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Abstract—We investigate the symmetric degrees of freedom
(DoF) of the K-pair (2K users) two-way relay Multiple-Input
Multiple-Output (MIMO) Gaussian interference channel for
K = 2, 3 where each user is equipped with M antennas and
the relay node is equipped with N antennas. The two users
of each pair communicate with each other via the help of the
relay only. Expressing the DoF characterization as a function
of the ratio γ = M/N , we find that the DoF value per user is
piecewise linear depending on M and N alternately. As we will
show in this paper, while the DoF achievability only needs linear
beamforming transmission and zero-forcing reception, inter-pair
signal subspace alignment is essential at the relay node as well as
the users. In addition, the DoF converse is first developed based
on the linear dimension counting approach, which can be further
translated to the information theoretic statement.

I. INTRODUCTION

In wireless networks with multiple sources and destinations
(users), concurrent transmissions give rise to competition for
channel resources, e.g., frequency and time, between different
information flows. How to deal with the interference caused
by different concurrent transmissions is attractive and essential
to understand the fundamental capacity limit of wireless
networks. Recently, a number of interesting signaling schemes
have been investigated to deal with the interference problem
so as to improve the achievable rate of wireless networks. In
particular, the notion of interference alignment is one of the
most attractive ideas that have emerged out in recent work.

The idea of interference alignment in wireless networks was
inspired by study of degrees of freedom (DoF) of networks.
The DoF characterization is quite interesting and important,
because not only it motivates a number of attractive ideas such
as interference alignment, but also it implies the number of
independent signaling that can be communicated in networks,
which is a capacity approximation characterization. Interfer-
ence alignment was first proposed for the two-user X channel
in [9], and then was shown by Cadambe et. al. in the K-
user interference channel in [8]. In the past years, a variety
of interference alignment schemes have been proposed for a
number of multiuser networks such as interference channels,
X channels, broadcast channels and multi-hop networks, as
summarized in [7], but the central new insight to emerge
from those schemes is always to align interference as much
as possible rather than avoid interference, while keeping the
desired signal distinguishable from the interference. So far,
the DoF results that have already been known are almost for

one-way communication networks only. If the communication
networks allow two-way transmission, then even the DoF
characterization of the networks remain unknown in general.

Recently, Lee et. al. have shown the DoF for a 3-user MIMO
Y channel in [3] where each user has 2 antennas, and each
user sends one independent message to each of the others
via the help a 3-antenna relay node. The transmission scheme
shown in [3], incorporating the ideas of interference alignment
and network coding, achieves the cut-set DoF bound of the
network. The key to this surprising result was the new idea of
alignment for network coding. That is, only the signal vectors
carrying the messages of paired users talking to each other can
be aligned at the relay node, and the signal vectors of different
pairs remain distinguishable. This idea was then applied to
two-way or multi-way networks in [5], [6], [4] to find their
DoF. However, all those results only account for a special
network where each node in the network has the same number
of antennas.

In this work, we investigate the DoF of the K-pair (2K
users) two-way relay MIMO interference channel where each
user has M antennas and the relay has N antennas where
M and N can be arbitrary positive integers. Since the paired
two users may not project a common subspace the relay, the
idea of alignment for network coding proposed in [3] cannot
be applied in general. In addition, no matter if signals of the
paired two users can be aligned or not at the relay, the joint
signal alignment among multiple pairs is possible. Since there
are many parameters and signal alignment coming into the
play, the DoF characterization of the two-way relay MIMO
interference channel is difficult in general. In this paper, in
order to solve this problem, we propose a new idea of inter-
pair signal subspace alignment. With this new idea, we show
that the DoF per user is piecewise linear depending on M and
N alternatively, implying that there are antenna redundancies
at either the user side or the relay node.

