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In the past, the semantic issues raised by the non-monotonic nature of aggregates often pre-

vented their use in the recursive statements of logic programs and deductive databases. However,

the recently introduced notion of Pre-Mappability (PreM) has shown that, in key applications of

interest, aggregates can be used in recursion to optimize the perfect-model semantics of aggregate-

stratified programs. Therefore, we can preserve the declarative formal semantics of such programs,

while achieving a highly efficient operational semantics that is conducive to scalable implementa-

tions on parallel and distributed platforms.

In this work, we show that using PreM, a wide spectrum of classical algorithms, ranging from

graph analytics and dynamic programming based optimization problems to data mining, machine

learning and online streaming applications can be concisely expressed in declarative languages by

using aggregates in recursion. We present a concise analysis of this very general property and

characterize its different manifestations for different constraints and rules.

Next, we prove that PreM-optimized plans are easily parallelizable and produce the same

results as the single executor programs. Thus, PreM can be trivially assimilated into the data-

parallel computation plans of different distributed systems, irrespective of whether these follow

bulk synchronous parallel (BSP) or asynchronous computing models. This makes possible many

advanced BigData applications to be now expressed declaratively in logic-based languages, includ-
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ing Datalog, Prolog, and even SQL, while enabling their execution with superior performance and

scalability as compared to other specialized systems. Furthermore, we show that under PreM non-

linear recursive queries can be evaluated using a hybrid stale synchronous parallel (SSP) model

with relaxed synchronization on distributed environments. We present empirical evidence of its

benefits. We also compare the usability, expressivity and performance of PreM-optimized queries

with queries written in quasi-declarative programming methodologies inspired by procedural lan-

guages like XY-stratification to showcase the different trade-offs and ramifications associated with

each.

Lastly, we present robust online optimization techniques using two popular case studies, namely

online lossless frequent pattern mining and online decision tree construction, to show how compact

representations and statistical approximations can deliver superior performances in real-time for

several streaming data mining and machine learning applications.
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CHAPTER 1

Introduction

Prolog’s success with advanced applications demonstrated the ability of declarative languages to

express powerful algorithms as “logic + control.” Then, after observing that in relational database

management systems, “control” and optimization are provided by the system implicitly, Datalog

researchers sought the ability to express powerful applications using only declarative logic-based

constructs. After initial successes, which e.g., led to the introduction of recursive queries in SQL,

Datalog encountered two major obstacles as data analytics grew increasingly complex: (i) lack of

expressive power at the language level, and (ii) lack of scalability and performance at the system

level.

These problems became clear with the rise of more complex descriptive and predictive Big-

Data analytics. For instance, the in-depth study of data mining algorithms [STA00] carried out

in the late 90s by the IBM DB2 team concluded that the best way to carry out advanced pre-

dictive analytics, beyond simple classification models like Naive Bayesian classifiers, is to load

the data from an external database into main memory and then write an efficient implementation

in a procedural language to mine the data from the cache. However, recent advances in archi-

tectures supporting in-memory parallel and distributed computing have led to the renaissance of

powerful declarative-language based systems like LogicBlox [ACG15], BigDatalog [SYI16], So-

ciaLite [SPS13], BigDatalog-MC [YSZ17], Myria [WBH15] and RASQL [GWM19] that can scale

efficiently on multi-core machines as well as on distributed clusters. In fact, some of these general-

purpose systems like BigDatalog and RASQL have outperformed commercial graph engines like
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GraphX for many classical graph analytic tasks in terms of performance and scalability. This has

brought the focus back on to the first challenge (i) – how to express the wide spectrum of predictive

and prescriptive analytics in declarative query languages. This problem has assumed great signifi-

cance today with the revolution of machine learning driven data analytics, since “in-database ana-

lytics” can save data scientists considerable time and effort, which is otherwise repeatedly spent in

extracting features from databases via multiple joins, aggregations and projections and then export-

ing the dataset for use in external learning tools to generate the desired analytics [ANN18]. Modern

researchers have worked toward this “in-database analytics” solution by writing user-defined func-

tions in procedural languages or using other low-level system interfaces, which the query engines

can then import [FKR12]. However this approach raises three fundamental challenges:

• Productivity and Developability: Writing efficient implementations of advanced data ana-

lytic applications (or even modifying them) using low-level system APIs require data science

knowledge as well as system engineering skills. This can strongly hinder the productivity of

data scientists and thus the development of these advanced applications.

• Portability: User-defined functions written in one system-level API may not be directly

portable to other systems where the architecture and underlying optimizations differ.

• Optimization: Here, the application developer is entrusted with the responsibility to write

an optimal user-defined function, which is contrary to the work and vision of the database

community in the 90s [IM96] that aspired for a high-level declarative language like SQL

supported by implicit query optimization techniques.

Moving away from static databases, these aforementioned problems also existed and com-

pounded for data stream systems. In fact, the rise of the Internet of Things (IoT) and the recent

focus on a gamut of ‘Smart City’ initiatives world-wide have pushed for new advances in data

stream systems to (1) support complex ML/AI-powered data analytics and evolving graph appli-

cations as continuous queries, and (2) deliver fast and scalable processing on large data streams.

Unfortunately current continuous query languages (CQL) lack the features and constructs needed
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to support the more advanced applications. For example recursive queries are now part of SQL,

Datalog, and other query languages, but they are not supported by most CQLs, a fact that caused

a significant loss of expressive power, which is further aggravated by the limitation that only non-

blocking queries can be supported in data stream systems.

All these challenges can be largely addressed, if we have a powerful language-driven unified

framework that can achieve scalability through parallelization independent of the underlying archi-

tecture, and where users can express even complex analytics using concise high-level declarative

queries, which can be easily ported across multiple platforms. To that effect, in this thesis, we

attack this problem at three different fronts and make the following contributions:

Theoretical and Semantic Level. Supporting aggregates within recursion in logic programs is

an old and difficult problem primarily due to the non-monotonic nature of aggregates. We address

this by introducing the notion of Pre-Mappability (PreM) and show that, in many applications,

aggregates can be used inside recursion to optimize the perfect-model semantics of aggregate-

stratified programs. This allows us to combine the best of both worlds: we can preserve the

declarative formal semantics of such logic programs and yet achieve a highly efficient operational

semantics at the same time. Additionally, we show that with PreM, a wide spectrum of classical

algorithms of practical interest, ranging from graph analytics and dynamic programming based

optimization problems to data mining and machine learning applications, can be succinctly written

in declarative languages by using aggregates in recursion. We further illustrate how a data scientist

or an application developer can very easily verify the semantic correctness of such declarative

programs, which provide these complex ML/AI-powered data analytic solutions. Furthermore, we

also demonstrate using different case studies, how the semantics of PreM allows the declarative

specification of many complex continuous queries that can then be efficiently executed over data

streams.

Performance and Ease-of-Use. We show that PreM-optimized declarative programs offer bet-

ter usability as compared to locally stratified programs (quasi-declarative) and are more easily

conducive to scalable implementations on parallel and distributed platforms. In fact, PreM can

3



be easily incorporated into the data-parallel computation plans of different distributed systems, ir-

respective of their synchronization models. In addition, we show that non-linear recursive queries

can be evaluated using a hybrid stale synchronous parallel (SSP) model on distributed environ-

ments. We experimentally show that recursive query evaluation with PreM under this relaxed

synchronization model can offer significant performance gains.

Robust Online Optimization Techniques. Streaming computations are intrinsically complex in

nature as they need to be executed in a non-blocking fashion (without seeing the end of the data)

and in real time. Thus streaming algorithms require use of lightweight compact data structures,

which incur low storage overhead and can be easily maintained over time as new data streams

in. In addition, it is also desirable to exploit statistical approximation techniques that can offer

early response with reasonably high confidence and are also amenable to parallelization with high

resource utilization. In particular, we present two case studies to highlight this: Firstly, we use the

classic problem of frequent itemset mining to empirically show how using a compact representation

can reduce query response time by decreasing maintenance cost of the structure as well as the

overall mining time. Secondly, we use the example of online decision tree models (Hoeffding

Trees) to demonstrate how non-parametric bootstrap can be applied at scale with respect to data

streams to maximize resource utilization on multi-core machines and considerably build online

models faster.

The rest of this thesis is organized as follows. In Chapter 2, we formally define PreM and

discuss its important properties. Thereafter, we show how PreM is easily amenable to paralleliza-

tion and how it offers interesting opportunities for better scalability under relaxed synchronization

settings on a distributed environment. Then, in Chapter 3, we analyze the usability, expressivity

power and performance of PreM-optimized queries with queries written in quasi-declarative pro-

gramming methodologies. Next, we describe in Chapter 4 the host of BigData applications that

can be expressed declaratively with PreM. Chapters 5 and 6 present robust online optimization

strategies with respect to two classic problems: frequent itemset mining and online decision tree

construction. Finally, we conclude and discuss future research directions originating from this

work in Chapter 7.
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CHAPTER 2

Declarative Recursive Computation with PreM

A large class of traditional graph and data mining algorithms can be concisely expressed in Data-

log, and other Logic-based languages, once aggregates are allowed in recursion. However, the use

of non-monotonic aggregates in recursion raises difficult semantic issues. We propose a property

called Pre-Mappability (PreM) that solves these semantic issues for most BigData algorithms.

In fact, PreM assures that for a program with aggregates in recursion there is an equivalent

aggregate-stratified program. In this chapter, we further show that, by bringing together the formal

abstract semantics of stratified programs with the efficient operational one of unstratified programs,

PreM can also facilitate and improve their parallel execution. We prove that PreM-optimized

lock-free and decomposable parallel semi-naive evaluations produce the same results as the single

executor programs. Thus, PreM can be assimilated into the data-parallel computation plans of dif-

ferent distributed systems, irrespective of whether these follow bulk synchronous parallel (BSP) or

asynchronous computing models. Moreover, PreM offers an interesting new opportunity for non-

linear recursive queries to be evaluated using a hybrid stale synchronous parallel (SSP) model on

distributed environments. We provide a formal correctness proof for the recursive query evaluation

with PreM under this relaxed synchronization model and also show the experimental evidence of

its benefits.
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2.1 Pre-Mappability

In this section we formally define Pre-Mappability (PreM) and present its properties [ZYD16],

[ZYI18]. In the remainder of this thesis, we will use Datalog queries as examples, where each rule

r has the following form with H representing the head atom, B1,...,Bn denoting the body atoms and

the commas separating the goals in the body stand for logical AND. Also, any variable appearing

only once in the rule is denoted by the “_” symbol.

r : H← B1,B2, ...,Bn.

Now, consider the Datalog query in Example 2.1 that computes the shortest path between all

pairs of vertices in a graph, given by the relation arc(X, Y, D), where D is the distance between

source node X and destination node Y. The min〈D〉 syntax in our example indicates min aggregate

on the cost variable D, while (X, Y) refer to the group-by arguments. This head notation for

aggregates directly follows from SQL-2 syntax, where cost argument for the aggregate consists of

one variable and group-by arguments can have zero or more variables. Rules r2.1.3 in the example

shows that the aggregate min is computed at a stratum higher than the recursive rule (r2.1.2).

Example 2.1. All Pairs Shortest Path

r2.1.1 : path(X,Y,D)← arc(X,Y,D).

r2.1.2 : path(X,Y,D)← path(X,Z,Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy.

r2.1.3 : shortestpath(X,Y,min〈D〉)← path(X,Y,D).

Incidentally, r2.1.3 can also be expressed with stratified negation as shown in rules r2.1.4 and

r2.1.5. This guarantees that the program has a perfect-model semantics, although an iterated fix-

point computation of it can be very inefficient and even non-terminating in presence of cycles.

r2.1.4 : shortestpath(X,Y,D)← path(X,Y,D),¬betterpath(X,Y,D).

r2.1.5 : betterpath(X,Y,D)← path(X,Y,D),path(X,Y,Dxy),Dxy< D.

PreM Application. The aforementioned inefficiency can be mitigated with PreM, if the min
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aggregate can be pushed inside the fixpoint computation, as shown in rules r2.2.1 and r2.2.2. The

following program under PreM has a stable model semantics and [CDI18] showed that this trans-

formation is indeed equivalence-preserving with an assured convergence to a minimal fixpoint

within a finite number of iterations. In other words, without PreM the shortest path in our ex-

ample (according to rule r2.1.3) is given by the subset of the minimal model (computed from rules

r2.1.1,r2.1.2) obtained after removing path atoms that did not satisfy the min cost constraint for

a given source-destination pair. However, with PreM, the transfer of min cost constraint inside

recursion results in an optimized program, where the fixpoint computation is performed more effi-

ciently, eventually achieving the same shortest path values (as those produced in the perfect model

of the earlier program) by simply copying the atoms from path under the name shortestpath

(rule r2.2.3) after the least fixpoint computation terminates.

r2.2.1 : path(X,Y,min〈D〉)← arc(X,Y,D).

r2.2.2 : path(X,Y,min〈D〉)← path(X,Z,Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy.

r2.2.3 : shortestpath(X,Y,D)← path(X,Y,D).

Formal Definition of PreM. For a given Datalog program, let P be the rules defining a (set of

mutually) recursive predicate(s) and T be the corresponding Immediate Consequence Operator

(ICO) defined over P. Then, a constraint γ is said to be PreM to T (and to P) when, for every

interpretation I of the program, we have γ(T (I)) = γ(T (γ(I))).

In Example 2.1, the final rule r2.1.3 imposes the constraint γ = (X,Y,min〈D〉) on I = path(X,Y,D)

(representing all possible paths) to eventually yield the shortest path between all pairs of nodes.

Thus, the aggregate-stratified program defined by rules r2.1.1− r2.1.3 is equivalent to γ(T (I)) in

the definition of PreM. On the other hand, with min aggregate pushed inside recursion, recursive

rules r2.2.1− r2.2.2 represent γ(T (γ(I))).

PreM Properties. We now discuss some important results about PreM from [ZYI17]. We refer

interested readers to our paper [ZYI17] for the detailed proofs. Let Tγ denote the constrained im-

mediate consequence operator, where constraint γ is applied after the ICO T , i.e., Tγ(I) = γ(T (I)).
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The following results hold when γ is PreM to a positive program P with ICO T :

(i). If I = T (I) is a fixpoint for T , then I′ = γ(I) is a fixpoint for Tγ(I), i.e., I′ = Tγ(I′).

(ii). For some integer n, if T ↑nγ ( /0) = T ↑n+1
γ ( /0), then T ↑nγ ( /0) = T ↑n+1

γ ( /0) is a minimal fixpoint for

Tγ and T ↑nγ ( /0) = γ(T ↑ω( /0)), where T ↑ω =
⋃

n≥1
T ↑n

PreM Provability. We can verify if PreM holds for a recursive rule by explicitly validating

γ(T (I)) = γ(T (γ(I))), i.e., Tγ(I) = Tγ(γ(I)) at every iteration of the fixpoint computation. To

simplify, this would indicate that we can verify if the min constraint can be pushed inside recursion

in rule r2.2.2 by inserting an additional goal is_min in the body of the rule as follows:

r′2.2.2 : path(X,Y,min〈D〉)← path(X,Z,Dxz), is_min((X,Z),Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy.

This additional goal in the body pre-applies the constraint γ on I, followed by the application

of Tγ operator, i.e., it expresses Tγ(γ(I)). Note, the is_min constraint is satisfied by Dxz, if it

is the minimum value seen yet in the fixpoint computation for the source-destination pair (X,

Z). It is also evident that any other distance value between (X, Z), which violates the is_min

constraint, will also not satisfy the min aggregate at the head of the rule, since the additional

goal minimizes the sum D for each Dzy. Thus, this new goal in the body does not alter the

ICO mapping defined by the original recursive rule, thereby proving γ is PreM in this example

program. More broadly speaking, these additional goals can be formally defined as “half functional

dependencies”, borrowing the terminology from classical database theory of Functional and Multi-

Valued Dependencies (FDs and MVDs). We next present the formal definition of half FD from

[ZYI18], which will be used later for our proofs.

Definition 2.1. (Half Functional Dependency). Let R(Ω) be a relation on a set of attributes Ω, X ⊂
Ω and A∈Ω−X. Considering the domain of A to be totally ordered, a tuple t ∈ R is said to satisfy

the min-constraint is_min((X),A) (denoted as X min
⇀ A), when R contains no tuple with the same

X-value and a smaller A-value. Similarly, a tuple t ∈ R satisfies a max-constraint is_max((X),A)

(denoted as X max
⇁ A) if R has no tuple with the same X-value and a larger A-value.
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For any min or max constraint to be PreM to a positive program P, the corresponding half FD

should hold for the relational view of the relevant recursive predicate across every interpretation I

of P, where a relational view for predicate q is defined as Rq = {(x1, ...,xn)|q(x1, ...,xn) ∈ I} for a

given I. [ZYI18] provides generic templates, based on Functional and Multi-valued Dependencies,

for identifying constraints that satisfy PreM.

PreM with Semi-Naive Evaluation. A naive fixpoint computation for a recursive query trivially

generates new atoms from the entire set of atoms available at the end of the last fixpoint iteration.

Semi-naive evaluation [SYI16] improves over this naive fixpoint computation with the aid of the

following enhancements:

1. At every iteration, track only the new atoms produced.

2. Rules are re-written into their differential versions, so that only new atoms are produced and

old atoms are never generated redundantly.

3. Ensure step (2) does not generate any duplicate atoms.

For programs where PreM can be applied, steps (1) and (2) remain identical. However, step

(3) is extended so that (i) new atoms produced may not be retained, if they do not satisfy the

constraint γ and (ii) existing atoms may get updated and thereafter tracked for the next iteration.

For example, new atoms produced from rule r2.2.2 are added to the working set and tracked only if

a new source-destination (X,Y) path is discovered. On the other hand, if the new path atom, thus

produced, has a smaller distance than the one in the working set, then the distance of the existing

path atom is updated to satisfy the min-constraint. However, if new path atoms are generated,

which have larger distances, then they are simply ignored. This understanding of PreM for semi-

naive evaluation leads to a case for Stale Synchronous Parallel (SSP) model, where significant

communication can be saved by condensing multiple updates into one. This is discussed in detail

later in Section 2.5.
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2.2 Motivation

The growing interest in Datalog-based declarative systems like LogicBlox [ACG15], BigData-

log [SYI16], SociaLite [SPS13], BigDatalog-MC [YSZ17] and Myria [WBH15] has brought to-

gether important advances on two fronts: (i) Firstly, Datalog, with support for aggregates in re-

cursion [MSZ13], has sufficient power to express succinctly declarative applications ranging from

complex graph queries to advanced data mining tasks, such as frequent pattern mining and deci-

sion tree induction [CDI18]. (ii) Secondly, modern architectures supporting in-memory parallel

and distributed computing can deliver scalability and performance for this new generation of Dat-

alog systems.

For example BigDatalog (bulk synchronous parallel processing on shared-nothing architec-

ture), BigDatalog-MC (lock-free parallel processing on shared-memory multicore architecture),

Myria (asynchronous processing on shared-nothing architecture) spearheaded the system-level

scheduling, planning and optimization for different parallel computing models. This line of work

was quite successful for Datalog, and also for recursive SQL queries that have borrowed this tech-

nology [GWM19]). Indeed, our recent general-purpose Datalog systems surpassed commercial

graph systems like GraphX on many classical graph queries in terms of performance and scalabil-

ity [SYI16].

Much of the theoretical groundwork contributing to the success of these parallel Datalog sys-

tems was laid out in the 90s. For example, in their foundation work [GST92] investigated par-

allel coordination-free (asynchronous) bottom-up evaluations of simple linear recursive programs

(without any aggregates). In fact, many recent works have pushed this idea forward under the

broader umbrella of CALM conjecture (Consistency And Logical Monotonicity) [ANV13] which

establishes that monotonic Datalog (Datalog without negation or aggregates) programs can be com-

puted in an eventually consistent, coordination-free manner [Ame14], [AKN15]. This line of work

led to the asynchronous data-parallel (for Myria) and lock-free evaluation plans for many of the

aforementioned systems (e.g. BigDatalog-MC). Simultaneously, another branch of research about

‘parallel correctness’ for simple non-recursive conjunctive queries [AGK17] focused on optimal
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data distribution policies for re-partitioning the initial data under Massively Parallel Communica-

tion model (MPC). However, notably, this theoretical groundwork left out programs using aggre-

gates in recursion, for which the existence of a formal semantics could not be guaranteed. But,

this situation has changed recently with the advent of the notion of Pre-Mappability (PreM) that

has made possible the use of aggregates in recursion to express efficiently a large range of applica-

tions (as shown later in Chapter 4). As discussed before, PreM enables the use of non-monotonic

aggregates and pre-mappable constraints inside recursion, while preserving the formal declarative

semantics of aggregate-stratified programs and guaranteeing their equivalence. This is very en-

couraging, since unlike more complex non-monotonic semantics (as discussed later in Chapter 3),

stratification is a syntactic condition that is easily checked by users (and compilers), who know

that the presence of a formal declarative semantics guarantees the portability of their applications

over multiple platforms. Naturally, we would like to examine the applicability of PreM under a

parallel and distributed setting and analyze its potential gains using the rich models of parallelism

previously proposed for Datalog and other logic systems.

