of functional organizations can be obtained by

assuming temporal dependency (Calhoun, Adali, Pearlson, & Pekar,

2001b; Smith et al., 2012). Temporal independence may be better

suited for the proposed approach, as it does not assume spatial

stationarity in the first step of the analysis. In other words, using spa-

tially independent networks carries the same contradictory assump-

tion regarding the spatial maps as spatio-temporal (dual) regression

analysis (Erhardt et al., 2011). Thus, future studies with higher tempo-

ral resolution should be used to investigate the spatial chronnectome

of temporally independent networks. Finally, the proposed approach

is the first step toward enhancing our understanding of spatiotempo-

ral variations of brain functional organizations at the voxel level. Fur-

ther work is necessarily to continue to validate and extend this work

to investigate the spatial chronnectome of functional organizations

across different cohorts (e.g., patients and healthy subjects).

It should be highlighted that our intriguing findings and new dis-

coveries related to brain functional connectivity were only achieved

because our approach utilizes the spatial properties of brain dynamics.

While most dynamic literature uses fixed spatial nodes/network and

ignore the possibility of spatial variations and reconfigurations over

time, our approach provides space/time-varying information of indi-

vidual brain networks at the voxel level. As a result, we were able to

observe new information which is invisible to previous dynamic analy-

sis approaches. For instance, our findings demonstrate that time-

varying properties are not similar across regions of a given network,

and this can only be detected if we utilize spatial dynamic properties.

The spatial dynamics also allow us to see how brain regions change

their contributions to different networks over time and provide the

spatially fluid perspective of functional connectivity variations over

time. In short, our approach allows every voxel to present its dynamic

properties rather than being limited to the overall dynamic properties

of the predefined spatial node that it was assigned to. This is particu-

larly important to properly capture dynamic interplay between
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functional segregation and integration. Our proposed approach also

allows measuring the simultaneous contributions of each brain region

to several networks at any given time, which contrasts to previous

dynamic works that assign each region to one network at any given

time point or across the entire time series. In other words, our

approach is not limited by a priori assumption of regional associations

to networks. Another direct benefit of utilizing spatial information is

identifying the exact location (regions) of the alterations. For

instance, Damaraju et al. (2014) identified similar patterns of alter-

ations in patients with SZ using whole brain dynamic temporal cou-

pling among ICNs . However, they were unable to identify the exact

locations of the regions that contribute to those alterations because

they did not take advantage of spatial information. On the other

hand, our approach allows us to identify the disrupted regions asso-

ciated with each brain network. Interestingly, many of the atypical

regions would not be detected if we used prior knowledge to assign

regions to networks.

5 | CONCLUSION

The proposed approach provides a new framework to study the spa-

tial chronnectome of brain functional organizations. Despite the limi-

tations of our analysis/acquisition approach, such as spatial and

temporal resolutions and sliding window restrictions, the findings sug-

gest spatiotemporal variations are present within brain networks.

Major findings of the study are (a) highlighting spatially fluid behavior

of intra- and internetwork relationships, underlying a dynamic inter-

play between segregation and integration of information; (b) providing

a potential explanation for a broad-spectrum of inconsistencies in

findings of static functional connectivity analyses; and (c) extracting

detailed information and nuanced alterations of brain networks which

would not be possible with a static analysis. Furthermore, new indices

are introduced to evaluate spatiotemporal variations in brain func-

tional organizations such as brain networks. Preliminary assessments

of the approach using healthy subjects and patients with SZ demon-

strate the approach may be able to obtain novel information of brain

function and detect alterations among patients with SZ. Further inves-

tigation should evaluate the ability and validity of using the spatial

chronnectome to study spatiotemporal variations of brain functional

organizations.
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