In this chapter, therefore, we further examine how PreM interacts under a parallel setting,

and address the question of whether it can be incorporated into the parallel evaluation plans on

shared-memory and shared-nothing architectures. Furthermore, the current crop of Datalog sys-

tems supporting aggregates in recursion have only explored Bulk Synchronous Parallel (BSP) and

asynchronous distributed computing models. However, the new emerging paradigm of Stale Syn-

chronous Parallel (SSP) processing model [CCH14] has shown to speed up big data analytics

and machine learning algorithm execution on distributed environments [LKZ14], [HCC13] with

bounded staleness. SSP processing allows each worker in a distributed setting to see and use

another worker’s obsolete (stale) intermediate solution, which is out-of-date only by a limited

(bounded) number of epochs. On the contrary, in a BSP model every worker coordinates at the end

of each round of computation and sees each others’ current intermediate results. This relaxation

of the synchronization barrier in a SSP model can reduce idle waiting of the workers (time spent

waiting to synchronize), particularly when one or more workers (stragglers) lag behind others in

terms of computation. Thus, in this chapter, we also explore if declarative recursive computa-
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tion can be executed under the loose consistency model of SSP processing and if it has the same

convergence as that under a BSP processing framework. To our surprise, we find PreM dove-

tails excellently with SSP model for a class of non-linear recursive queries with aggregates, which

are not embarrassingly parallel and still require some coordination between the workers to reach

eventual consistency [IT18]. Thus, the contributions can be summarized as follows:

• We show that PreM is applicable to parallel bottom-up semi-naive evaluation plan, termi-

nating at the same minimal fixpoint as the corresponding single executor based sequential

execution.

• We further show how recursive query evaluation with PreM can operate effectively under a

SSP distributed model.

• Finally, we discuss the merits and demerits of a SSP model with empirical results on some

recursive query examples, thus opening up an interesting direction for future research.

2.3 An Overview of Parallel Bottom-Up Evaluation

One of the early foundational works that established a standard technique to parallelize bottom-up

evaluation of linear recursive queries was presented in [GST92]. The authors proposed a sub-

stitution partitioned parallelization scheme, where the set of possible ground substitutions, i.e.,

the base (extensional database) and derived relation (intensional database) atoms in the Datalog

program are disjointedly partitioned, using a hash-based discriminating function, so that each par-

tition of possible ground substitutions is mapped to exactly one of the parallel workers. The entire

computation is then divided among all the workers, operating in parallel, where each worker only

processes the partition of ground substitutions mapped to it during the bottom-up semi-naive eval-

uation. Since, each worker operates on a distinct non-overlapping partition of ground substitutions,

no two workers perform the same or redundant computation, i.e., this scheme is non-redundant.

Formally, if v(r) is a non-repetitive sequence of variables appearing in the body of rule r and W

denotes a finite set of parallel workers, then h : v(r) −→W is a discriminating hash function that
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divides the workload by assigning the ground substitution and corresponding processing to ex-

actly one worker. The workers can send and receive information (ground instances from partially

computed derived relations) to and from other workers to finish the assigned computation tasks.

Ganguly et al. summarized the correctness of this parallelization scheme with the following result:

Correctness of Partitioned Parallelization Scheme. Let P be a recursive Datalog program to be

executed over W workers. Under the partitioned parallelization scheme, let Qi be the program to

be executed at worker i and let Q =
⋃

1≤i≤W
Qi. Then, for every interpretation, the least model of the

recursive relation in Q is identical to the least model obtained from the sequential execution of P.

Note, the above parallelization strategy did not involve aggregates in recursion. But, never-

theless it was of significant consequence, since the scheme has been extended to derive lock-free

parallel plans for shared-memory architectures as well as sharded data parallel decomposable

plans for shared-nothing distributed architectures to parallelize bottom-up semi-naive evaluation

of Datalog programs. We discuss them next with examples.

Shared-Memory Architecture. A trivial hash-based partitioning, as described above, can of-

ten lead to conflicts between different workers on a shared-memory architecture1. This can be

prevented with the implementation of classical locks to resolve read-write conflicts. However,

recently, [YSZ15] proposed a hash partitioning strategy based on discriminating sets that allows

lock-free parallel evaluation of a broad class of generic queries including non-linear queries. We

illustrate this with our running all pairs shortest path example.

Assume the relations arc, path and shortestpath from example 2.1 (rules r2.1.1 −
r2.1.3) are partitioned by the first column2 (i.e., the source vertex), using a hash function h that

maps the source vertex to an integer between 1 to W , latter denoting the number of workers. Now,

a worker i can execute the following program in parallel:

1For example, two distinct workers may update a path atom for the same (X,Y) pair in rule r2.1.2, if the hashing
is done based on the ground instances of the sequence {X,Z,Dxz,Z,Y,Dzy} or even on the sequence {X,Z,Y}.

2The first attribute forms a discriminating set that is used for partitioning.
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r2.3.1 : path(X,Y,D)← arc(X,Y,D),h(X) = i.

r2.3.2 : path(X,Y,D)← path(X,Z,Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy,h(X) = i.

r2.3.3 : shortestpath(X,Y,min〈D〉)← path(X,Y,D),h(X) = i.

1. The ith worker executes rule r2.3.1 by reading from the ith partition of arc.

2. Once all the workers finish step (1), the ith worker begins semi-naive evaluation with rule

r2.3.2, where it reads from the ith partition of path, joins with the corresponding atoms from

the arc relation, which is shared across all the workers, and then writes new atoms into the

same ith partition of path.

3. Once all the workers finish step (2), the semi-naive evaluation proceeds to the next iteration

and repeats step (2) till the least fixpoint is reached.

4. In the final step, the ith worker computes the shortestpath for the ith partition.

5. All the shortestpath data pooled across the workers produce the final query result.

It is easy to observe that the above parallel execution does not require any locks, since each

worker is writing to exactly one partition and no two workers are writing to the same partition. We

formally define the lock-free parallel bottom-up evaluation scheme next.

Definition 2.2. (Lock-free Parallel Bottom-up Evaluation). Let P be a recursive Datalog program

to be executed over W workers and let T be the corresponding ICO for the sequential execution of

P. Under the lock-free parallel plan executed over W workers, let Qi be the program to be executed

at worker i, producing an interpretation Ii of the recursive predicate with the corresponding ICO

Ti. Then, for every input of base relations, we have, T ↑ωi ( /0)
⋂

T ↑ωj ( /0) = /0 for 1≤ i, j ≤W , i 6= j.

It also follows from the correctness of partitioned parallelization scheme that
⋃

1≤i≤W
T ↑ωi ( /0) =

T ↑ω( /0).

The underlying strategy of a lock-free parallel plan to use disjointed data partitions have also

been adopted to execute data-parallel distributed bottom-up evaluations, as explained next.
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Shared-Nothing Architecture. Distributed systems like BigDatalog [SYI16] also divide the en-

tire dataset into disjointed data shards in an identical manner as the lock-free partitioning tech-

nique described above. Each data shard resides in the memory of a worker and this partitioning

scheme reduces the data shuffling required across different workers [SYI16]. In the context of

shared-nothing architecture, this sharding scheme and subsequent distributed bottom-up evalua-

tion is termed as a decomposable plan [SYI16], [GWM19]. In the rest of this chapter, we will

use the term ‘lock-free parallel plan’ in the context of shared-memory architecture and ‘parallel

decomposable plan’ in the context of distributed environment for clarity.

Distributed systems like BigDatalog and SociaLite [SPS13] perform the fixpoint computation

under BSP model with synchronized iterations. However, note that, if each node caches the arc

relation, then each node can operate independently without any co-ordination or synchronization

with other nodes (i.e., step 3 listed before in the lock-free evaluation plan becomes unnecessary).

The Myria system follows this asynchronous computing model for the query evaluation. Inter-

estingly, [GST92] showed that only a subclass of linear recursive queries3 can be executed in a

co-ordination free manner or asynchronously. Thus, for a large class of non-linear and even many

linear recursive queries (e.g. same generation query [GST92]), BSP computing model has been

the only viable option.

2.4 Parallel Evaluation with PreM

In this section, we now examine if PreM can be easily integrated into the lock-free parallel and

parallel decomposable bottom-up evaluation plans that have been widely adopted across shared-

memory and shared-nothing architectures for a broad range of generic queries. We next provide

some interesting theoretical results.

Lemma 2.3. Let R(Ω) be a relation defined over a set of attributes Ω, where X ⊂Ω and A∈Ω−X.

For a subset S of X (S⊆X), if R is divided into k disjoint subsets R1,R2, ...,Rk using a hash function

h : S→ k such that Ri is defined as Ri = {e|e ∈ R∧ h(e [S]) = i}, then a tuple t ∈ R satisfying

3The dataflow graph corresponding to the linear recursive query must have a cycle.
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X min
⇀ A (or, X max

⇁ A) will also satisfy X min
⇀ A (or, X max

⇁ A respectively) over Ri and vice versa,

where h(t [S]) = i.

Proof. This follows directly from the fact that since S⊆ X , for any two tuples t1, t2 ∈ R, if t1 [X ] =

t2 [X ], then t1 [S] = t2 [S], i.e., any two tuples with the same X-value will be mapped into the same

partition, decided by their common S-value. Since, all tuples with the same X-value belong to a

single partition, any tuple t ∈ Ri will satisfy X min
⇀ A (or, X max

⇁ A) over both R and Ri.

Theorem 2.4. Let P be a recursive Datalog program, T be its corresponding ICO and let the

constraint γ be PreM to T and P, resulting in the constrained ICO Tγ . Let P be executed over W

workers under a lock-free parallel (or parallel decomposable) bottom-up evaluation plan, where Qi

is the program executed at worker i and Ti be the corresponding ICO defined over Qi. If the group-

by arguments used for the γ constraint also contain the discriminating set used for partitioning in

the lock-free parallel (or parallel decomposable) plan, then:

(i). γ is also PreM to Ti and Qi, for 1≤ i≤W .

(ii). For some integer n, if T ↑nγ ( /0) is the minimal fixpoint for Tγ , then T ↑nγ ( /0) =
⋃

1≤i≤W
T ↑niγ ( /0),

where Tiγ denotes the constrained ICO with respect to Ti.

Proof. The proof for (i) follows trivially from Lemma 2.3 and the PreM provability technique

discussed earlier in Section 2.1.

Since, γ is PreM to T and P, T ↑nγ ( /0) = γ(T ↑ω( /0)) according to the properties of PreM.

Similarly, since for 1 ≤ i ≤ W , γi is PreM to Ti and Qi (from (i) of Theorem 2.4), T ↑ni
iγ ( /0) =

γ(T ↑ωi ( /0)), for some integer ni, where T ↑ni
iγ ( /0) = T ↑(ni+1)

iγ ( /0) is the minimal fixpoint for Tiγ . Thus,⋃
1≤i≤W

T ↑ni
iγ ( /0) =

⋃
1≤i≤W

γ(T ↑ωi ( /0)). Now, γ constraints are also trivially PreM to union over dis-

joint sets [ZYI17], i.e., γ(
⋃

1≤i≤W
T ↑ωi ( /0)) =

⋃
1≤i≤W

γ(T ↑ωi ( /0)). Also recall from the definition of

lock-free parallel (or parallel decomposable) plan that
⋃

1≤i≤W
T ↑ωi ( /0) = T ↑ω( /0). Combining these

aforementioned equalities, we get,

T ↑nγ ( /0) = γ(T ↑ω( /0)) = γ(
⋃

1≤i≤W
T ↑ωi ( /0)) =

⋃
1≤i≤W

γ(T ↑ωi ( /0)) =
⋃

1≤i≤W
T ↑ni

iγ ( /0).
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Since, T ↑ni
iγ ( /0) is the minimal fixpoint with respect to Tiγ , for n > ni, T ↑niγ ( /0) = T ↑ni

iγ ( /0). Therefore,

T ↑nγ ( /0) =
⋃

1≤i≤W
T ↑niγ ( /0).

Thus, following Theorem 2.4, we can push the min constraint within the parallel recursive plan

expressed by rules r2.3.1− r2.3.3 and rewrite them for worker i as follows:

r2.4.1 : path(X,Y,min〈D〉)← arc(X,Y,D),h(X) = i.

r2.4.2 : path(X,Y,min〈D〉)← path(X,Z,Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy,h(X) = i.

r2.4.3 : shortestpath(X,Y,D)← path(X,Y,D),h(X) = i.

Thus, we observe that pre-mappable constraints can be also easily pushed inside parallel lock-

free (or parallel decomposable) evaluation plans of recursive queries to yield the same minimal fix-

point, yet making them computationally more efficient and safe. Thus, PreM can be easily incor-

porated into the parallel computation plans (equivalent to rules r2.4.1− r2.4.3) of different systems

like BigDatalog-MC, BigDatalog and Myria, irrespective of whether they use (1) shared-memory

or shared-nothing architecture, or (2) they follow BSP or asynchronous computing models.

2.5 A Case for Relaxed Synchronization

We now consider a non-linear query, which is equivalent to the linear all pairs shortest path program

with the application of PreM (rules r2.2.1− r2.2.3). Since this is a non-linear query (rules r2.5.1−
r2.5.3), this program cannot be executed in a coordination-free manner or asynchronously following

the technique described in [GST92].

r2.5.1 : path(X,Y,min〈D〉)← arc(X,Y,D).

r2.5.2 : path(X,Y,min〈D〉)← path(X,Z,Dxz),path(Z,Y,Dzy),D= Dxz+Dzy.

r2.5.3 : shortestpath(X,Y,D)← path(X,Y,D).

However, as shown in [YSZ15], a simple query rewriting technique can produce an equivalent

parallel decomposable evaluation plan for this non-linear query. Rules r2.6.1 − r2.6.4 show the

equivalent decomposable program, which can be executed by worker i on a distributed system

following a bulk synchronous parallel model. In this following decomposable evaluation plan,
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there is a mandatory synchronization step (rule r2.6.3), where each worker i (operating on the ith

partition) copies the new atoms or updates in path produced during the semi-naive evaluation

from rule r2.6.2 to path(1) and the new path(1) is then sent to other workers so that they can use

it in the evaluation of rule r2.6.2 in the next iteration.

r2.6.1 : path(X,Y,min〈D〉)← arc(X,Y,D),h(X) = i.

r2.6.2 : path(X,Y,min〈D〉)← path(X,Z,Dxz),path(1)(Z,Y,Dzy),D= Dxz+Dzy,h(X) = i.

r2.6.3 : path(1)(X,Y,min〈D〉)← path(X,Y,D),h(X) = i.

r2.6.4 : shortestpath(X,Y,D)← path(X,Y,D),h(X) = i.

In a bulk synchronous distributed computing model, the communication between the workers

in each iteration can be considerably more expensive than the local computation performed by

each worker due to the bottleneck of network bandwidth. We now investigate if we can relax this

synchronization constraint at every iteration.

Under a stale synchronous parallel (SSP) model, a worker i can use an obsolete or stale version

of path(1) that omits some recent updates, produced by other workers, for its local computation.

In particular, a worker using path(1) at iteration c will be able to use all the atoms and updates

generated from iteration 0 to c− s−1, s ≥ 0 is a user-specified threshold for controlling the stal-

eness. In addition, the worker’s stale path(1) may have atoms or updates from iteration beyond

c− s−1, i.e., from iteration c− s to c−1 (although this is not guaranteed). The intuition behind

this is that in a SSP model, a worker for its local computation should be able to see and use its

own updates at every iteration, in addition to seeing and using as many updates as possible from

other workers, with the constraint that any updates older than a given age are not missed. This is

the bounded staleness constraint [CHK13]. This leads to two advantages:

1. Workers spend more time performing actual computation, rather than idle waiting for other

workers to finish. This can be very helpful, when there are straggling workers present, which

lag behind others in an iteration. In fact in distributed computing, stragglers present an

acute problem since they can occur for several reasons like hardware differences [KTG11],
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system failures [AKG10], skewed data distribution or even from software management is-

sues and program interruptions caused from garbage collections or operating system noise,

etc. [BIY06].

2. Secondly, workers can end up communicating less than under a BSP model. This is primarily

because under PreM, each worker can condense several updates computed from different

local iterations into a single update before eventually sending it to other workers.

We illustrate the above advantages through an example. Figure 2.1 shows a toy graph which

is distributed across two workers: (i) all edges incident on nodes 1-4 are available on worker 0,

(ii) and the rest of the edges reside on worker 1. Now consider the shortest path between nodes 4

and 8, given by the path 4-3-2-1-5-6-7-8, which spans across 7 hops. The parallel program defined

by rules r2.6.1− r2.6.4 with BSP processing would require at least three synchronized iterations to

reach to the least fixpoint by semi-naive evaluation. Now consider worker 1 to be a straggling node

that lags behind worker 0 during the computation because of hardware differences. Thus, worker 0

spends significant time idle waiting for worker 1 to complete, as shown in Figure 2.2a. But in this

example, the shortest path between nodes 4 and 8 changes because of two aspects: (1) the shortest

path between nodes 4 and 1 changes and (2) the shortest path between nodes 5 and 8 changes.

Both of these computations can be done independently on the two workers and worker 0 needs to

know the eventual shortest path between nodes 5 and 8 calculated by worker 1 and vice versa. It

is important to note that this will only work if each worker can use the most recent local updates

(newest atoms) generated by itself. In other words, worker 0 should be able to see the changes of

the shortest path between node 4 and node 1 in every iteration (which is generated locally) and use

a stale (obsolete) knowledge about the shortest path between nodes 5 and 8 (as sent by worker 1

earlier). This stale synchronization model is summarized in Figure 2.2b.

In this same example, note how the minimum cost for the path between node 1 and node 4

(computed by worker 0) changes in every iteration: (i) in the first iteration, the minimum cost was

10 given by the edge between node 1 and node 4, (ii) in the next iteration, the minimum cost drops

to 7 given by the path 1-3-4 and (iii) in the third iteration the final minimum cost of 5 is given by
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Figure 2.1: A toy graph distributed across two workers.
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Figure 2.2: BSP vs. SSP model for evaluating all pairs shortest path query on two workers.

the sequence 1-2-3-4. In a BSP model, each of this update generated in every iteration needs to

be communicated to all the remaining workers. However, in a SSP model due to the advantage

of this staleness, these multiple updates from different local iterations can be condensed into one

most recent update, which is then sent to other workers. In other words, SSP with PreM may skip

sending some updates to remote workers, thus saving communication time.

Figure 2.3 formally presents the SSP processing based bottom-up evaluation plan for the non-

linear all pairs shortest path example given by rules r2.6.1− r2.6.4. If the evaluation is executed

over a distributed system of W workers, Figure 2.3 depicts the execution plan for a worker i. A

coordinator marks the completion of the overall evaluation process by individually tracking the

termination of each of the worker’s task. For simplicity and clarity, we have used the naive fixpoint

computation to describe the evaluation plan instead of using the optimized differential fixpoint

algorithm. The γ used in the Figure 2.3 denotes the min constraint. Step (3) in this evaluation plan

shows how worker i uses stale knowledge from other workers j (denoted by path
(r′)
j ) during the

recursive rule evaluation, shown by step (4). It is also important to note that in step (4), each worker
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i is also using the most recent atoms generated by itself (denoted by path
(r)
i ) for the evaluation.

The condition in step (6) allows each local computation on worker i to reach local fixpoint or move

further by at least T iterations. Thus, each worker i can condense multiple updates generated

within these T iterations due to PreM into a single update. Finally, step (9) ensures that if any

worker falls beyond the user-defined staleness bound, then other workers wait for it to catch up

within the desired staleness level before starting their local computations again. We next present

some theoretical and empirical results about the SSP model based bottom-up evaluation.

1: path
(0)
i (X,Y,D) := {(X,Y,D)|arc(X,Y,D)}, path(0)j (X,Y,D) := /0 ∀i 6= j, r= 0, s= 0

2: repeat
3: path

(r′)
j (X,Y,D) :=Last received pathj by worker i,∀i 6= j.

4: path
(r+1)
i (X,Y,D) := γ

(( ⋃
i6= j

path
(r)
i (X,Z,Dxz) ./ path

(r′)
j (Z,Y,Dzy)

)⋃
(
path

(r)
i (X,Z,Dxz) ./ path

(r)
i (Z,Y,Dzy)

))
5: r := r+1, s := s+1

6: until s < T and path
(r)
i 6= path

(r−1)
i

7: s := 0
8: Send path

(r)
i to other workers.

9: if for any worker j,r− r′ > staleness bound then
10: Wait for a new update from worker j before continuing
11: if path(r)i 6= path

(r−1)
i or a new update has been received from worker j then

12: repeat from Step (2)
13: else
14: Send a finish message to coordinator.
15: if any new update is received from worker j then
16: Send a resume message to coordinator.
17: Repeat from step (2).

Figure 2.3: SSP based bottom-up evaluation plan executed by worker i for computing all pairs
shortest path.

2.6 Bottom-up Evaluation with SSP Processing

We now establish some theoretical guarantees for the recursive query evaluation with PreM con-

straints under a SSP model.
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Definition 2.5. (γ-Cover). Let P be a positive recursive Datalog program with T as its corre-

sponding ICO. Let a constraint γ be defined over the recursive predicate on a set of k group-

by arguments, denoted by G1,G2, ...,Gk with the cost-argument denoted as C. Let γ be also

PreM to T and P. Let there be two sets S1 and S2, both of which contain tuples of the form

{(g1,g2, ...,gk,c)|gi ∈ Gi∀1 ≤ i ≤ k,c ∈ R}, where R represents the set of real numbers. Now, S1

is defined as the γ-cover for S2, if for every tuple t ∈ S2, there exists only one tuple t ′ ∈ S1 such that

(i) t ′[G] = t[G] and (ii) γ(t ′[C], t[C]) = t ′[C].

It is important to note from the above definition that if S1 is the γ-cover for S2, then there can

exist a tuple t ∈ S1, such that t[G] 6= t ′[G] ∀t ′ ∈ S2 but the converse is never true.

Lemma 2.6. Let P be a recursive Datalog program, T be its corresponding ICO and let the con-

straint γ be PreM to T and P, resulting in the constrained ICO Tγ . Now, for any pair of positive

integers m,n, where m≥ n, T ↑mγ ( /0) is a γ-cover for T ↑nγ ( /0).

Proof. This directly follows from the fact that any atom in T ↑nγ ( /0) with cost c can only exist in

T ↑mγ ( /0) with updated cost c′, if c = c′ or γ(c,c′) = c′. Note if c = c′, then γ(c,c′) = c′ is trivially

true.

Lemma 2.7. Let P be a recursive Datalog program with ICO T and let the constraint γ be PreM

to T and P. Let P also have a parallel decomposable evaluation plan that can be executed over

W workers, where Qi is the program executed at worker i and Ti is the corresponding ICO defined

over Qi. Let γ be also PreM to Ti and Qi, for 1 ≤ i ≤ W . After r rounds of synchronization (r

rounds of synchronization in SSP model means every worker has sent at least r updates), if Ib and

Is denote the interpretation of the recursive predicate under BSP and SSP models respectively for

any worker i, then Is is a γ-cover for Ib.

Proof. In a SSP based fixpoint computation, any worker i can produce an atom in three ways:

(1) From local computation not involving any of the updates sent by other workers.
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(2) From a join with a new atom or an update sent by another worker j.

(3) From both cases (1) and (2) together.

Now, consider the base case, where before the first round of synchronization (i.e., at the 0th

round) each worker performs only local computation, since it has not received/sent any update

from/to any other worker. Since, in a SSP model, each local computation may involve multiple

iterations (as shown in step (6) in Figure 2.3), Is is trivially a γ-cover for Ib (from Lemma 2.6).

We next assume this hypothesis (Lemma 2.7) to be true for some r≥ 0. Under this assumption,

we find that each worker i in SSP model for its fixpoint computation operates based on the informa-

tion from its own Is and from the ones sent by other workers after the rth round of synchronization.

And since each of this Is involved is a γ-cover for the corresponding Ib (when compared against

the BSP model), the aforementioned cases (1)-(3) will also produce a γ-cover for the (r + 1)th

synchronization round.

Hence, by principle of mathematical induction, the lemma holds for all r ≥ 0.

Theorem 2.8. Let P be a recursive Datalog program with ICO T and let the constraint γ be

PreM to T and P. Let P have a parallel decomposable evaluation plan that can be executed over

W workers, where Qi is the program executed at worker i and Ti is the corresponding ICO defined

over Qi. If γ is also PreM to Ti and Qi, for 1≤ i≤W , then:

(i). The SSP processing yields the same minimal fixpoint of γ(T ↑ω( /0)), as would have been

obtained with BSP processing.

(ii). If any worker i under BSP processing requires r rounds of synchronization, then under SSP

processing i would require ≤ r rounds to reach the minimal fixpoint, where r rounds of

synchronization in SSP model means every worker has sent at least r updates.

Proof. Theorem 2.4 guarantees that the BSP evaluation of the datalog program with PreM will

yield the minimal fixpoint of γ(T ↑ω( /0)). Note that in the SSP evaluation, for every tuple t pro-

duced by a worker i from the program Qi, t ∈ T ↑ω( /0). In other words, if I represents the final
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interpretation of the recursive predicate under SSP evaluation, then I ⊆ T ↑ω( /0) i.e. I is bounded.

It also follows from Lemma 2.7, that I is a γ-cover for the final interpretation of the recursive pred-

icate under BSP evaluation i.e. I is a γ-cover for γ(T ↑ω( /0)). Since, γ(T ↑ω( /0)) is the least fixpoint

under the γ constraint, we also get γ(T ↑ω( /0))⊆ I, as atoms in γ(T ↑ω( /0)) must have identical cost

in I.

Thus, we can write the following equation based on the above discussion,

γ(T ↑ω( /0))⊆ I ⊆ T ↑ω( /0) (2.1)

Also recall, since γ is PreM to each Ti and Qi, under the SSP evaluation, each worker i also

applies γ in every iteration in its fixpoint computation (step (4) in Figure 2.3). Thus, we have,

I ⊆ γ(T ↑ω( /0)) (2.2)

Combining equations (2.1) and (2.2), we get I = γ(T ↑ω( /0). Thus, the SSP evaluation also

yields the same minimal fixpoint as the BSP model.

Since, the interpretation of the recursive predicate in the least model obtained from BSP evalu-

ation is identical to that in the least model obtained from SSP processing, it directly follows from

Lemma 2.7, that the number of synchronization rounds required by worker i in SSP evaluation will

be at most r, where r is the number of rounds i takes under BSP model.

2.6.1 SSP Evaluation of Queries without PreM Constraint

We now consider the parallel decomposable plan of a transitive closure query, which does not

contain any aggregates in recursion. We use the same non-linear recursive example from [YSZ17],

given by rules r2.7.1− r2.7.3, which shows the program executed by worker i. Note, in this example

every worker i eventually has to compute and send to other workers all tc atoms of the form (X,

Y), where h(X) = i. Without PreM, a worker i does not update its existing tc atoms. In fact,

during semi-naive evaluation of this query, at any time, only new unique atoms are appended to
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tc. Thus, a SSP evaluation for the transitive closure query (without PreM) does not save any

communication cost as compared to a BSP model. However, as shown in our experimental results

next, the SSP model can still mitigate the influence of stragglers.

r2.7.1 : tc(X,Y)← arc(X,Y),h(X) = i.

r2.7.2 : tc(X,Y)← tc(X,Z),tc(1)(Z,Y),h(X) = i.

r2.7.3 : tc(1)(X,Y)← tc(X,Y),h(X) = i.

2.6.2 Experimental Results

Setup. We conduct our experiments on a 12 node cluster, where each node, running on Ubuntu

14.04 LTS, has an Intel i7-4770 CPU (3.40GHz, 4 cores) with 32GB memory and a 1 TB 7200

RPM hard drive. The compute nodes are connected with 1Gbit network. Following the standard

practices established in [SYI16], [YSZ17], we execute the distributed bottom-up semi-naive evalu-

ation using an AND/OR tree based implementation in Java on each node. Each node executes one

application thread per core. We evaluate both the non-linear all pairs shortest path and transitive

closure queries on a subset of the real world orkut social network data4.

Inducing Stragglers. In order to study the influence of straggling nodes in a declarative recur-

sive computation, we induce stragglers in our implementation following the strategy described

in [CCH14]. In particular, each of the nodes in our setup can be disrupted independently by a

CPU-intensive background process that kicks in following a Poisson distribution and consumes at

least half of the CPU resources.

Analysis. In this section, we empirically analyze the merits and demerits of a SSP model over

a BSP model, by examining the following questions: (1) How does a SSP model compare to a

BSP model when queries contain PreM constraints and aggregates in recursion? (2) How do

these two processing paradigms compare when PreM cannot be applied? (3) And, how do the

overall performances in the above scenarios change in presence and absence of stragglers? Table

4http://snap.stanford.edu/data/com-Orkut.html
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2.1 captures the first case with the all pairs shortest path query (where PreM is applicable), while

Table 2.2 presents the second case with the transitive closure query, which do not contain any

aggregates or PreM constraints in recursion. For each of these two cases, as shown in the tables,

we experimented with two different staleness values for a SSP model, both under the presence and

absence of induced stragglers. Notably, a SSP model with bounded staleness (alternatively also

called ‘slack’ and indicated by s in the tables) set as zero reduces to a BSP model. Tables 2.1

and 2.2 capture the average execution time for the query at hand under different configurations

over five runs. This run time can be divided into two components— (1) average computation time,

which is the average time spent by the workers performing semi-naive evaluation for the recursive

computation, and (2) average waiting time, which is the average time spent by the workers waiting

to receive a new update to resume computation. Tables 2.1 and 2.2 show the run time break down

for the two aforementioned cases (with and without PreM respectively).

From Tables 2.1 and 2.2, it is evident that BSP processing requires the least compute time ir-

respective of straggling nodes. This is also intuitively true because the total recursive computation

involved in a BSP based distributed semi-naive evaluation is similar to that of a single executor

based sequential execution and as such a BSP model should require the least computational effort

to reach the minimal fixpoint. On the other hand, a SSP model may perform many local computa-

tions optimistically with obsolete data using relaxed synchronization barriers, which can become

redundant later on. As shown in the tables, average compute time indeed increases with higher

slack indicating that a substantial amount of the work becomes unnecessary. However, as seen

from both the tables, SSP plays a major rule in reducing the average wait time. This is trivially

true, since in SSP processing, any worker can move ahead with local computations using stale

knowledge, instead of waiting for global synchronization as required in BSP. However, note the

reduction in average wait time under SSP model in Table 2.1 (with PreM) is more significant than

in Table 2.2 (without PreM). This can be attributed to the fact that PreM with semi-naive eval-

uation (Section 2.1) under SSP model can batch multiple updates together before sending them,

thereby saving communication cost. However, for the transitive closure query (without PreM),

the overall updates sent in BSP and SSP models are similar (since no aggregates are used, semi-
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naive evaluation only produces new atoms, never updates existing ones). Thus, in the latter case

(Table 2.2), the wait times between BSP and SSP models are comparable when there are no in-

duced stragglers, whereas the wait time in SSP is marginally better than BSP when stragglers are

present. Notably, inducing stragglers obviously increases the average wait time all throughout as

compared to a no straggler situation. The compute time also increases marginally in presence of

stragglers, primarily because the straggling nodes take longer time to finish its computations.

Thus, to summarize based on the run times in the two tables, we see that in absence of strag-

glers, the SSP model can reduce the run time of the shortest path query (with PreM constraint)

by nearly 30%. However, the same is not true for the transitive closure query, which do not have

any PreM constraint. Hence, a BSP model would suffice if there are no stragglers and the query

does not contain any PreM constraint. However, in presence of stragglers or PreM constraints,

SSP model turns out to be a better alternative than BSP model, as it can lead to a execution time

reduction of as high as 40% for the shortest path query and nearly 7% for the transitive closure

query. Finally, it is also worth noting from the results that too much of a slack can also increase

the query latency. Thus, a moderate amount of slack should be used in practice.

Time consumption
No stragglers (time in sec) With stragglers (time in sec)

BSP (s=0) SSP (s=3) SSP (s=6) BSP (s=0) SSP (s=3) SSP (s=6)

Avg. compute time 2224 2443 3038 2664 2749 3435
Avg. wait time 1679 302 408 2786 485 704

Run time 3903 2745 3446 5450 3234 4139
Table 2.1: Comparing BSP vs. SSP model for all pairs shortest path query containing aggregates

in recursion (with PreM).

Time consumption
No stragglers (time in sec) With stragglers (time in sec)

BSP (s=0) SSP (s=3) SSP (s=6) BSP (s=0) SSP (s=3) SSP (s=6)

Avg. compute time 682 762 879 754 827 921
Avg. wait time 367 345 334 618 456 412

Run time 1049 1107 1213 1372 1283 1431

Table 2.2: Comparing BSP vs. SSP model for transitive closure query containing no aggregates in
recursion (without PreM).
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2.7 Conclusion

PreM facilitates and extends the use of aggregates in recursion, and this enables a wide spec-

trum of graph and data mining algorithms to be expressed efficiently in declarative languages. In

this chapter, we explored various improvements to scalability via paralled execution with PreM.

In fact, PreM can be easily integrated with most of the current generation Datalog engines like

BigDatalog, Myria, BigDatalog-MC, SociaLite, LogicBlox, irrespective of their architecture dif-

ferences and varying synchronization constraints. Moreover, we have shown that PreM brings

additional benefits to the parallel evaluation of recursive queries. For that, we established the

necessary theoretical framework that allows bottom-up recursive computations to be carried out

over stale synchronous parallel (SSP) model—in addition to the synchronous or completely asyn-

chronous computing models studied in the past. These theoretical developments lead us to the

conclusion, confirmed by our experiments, that the parallel execution of non-linear queries with

PreM constraints can be expedited with a SSP model. This model is also useful in the absence of

PreM constraints, where bounded staleness may not reduce communications, but it nevertheless

mitigates the impact of stragglers. Experiments performed on a real-world dataset confirm the the-

oretical results, and are quite promising, paving the way toward future research in many interesting

areas, where declarative recursive computation under SSP processing can be quite advantageous.

Finally, it is important to note that the methodologies developed here can also be applied to

other declarative logic based systems beyond Datalog, like in SQL-based query engines [GWM19],

which also use semi-naive evaluation for recursive computation. In addition, the SSP process-

ing paradigm can also be adopted in many state-of-the-art graph-centric platforms such as Pregel

[MAB10] and GraphLab [LBG12]. These modern graph engines use a vertex-centric computing

model [YCL15], which enforces a strong consistency requirement among its model variables un-

der the “Gather-Apply-Scatter” abstraction. Consequently, this makes the synchronization cost for

these graph frameworks similar to that of standard BSP systems. Thus, for many distributed graph

computation problems involving aggregators (like shortest path queries), SSP model, as demon-

strated here, can be quite useful for these graph based platforms.
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CHAPTER 3

Efficiently Computable Subclass of Stable Models

The efficient computation of stable models for large classes of programs that can express a wide

range of applications represents a critical requirement for the logic paradigm in BigData appli-

cations. Due to their simplicity and amenability to efficient implementation many Datalog and

database systems now support stratified programs. But, since this class of programs is very restric-

tive and cannot express most A.I. applications, many interesting approaches have been proposed to

overcome such limitations, while preserving efficiency. In this chapter, we focus on and compare

approaches that have proved effective on a wide range of applications.

A first approach uses local stratification restricted to a strictly templatized format that allows

non-monotonic constructs inside recursion. For instance, XY−programs require queries to be

written as a combination of X−rules and Y−rules that makes explicit the local stratification and

the iterated fixpoint used to compute their unique stable models. Therefore, this approach does not

fully conform with the declarative programming paradigm (of never specifying the control flow

of the program) and therefore it misses some of the benefits of PreM that allows non-monotonic

aggregates in recursion. As discussed previously, PreM delivers very efficient computations of

their unique stable models for large number of applications. Therefore, in this chapter, we explore

these two worlds of non-monotonic reasoning in terms of performance, usability and expressivity.

On the one hand, we find how PreM offers strict adherence to declarative programming, better

usability and amenability to efficient parallel implementation by a stale synchronous computing

model on distributed environment. On the other hand, we illustrate nuances of XY−stratification
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that allow a logic-based expression of complex procedural algorithms, which can be otherwise

difficult to express even with PreM.

3.1 Introduction

The powerful notion of stable model semantics [GL88] unifies several non-monotonic knowl-

edge representation formalisms such as circumscription, autoepistemic logic, default theory, and

also enable answer-set semantics [SP07], [FPL11] that delivers great power, but is NP-complete.

While, in general, stable model computation for any arbitrary Datalog program can be of expo-

nential complexity [PZ96], the former can be computed in polynomial time for stratified pro-

grams [CH80], [Prz88a]. In addition, since a program usually contains a handful number of

predicates, stratification of a program can be easily verified from the corresponding predicate

dependency graph [ZAO93] at compile-time, which in turn can also be used for optimizing the

program execution. Overall, this led to the computation of unique stable model for stratified recur-

sive programs by efficient procedures such as differential fixpoint computation (a.k.a. semi-naive

evaluation). Incidentally, this success story also inspired the adoption of recursive queries in SQL.

However, stratification also imposes a serious restriction that negation cannot be used inside re-

cursion [Gel86], [Naq86] in order to preserve semantic correctness under the classic Closed World

Assumption (CWA) [Rei87]. For example, consider the classic paradox where a villager is shaved

by barber if he does not shave himself. In the query below, if we assume ¬shaves(barber,
barber), then the rule would produce shaves(barber, barber) in direct contradiction.

On the other hand, if we assume the converse, then shaves(barber, barber) would not be

produced, thereby indicating ¬shaves(barber, barber) to be true under CWA, which is

again a direct contradiction. Since, other extrema operators like max or min are quintessentially

based on negation, these non-monotonic constructs also could not be previously used inside recur-

sion for stratified programs. This was a serious limitation for many practical applications ranging

from graph analytics to data mining [Prz88b], [CDI18], [BBC12].
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shaves(barber,X)← villager(X),¬shaves(X,X).

villager(barber).

To address the aforementioned problems, researchers proposed writing locally stratified pro-

grams1 and computing their corresponding equivalent stable models instead. Unfortunately, ver-

ifying whether a program can be locally stratified is undecidable [BC94] and hence its semantic

correctness cannot be examined, short of actually executing the program. Thus, additional restric-

tions were imposed [KRS95] to come up with explicitly locally stratified strict program templates,

such as those of XY−stratification [ZAO93], where the existence of a stable model can be ex-

amined at the time of compilation similar to usual stratified programs and was used in several

applications [BBC12, CAG03].

However, XY−stratification raises two fundamental challenges, which are adversarial to declar-

ative style of programming: (i) declarative programmers often need to explicitly specify terminat-

ing criteria in the recursive rules in order to prevent infinite number of iterations and (ii) declarative

programmers also have to express certain implementation details as logical rules (copy/delete rules)

for an efficient execution. Both these issues add a ‘procedural’ flair to XY−stratified programs,

akin to embedded SQL languages like PL/SQL. While this enables XY−stratified programs to ex-

press many complex classical procedural algorithms and various data mining and machine learning

applications [BBC12,CAG03], it also burdens the declarative programmer with the effort to specify

the details of how to implement, rather than just expressing logically what to get.

On the other hand, PreM ensures semantic correctness is preserved even when non-monotonic

constraints are pushed inside recursion, provided certain conditions are met. In addition, as dis-

cussed before, PreM has proven to be amenable to highly efficient parallelism under bulk syn-

chronous and stale synchronous distributed computing models. However, does PreM has the same

expressiveness as XY−stratification? In this chapter, we thus explore these two different seman-

tics of declarative programming and investigate (1) if complex locally stratified XY−programs can

1Here, stratification is done over all the ground atoms given by the Herbrand base, instead of over the program
predicates.
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be expressed with otherwise stratified recursive programs with non-monotonic PreM constraints

inside recursion, and (2) if expressing XY−stratifiable programs with PreM can ensure (a) better

usability from declarative point of view and (b) better performance? Thus, the contributions of this

chapter can be summarized as follows:

• We show that many complex locally stratified XY−programs like temporal coalescing and

Floyd-Warshal algorithm can be indeed expressed with PreM, which produces the exact

same stable model as the locally stratified program.

• Furthermore, we also elaborate how programs expressed with PreM are much more in-

tuitive and more amenable to better usability since they completely follow the declarative

paradigm, unlike the quasi-declarative XY−stratified programs.

• We further empirically show how expressing queries with PreM can open up opportunities

for performance gains under a stale synchronous parallel (SSP) distributed model, which

cannot be used in XY−stratified programs.

• Finally, we also demonstrate cases where PreM is not directly applicable. As such, for

these scenarios, XY−stratification offers better expressiveness and still remains the best way

to support such algorithms.

3.2 XY−Stratification

Consider the Datalog query, given by rules r3.1.1− r3.1.2, where parent(X, Y) is an exten-

sional predicate representing X as a parent of Y and all_anc(X, Y) is an intensional predicate

indicating X to be an ancestor of Y. This simple recursive query (rules r3.1.1− r3.1.2) computes all

ancestors of a person using their successive parents information and can be easily computed using

classical bottom-up semi-naive evaluation method [SYI16], which terminates once the fixpoint is

reached. This stratified query written declaratively is concise, easy to understand and based on the

simple intuition that if X is an ancestor of Y and Y is a parent of Z, then X is also an ancestor of Z

(rule r3.1.2).
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r3.1.1 : all_anc(X,Y)← parent(X,Y).

r3.1.2 : all_anc(X,Z)← all_anc(X,Y),parent(Y,Z).

Interestingly, the above query can also be expressed with XY− stratification as shown with

rules r3.2.1− r3.2.4. This query is locally stratified based on the first argument of delta_anc and

all_anc, acting as a temporal argument. More precisely, the kth stratum comprises of atoms

from all_anc(k, X, Y) and delta_anc(k, X, Y), while the zeroth stratum comprises

of non-recursive predicate parent(X, Y) and atoms of the form all_anc(0, X, Y) and

delta_anc(0, X, Y) unified using parent(X, Y). Furthermore, even within the same

stratum (i.e., having the same temporal argument), atoms are partitioned into multiple substrata.

For example, in the same kth stratum all_anc(k, X, Y) occurs at a higher substratum than

delta_anc(k, X, Y). This inter-strata and intra-strata dependencies in this local stratifica-

tion can be well understood by rewriting the query using an equivalent bi-state form, as shown

using rules r′3.2.1− r′3.2.4, where we dropped the temporal argument from the recursive predicates

and instead focused on any two successive strata, new (representing (k + 1)th stratum) and old

(representing kth stratum). At the start of the computation at every stratum, the new predicates

computed before are used as old. Strictly speaking, this rewriting was possible only because this

local stratification followed XY−template, with r3.2.4 being called a X−rule (having same tempo-

ral argument in every recursive predicate used) and r3.2.2, r3.2.3 being called Y−rules (computing

atoms in (J+1)th stratum from some atoms in J stratum) [ZAO93].

r3.2.1 : delta_anc(0,X,Y)← parent(X,Y).

r3.2.2 : delta_anc(J+1,X,Z)← delta_anc(J,X,Y),parent(Y,Z),¬all_anc(J,X,Z).

r3.2.3 : all_anc(J+1,X,Y)← all_anc(J,X,Y),delta_anc(J+1,_,_).

r3.2.4 : all_anc(J,X,Y)← delta_anc(J,X,Y).
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r′3.2.1 : new_delta_anc(X,Y)← parent(X,Y).

r′3.2.2 : new_delta_anc(X,Z)← old_delta_anc(X,Y),parent(Y,Z),¬old_all_anc(X,Z).

r′3.2.3 : new_all_anc(X,Y)← old_all_anc(X,Y),new_delta_anc(U,V).

r′3.2.4 : new_all_anc(X,Y)← new_delta_anc(X,Y).

As evident, the locally stratified XY−query is more complex than the simple stratified query

discussed before, primarily because of the following:

• The intuition behind the XY−stratified query is given by the logical expression in r3.2.2,

which represents the following: generate new ancestors, which have not been previously

included in the list of all ancestors (expressed with ¬all_anc(J,X,Y)) by joining only

the new ancestors produced in the last stratum with parent. Interestingly, this optimization

scheme expressed in the form of a rule in the XY−query is implicitly executed when the

stratified query (rules r3.1.1− r3.1.2) is evaluated under the standard semi-naive evaluation.

• To make things even more cumbersome, a declarative programmer also needs to include

additional implementation details via rules like r3.2.3− r3.2.4
2, which expresses the control

flow of the program about how atoms must be appended from one stratum to another, instead

of just expressing the logical intuition of the program declaratively, as is often the case with

stratified programs.

• Finally, note rule r3.2.3 needs to include the goal delta_anc(J+1,_,_) as a stopping

criterion to terminate the program execution when no new ancestors are found. Without it,

the program would indefinitely continue, computing for all positive integers. In other words,

the programmer needs to explicitly ensure the termination of the program.

While the above complexities pose serious usability challenges for a declarative programmer,

local stratification in the past was nevertheless necessary to use negation and other non-monotonic

constraints within recursion, as shown in rule r3.2.2. However, under certain conditions, we can

avoid this complexities using PreM, as discussed before.

2termed as copy rules [ZAO93]
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3.3 Comparison of XY−Stratification with PreM

We now present a nuanced comparative analysis between XY−stratification and PreM using

popular query examples to emphasize the possible advantages of PreM over traditional local

XY−stratification.

3.3.1 Temporal Coalescing

Temporal relations can comprise of several attributes and projecting out any of them can produce

overlapping intervals. Consider the example shown in Figure 3.1, where temporal projection of an

employee (denoted by Eno) from a database, leaving out other attributes, produces seven intervals

(working spans), many of which are overlapping and need to be merged. The Datalog query given

by rules r3.3.1−r3.3.10 performs this temporal coalescing recursively using local XY−stratification

(specifically rules r3.3.4−r3.3.7). The stratified query given by rules r3.3.1−r3.3.3 initially computes

the starting time points of all the intervals, which are not completely contained by another interval.

For example, the start of interval 2002/05/01 — 2003/12/31 is not included in lstart

because it is already covered by the interval 2001/01/01 — 2004/06/30. Thereafter, the

XY−rules (r3.3.4− r3.3.7) recursively coalesces the intervals in two basic computation steps: (i)

the Y−rule r3.3.5 selects two overlapping intervals (e.g. 2001/01/01 — 2004/06/30 and

2003/06/01 — 2007/05/31), where the second interval succeeds the first and (ii) the X−rule

r3.3.6 merges the two overlapping intervals, selecting the larger of the two end points as the end

point for the coalesced interval (r3.3.9− r3.3.10). Note, rule r3.3.7 ensures that a coalesced interval

from the previous stratum gets copied into the next stratum, only if it has not been selected in

the overlapping step before and hence has not been merged. This is achieved by pushing the

negation inside recursion via rule r3.3.7, which is also termed as the delete rule [ZAO93], since

the overlapping intervals from the previous stratum are deleted from the coalesced intervals in

the next stratum. This data processing rule assures the efficiency of the recursive computation by

gradually coalescing intervals and then removing the ones from consideration, which have been

merged. The computation terminates when no more overlapping intervals can be found and hence

the goal overlap(J+1,_, _, _, _, _) is not satisfied in r3.3.7. Of course, this terminating
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Figure 3.1: Temporal projections

criterion needs to be explicitly specified. The final merged intervals are obtained from the highest

stratum of this locally stratified XY− query as given by rule r3.3.8.

r3.3.1 : lstart(Eno,S)← inter(Eno,S,E),¬covered(Eno,S,E).

r3.3.2 : covered(Eno,S,E)← inter(Eno,S,E),inter(Eno,S1,E1),S1≤ S,E1> E.

r3.3.3 : covered(Eno,S,E)← inter(Eno,S,E),inter(Eno,S1,E1),S1< S,E1≥ E.

r3.3.4 : coal(0,Eno,S,E)← lstart(Eno,S),inter(Eno,S,E).

r3.3.5 : ovrlap(J+1,Eno,S1,E1,S2,E2)← coal(J,Eno,S1,E1),coal(J,Eno,S2,E2),

S1< S2,S2≤ E1.

r3.3.6 : coal(J,Eno,S1,E)← ovrlap(J,Eno,S1,E1,S2,E2),larger(E1,E2,E).

r3.3.7 : coal(J+1,Eno,S,E)← coal(J,Eno,S,E),ovrlap(J+1,_,_,_,_,_),

¬ovrlap(J+1,Eno,S,E,_,_),¬ovrlap(J+1,Eno,_,_,S,E).

r3.3.8 : final_intrvl(Eno,S,E)← coal(J,Eno,S,E),¬coal(J+1,_,_,_).

r3.3.9 : larger(E1,E2,E1)← E1≥ E2.

r3.3.10 : larger(E1,E2,E2)← E2> E1.

On the other hand, this temporal coalescing can also be done recursively using PreM with the

aid of extrema aggregates like max within recursion. Rules r′3.3.4− r′3.3.5 shows the correspond-

ing example of temporal coalescing with PreM. This simple recursion computed via semi-naive

evaluation iteratively merges the overlapping the intervals by extending the interval end point with

the max of the overlapping intervals. For example, intervals 2001/01/01 — 2004/06/30

and 2003/06/01 — 2007/05/31 are coalesced to produce 2001/01/01 — 2007/05/31,

whereas, intervals 2003/06/01 — 2007/05/31 and 2006/01/01 — 2010/10/01 are
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merged to produce interval 2003/06/01 — 2010/10/01. These two newly produced inter-

vals are merged in the next iteration to produce the interval 2001/01/01 — 2010/10/01.

The computation stops when the fixpoint is reached with the final interval of 2001/01/01 —

2018/12/31.

r′3.3.4 : coal(Eno,S,E)← lstart(Eno,S),inter(Eno,S,E).

r′3.3.5 : coal(Eno,S,max〈E〉)← coal(Eno,S,E1),coal(Eno,S1,E),S< S1,S1≤ E1.

r′3.3.6 : final_intrvl(Eno,S,E)← coal(Eno,S,E),¬contain(Eno,S,E).

r′3.3.7 : contain(Eno,S,E)← coal(Eno,S,E),coal(Eno,S1,E1),S1≤ S,E1> E.

r′3.3.8 : contain(Eno,S,E)← coal(Eno,S,E),coal(Eno,S1,E1),S1< S,E1≥ E.

The above queries highlight the following salient points:

• Better usability with PreM: PreM allows more elegant, concise and intuitive representation

of the logic, hiding away all the stopping criterion details and other control flow rules, which makes

the XY−stratified query less comprehensible and user friendly from a declarative perspective.

• Advantage of delete rules with XY : The delete rules in XY−stratification can afford to remove

or forget certain atoms, which will no longer be required in the subsequent computations. For

example, once the overlapping intervals of 2003/06/01 — 2007/05/31 and 2006/01/01

— 2010/10/01 are merged at the Jth stratum, they will no longer be retained at the (J+1)th

stratum (courtesy r3.3.7). This is possible because the locally stratified XY−program can be im-

plemented using a bi-state version (as discussed before) that only requires to maintain information

about two stratum (discarding all the other lower strata) – the (J+1)th (the new stratum where

atoms are produced) and the Jth (the old stratum whose atoms are used for the production in a

Y−rule). However, this is not true for the PreM query. The coal predicate will contain the inter-

vals 2003/06/01 — 2007/05/31 and 2006/01/01 — 2010/10/01, even after merging

them, although once merged they would not be able to produce any new atoms from rule r′3.3.5

under differential fixpoint evaluation. Thus, the final extraction rule r′3.3.6 is required to obtain the

eventual coalesced interval that is not contained in any of the intervals (determined using rules

r′3.3.7− r′3.3.8).
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• Relaxed synchronization with PreM: As discussed earlier, relaxed synchronization with

PreM can offer significant opportunities for optimization. Here also, assume that temporal co-

alescing is executed in parallel on two different compute nodes. One computer node, worker 0

coalesces intervals beginning before 2010/10/01, while the other node, worker 1 merges in-

tervals starting from or after 2010/10/01. Interestingly, note in the first iteration worker 0

can merge the sets of overlapping intervals (2001/01/01 — 2004/06/30, 2003/06/01 —

2007/05/31) and (2003/06/01 — 2007/05/31, 2006/01/01 — 2010/10/01), inde-

pendent of worker 1, which can similarly coalesce the sets of overlapping intervals (2010/10/01

— 2015/03/31, 2012/02/01 — 2017/04/30) and (2012/02/01 — 2017/04/30,

2014/10/01 — 2018/12/31) without communicating with worker 0. In fact, even in the sec-

ond iteration worker 0 and worker 1 can coalesce the merged overlapping intervals (2001/01/01

— 2007/05/31, 2003/06/01 — 2010/10/01) and (2010/10/01 — 2017/04/30,

2012/02/01 — 2018/12/31) respectively from the first iteration independent of each other.

However, this acutely brings forth the challenge with the operational semantics of XY−stratification.

The XY−rules (r3.3.5− r3.3.7) enforce that all computation in the Jth stratum must be completed

before evaluating the (J+1)th stratum. This in turn, implies that worker 0 and worker 1 must wait

for each other to finish their respective Jth iteration and synchronize with each other, even though

sometimes their computations can be carried out independently. Thus, the XY−stratified programs

can only be executed using Bulk Synchronous Parallel (BSP) computing model [SYI16], where

each worker coordinates with others after every iteration. This is particularly a serious problem

when there are straggling workers, i.e. those lag behind other workers in terms of computations

which can be easily addressed with PreM under the Stale Synchronous Parallel (SSP) distributed

computing model. PreM queries are primarily able to adopt SSP models for computing, because

of the absence of a temporal argument J, as shown in rules r′3.3.4− r′3.3.5, which imposes a strict

need for synchronization. While it can be argued that a better data partitioning strategy3 can miti-

gate this problem with the XY−stratified temporal coalescing query, there are many other complex

algorithms, like Floyd-Warshall algorithm, where this becomes unavoidable, as shown next.

3For example, data divided according to Eno instead of temporal intervals.
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3.3.2 Floyd-Warshall Algorithm

We now express the classic Floyd-Warshall algorithm, which computes the shortest path between

all pairs of vertices in a weighted graph. The Datalog query defined by rules r3.4.1− r3.4.8 shows

how this classic algorithm can be expressed with XY−stratification. The intuition behind the

algorithm is mainly expressed with rules r3.4.4 and r3.4.5 as follows: new paths between two nodes

X and Y are only considered if (i) the cost of the path from X to Y via Z is lower than the earlier

cost of the path from X to Y (r3.4.4) or (ii) there did not exist a path between X and Y (r3.4.5). Of

all these new paths considered from the Jth stratum, we add the one with min cost to delta in

the (J+1)th stratum. The new paths thus found or paths with updated costs are copied into the

next stratum (rule r3.4.7), while old paths found before which already have the min cost so far are

retained as well (rule r3.4.6).

Interestingly, the same logic can be more elegantly expressed with PreM constraint, as shown

with rule r′3.4.4. [DZ19] has shown that this all pairs shortest path query (rules r′3.4.1− r′3.4.4) with

PreM constraint, when evaluated with differential fixpoint iteration is amenable to SSP comput-

ing models. In fact, in the distributed setting, the allpaths predicate is generally hash parti-

tioned [AGK17] to different computing nodes and under a SSP model, a worker i at iteration c

for computing its allpaths can use the allpaths atoms from other workers generated from

iteration c− s to c− 1, where s is a bounded staleness constraint [CHK13]. Thus, we compare

the performance of these two implementations: XY−stratified query (r3.4.1− r3.4.8) executed over

a BSP environment, whereas query with PreM (r′3.4.1− r′3.4.4) executed over SSP environment.

However, it is important to highlight a significant difference between these two queries other than

the relaxed synchronization benefit. Rules r3.4.4 and r3.4.5 (unlike rule r′3.4.4) does not operate

similar to an optimized semi-naive evaluation, where only the new or updated allpaths atoms

participate in the join. In other words, old allpaths atoms are joined again in rules r3.4.4 and

r3.4.5 and re-examined, making this implementation highly inefficient in itself. Thus, the program-

mer has to re-write rule r3.4.4 into rules r3.4.4.1− r3.4.4.3 (similarly for r3.4.5) to ensure that only the

new and updated atoms are used in the join for a better optimized implementation.
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r3.4.1 : allpaths(0,X,X,0)← edge(X,_,_).

r3.4.2 : allpaths(0,Y,Y,0)← edge(_,Y,_).

r3.4.3 : allpaths(0,X,Y,C)← edge(X,Y,C).

r3.4.4 : delta(J+1,X,Y,min〈C〉)← allpaths(J,X,Z,C1),allpaths(J,Z,Y,C2),

C= C1+C2,allpaths(J,X,Y,C3),C< C3.

r3.4.5 : delta(J+1,X,Y,min〈C〉)← allpaths(J,X,Z,C1),allpaths(J,Z,Y,C2),

C= C1+C2,¬allpaths(J,X,Y,_).

r3.4.6 : allpaths(J+1,X,Y,C)← allpaths(J,X,Y,C),delta(J+1,_,_,_),

¬delta(J+1,X,Y,_).

r3.4.7 : allpaths(J,X,Y,C)← delta(J,X,Y,C).

r3.4.8 : minpaths(X,Y,C)← allpaths(J,X,Y,C),¬allpaths(J+1,_,_,_).

r′3.4.1 : allpaths(X,X,0)← edge(X,_,_).

r′3.4.2 : allpaths(Y,Y,0)← edge(_,Y,_).

r′3.4.3 : allpaths(X,Y,C)← edge(X,Y,C).

r′3.4.4 : allpaths(X,Y,min〈C〉)← allpaths(X,Z,C1),allpaths(Z,Y,C2),C= C1+C2.

r3.4.4.1 : delta(J+1,X,Y,min〈C〉)← delta(J,X,Z,C1),allpaths(J,Z,Y,C2),

¬delta(J,Z,Y,C2),allpaths(J,X,Y,C3),

C= C1+C2,C< C3.

r3.4.4.2 : delta(J+1,X,Y,min〈C〉)← allpaths(J,X,Z,C1),¬delta(J,X,Z,C1),delta(J,Z,Y,C2),

allpaths(J,X,Y,C3),C= C1+C2,C< C3.

r3.4.4.3 : delta(J+1,X,Y,min〈C〉)← delta(J,X,Z,C1),delta(J,Z,Y,C2),allpaths(J,X,Y,C3),

C= C1+C2,C< C3.

• Setup and Dataset: We use a 12 node cluster, with each node running on Ubuntu 14.04 LTS and
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having an Intel i7-4770 CPU, 32GB memory and a 1 TB 7200 RPM hard drive. Our experimental

configurations are similar to the ones reported in previously in Chapter 2. As before, we conduct

our experiments on a subset of the orkut social network data used in Chapter 2. We perform

two sets of experiments comparing performances of Java-based implementations of XY−stratified

query evaluation using BSP model with PreM-enabled query evaluation using SSP model (i) in

presence and (ii) absence of induced stragglers. The straggling nodes were induced as discussed

before in Chapter 2.

• Performance gains with PreM: Figure 3.2 reports the average query run time over five runs for

the XY−stratified and PreM-enabled query, using two different values of staleness (denoted by

‘s’) for the SSP processing. As evident from Figure 3.2, the average wait time is considerable lower

for all SSP evaluations. In fact, even though the average compute time for XY−stratified query in

absence of stragglers is the smallest in Figure 3.2(a), its total run time is largely dominated by the

average wait time, which makes it overall 35% slower than the best PreM-enabled SSP evaluation

(s=3). Furthermore, surprisingly even the compute time for PreM-enabled SSP evaluation (s=3)

is marginally lower than that of XY−stratified query in presence of stragglers (Figure 3.2(b)),

thus implying that sometimes even explicit optimizations as done with rules r3.4.4.1− r3.4.4.3 are

not sufficient to surpass in-built system level optimizations, as is the case with PreM-enabled

query computation via semi-naive evaluation. Similar trends have been reported in [GWM19],

where performance of procedural programs could not compete with that of in-built optimizations

supported by declarative systems.

3.4 Stable Model Computation

Lemma 3.1. Every locally stratified program, without any non-deterministic constructs4 has an

unique stable model.

Proof. The proof directly follows from [ZCF97].

Lemma 3.2. A recursive program with PreM constraints inside recursion converges to a stable

4For example, choice as used in [GSZ95]
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Figure 3.2: Comparing XY−stratified query evaluation with BSP model vs. PreM enabled query

evaluation with SSP model for Floyd-Warshall algorithm.
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model that is equivalent to the minimal perfect model of the corresponding aggregate stratified

program that can be computed using iterated fixpoint computation.

Proof. The proof directly follows from [ZYI17] and implies that rules r2.1.1− r2.1.3 and r2.2.1−
r2.2.3 in Chapter 2 would theoretically return the same minimal model, although the latter provides

a more efficient operational semantics.

Theorem 3.3. Let P be a XY−stratified recursive program supporting non-monotonic constraints

inside recursion without any non-deterministic constructs. Let P′ be the corresponding stratified

recursive program for P with PreM constraint γ within recursion. Then P and P′ both converge

to the same stable model.

Proof. Every XY−stratified program can be represented as a bi-state program (as shown before),

which is thus trivially locally stratified. Thus P has an unique stable model (by lemma 3.1), say M.

Also, by lemma 3.2, P′ has a stable model, say M′. By the definition of stable models, M and M′

are minimal models. Therefore, if M 6= M′, then P should have more than one stable model, which

contradicts lemma 3.1. Thus, M = M′.

3.5 When PreM is Inapplicable

We now present an example where direct application of PreM fails, even though it can be ex-

pressed with recursion using XY−stratification. Consider a case where a person wants to get an

item in the least possible time. The item can either be assembled from its subparts or it can be

bought directly from a supplier. Different suppliers take different days to supply a part. The time

to assemble a part from its subparts is the max of the days required to receive all its subparts. We

assume the actual assembly time is zero. In Figure 3.3, subparts A and B can be delivered by three

suppliers. The optimal case is A gets delivered in 10 days and B gets delivered in 6 days. We can

then either assemble C from A and B in 10 days (time waiting to receive A) or we can get C from a

supplier directly in 12 days. Thus, the min time to get part C is 10 days. Similarly, the least time

to get part D is 20 days. Thus, it is better to buy E directly from a supplier and get it in 15 days,
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Figure 3.3: Optimal time to get part E.

instead of assembling it from C and D, which would take 20 days. However, say, D can be delivered

in 8 days, then the optimal strategy would have been to buy D, A and B and then assemble E.

The example program, given by rules r3.5.1− r3.5.6, shows how to evaluate the number of days

required to get an item using XY−stratification. Note this query uses two constraints: (i) a max

constraint (say, γ1) in r3.5.2 that decides the assembly time on the basis of which subpart requires

the highest number of days for delivery, and (ii) a min constraint (say, γ2) in r3.5.4 (defined by

smaller in r3.5.5− r3.5.6) that decides whether the part should be bought directly or assembled

depending on which one is smaller. Also note, to simplify the query, we have used an explicit

goal of J< T (where, T denotes the upper bound of total number of items at hand) in r3.5.3−
r3.5.4, which can be a sub-optimal stopping criterion, thereby leading to redundant computations.

Now, we examine if these two constraints γ1 and γ2 are PreM or not. Let T1 be the Immediate

Consequence Operator (ICO) that determines the assembly time (rule r3.5.2) and T2 be the ICO

that decides whether to assemble or buy (i.e., rules r3.5.3− r3.5.4). Now, by definition of PreM,

γ2 is PreM to T1, when for every interpretation I, γ1(T1(I)) = γ1(T1(γ2(I))) and similarly, γ1 is

PreM to T2, if γ2(T2(I)) = γ2(T2(γ1(I))) holds. However, note in our example in Figure 3.3,

if the max constraint γ1 is not applied first, then with respect to E, only the min constraint γ2

will return 10 days (the min of the assembly time of the subparts of E which is incorrect) i.e.

γ2(T2(I)) 6= γ2(T2(γ1(I))). This is also intuitively true, since the min of max across different sets
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is not same as just taking the min across all sets. Thus, the semantics and correctness of PreM

does not hold directly here and local XY−stratification offers the best solution to express such

queries. The classic Minimax algorithm from game theory is another example where PreM is

similarly inapplicable.

r3.5.1 : days(0,P,min〈D〉)← supplier(P,D).

r3.5.2 : assemble(J+1,P,max〈D〉)← days(J,S,D),sub(S,P).

r3.5.3 : days(J+1,P,D)← days(J,P,D),¬assemble(J+1,P,_),J< T .

r3.5.4 : days(J+1,P,D)← days(J,P,D1),assemble(J+1,P,D2),smaller(D1,D2,D),J< T .

r3.5.5 : smaller(D1,D2,D1)← D1≤ D2.

r3.5.6 : smaller(D1,D2,D2)← D2< D1.

3.6 Conclusion

Local XY−stratification and recursive queries with PreM constraints — both these declarative

semantics are quite general, robust and allow efficient computation of stable models in polyno-

mial time, thereby making them very attractive for a large number of modern Bigdata applications.

However, they represent two different worlds of non-monotonic reasoning. In this chapter, we

showed stratified recursive queries with PreM constraints offer better usability, intuitive under-

standing and comprehensibility than XY−stratification from the vantage point of declarative pro-

gramming. Also, in terms of performance, PreM offers the benefits of relaxed synchronization

with SSP distributed computing model, which under proper configurations can deliver great per-

formance gains, particularly in presence of stragglers. This is all the more significant because now

even programmers with a strong procedural coding background can attempt to write XY−stratified

code first, which has a “procedural” flair and then possibly reduce it later to a pre-mappable query

for better performance. On the other hand, we also examined cases where PreM does not hold.

As such, for those cases, XY−stratification still remains the foremost choice for its superior ex-

pressivity.
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CHAPTER 4

Expressing BigData Applications with PreM

In this chapter, we show that several interesting applications can be expressed declaratively with

the help of PreM using aggregates in recursion. Our examples are also used to show that PreM

can be checked using simple techniques and templatized verification strategies. Thus a wide range

of advanced BigData applications can now be expressed declaratively in logic-based languages,

including Datalog, Prolog, and even SQL, which can then be executed efficiently at scale, since

PreM optimizes the perfect-model semantics of these aggregate-stratified programs as well offers

better amenability to parallelization as discussed in Chapter 2. Furthermore, we also formalize

how the semantics of PreM can be combined with the continuous query semantics with respect

to data streams. We elucidate that PreM, not only allows the declarative specification of many

complex continuous queries, but can also efficiently optimize their execution for real-time query

response.

4.1 Evolution of Declarative Semantics

The growth of BigData applications added new vigor to the vision of Datalog researchers who

sought to combine the expressive power demonstrated by recursive Prolog programs with the per-

formance and scalability of relational database management systems (DBMSs). Earlier, research

led to the delivery of a first commercial Datalog system [ACG15] and also had a significant impact

on other languages and systems. In particular, DBMS vendors introduced support for recursive

queries into their systems and into the SQL-2003 standards by adopting Datalog’s (a) stratified
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semantics for negation and aggregates, (b) optimization techniques that include (i) seminaive fix-

point computation, (ii) constant pushing for left/right-linear rules, and (iii) magic sets for linear

rules. However, many algorithms and queries of practical interest cannot be expressed efficiently,

or cannot be expressed at all, using stratified programs. This has motivated much research work

seeking to go beyond stratification, often through the introduction of more powerful semantics,

including semantics based on locally stratified programs, well-founded models and stable models,

as discussed in Chapter 3.

On the other hand, concise expression and efficient support for a wide range of polynomial time

algorithms, while keeping a stratification-based formal semantics, was made possible by the recent

introduction of PreM. In fact, in this chapter, we will use different case studies to show that simple

aggregates in declarative recursive computation can express concisely and declaratively a host

of advanced BigData applications ranging from graph analytics and dynamic programming (DP)

based optimization problems to data mining and machine learning (ML) algorithms. However, in

order to realize the significant potential offered by PreM, the concept must be well-understood

and its validity must be easy to verify for the applications of interest. Therefore, we next present

different types of PreM that occur for different constraints and rules, which can be easily verified

for semantic correctness by a data scientist or an application developer. These simple PreM

verification strategies are very helpful in the context of the complex queries, discussed later in this

chapter, to understand their correctness.

4.2 Different Manifestations of PreM

We revisit the all pairs shortest path query from Chapter 2. The aggregate-stratified program (rules

r4.1.1− r4.1.3) is shown below followed by the PreM-optimized program (rules r4.2.1− r4.2.3):

r4.1.1 : path(X,Y,D)← arc(X,Y,D).

r4.1.2 : path(X,Y,D)← path(X,Z,Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy.

r4.1.3 : shortestpath(X,Y,min〈D〉)← path(X,Y,D).
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r4.2.1 : path(X,Y,min〈D〉)← arc(X,Y,D).

r4.2.2 : path(X,Y,min〈D〉)← path(X,Z,Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy.

r4.2.3 : shortestpath(X,Y,D)← path(X,Y,D).

Using the symbols and notations from Chapter 2, which have the same meaning as described

before, it is easy to that one can conveniently verify if PreM holds during the execution of a

program by simply comparing γ(T (I)) and γ(T (γ(I))) at each step of the recursive evaluation for

a given set of facts I. However, strictly speaking, more formal tools [ZYI18] are required to prove

that PreM holds for any possible execution of a given program.

We next introduce two special cases of PreM along with their formal definitions. These

narrow definitions of specific instances of PreM are much easier to observe and verify.

• Intrinsic PreM (or iPreM): The PreM of a constraint γ upon T (I) will be called intrinsic

when T (I) = T (γ(I)). To understand this, assume we replace D = Dxz+ Dzy with, say,

D = 3.14 ∗ Dzy in rule r4.2.2. Then obviously, the value of Dxz does not, in any way, affect

the result computed in the head of the rule r4.2.2. Thus, we could even select the min of

these Dxz values, thereby eventually having T (I) = T (γ(I)) i.e. γ is iPreM in this case.

• RadicalPreM (or rPreM): The PreM of a constraint γ upon T (I) will be called radical

when γ(T (I)) = T (γ(I)). Consider the constraint X = a in rule r4.2.3 that specifies that we

are only interested in the shortest paths that originate from node a. This constraint can be

pushed all the way to the non-recursive base rule r4.2.1, leaving the recursive rule unchanged,

yielding the exact same results. This exemplifies rPreM, which has been extensively re-

searched in the Datalog literature, since it provides a very efficient optimization for equality

constraints.

We next discuss the different category of BigData applications that can be expressed with PreM

and how their correctness can be verified using the above special instances. In the rest of this

chapter, we will separately mark out the use of iPreM and rPreM, if applicable.
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4.3 Dynamic Programming based Optimization Problem

Consider the classic coin change problem: given a value V and an infinite supply of each of

C1,C2, ...,Cn valued coins, what is the minimum number of coins needed to get change for V

amount? Traditionally, declarative programming languages attempt to solve this through a strat-

ified program: the lower stratum recursively enumerates over all the possible ways to make up

the value V, while the min aggregate is applied at the next stratum to select the desired an-

swer. Obviously, such simple stratified recursive solutions are computationally extremely inef-

ficient. In procedural languages, these problems are solved efficiently with dynamic programming

(DP) based optimization. Such DP based solutions utilize the “optimal substructure property” of

the problem i.e., the optimal solution of the given problem can be evaluated from the optimal

solutions of its sub-problems, which are, in turn, progressively calculated and stored in mem-

ory (memoization). For example, consider an extensional predicate coins having the atoms

coins(2), coins(3) and coins(6), which represent coins with values 2 cents, 3 cents

and 6 cents respectively. Now, we need at least 2 coins to make up the value V = 9 cents (3

cents + 6 cents). Note, we can also make up 6 cents using 3 coins of 2 cents each. However,

the optimal solution to make up 9 cents should also in turn use the best alternative available to

make up 6 cents, which is to use 1 coin of 6 cent itself. Based on this discussion, the exam-

ple program below, described by rules r4.3.1− r4.3.2, shows how this solution can be succinctly

expressed in Datalog with aggregate in recursion. This program can be executed in a top-down

fashion and the optimal number of coins required to make up the change is determined by pass-

ing the value of V (9 in our example) to the recursive predicate num (as shown by the query goal).

r4.3.1 : num(C,1)← coins(C).

r4.3.2 : num(V,min〈N〉)← coins(C),C< V,X= V−C,num(X,Y),N= Y+1.

?−num(9,N).

The successive bindings for the predicate num are calculated from the coin value C under con-

sideration (as V - C) and are passed in a top-down manner (top-down information passing) till

the exit rule r4.3.1 is reached. The min aggregate inside recursion ensures that for every top-down
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recursive call (sub-problem) only the optimal solution is retained. With this said materialization

of the intensional predicate num (analogous to memoization), this program execution is almost

akin to a DP based solution except one difference — pure DP based implementations are usually

executed in a bottom-up manner. In the same vein, it is worth mentioning that many interesting

DP algorithms (e.g., computing minimum number of operations required for a chain matrix multi-

plication) can also be effectively computed with queries, containing aggregates in recursion, using

bottom-up semi-naive evaluation identical to the DP implementations. We next focus our attention

on validating PreM for the above program. Note the definition of PreM, iPreM or rPreM

does not refer to any evaluation strategy for processing the recursive query i.e. the definitions are

agnostic of top-down, bottom-up or magic sets based recursive query evaluation strategies. Inter-

estingly, the use of “optimal substructure property” in DP algorithms itself guarantees the validity

of PreM. This can be illustrated as follows with respect to the min constraint: consider inserting

an additional constraint γ̄ = num(X,min〈Y〉) on I = num(V,N) in the recursive rule r4.3.2. Naturally,

any Y, which does not satisfy γ̄ , will produce a N that violates the min aggregate in the head of

rule r4.3.2 and hence will be discarded. Since, the imposition of γ̄ in the rule body does not change

the result when γ in the head (of rule r4.3.2) is applied, the min constraint can be pushed inside

recursion i.e., γ(T (I)) = γ(T (γ(I))), thus validating PreM.

4.4 K-Nearest Neighbors Classifier

K-nearest neighbors is a popular non-parametric instance-based lazy classifier, which stores all

instances of the training data. Classification of a test point is computed based on a simple majority

vote among K nearest1 training instances of the test point, where the latter is assigned into the class

that majority of the K neighbors belong to.

In the Datalog program, defined by rules r4.4.1− r4.4.7, the predicate te(Id,X,Y) denotes a

relational instance of two-dimensional test points represented by their Id and coordinates (X,Y).

Likewise, the predicate tr(Id,X,Y,Label) denotes the relational instance of training points

represented by their Id, coordinates (X,Y) and corresponding class Label. In this example,

1Based on metrics like Euclidean distance.
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rule r4.4.1 calculates the Euclidean distance between the test and all the training points, while

the recursive rule r4.4.3 with aggregate determines the nearest K neighbors for each of the test

point. Symbolically, the predicate nearestK(IdA,D,IdB,J) represents the training instance

IdB is the J-th nearest neighbor of the test point IdA located at a distance of D apart. Finally,

rules r4.4.4− r4.4.5 aggregates the votes for different classes and performs the classification by

majority voting. cMax in rule r4.4.5 is a special construct that extracts the corresponding class

Label that received the maximum votes for a given test point. Rule r4.4.5 can be alternatively

expressed without cMax, as shown in rules r′4.4.5,r
′′
4.4.5. In terms of simple relational algebra,

the constructs cMin or cMax can be thought of denoting the projection of specific columns (at-

tributes like Id2 in r4.4.3 and Label in r4.4.5) from a tuple, which satisfies the min or max ag-

gregate constraint respectively. However, these special constructs are mere syntactic sugar as

illustrated before with equivalent rules r′4.4.5,r
′′
4.4.5, which do not use any of these constructs.

r4.4.1 : dist(Id1,Id2,D)← te(Id1,X1,Y1),tr(Id2,X2,Y2,Label),D= (X1−X2)
2+(Y1−Y2)

2.

r4.4.2 : nearestK(Id,−1,−1,nil)← te(Id,X,Y).

r4.4.3 : nearestK(Id1,min〈D〉,cMin〈Id2〉,J1)← dist(Id1,Id2,D),nearestK(Id1,S,Id3,J),

larger(S,Id3,D,Id2),J1 = J+1,J1 ≤ K.

r4.4.4 : votes(Id1,Label,count〈Id2〉)← nearestK(Id1,D,Id2,J),tr(Id2,X,Y,Label).

r4.4.5 : classify(Id1,max〈V〉,cMax〈Label〉)← votes(Id1,Label,V).

r4.4.6 : larger(S,Id3,D,Id2)← D> S.

r4.4.7 : larger(S,Id3,D,Id2)← D= S,Id2 > Id3.

r′4.4.5 : classify(Id1,V,Label)← votes(Id1,Label,V),¬higher(Id1,V).

r′′4.4.5 : higher(Id1,V)← votes(Id1,Label,V),votes(Id1,Label
′,W),W> V.

We now verify that the min aggregate in the recursive rule r4.4.2− r4.4.3 satisfies PreM and

ensures semantic correctness. Note the exit rule r4.4.2 always trivially satisfies the PreM defini-

tion, since the interpretation, I of the recursive predicate is initially an empty set. Thus, we focus

our attention only on the recursive rule r4.4.3. We now prove that r4.4.3 satisfies iPreM: consider
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inserting an additional constraint (Id1,J,min〈S〉) in the body of the rule r4.4.3 that defines the min

constraint on the recursive predicate nearestK in the body (creating an interpretation γ(I) in

the rule body). If this min constraint in the body ensures that for a given Id1 and J, S is the

minimum distance of the J-th nearest neighbor, then for the corresponding valid J1(≤ K), r4.4.3

without the min aggregate in the head will produce all potential J1-th neighbors whose distances

are higher than S (i.e., distance of J-th neighbor), thereby being identical to T (I). Thus, we have,

T (I) = T (γ(I)) validating r4.4.3 satisfies iPreM, since the recursive rule remains invariant to the

inclusion of the additional constraint (Id1,J,min〈S〉) in the rule body.

Similar to K-nearest neighbor classifier, several other data mining algorithms like K-spanning

tree based graph clustering, vertex and edge based clustering, tree approximation of Bayesian

networks, etc. — all depend on the discovery of a sub-sequence of elements in sorted order and

can likewise be expressed with PreM using aggregates in recursion. It is also worth observing

that while our declarative K-nearest algorithm requires more lines of code than the other cases

presented in this chapter, it can still be expressed with only seven lines of logical rules as compared

to standard learning tools like Scikit-learn that implements this in 150+ lines of procedural or

object-oriented code.

4.5 Iterative-Convergent Machine Learning Models

Iterative-convergent machine learning (ML) models like SVM, perceptron, linear regression, lo-

gistic regression models, etc. are often trained with batch gradient descent and can be written

declaratively as Datalog programs with XY-stratification, as shown in [BBC12]. Rules r4.5.1−
r4.5.3 show a simple XY-stratified program template to train a typical iterative-convergent ma-

chine learning model. J denotes the temporal argument, while training_data (in r4.5.2)

is an extensional predicate representing the training set and model(J, M) is an intensional

predicate defining the model M learned at iteration J. The model is initialized using the predi-

cate init_model and the X-rule r4.5.2 computes the corresponding error E and gradient G at

every iteration based on the current model and the training data using the predicate compute

(defined according to the learning algorithm under consideration). The final Y -rule r4.5.3 assigns
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the new model for the next iteration based on the current model and the associated gradient using

the update predicate (also defined according to the learning algorithm at hand). Since many

iterative-convergent ML models are formulated as convex optimization problems, the error gradu-

ally reduces over iterations and the model converges when the error reduces below a threshold δ .

r4.5.1 : model(0,M)← init_model(M).

r4.5.2 : stats(J,E,G)← model(J,M),training_data(Id,R),compute(M,R,E,G).

r4.5.3 : model(J+1,M′)← stats(J,E,G),model(J,M),update(M,G,M′),E> δ .

Interestingly, an equivalent version of the above program can be expressed with aggregates and

pre-mappable constraints in recursion, as shown with rules r′4.5.1− r′4.5.4. The stopping criterion

γ : E> δ pushed inside the recursion in rule r′4.5.3 satisfies rPreM, since T (γ(I)) and γ(T (I))

would both generate the same atoms in find, where the error E is above the threshold δ (as-

suming convex optimization function). Also note, the max aggregate defined over the recursive

predicate find trivially satisfies iPreM.

r′4.5.1 : model(0,M)← init_model(M).

r′4.5.2 : stats(J,E,G)← model(J,M),training_data(Id,R),compute(M,R,E,G).

r′4.5.3 : find(max〈J〉,cMax〈M〉,cMax〈E〉,cMax〈G〉)← model(J,M),stats(J,E,G),E> δ .

r′4.5.4 : model(J1,M′)← find(J,M,E,G),update(M,G,M′),J1 = J+1.

4.6 PreM for Continuous Queries on Data Streams

The formal semantics of continuous query language (CQL) [ABW06] for data stream manage-

ment systems (DSMS) was proposed in the last decade following the footsteps of structured query

language (SQL) in a bid to streamline and speedup application programming for data streams,

much like SQL standardized and simplified high-level database application programming in the

1990s. This eventually led to the development of a host of query engines for data streams like C-

SPARQL [Gno10], EP-SPARQL [AFR11], Streaming SPARQL [BGJ08], etc. These systems have

been quite successful inasmuch as they provided support for logical/physical window operators

and also delivered continuous real-time aggregated query results with non-blocking implementa-
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tion [BBD02] of aggregate (SUM, COUNT) and extrema operators (MAX, MIN), as opposed to using

their blocking implementations [BBD02] that are commonly prevalent in the traditional relational

database management systems. However, the dawn of IoT era brought the focus on advanced

stream reasoning applications, which cannot be easily supported by CQL based systems. For ex-

ample, consider the query of finding the minimum cost to travel from a place A to another place

B considering different modes of transport, where the expenses for some of the transports vary

over time (e.g. flight prices, on-demand cab fares, etc.). This example of a shortest path query on

evolving graph sequences (EGS) [RLK11] illustrates the need for languages supporting recursive

queries with aggregates. Unfortunately, most of the current generation of CQL systems do not sup-

port aggregates in recursion, or even simple recursion for that matter. This precludes them from

expressing most graph queries. While some complex event processing engines [Hir12, MZZ12]

are able to detect patterns and composite events over incoming streaming sequences via regular

expression matching, these systems still fall woefully short of expressing many machine learning

and data mining algorithms that can be expressed using aggregates in recursion [Yan17]. Without

such generic support, these systems are only able to perform some basic specific inductive stream

reasoning tasks using user-defined functions [BBC10]. In fact, this lack of expressive power is a

major setback in building advanced stream reasoning applications quickly, as application program-

mers now have to largely rely on writing an increasing number of their own user defined functions

in a procedural language [MD14].

Recently, many researchers discussed theoretical temporal extensions to Datalog [RKG18,

Zan12,BDE15,MD14], which could serve as high-level declarative APIs for advanced stream rea-

soning applications. However, unfortunately, these Datalog extensions lacked robustness [ZYI17]

and were still not adequate to deliver low-latency analytics on high velocity data streams [SGW16].

For example, monotonic aggregates are conceived as continuous integer functions and hence mono-

tonic aggregate for SUM can only operate on integer arguments [MSZ13]; in addition the opera-

tional semantics of monotonic aggregates were still computationally too expensive and not con-

ducive for real time responses. Therefore, in this section we will examine if we can efficiently

combine the semantics of PreM with that of the semantics of continuous query, in particular the
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Dataog semantics laid out by Streamlog [Zan12] for data streams.

4.6.1 Streamlog: Formal Semantics

We first briefly review the formal semantics of Streamlog here. The formal semantics of logic pro-

gramming bounds negation of a predicate to be evaluated only when all the tuples for the predicate

are known. In order to avoid this blocking implementation, Progressive Closing World Assumption

(PCWA) was proposed in [Zan12] for data streams, where negation is applied considering tuples

only seen till now. For example, the following query maintains the highest weight observed so far

on a conveyer belt. The first arguments of the predicates denote the temporal argument/timestamp.

maxWeight(T,W)← sensor(T,W),∼ larger(T,W).

larger(T,W)← maxWeight(T1,W1),T1 < T,W1 > W.

If the readings from sensor stream arrive with increasing timestamps, then under PCWA, the

above query can be stratified with respect to negation and can be hence evaluated in a non-blocking

fashion. Such a query is called a sequential program [Zan12]. We next present several programs

that use the operational semantics of PreM for efficacy and robustness.

4.6.2 Streaming Applications with PreM

We now present three streaming applications that uses PreM. The semantics used here is similar

to Streamlog [Zan12] under PCWA, except that all streaming records are assigned a tuple identifier

as their first attribute, which consists of two parts: (i) a timestamp, ts, that is either explicitly

specified or internally generated by the system, and (ii) an id, which is only used for specifying

physical window lengths. The id (similar to ROWID in SQL) is always initialized internally by

the system in successive order according to the arriving timestamp. The timestamp (ts) value in

the head of a Datalog rule can be initialized internally using a built-in predicate that returns the

system time periodically. It can also be initialized using the latest timestamp values of the tuples in

the body of the rule. We follow similar syntax as before, except that the temporal arguments (i.e.

the first attributes) are never considered as group-by arguments during aggregation; instead they

are either initialized with the system time, or with the latest timestamp among all the tuples to be
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aggregated upon. The declarative queries for each of the case studies are commented for clarity.

• Computing Number of Reachable Paths. In this example, we consider the temporal trust

network maintained by the Bitcoin Alpha platform [KSS16], where each node represents a user

and a directed edge from u to v denotes that u can trust v. Bitcoin platforms often need to monitor

how many paths are reachable from a given node. This monitoring is essential to select paths,

which can sufficiently obfuscate end-to-end transactions. We present a simple recursive query

(reachability) enabled by PreM that achieves this goal over an evolving trust network:

%Schema declaration.

stream({edge(T : TupleIdentifier,Source : string,Target : string)}).

%The base case.

path(T,S,D)← edge(T1,S,D),T.ts= T1.ts.

%The recursive rule. Initializes/updates the tuple with latest timestamp.

%‘larger’ grounds T.ts to the larger of the two values: T1.ts or T2.ts.

path(T,S,D)← path(T1,S,S1),path(T2,S1,D),larger(T.ts,T1.ts,T2.ts).

%The final continuous query returns results as the system time updates.

reachability(T,S,count〈D〉)← path(T1,S,D),system(T.ts),T.ts≥ T1.ts.

• Computing Optimal Paths. In this case study, we consider the fluctuating cab prices across

different routes in Chicago [Chi]. Additionally, we also consider the city bus fares, which remain

static over time. Bus rides are relatively cheaper but buses do not operate across all routes. Thus,

modeling this data as a temporal graph, we can execute a continuous recursive query on it to

monitor the minimum price to travel from one place to another. Such queries exemplify the use

of extrema in recursion. Furthermore, this query also shows how streams can be merged with

static databases, if necessary. This class of queries are particularly important in social networks to

monitor metrics like (i) how the diameter of a network changes over time, or (ii) how the distance

between two friends vary [LKF05]. It is also important to reiterate that such query computations

in traditional Datalog systems may not terminate in presence of cycles. However, such situations
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can be elegantly handled with PreM [ZYI17].

In this query, as the prices for a route decrease in real time, the classic semi-naive evaluation

method [SYI16] automatically updates the other routes in a recursive manner, till the fixpoint

is reached. In normal DSMS, such applications are often executed with user-defined functions

which would require recomputation of all the affected paths whenever a route prices increases or

decreases. However, with PreM recomputation is only necessary when route price rises. Thus,

PreM also offers better query optimization opportunities.

%Input stream schema.

stream({cab(T : TupleIdentifier,Pickup : string,Drop : string,Fare : float)}).

%Input database schema.

database({bus(Stop1 : string,Stop2 : string,Fare : float)}).

%Optimal route computation.

route(T,S,D,min〈P〉)← cab(T1,S,D,P),T.ts= T1.ts.

route(T,S,D,min〈P〉)← bus(S,D,P),system(T.ts).

route(T,S,D,min〈P〉)← route(T1,S,S1,P1),route(T2,S1,D,P2),

P= P1+P2,larger(T.ts,T1.ts,T2.ts).
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•Computing Publication Impact. We consider the high-energy physics citation network [LKF05]

next. The impact of a publication within the research community can be gauged by computing its

pagerank as the network grows over time. We present a query, which monitors the pagerank of a

publication, as computed only from its recent citations (published within the last 365 days), while

ignoring all its older citations. This query demonstrates how aggregates like SUM can be effectively

computed on fractions inside recursion with PreM; something which monotonic aggregates were

unable to perform due to its operational semantics [MSZ13]. This query further demonstrates how

logical window operators can be applied using our semantics. Physical windows can be similarly

constructed using id instead of ts. For sake of clarity, we present a simplified pagerank algorithm

without considering the damping factor.

%Input stream schema.

stream({pub(T : TupleIdentifier,PaperId : string,ReferredPaper : string)}).

%Computing total references for each paper.

ref(T,P,count〈R〉)← pub(T1,P,R),T.ts= T1.ts.

%Simplified pagerank computation.

%‘round’ limits the number of decimal places for a floating point number.

%‘in_days’ returns time difference between two timestamps in days.

prank(T,P,V)← ref(T1,P,R),V= 1.0,T.ts= T1.ts.

prank(T,P,sum〈V〉)← prank(T1,C,W),pub(T2,C,P),ref(T3,C,R),

V= round(
W

R
,2),system(T.ts),

in_days(T.ts−T2.ts)≤ 365.

4.7 Conclusion

Today BigData applications are often developed and operated in silos, which only support a par-

ticular family of tasks — e.g. only descriptive analytics or only graph analytics or only some

ML models and so on. This lack of a unifying model makes development extremely ad hoc, and

hard to port efficiently over multiple platforms as discussed in Chapter 1 . For instance, on many
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graph applications native Scala with Apache Spark cannot match the performance of systems like

RaSQL [GWM19], which can plan the best data partitioning/swapping strategy for the whole query

and optimize the semi-naive evaluation accordingly. However, with PreM, a simple extension to

declarative programming model, which allows use of aggregates and easily verifiable pre-mappable

constraints in recursion, can enable developers to write concise declarative programs (in Datalog,

Prolog or SQL) and express a plethora of applications ranging from graph analytics to data mining

and machine learning algorithms. This will also increase the productivity of developers and data

scientists, since they can work only on the logical aspect of the program without being concerned

about the underlying physical optimizations.

In this chapter, we also discussed how PreM can be combined with the formal semantics of

Streamlog to express complex streaming applications. This is quite promising, paving the way

toward future research in many interesting areas, where declarative recursive computation under

SSP processing can be quite advantageous. For example, declarative advanced stream reasoning

systems [DGZ18], supporting aggregates in recursion, can adopt distributed SSP model to query

evolving graph data, especially when one portion of the network changes more rapidly as compared

to others. SSP models under such scenario offer the flexibility to batch multiple network updates

together, thereby reducing the communication costs effectively.
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CHAPTER 5

Fast Frequent Itemset Mining from Data Streams

In this chapter, we study how compact data structures and representations can be very useful in

several low latency data mining and analytical tasks. This assumes even more significance with

respect to data streams, since online maintenance of such data structures can play a critical role in

the overall latency of the tasks. We demonstrate this using the problem of mining exact frequent

itemsets from data streams. Since the number of frequent patterns is often quite large, concise

representations that save resources by avoiding redundancy are critical for an efficient lossless ex-

traction of frequent patterns. Therefore, in this chapter, we introduce the novel concept of crucial

patterns, and formally prove them to be an effective subset of closed frequent itemsets that assures

lossless extraction. Furthermore, we also present a novel Crucial Pattern Mining (CPM) algo-

rithm for data streams that includes robust optimization strategies for online maintenance of such

compact data representations.

5.1 Introduction

Extracting frequent itemsets1 over a continuous stream of transactions is an important task in many

online data mining applications [CH08]. While many applications prefer approximate lossy extrac-

tion techniques [MM02], certain critical applications for credit card fraud detection, stock market

prediction and anomaly detections rely on exact frequent itemset mining methods [MTZ08] that

do not generate any false positives or false negatives. In addition, many of these data mining

1We will use the terms “itemsets” and “patterns” interchangably in this chapter.
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applications also require the exact support of these itemsets for advanced machine learning tasks

such as association rule deduction [AS94], classification [CRB06], etc. Often, however, there can

be too many frequent patterns containing redundant information. In fact, the number of frequent

itemsets is usually quite huge, particularly for low support thresholds or dense datasets that con-

sist of strongly correlated transactions. In such cases, it may become cumbersome for analysts to

gain meaningful insights from these patterns [TPB00]. As a result, several condensed representa-

tions [CRB06], [GLM14] have been proposed that concisely represent the complete information

contained in all the frequent itemsets. Researchers also state that these concise representations are

more useful, since analysts can easily deduce non-redundant association rules and other actionable

knowledge from them [TPB00]. Moreover, these representations typically require less storage than

all the frequent patterns together, thereby making them more suitable for data streams [CWY04]–

[LC09]. Lossless representations allow one to recover all the frequent itemsets with their exact

supports without accessing the original data. Furthermore, a good lossless representation should

also allow fast and complete generation of important information from it (e.g. deducing relevant

association rules or frequent itemsets with their exact supports) [CRB06]. This is particularly im-

portant for data stream applications that require real-time response. As of today, the most popular

lossless condensed representation is the closed frequent itemsets [GLM14], [TPB00]. Unlike other

representations, the latter is a small subset of all the frequent patterns and allows speedy extraction

of relevant information from itself. In this chapter, we investigate an important research question:

is the set of closed frequent patterns an optimal subset of the frequent itemsets for lossless extrac-

tion. Or, does there exist a set of patterns with smaller cardinality from which one can quickly

construct all the frequent itemsets with exact supports?

5.2 Related Work

Over the years, a large number of algorithms have been proposed for lossless extraction that ranges

from mining all frequent patterns to generating different lossless condensed representations. How-

ever, traditional data mining approaches proposed in the context of static databases like Apri-

ori [AS94], FP-growth [HPY00], Charm [ZH02], Ndi [CG02], etc. require multiple scans of the
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entire dataset. On the contrary, streaming algorithms need to process the incoming data in a single

scan (one-pass constraint [LK06]) to cope with the high data arrival rate and provide real-time

response. Furthermore, they also need to quickly detect and respond to concept-drifts [MTZ08].

Thus, several stream mining algorithms have been proposed following different window mod-

els [LJA14] to deal with these additional constraints, as discussed next.

Most of the recent lossless mining algorithms [MTZ08], [LKL05]– [TAJ09], are largely in-

spired from the traditional FP-growth method [HPY00]. The FP-growth algorithm recursively

mines frequent itemsets from the FP-tree, which is created from two scans of the database; the

first scan determines the order between the frequent items based on their supports and the sec-

ond scan sorts the frequent items within a transaction and inserts them into the FP-tree (prefix

tree). However, owing to the one-pass constraint for data streams, many of the reported meth-

ods like CanTree [LKL05] and DSTree [LK06] insert transactions into the prefix tree following

a lexicographic or pre-determined canonical order, thereby omitting the need for the first scan.

Consequently, the resulting prefix tree (with higher average depth and branching factor) does not

have the same compact structure as an optimal FP-tree. This, in turn, drastically increases the

memory usage and time required to mine frequent patterns from the prefix tree by FP-growth, as

shown in our experimental results. The SWIM algorithm [MTZ08] attempts to reduce this min-

ing time by implementing fast counting techniques (verifiers), but their eventual performance is

also bottlenecked by the large size of the lexicographic prefix trees. The most recent work CPS-

tree [TAJ09] tries to mitigate this by maintaining an optimal prefix tree (based on the descending

order of support). This significantly reduces the mining time, but adds considerable overhead to-

wards maintaining the tree, since it needs to continuously rearrange the prefix tree optimally with

the arrival of incoming data (particularly for concept-drifting streams). Thus, in this chapter, we

also examine how to maintain a close-to-optimal prefix tree that can be mined quickly, but also has

a low maintenance cost.

The approaches mentioned above [MTZ08], [LKL05]– [TAJ09] use the conventional recursive

FP-growth technique [HPY00] to extract frequent itemsets from conditional pattern trees. This

leads to unnecessary FP-growth calls over subsequent windows, performing repeated construction
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and mining of similar conditional pattern trees, which eventually yield the same frequent patterns

most of the times (although their corresponding supports may vary). Other related algorithms,

like Moment [CWY04], CFI-stream [JG06] and NDFIoDS [LC09], attempt to avoid this by main-

taining an information lattice (or index [CKN08]), comprising of a subset of the frequent patterns

(condensed representations) along with some other gateway (border) elements. As the new data

arrives, these algorithms update the support of the existing patterns in the information lattice ac-

cordingly. However, this update operation is quite expensive, since it often has to re-mine the old

data along with the new one, whenever it appears that a new pattern (absent in the lattice) may

become frequent (although the potential candidate may turn out to be infrequent in the end). Thus,

we also study in this chapter how to reduce the redundant FP-growth calls and restrict their exe-

cution (i) to only when we are certain of identifying new frequent patterns from existing branches,

or (ii) to mine new branches inserted into the prefix tree.

5.3 Contributions

In the rest of this chapter, we address the issues highlighted in Sections 5.1 and 5.2 and make the

following contributions:

• We prove that computing the optimal lossless condensed representation for a set of frequent

patterns in general is an NP-hard problem.

• Thereafter, we introduce the notion of “crucial patterns” and show that, under reasonable

constraints, the set of crucial patterns does become an optimal subset of the closed frequent

itemsets for lossless extraction.

• Furthermore, we propose a novel Crucial Pattern Mining (CPM) algorithm for data streams.

In this approach, we construct and maintain a close-to-optimal prefix tree over subsequent

window slides.

• We also present a robust delta-maintenance strategy that intelligently mines the prefix tree,

avoiding unnecessary computation.
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5.4 Preliminaries

Let I = {i1, ..., in} be a set of items and S be a continuous stream of incoming transactions ti, where

every ti ⊆ I. We will analyze S using the popular sliding window model [LJA14], where only a

fixed length of recently generated data is considered, as shown in Figure 5.1. We now formally

define the following terms:

• Support: Support of any pattern A⊆ I is defined as the number of transactions in window W

that contain A.

• Frequent Pattern: A pattern is defined to be frequent, if its support is not less than a minimum

support threshold ε .

• Set Enumeration Tree: Given an order ≺ between the items in I, the complete set of all the

frequent patterns with their supports can be represented by a prefix tree, known as the set

enumeration tree. Figure 5.2(a) shows an example, where lexicographic ordering is used

to represent all the frequent patterns mined from the first sliding window (Figure 5.1) with

ε = 3. Alternatively, since the set of frequent patterns form a partially ordered set (poset)

with respect to the subset relation, the former can also be represented by a Hasse diagram

[ES13], as shown in Figure 5.2(b). We will use these frequent patterns as a running example

in the subsequent definitions.

• Lossless Frequent Itemset Mining: Given a set of transactions and ε , the lossless frequent

itemset mining problem should return a set of frequent patterns with their supports and some

additional information (if needed) from which the exact set enumeration tree can be con-

structed uniquely. However, if the set enumeration tree cannot be built precisely every time

for any ε , then the mining approach is termed as lossy extraction.

• Candidate free construction: Given the output of a lossless mining algorithm, if the corre-

sponding set enumeration tree can be built from it, without generating any infrequent candi-

dates, then the latter process is called candidate free construction.
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• Candidate pruning based construction: Contrary to the previous definition, a candidate

pruning based construction generates infrequent candidates and later discards them to build

the set enumeration tree. This process is usually extremely time consuming.

• Closed Pattern: A pattern P is defined to be closed, if it has no superset Q (P⊂ Q) with the

same support (e.g. x, bx and xy). It is easily verifiable that the exact set enumeration tree

can be built from the closed frequent itemsets (and their supports) by generating all of their

possible subsets (lossless extraction). This is an example of candidate free construction.

• Maximal Itemset: A frequent itemset P is called maximal, if it has no superset Q (P ⊂ Q)

which is also frequent (e.g. bx and xy). One can always get all the frequent patterns from the

maximal itemsets, but not their exact supports (lossy extraction). E.g., support of x cannot

be inferred from the supports of bx and xy.

• Non-Derivable Itemset: Upper and lower bounds on the support of an itemset can be deter-

mined from all its subsets using the inclusion-exclusion principle [CG02]. Based on this,

itemsets are called derivable, if the maximum lower bound and minimum upper bound on

their supports are equal; otherwise they are termed as non-derivable (e.g. b,x and y). It is

possible to build the set enumeration tree from frequent non-derivable itemsets using candi-

date pruning based construction. E.g. by will be generated and pruned.

Other less popular representations, like frequent generators and disjunction free sets [CRB06],

require substantial amount of additional information (like border elements) which increases their

overall size (as later discussed in our experimental results).

5.5 Crucial Patterns

In this section, we formally introduce the notion of crucial patterns and theoretically prove its

important properties. For this purpose, we first define the term branch id in the context of FP-

trees. A branch id is an unique identifier which is assigned to a FP-tree node, (i) if its support

exceeds the total support of its children, or (ii) if it does not have any child. If a node is not
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Figure 5.1: A sliding window example with window size=4 and slide size=2.
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Figure 5.2: All frequent patterns represented with their respective supports.

assigned a branch id, it collectively uses the branch ids of all its children. Figure 5.3(a) shows an

example. These branch ids can be treated as virtual transaction ids (several times fewer than actual

number of transactions) while creating the conditional pattern bases during FP-growth. Figure

5.3(b) depicts the corresponding conditional FP-tree after retaining the original branch ids. As the

figure shows, the support at each node in the conditional FP-tree is a linear sum of the supports

contained in the actual FP-tree nodes with the associated branch ids. In other words, the support

for any frequent itemset generated from the conditional pattern base (projected database) of an

element i in the FP-tree is simply a linear combination of the supports of the actual FP-tree nodes

that contain the element i. Figure 5.3(c) presents an example. We will call the set of branch ids

whose linear sum forms the support of a frequent pattern as its valid branch combination. For

example, the set {6,9} is the valid branch combination of the frequent pattern ed.

Now, let F denote the set of all the frequent patterns such that every f ∈F has a valid branch

combination b f with storage cost c f . Given the set of all the branch ids of the frequent patterns

(V ), we are interested in finding a subset E ⊆F with the minimum total storage cost that can be

used for lossless extraction (optimal lossless extraction). The corresponding decision version L of
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this optimization problem can be stated as follows: given the input pair (F ,V ) and an integer k,

the decision problem should answer whether there exists a subset E ⊆F for lossless extraction

with ∑
e∈E

ce ≤ k.

Claim 5.1. L is in NP.

Proof. The following verifier for L runs in time polynomial in the length of the inputs:

Verifier V (< F ,V,k >,< E >):

1. Construct U = {u|u ∈ X ∧X ∈F}

2. Construct T = {e|e ∈ X ∧X ∈ E}

3. ∀e ∈U , Construct Ve = {i|e ∈ X ∧X ∈F ∧ i ∈ bX}

4. ∀e ∈ T , Construct We = {i|e ∈ X ∧X ∈ E ∧ i ∈ bX}

5. If the following are all true then accept else reject:

i U = T (all frequent items included)

ii ∀e ∈U,Ve =We (all <branch id, item> included)

iii ∑
e∈E

ce ≤ k (total cost ≤ k)

Claim 5.2. Weighted Set Cover ≤p L.

Proof. The weighted set cover problem takes as input <U,A ,k >, where A is a set whose mem-

ber i⊆U with cost ci and k ∈ N, to answer the question if U has an A -cover of cost k.

Let us define a function f that takes as input <U,A ,k > and output < F ,V,k >. We perform

this by computing mutually exclusive sets Di from A in polynomial time, such that Di∩D j = /0,

∀i 6= j and
⋃

i Di =U , where i ∈ N.

Now, F can be computed as follows:

∀w ∈A =⇒ w ∈F with cost cw and valid branch combination {i} where w⊆ Di.
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Suppose U has a weighted A -cover B of cost ≤ k. Then it can be trivially shown, B can be

used for lossless extraction of F , since all frequent items and their corresponding valid branches

are covered.

Conversely, if B can be used for lossless extraction of F , then
⋃

w∈B w =U and total cost of

B ≤ k. Thus B is also a weighted A -cover of cost ≤ k.

Theorem 5.3. The decision version L of the lossless extraction problem is NP-complete.

Proof. It directly follows from Claim 5.1 and 5.2 that (i) L is in NP and (ii) the Weighted Set Cover

NP-complete problem can be reduced to L in polynomial time.

Since the decision version is NP-complete, it follows that the optimal lossless extraction prob-

lem is NP-hard. Moreover, given an optimal subset E, one may need to use the expensive candidate

pruning based construction (discussed in Section 5.4) to build the full set enumeration tree, which

involves joining of patterns in E on their branch ids (e.g. eca derived from ec and ea) and ex-

amining several infrequent candidates. However, if we restrict only to candidate free construction

(defined in Section 5.4) for building the set enumeration tree, then it can be shown that, an optimal

subset exists under this new constraint. We now formally present the definition of crucial patterns.

A frequent itemset P is called a crucial pattern if its valid branch combination has at least one

branch id, which is not present in the valid branch combination of any of its frequent superset

Q (P ⊂ Q). The unique branch ids corresponding to P will be called its demarcating branches.

E.g., e, edc, edb, eca in Figure 5.3(c) are the only 4 crucial patterns with demarcating branches

{8},{9},{6} and {3} respectively. Except e, all other crucial patterns are also maximal patterns,

whereas, adding ed to the set of crucial patterns, we obtain the complete set of closed frequent

itemsets. Now we prove some important properties of crucial patterns.

5.6 Properties of Crucial Patterns

Lemma 5.4. Let P, Q be frequent patterns with valid branch combinations BP and BQ respectively

such that P⊂ Q. Then, (i) BP ⊇ BQ and (ii) if, support of P = support of Q, we have, BP = BQ.
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Figure 5.3: Mining frequent itemsets with associated branch ids from FP-tree.
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Proof. (i) Since, P⊂Q, all the branches (prefixes in the FP-tree) containing Q must also contain P

i.e. BP ⊇ BQ. (ii) Furthermore, if support of P = support of Q, then BP cannot contain any branch

id which is absent in BQ, otherwise support of P would be greater. Therefore, BP = BQ.

Lemma 5.5. Let P be a crucial pattern with valid branch combination BP. If Q⊃ P is a frequent

pattern with valid branch combination BQ, then, BP ⊃ BQ.

Proof. Since, every crucial pattern is also a frequent pattern, it follows directly from Lemma 5.4(i)

that BP ⊇ BQ. However, by the definition of crucial pattern, P must contain at least one branch id

which is not present in Q. Therefore, BP 6= BQ. Thus, BP ⊃ BQ.

Lemma 5.6. Every maximal pattern is also a crucial pattern.

Proof. By definition, a maximal pattern does not have any superset which is also frequent. Hence,

the lemma follows trivially from the definition of crucial pattern.

Lemma 5.7. Every crucial pattern is also a closed frequent itemset.

Proof. Let P be a crucial pattern. We assume that P is not a closed itemset. Since, P is not closed,

there must exist a pattern Q ⊃ P, such that support of Q = support of P. Since P is frequent, Q

is also frequent. Now, according to Lemma 5.4(ii), the valid branch combination of P and Q must

be same. But this violates Lemma 5.5, since P is a crucial pattern. Therefore, P must be a closed

itemset. Thus, every crucial pattern is frequent (by definition) and closed.

Theorem 5.8. If M, E, C are the sets of maximal, crucial and closed frequent patterns respectively,

then M ⊆ E ⊆C.

Proof. Follows directly from Lemma 5.6 and 5.7.

Theorem 5.9. If X is the set of crucial patterns, then there does not exist any Y ⊂ X that can build

the set enumeration tree, using candidate free generation.

Proof. Let us assume that such a set Y ⊂ X exists. Since, Y is a proper subset, there must exist at

least one crucial pattern P ∈ X −Y . By our assumption, P and its support can be calculated from
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the crucial patterns in Y using candidate free generation. However, exact support of P cannot be

calculated, if any of its branch id is missing from the valid branch combinations of its supersets

in Y. And, by definition, P must contain atleast one unique demarcating branch id. Therefore, this

contradicts our assumption. Thus, the set of crucial patterns is an optimal subset of the closed

frequent patterns, which can be used for lossless extraction, based on candidate free generation.

5.7 Set Enumeration Tree Construction

Let the set Vi = {1, ..,k} denotes the valid branch combination of the ith frequent item. Also, let

there be a column vector Ci = [s1s2...sk]
T , where s j is the support of branch id j (1 ≤ j ≤ k).

The valid branch combination of any crucial pattern derived from the projected database of i can

be represented by a 1× k Boolean row vector (bitmap), where a ‘1’ at position j indicates the

presence of branch id j in the valid branch combination. Since, the crucial patterns are a superset

of the maximal patterns (Theorem 5.8), we can trivially find all the frequent patterns from them

by generating all of their subsets (candidate free construction). Now interestingly, the bitmap

representing the valid branch combination of any non-crucial frequent pattern f is simply the

logical OR of those bitmaps, whose corresponding crucial patterns generate the subset f . With this

information, we can prepare an n× k matrix R for any n relevant frequent patterns, whose exact

supports we are interested to know. The rows of R contain the bitmaps of the relevant frequent

patterns and the matrix multiplication RCi results in their exact supports. The set enumeration

tree corresponding to the projected database of i can be thus trivially constructed, if the supports

of all the frequent patterns are calculated. Since, in FP-trees, all projected databases are created

by taking only the prefix paths, frequent patterns computed from these projected databases are

mutually exclusive and completely exhaustive [HPY00]. Thus, the forest of all the set enumeration

trees, derived from the conditional pattern bases of the frequent items, represent the overall set

enumeration tree.
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5.8 Crucial Pattern Mining Algorithm

We now present our crucial pattern mining (CPM) algorithm, which comprises of three main com-

ponents as described below:

5.8.1 Initialization

At the end of the first window, we construct an optimal prefix tree by trivially building a lexico-

graphic tree in one pass and then restructuring it at the end (similar to the CPS-tree). We also

maintain a list of the items with their running support. At every node, the support for each of the

individual window panes [LK06], [TAJ09] is stored in an array. When a slide expires, this array

needs to be shifted accordingly (Figure 5.5). This is performed lazily following the strategy dis-

cussed in [LK06]. Once the tree is constructed, we assign branch ids only to the nodes containing

frequent items as discussed in Section 5.5. All branch ids are reassigned when complete restruc-

turing is performed on the tree (Section 5.8.2.2). The crucial patterns are computed next following

algorithm 5.1. The term Tval in the algorithm is used for a pattern to denote the highest support

among the infrequent items contained in its projected database. Tval is used later in Section 5.8.3.1.

5.8.2 Delta Maintenance of Prefix Tree.

5.8.2.1 Close-to-optimal Prefix Tree.

The prefix tree constructed before has a distinct node boundary that separates the frequent items

from the infrequent ones. It is easy to see that the performance of the mining algorithm depends on

the compactness of the subtree consisting of the frequent items (with branch ids). The following

method tries to retain this compactness as much as possible without incurring high maintenance

cost. In this approach, given a new transaction, we will use two ordering schemes to sort it – ≺est

(established order) for “once frequent” items and ≺desc (descending order of current support) for

“still infrequent” items. ≺est indicates the ordering between the frequent items when they were

first inserted into the tree above the said node boundary. Once these items were inserted above

the boundary, their relative ordering has been established and should not change. On the contrary,
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6

Algorithm 5.1 Crucial Pattern Computation

Input: T ← Prefix-tree with branch ids, e← frequent item, Ve ← valid branch combination

of e in T , B ← set of all uncovered branches, α← null

Output: Append triplets < P, VP , δP > to list L, where P is a crucial pattern, computed

from projected database of e, with corresponding valid branch combination VP and Tval =

δP

1: procedure comp–Crucial–Pattern(T, e, Ve, α)

2: for all frequent items f in T |e do// cond. on e

3: compCrucialPattern(T |e, f, Vf , α ∪ f)

4: end for

5: isCrucial ← false

6: if Ve ∩B 6= ∅ then
7: isCrucial ← true

8: else if Ve − ∪x∈L∧x⊃(α∪e)Vx 6= ∅ then
9: isCrucial ← true// by definition

10: end if

11: if isCrucial = true then

12: δ ← max. support of infrequent item ∈ T |e
13: L← L∪ < α ∪ e, Ve, δ >

14: B ← B − Ve

15: end if

16: end procedure

Figure 5.4: Algorithm for computing crucial patterns.
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≺desc can change as the window slides. But only the infrequent items are ordered according to the

latter. Now as the window slides, it is important to consider two cases – (a) frequent item becoming

infrequent and (b) infrequent item becoming frequent. For (a), the nodes containing the item are

in the upper portion of the prefix tree and no action is taken with regards to it. This is because

all crucial patterns have been computed earlier by projecting conditional pattern bases, based on

≺est and hence changing it can impact the results. Therefore the relative ordering of the “once

frequent” items (≺est) and their established position in the tree is not disturbed. However, for (b),

the infrequent item, that became frequent, was never conditionalized before. Hence, we push this

element up through the boundary and append it to ≺est . This element from now onwards will be

sorted following ≺est . This “bubble up” movement may result in a trivial split up or merging of

branches. Figure 5.5 illustrates the entire process for the sliding window example in §2. The branch

ids are omitted in this figure for clarity. Note, the subtree comprising of the items, defined by ≺est ,

may not be optimal but is still significantly better than the corresponding lexicographically ordered

tree resulting in smaller mining cost. Moreover, this adjustment is considerably less expensive than

restructuring the entire tree (including the infrequent items) at every window slide, as performed

in the CPS-tree.

5.8.2.2 Periodic Complete Restructuring.

The semi-optimal prefix tree, discussed above, ensures that the conditional pattern bases (obtained

during mining) remain small in size, thus leading to reduced mining time. However, over many

slides, the semi-optimal tree will accumulate considerable number of “garbage” nodes (n1) i.e.

nodes with zero support and many infrequent elements (n2) in the upper portion. Although garbage

nodes will predominantly occur in the lower portion of the tree (Figure 5.5(c)), it nevertheless can

adversely impact the performance as discussed in [TAJ09] and also shown in our experiments.

Therefore, we use a threshold θ , such that, if (n1+n2)/N > θ (N being the number of nodes in the

upper portion), then we restructure the complete tree using path adjusting method [KS04], assign

new branch ids and generate the crucial patterns once again.
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Figure 5.5: Maintaining a close-to-optimal prefix tree.

5.8.3 Update of Crucial Patterns.

5.8.3.1 Incoming Slide.

As new transactions arrive and are inserted into the tree, the following cases can occur: (a) infre-

quent items can become frequent, (b) new branches for a frequent item can appear and (c) existing

branches of a frequent item can get updated (support incremented). For (a), after the subsequent

bubble up, we assign branch ids to the nodes containing the new frequent item and compute new

crucial patterns from its projected database only. As for (b), we add the new branches to B and

execute algorithm 5.1 for the associated items only. Lastly, for (c), we check if the support in

the branches increased by ε−Tval or more for any crucial pattern (Tval constraint), where ε is the

minimum support threshold. This is because we can derive new crucial patterns simply by re-

mining only those valid branch combinations whose corresponding patterns have violated the Tval

constraint. Overall, these strategies mitigate the issues discussed in Section 5.2.
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5.8.3.2 Expiring Slide.

As slides are expired, the corresponding support of the crucial patterns are reduced and they can

become obsolete. It is possible to still build the set enumeration tree from these patterns, even when

some of them are infrequent. But, we remove these obsolete patterns to reduce memory overhead

and keep the search space small. Therefore, in this case, we add the demarcating branches of the

obsolete pattern P to B and then apply the algorithm 5.1 on the valid branch combinations of P’s

subsets to include the frequent itemset(s) that was previously dependent on P (because of these

demarcating branches) as a crucial pattern.

5.9 Experiments

In this section, we report the experiments conducted to evaluate the performance of our crucial

pattern mining algorithm.

5.9.1 Setup

We designed a common framework using the Complex Event Processing engine Esper and im-

plemented all the lossless extraction algorithms in Java2. All the experiments were run using

Esper-5.1.03 and Java 1.7 on a machine, with one Intel i5-4210U CPU and 8GB memory, running

Ubuntu 14.04 LTS. Each of the experiments was conducted 10 times for physical sliding windows

and the averaged results have been reported here.

5.9.2 Datasets

We ran our experiments on both sparse (T10I4D100K, Retail) and dense (Chess) datasets4, which

have been used in many of the previous related works. T10I4D100K is a synthetic dataset (pro-

duced by the IBM market-basket generator) while Chess and Retail are real-world datasets. We

2Some of the codes were reused from
http://www.philippe-fournier-viger.com/spmf and
http://adrem.ua.ac.be/~goethals/software.

3http://www.espertech.com/esper.
4Datasets and their descriptions are available at

http://fimi.ua.ac.be/data.
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highlight the results from the T10I4D100K dataset, since results from other datasets were consis-

tent as well.

5.9.3 Results

We first run experiments to compare the computation time of CPM with different lossless extrac-

tion methods discussed in §1.1. We mainly compare the results of CPM with DSTree [LK06],

CPS-tree [TAJ09] and SWIM [MTZ08], as they are the recent state-of-the-art methods which have

outperformed previous techniques like CanTree [LKL05] and Moment [CWY04] by several orders

of magnitude. Furthermore, since the performances of Moment and NDFIoDS [LC09] were com-

parable, the latter was not compared with CPM. Lastly, due to unavailability of CFI-stream [JG06]

source code, we could not compare it to CPM. However, the results reported in [JG06], [MTZ08]

imply CFI-stream to be slower than SWIM. Figures 5.6 - 5.8 present the corresponding experi-

mental results obtained from the T10I4D100K dataset for window size 10K, slide size 2.5K and

θ = 0.25.

Figure 5.6 plots the average mining time per slide for different minimum support thresholds.

As shown in the figure, CPM is orders of magnitude faster than other state-of-the-art methods in

terms of mining time. In fact, even for higher supports, CPM is more than 3 times faster than its

nearest competitor SWIM. This is mainly due to the fact that CPM avoids repeated mining of the

same crucial patterns between the slides. On the other hand, CPS-tree, though optimal in size,

has to repeatedly mine the same patterns, while SWIM has to run its verifiers against the window

panes several times to update the support of the frequent patterns. In case of DSTree, mining time

is significantly higher because of its non-optimal structure and the accumulation of garbage nodes

over time. Interestingly, unlike its competitors, the mining time of CPM is not strictly decreasing

with increasing support thresholds (also observed in [CWY04]). This is primarily because, in

CPM, the number of mining calls in a slide is directly dependent on how many new crucial patterns

are emerging. If the overlap among the crucial patterns between two consecutive slides is less

(e.g. at support=0.1%), the number of mining calls will be more, thus leading to a higher mining

time. The distribution of the data eventually decides this overlap. But, even in the worst case,
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Figure 5.6: Mining time comparison for lossless extraction methods.

the performance of CPM will be better than its competitors, because it enumerates through the

smallest subset of the frequent patterns (by Theorem 5.9).

Figure 5.7 presents the average delta maintenance time per slide for each of the above men-

tioned algorithms across different minimum supports. The best delta maintenance time is offered

by SWIM which is only marginally less than CPM. This is because SWIM simply creates a lexi-

cographic prefix tree from the incoming transactions and expires the oldest window pane; whereas

CPM, apart from inserting transactions into the prefix tree, also moves up new frequent items and

occasionally realigns the tree (although rarely) adding to the delta maintenance. It must be pointed

out that, when new crucial patterns emerge or old ones become obsolete at a higher rate (e.g. at

support=0.1%), the maintenance time is slightly higher due to increased number of adjustments

for new frequent items. On the other hand, at higher supports, when the rate of emergence of new

frequent items is less (i.e. mainly dealing with the heavy hitters), maintenance time of CPM is

almost same as SWIM. On the contrary, CPS-tree is realigned at every slide to form an optimal

prefix tree, resulting in an almost constant maintenance cost, which is higher than both SWIM and

CPM. Although transactions are simply inserted into the DSTree, their delta maintenance cost is

surprisingly very high. We investigated this further and found that this is again mainly due to the
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Figure 5.7: Delta maintenance time comparison for lossless extraction methods.

accumulation of large amount of garbage nodes over time, which makes search for a child at a

node much more time consuming and thus, even inserting or updating a transaction becomes cum-

bersome and expensive. SWIM and CPS-tree does not suffer from the problem of garbage nodes.

Although CPM can potentially suffer from this problem, but our periodic realignment resolves it

without much overhead.

Figure 5.8 reports the average running time (sum of delta maintenance and mining time) per

slide of the different algorithms for the same support thresholds. It is evident from the figure that

CPM is several times faster than CPS-tree and orders of magnitude faster than DSTree for the entire

support range. For low support thresholds (< 0.4%), CPM is 10 times or more faster than SWIM.

This is also true for dense datasets like chess even for moderate support thresholds. However, as

the support increases, the performance of SWIM and CPM becomes comparable, as indicated in

the figure.

Next, we compare the compression ratio among different lossless representations for varying

supports on the T10I4D100K dataset. The compression ratio is calculated as the size of the con-

densed representation (including any additional information required for lossless extraction) to the

size of all the frequent patterns with their supports. The results are shown in Figure 5.9. As in-

79



 10

 100

 1000

 10000

 0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

A
vg

. r
un

ni
ng

 ti
m

e 
pe

r 
sl

id
e 

(i
n 

m
s)

Minimum support threshold (%)

DSTree CPS-tree SWIM CPM

Figure 5.8: Running time comparison for lossless extraction methods.

dicated in the figure, crucial patterns offer the best lossless compaction when compared against

closed [TPB00], non-derivable [CG02], disjunction-free [Kry01] itemsets and frequent genera-

tors (also known as 0-free sets [CRB06]). The last two lossless representations were coupled

with positive border elements instead of negative border ones in order to obtain better size esti-

mates [LLW07]. Also interestingly, crucial patterns have the slowest convergence to the compres-

sion ratio 1 with increasing support values.

5.10 Conclusion

In this chapter, we introduced the novel concept of “crucial patterns” for lossless frequent itemset

mining. We formally proved that these patterns are a subset of the closed frequent itemsets from

which all the frequent patterns can be derived with their exact supports. We also proposed the

crucial pattern mining (CPM) heuristic for data streams that maintains a close-to-optimal prefix

tree using two ordering schemes – (i) one for “once frequent” items and (ii) another for “still

infrequent” items. Then, we also discussed how to persist the set of crucial patterns between

subsequent window slides to avoid unnecessary mining calls. Our experiments indicate that CPM

yields the best running time when compared against other state-of-the-art approaches. Finally, we
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Figure 5.9: Compression ratio comparison for lossless representations.

also noted that the crucial patterns offer the best concise lossless representation of the frequent

itemsets, especially for dense correlated datasets and low minimum support thresholds. In fact,

in such cases, crucial patterns may be more intuitive and insightful to analysts than other lossless

condensed representations.
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CHAPTER 6

Scalable Construction of Online Decision Trees

In this chapter, we discuss a scalable method to efficiently employ statistical resampling techniques

for building online machine learning models faster on streaming data. Since naive implementation

of resampling techniques like non-parametric bootstrap does not scale on data streams due to large

memory and computational overheads, we propose a robust memory-efficient bootstrap simulation

heuristic (Mem-ES) that successfully expedites the learning process. We demonstrate this using

online decision tree models as a case-study, since the latter are extensively used in many industrial

machine learning applications for real-time classification tasks.

6.1 Introduction

Decision trees have been widely adopted by machine learning practitioners across different do-

mains for their efficiency [BZF17], scalability [ABL16] and comprehensibility [Fre14]. It has

been used in myriad applications ranging from Higgs boson classification [CH14] to predicting

protein-protein interactions [KS08] in computational biology. In the streaming scenario, incre-

mental decision tree induction algorithms have emerged as the predominant choice for a broad

array of industrial classification tasks like real-time telecommunications network management and

planning [BZF17], stock market prediction [KPP02], vehicle monitoring [KBL04], health indica-

tor tracking [HTS17] and biosensor measurements [Agg06].

The Very Fast Decision Tree [DH00] (VFDT), a.k.a Hoeffding tree, is the most popular incre-

mental decision tree induction algorithm. Figure 6.1 illustrates how a VFDT is built incrementally
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Figure 6.1: Online decision tree construction

in a top-down manner as more examples are streamed in. It is typically constructed by observ-

ing “enough” training examples from an unbounded data stream and then deciding the splitting

criterion from these observations with reasonably high confidence. The main idea is that for any

small value δ , the splitting attribute chosen from a finite subsample would be the same as the one

selected by traditional learners [Qui93, BFO84] with at least a probability of 1− δ . The minimal

sample size is ensured via the classic Hoeffding bound inequality, which determines the number

of points that need to be observed before deciding the split. Theoretically, VFDT is guaranteed

to be asymptotically identical to a decision tree built by a conventional learner [BFO84, Qui93].

However, the Hoeffding bound is a very conservative measure, since it is independent of the un-

derlying data distribution. This means that a larger number of observations are needed at every

node to make a split with the same confidence level 1−δ , as compared to distribution-dependent

bounds.

We demonstrate this by an example. We built a VFDT with 99% confidence (i.e. δ = 10−2) on

5 million streaming tuples produced from the standard MOA RandomTreeGenerator [MWS18]

using the same parameters1 mentioned in [DH00]. Figure 6.2(a) plots the total number of examples

observed at a leaf before splitting vs. the number of ‘redundant’ examples accumulated at the same

leaf node. The latter represents the observations trailing a split, which have been collected at the

leaf just to reach the eventual Hoeffding bound, but they do not change the selection of the best

1100 binary attributes and two classes
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splitting attribute in any way. That is, the same best split could have been obtained without these

‘redundant’ examples, although the Hoeffding bound would not have been met. As shown in the

figure, even for a moderate confidence level2, majority of the leaves have 50% to 90% wasted

examples (above the red line in Figure 6.2(a)).

In fact, this problem becomes more acute as the decision tree grows. Under the same ex-

perimental settings as before, Figure 6.2(b) shows how the average time taken by a leaf to split

increases across the decision tree levels. This is primarily because the probability of an incoming

tuple being assigned to a leaf reduces as the number of branches increases. This can be particularly

concerning with today’s modern shared memory and distributed memory architectures, where de-

cision tree construction can be massively parallelized on multicore machines [JA03a] and on multi-

node clusters [ABL16]. However, the conservative nature of Hoeffding bound under these same

parallel settings can force more resources (workers or threads) to idle-wait for longer durations.

Naturally, these problems can be mitigated to a large extent, if an online induction tree model can

learn faster with fewer training examples using tighter data distribution dependent bounds. Since

the online induction tree model eventually grows and improves via leaf node splitting, this calls for

a better and faster approach to split a leaf correctly. This is particularly needed when dealing with

sensitive data streams (e.g. stock market or health sensor data), where inaccurate predictions can

incur considerable damages.

In this chapter, we propose a memory-efficient bootstrap simulation strategy (Mem-ES), which

consumes fewer examples in deciding when to split a leaf. While simple adoption of resampling

techniques like non-parametric bootstrap is not conducive to stream processing due to large mem-

ory and computational overheads as shown later in Section 6.3.2, Mem-ES only uses constant

memory space per leaf to ensure accelerated learning and superior performance. Our proposed ap-

proach Mem-ES presented in Section 6.3.3 is able to estimate the distribution dependent bounds

for node splitting and can operate robustly on any dataset. Mem-ES is the first of its kind resource-

efficient resampling strategy proposed in the context of incremental decision tree learners that

empirically learns the distribution dependent bounds.

2More stringent confidence levels are used in [DH00, MWS18].
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6.2 Related Work

6.2.1 Incremental Decision Tree Learning

Traditional decision tree [Qui93] model is a cornerstone of classification tasks in machine learn-

ing. However, it is not well suited for real-time learning on data streams, where low latency

bounded memory models are required. The most famous online decision tree induction algorithm,

VFDT [DH00] mitigates this by learning from massive data streams incrementally in a single pass

using constant memory per leaf. CVFDT [HSD01] extends VFDT to incorporate gradual changes

in the underlying data distribution for concept-drifting data streams. [Fan04] and [WFY03] com-

bined VFDT with other ensemble methods to improve the performance. Some previous studies

also aimed at improving the node split latency of VFDT, which is the major bottleneck for the

overall learning stage. [JA03b] deduced smaller theoretical bounds for the sample size required

to make a split decision correctly. These bounds are independent of the input data distribution

and have been derived from the mathematical properties of information gain [Qui93] and Gini in-

dex [BFO84]. However, unlike VFDT, these bounds are not agnostic to the split measures used.

In addition, they also do not exploit the underlying input data distribution to come up with tighter

bounds to hasten the split.

Recent studies like Extremely Fast Decision Tree [MWS18] (EFDT) improves the splitting

process by allowing revision on the split decisions and achieves state-of-the-art performance on

many datasets. Other recently proposed methods like One-Sided Minimum OSM [LWH18] uti-

lizes local node statistics to optimize the frequency of evaluation of split decisions . These recent

improvements still rely on the Hoeffding bound inequality for the actual split and are thus indepen-

dent of our proposed method. Hence, our proposed algorithm Mem-ES can be plugged into these

frameworks to further improve their performance, as shown in our experimental results. Many data

stream mining systems also provide parallel and distributed implementations of online decision

trees [JA03a], such as MOA [BHK10] and STREAMDM-C++ [BZF17], where our optimizations

discussed in this chapter can also be integrated.
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6.2.2 Resampling Methods

Statistical resampling techniques provide conceptually simple and powerful tools to (1) measure an

estimate and (2) assess the quality of the corresponding estimation from an empirical distribution.

The classical Bootstrap method [BF81,GZ90] was the first to quantify the uncertainty in an estima-

tor using confidence intervals via repeated Monte Carlo trials, where in each trial the estimator was

computed over a resample drawn from the entire observed data. These estimates were more accu-

rate, robust and consistent than those obtained using asymptotic approximations [Hal13] on a wide

domain of problems. Variants of the bootstrap algorithm like subsampling [PRW99] and m out of

n bootstrap [BGZ12] are computationally much less demanding than the classic bootstrap algo-

rithm, since the estimators are repeatedly computed on significantly smaller resamples. Unlike the

traditional bootstrap method, these variants are less generic in nature, and often require rescaling

and analytic asymptotic approximation of the output. This is addressed by the most recent Bag of

Little Bootstraps (BLB) [KTS12] method, which combines the weighted results of bootstrapping

multiple small subsets of a larger dataset in a robust manner. Our proposed algorithm Mem-ES

is a variant of BLB that performs the Monte Carlo approximation over incoming streaming tuples

under bounded memory constraints using a computationally efficient strategy.

6.3 Methodology

6.3.1 Preliminary

First we provide a detailed overview of the general online decision tree induction algorithm. Sup-

pose S denotes a sequence of examples s, where s = 〈x,y〉. Let X denote the set of attributes an

example s has. The goal is to predict the class label y given the attribute values x of an incoming

example s. VFDT, in particular, adopts the Hoeffding bound to decide when a node in the decision

tree can be split with a confidence level of 1−δ . Formally, the Hoeffding bound inequality states

that for n independent observations of a real-valued random variable r with range R and observed
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mean r̄, the true mean of r ≥ r̄− ε with probability 1−δ , where

ε =

√
R2ln(1/δ )

2n
(1)

Thus intuitively, if G(Xi) denotes the information gain3 [Qui93] for an attribute Xi computed

from n training examples, and G(Xa),G(Xb) indicate the highest and second highest information

gain among all the attributes, then G(Xa)−G(Xb)> ε implies Xa can be judged as the best splitting

attribute with probability 1− δ without considering additional points for this particular split. In

other words, by Hoeffding bound, we have G(Xa)−G(Xb)> 0 with probability 1−δ over entire

data.

Algorithm 6.1 demonstrates the process of constructing an online decision tree. The decision

tree is first initialized with a single node (line: 2). Then for each incoming example s ∈ S , it

assigns the example into a leaf node l using the existing decision tree (line: 5). The leaves do not

store the actual examples. Instead they maintain statistics like the number of examples seen for

each attribute Xi ∈X, with value j and class label y = k, which are denoted as ni jk and are used for

computing G(Xi). These statistics are updated along with new incoming examples (line: 6). A leaf

node in VFDT is split (line: 8) when its best attribute satisfies the Hoeffding inequality (as shown

in the function Attempt to Split). The split attempts on different leaves can be executed

in parallel and asynchronously [JA03a]. However, more importantly, as shown in equation 1, the

Hoeffding bound does not take into account the underlying distribution of the examples seen and

hence most leaf nodes consume considerably more examples than necessary in order to make a

successful split with reasonable confidence.

6.3.2 Non-parametric Bootstrap Driven Split

According to the bootstrap principle, given any unknown distribution F and a sample S drawn i.i.d

from F , the quality of an estimation θ of some unknown population value, associated with F , can

be assessed by drawing with replacement sufficient resamples from S of size |S|. The confidence

3Other heuristic measures such as Gini index [BFO84] can also be used.
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Figure 6.3: Algorithm for constructing online decision tree

interval of θ computed via a form of Monte Carlo approximation from the resampling (or empiri-

cal) distribution F∗ holds well in practice, since by the law of large numbers the relative variation

among F and F∗ are similar [GZ90]. Interestingly, bootstrap does not necessarily improve upon
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the actual value of the estimation θ . Instead it provides a good assessment of the quality of the

estimate via standard error or confidence intervals.

We next summarize a bootstrap driven split attempt method: For a given leaf node l, let A

denote all examples observed in l. Xa,Xb are the best and second best splitting attributes based

on G(Xa) and G(Xb) respectively as computed from A . Let θ = G(Xa)−G(Xb). Now, we can

perform the classical bootstrap for T Monte Carlo iterations, where in each iteration i we draw a

sample Si with replacement from A and compute from Si, θ ∗i = G(Xa)−G(Xb) and ∆∗i = θ ∗i −θ .

Given a series of sorted ∆∗i , for 1 ≤ i ≤ T , we can select ∆∗L and ∆∗U as the lower and upper

percentiles for calculating the bootstrap confidence interval corresponding to 1− δ confidence.

For example, for a confidence level of 95%, ∆∗L and ∆∗U would be the 2.5th and 97.5th percentile

respectively. Thus, the bootstrap confidence interval for the estimate θ is given by [θ−∆∗U ,θ−∆∗L].

Now, considering only the lower bound of the confidence interval, if equation 2 is satisfied, then

θ = G(Xa)−G(Xb)> 0 holds with probability 1−δ . Therefore, we can split the node on Xa.

θ > ∆
∗
U (2)

It is important to note that for calculating ∆∗U , we only need to store a few top ∆∗i values. For

example, for calculating the 97.5th percentile of 100 ∆∗i values, we only need to store and maintain

the four top ∆∗i values. Note this bootstrap driven method decides to split based on the empirical

distribution. However, this accelerated split comes at the cost of larger memory and computational

overheads, which are discussed next.

6.3.2.1 Space and Time Complexity Analysis

Unlike the VFDT, a bootstrap driven split attempt would need to store the examples in the leaf

in order to be able to resample from it. Considering nominal data with c classes and d attributes,

where each attribute can have at most v values, VFDT can maintain the ni jk counts at each leaf in

O(dvc) memory. Thus for l leaves, total space complexity for VFDT is given by O(ldvc). On the

contrary, in order to store examples at the leaves, non-parametric bootstrap would require a space

of O(ldn), where n is the highest number of points accumulated at any leaf. Since n >> vc, the
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bootstrap driven split method has a space complexity of O(ldn).

Information gain computation takes O(c) time and each of the d attributes needs to calculate at

most v information gains. Thus the time to find the best and second best split attribute at any node

in VFDT is O(dvc). However, in bootstrap, T iterations are conducted, where in each iteration

resamples are drawn in O(n) time and ∆∗U is computed in O(vc) time. Again, since n >> vc, the

overall time complexity for bootstrap based split attempt at any leaf is O(T n+ dvc), or simply

O(T n), assuming the split attempts at each node are conducted in parallel and asynchronously (see

Algorithm 6.1). Thus, in terms of both space and time complexity, the dependency on n is the

major bottleneck, which makes the bootstrap based approach practically hard to scale.

6.3.3 Memory-Efficient Bootstrap Simulation (Mem-ES)

To mitigate the above problems, we propose the Mem-ES method based on the principle of Bag

of Little Bootstraps (BLB) [KTS12]. BLB selects few small samples (possibly disjoint) and then

artificially generates large bootstrap samples from them, which are consequently used to compute

the quality of the estimators. Under BLB, we simulate selecting large bootstrap samples of size

n from a considerably smaller sample of size w (w << n) by drawing n trials from a multinomial

distribution with parameters n,1w/w, where 1w/w denotes the 1-by-w vector of multinomial prob-

abilities, each initialized with value 1
w . The final estimator quality is assessed by averaging across

all the results. However, this BLB template was proposed in the context of bounded static data.

Mem-ES extends BLB and adapts it for unbounded data streams. For example, Algorithm 6.2 uses

Mem-ES to specifically check for a potential split with high statistical confidence in a memory-

efficient manner by only relying on the most recent batch of w points at any leaf to simulate the

bootstrap process. Also note that in Algorithm 6.2, unlike the non-parametric bootstrap, the size

of A is bounded to an user-defined value w (lines: 3 and 18). We can easily integrate Mem-ES

into VFDT or other variants by simply replacing line 8 in Algorithm 6.1. We next discuss some

key aspects of Mem-ES.
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6.3.3.1 Discussion

Each leaf node in Mem-ES maintains at most w last seen examples. Thus, the overall memory

complexity for Mem-ES is O(ldvc+ ldw). Typically, w values (as used in our experiments) are

comparable to vc.

Similarly, we can draw a sample of size n from the multinomial distribution of w distinct ob-

jects in O(w) time, thereby the overall time complexity for a split attempt at any leaf is reduced

to O(Tw+T vc+ dvc). Typically Tw is comparable to dvc. However, online decision tree con-

struction is mostly I/O or network bound [DH00], since the streaming rate is primarily throttled by

the I/O rate or network bandwidth. As such, the in-memory computation time of a split attempt,

specially under parallel settings, is largely overshadowed by the time required to read the corre-

sponding tuples. Lastly, it is worth mentioning that in practice, instead of two attributes (line: 7

in Algorithm 6.2), we maintain top 4 or 5 promising attributes since Xa,Xb may change as more

examples arrive.

6.4 Evaluation

6.4.1 Experimental Setup

6.4.1.1 Baseline Methods

We evaluate the effectiveness of Mem-ES against two category of baselines:

• First, we integrate Mem-ES into VFDT (denoted as VFDT+ME) and compare its performance

against standard VFDT and [JA03b] (denoted by ‘VFDT+IG’). Simple VFDT uses Hoeffding

bound, whereas VFDT+IG uses sample size estimates deduced theoretically from the property

of information gain.

• Second, we incorporate Mem-ES into a VFDT variant like EFDT and benchmark its perfor-

mance. EFDT+ME denotes integration of Mem-ES into EFDT.
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6.4.1.2 Datasets

We evaluate the performance of Mem-ES against the above baselines on two large real world

classification datasets used in [MWS18] and one synthetic dataset.

• Gas Sensors dataset(Gas) from UCI repository consists of 900K+ records. The data have 15

continuous attributes and 3 classes in total.

• Human Activity Recognition (WISDM) dataset [KWM11] consists of 1M+ records. The data

have 5 continuous attributes and 6 classes in total.

• In addition, we also created a synthetic dataset(SYN) spanning across 10M+ records with 100

binary attributes and 2 classes (generated from the standard MOA RandomTreeGenerator) to

test Mem-ES for scalability.

VFDT and its variants like EFDT theoretically converge towards the decision tree built by

a traditional learner when the incoming streaming examples are i.i.d. Hence, the data sets are

shuffled for the experiments as prescribed in [MWS18]. Here we report the metrics averaged over

5 such shuffles.

6.4.1.3 Environment

Our experiments are conducted on a standard commodity machine with 4 cores and 32GB memory

running Ubuntu 14.04 LTS. We used Java implementation of Mem-ES and other baselines with 8

threads. The main program was tasked with reading the incoming data tuple and assigning it to a

leaf in the decision tree. Other workers concurrently and asynchronously attempt splits at different

leaves4. All the experiments were performed using a confidence level of 98%, T = 150, w = 40.

We used the standard value of nmin = 200 (parameter which controls how frequently a split attempt

is made at a leaf) [DH00].
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6.4.2 Results and Discussion

In this section, we will try to answer the following questions: (1) Does Mem-ES help to learn a

decision tree correctly with fewer examples? (2) Is memory a major bottleneck for Mem-ES or

can it scale at an affordable cost?

We examine the first question by plotting the number of instances seen vs. the error rate for

all three data sets. Figure 6.5 shows the corresponding three plots. Figure 6.5(a) shows that

VFDT+ME learns better from considerably fewer examples, as compared to VFDT and VFDT+IG,

yielding around 8 percentage points lower error rate than VFDT and VFDT+IG in the first 200K

examples. In addition, Figure 6.5(a) further shows that even EFDT+ME learns faster with fewer

number of examples than EFDT, although the gap reduces after 150K examples. Interestingly,

simple VFDT+ME has outperformed the optimized EFDT for the first 400K examples on the

Gas data. Figure 6.5(b) on WISDM data further reiterates that Mem-ES learns and converges

faster with fewer examples than other baseline methods. In fact, Figure 6.5(b) exemplifies the

utility of Mem-ES as a ‘plug-in’, since it can be incorporated into VFDT to outperform VFDT

and VFDT+IG and can similarly be integrated into EFDT to improve its performance. For some

datasets, VFDT variants can outperform EFDT, as shown in Figure 6.5(c), where VFDT+IG pro-

duces lower error rate than simple EFDT. Nevertheless, Mem-ES still yields a marginal improve-

ment (2 percentage points lower error in first 400K examples) over VFDT+IG.

It is worth highlighting here that all online models eventually converge as examples stream

in [MWS18]. But online models that learn and converge faster with fewer examples are naturally

more preferable. This is more important for sensitive data streams, where inaccurate classifications

can incur significant penalties. Thus, the nomenclature of ‘fast’ in systems like VFDT or EFDT

refers to how many fewer examples are required in the learning stage. In other words, at any time

instant during the learning stage, the accuracy of the online learner is determined mainly from its

ability to learn from fewer examples. And in this context of learning from fewer examples, Figure

6.5 presents Mem-ES as a very effective and robust strategy that works well across different data

4Leaves are assigned to threads in a round-robin fashion so that the load is evenly distributed.

94



sets, since EFDT+ME (Figures 6.5(a), 6.5(b)) or VFDT+ME (Figure 6.5(c)) produces the best

results.

Next, we investigate the memory cost of Mem-ES by examining how the number of nodes and

the memory consumption varies as the examples stream in. Figures 6.6 and 6.7 show this interplay

with double Y-axis graphs, where the line graph indicates the total memory consumed and the

vertical bar represents the total number of nodes created in the corresponding decision tree. Figure

6.6 presents the comparison between VFDT, VFDT+IG and VFDT+ME. As shown in Figure 6.6,

the three methods incrementally builds the tree, but VFDT+ME constructs at the fastest rate i.e. it

builds a more deeper decision tree model as compared to other baselines after processing the same

number of examples. Also recall that Mem-ES needs to store at most w examples at each leaf. As a

result, VFDT+ME ends up requiring more memory than VFDT or VFDT+IG, since it grows better

trees with more nodes at an expedited rate as well as retains some data points at the leaves. But

nevertheless, even for the synthetic data of over 10M records (Figure 6.6(c)), VFDT+ME requires

only around 100MB memory, which is an order of magnitude less than the default allocated heap

size in standard Java virtual machines as used in our implementation. Furthermore, VFDT+ME

requires less than 10MB and 3MB memory for Gas and WISDM datasets respectively. Figure 6.7

shows the corresponding plots for EFDT and EFDT+ME. EFDT re-examines the splits of internal

nodes in the decision tree and aggressively prunes the sub-trees if a split better than the original one

is found. Consequently, as shown in Figure 6.7, the number of nodes and memory consumption of

EFDT and EFDT+ME can decrease as well. This makes Mem-ES more suitable for integration

into strategies like EFDT where memory can be aggressively freed. EFDT+ME consumes around

700KB, 300KB and 45MB memory for Gas, WISDM and SYN datasets respectively.

6.5 Conclusion

In this chapter, we presented Mem-ES that efficiently performs resampling techniques to accel-

erate the node splits for online decision tree learning. The success of Mem-ES is particularly

exciting, since the idea of applying resampling techniques like non-parametric bootstrap on data

streams had always been considered very difficult in the past due to its cumbersome nature and
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high time and space complexity. But, this first of its kind realization and experimental validation

of approximate bootstrapping can invite further research investigations in other stream mining al-

gorithms used for frequent pattern mining [DZ16], episode mining [ASW19, ALW18], complex

pattern detection and ranking [GWZ16], where bootstrapping can be useful.
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CHAPTER 7

Conclusion and Future Work

By embracing the Horn-clause logic of Prolog but not its operational constructs such as the cut,

Datalog researchers, 30 years ago, embarked in a significant expedition toward declarative lan-

guages in which logic alone rather than “Logic+Control” [Kow79] can be used to specify algo-

rithms. Significant progress toward this ambitious goal was made in the 90s with techniques such

as semi-naive fixpoint and magic sets that support recursive Datalog programs by bottom-up com-

putation and implementation techniques from relational database systems. However, declarative

semantics for algorithms that require aggregates in recursion largely remained an unsolved prob-

lem for this first generation of deductive database systems. Moreover, Datalog scalability via

parallelization was only discussed in papers, until recently when the availability of new paral-

lel platforms and an explosion of interest in BigData renewed interest in Datalog and its parallel

implementations on multicore and distributed systems, as discussed in chapter 2.

In this thesis, we have made major progress toward a unified environment for developing vari-

ous types of big data applications in declarative languages (Datalog, SQL, ...), enabling end-to-end

query optimization for complex algorithms. This was made possible with PreM, which allows

aggregates in recursion with rigorous semantics guarantee. We demonstrated that PreM offers

greater expressivity, usability, portability, better performance and scalability through paralleliza-

tion for several graph queries. In fact, there are unique advantages that PreM offers on comparison

with other BigData application development frameworks, like, (1) a Stale Synchronous Parallel

computing model and PreM-optimized queries dovetail and combine to further expedite many
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graph and potential ML applications, and (2) PreM also offers optimization scope for continuous

queries on data streams.

An immediate future work is to develop ML applications and queries which can benefit from

relaxed synchronization. Another interesting future direction is to develop a rich library of data

mining and graph applications, where PreM can be applied with formal proof of validity, and also

build language extensions and system support for user-defined aggregates that can aid developabil-

ity for programmers. Another very exciting direction for future research is to examine support for

non-deterministic constructs within recursion. More efforts are needed to understand if limitations

of PreM, discussed in Chapter 3 can be solved with alternative problem formulations using these

non-deterministic constructs.

Furthermore, we believe that the use of aggregates in recursive rules made possible by PreM

can lead to beneficial extensions in several application areas, e.g., data mining algorithms, and in

related logic-based systems, including, e.g., those that use tabled logic programming [SW12] and

Answer Sets [EGL16]. Therefore we see many interesting new topics deserving further investiga-

tion, suggesting that logic and databases remains a vibrant research area although many years have

passed since it was first introduced [MSZ14].
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