II. SYSTEM MODEL

Consider a two-way relay MIMO Gaussian interference
channel where there are K pairs of users, each pair consisting
of two users, for a total of 2K users. As shown in Fig. 1, each
user is equipped with M antennas and the relay is equipped
with N antennas. For brevity, we label the users on the left-
hand-side with indices 1, 2, · · · ,K and the users on the right-
hand-side with indices K+1,K+2, · · · , 2K. User i and User
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Fig. 1. The K user-pair (2K users) two-way relay MIMO Gaussian
interference channel where each user has M antennas and the relay has N
antennas.

i+K comprise of the ith pair where i = 1, 2, · · · ,K. In the
ith pair, each user sends one independent message to the other
via the help of the relay node only. We denote by H[Rk] the
N ×M channel matrix from User k to the relay, and H[kR]

the M × N channel matrix from the relay node to User k
where k = 1, 2, · · · , 2K. In this paper, we assume that the
channel coefficients are independently drawn from continuous
distributions, and the channel coefficients stay constant during
the entire transmission once they are drawn. Notice that for the
same User k, while our results are valid regardless of whether
the channel matrices H[Rk] and H[kR] are identical, without
loss of generality we assume they are generated independently.
We assume that the global channel knowledge is available at
all nodes. In this work, we assume that the user nodes and the
relay node all work in the full-duplex mode1, i.e., they can
hear or transmit simultaneously. Since the relay node hears
from all 2K users, the received signal vector at the relay at
time t ∈ Z+ is given by:

y[R](t) =
∑2K
k=1 H

[Rk]x[k](t) + z[R](t) (1)

where x[k](t) is the transmitted signal vector from User k,
which is represented by a complex-valued M ×1 vector satis-
fying an average power constraint 1

T

∑T
t=1 E[‖x[k](t)‖2] ≤ P

for T channel uses. The N×1 column vector z[R](t) represents
the i.i.d. circularly symmetric complex additive white Gaussian
noise (AWGN) at the relay, each entry of which is an i.i.d.
Gaussian random variable with zero-mean and unit-variance,
i.e., z[R](t) ∼ CN (0, I). At the user side, each user only hears
from the relay, and thus the received signal vector at User k
at time t is given by:

y[k](t) = H[kR]x[R](t) + z[k](t) (2)

where x[R](t) is the complex-valued N × 1 transmitted signal
vector from the relay which satisfies an average power con-
straint 1

T

∑T
t=1 E[‖x[R](t)‖2] ≤ P for T channel uses, and

the M × 1 column vector z[k](t) ∼ CN (0, I) represents the
i.i.d. circularly symmetric complex AWGN at User k.

Let Rk(P ) = R(P ) denote the symmetric achiev-
able rate of each user. Also, we define d(K,M,N) ,
limρ→∞R(P )/ log(P ) as the symmetric DoF per user. In this

1If all nodes work in the half-duplex node, then the DoF value per user
that we show in this exposition will be scaled by a factor 1/2.

paper, we investigate the cases of K = 2 and K = 3. The
dependence on K,M,N may be dropped for compact notation
when no ambiguity would be caused. Moreover, we use “a”,
“a” and “A” to denote a scalar, a column vector and a matrix,
respectively.

III. MAIN RESULTS

In this section, we present our DoF results of the network
that we defined in Section II, and show the intuition behind
our new results.

Theorem 1: For the two-way relay two-user interference
channel where each user has M antennas and the relay node
has N antennas, the number of DoF per user is given by:

d =


M, M/N ≤ 1/3
N/3, 1/3 < M/N ≤ 1/2
2M/3, 1/2 < M/N ≤ 3/4
N/2, 3/4 < M/N.

(3)

Proof: All the insights behind the K = 2 setting are
basically included in the K = 3 setting. The proof for this
theorem is presented [1] in detail.

Theorem 2: For the two-way relay three-user interference
channel where each user has M antennas and the relay node
has N antennas, the number of DoF per user is given by:

d =



M, M/N ≤ 1/5
N/5, 1/5 < M/N ≤ 1/4
4M/5, 1/4 < M/N ≤ 5/18
2N/9, 5/18 < M/N ≤ 1/3
2M/3, 1/3 < M/N ≤ 3/8
N/4, 3/8 < M/N ≤ 1/2
M/2, 1/2 < M/N ≤ 2/3
N/3, 2/3 < M/N.

(4)

Proof: Due to the space limitation, we only show two
interesting cases in the next section, and present all the analysis
and rigorous proof for this theorem in our full paper [1].
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Fig. 2. The DoF per user of the K = 3 pair two-way relay MIMO Gaussian
interference channel as a function of γ =M/N

In Fig. 2, we plot the value of DoF per user as shown in
(4) normalized by N denoted as the blue curve, with respect
to the ratio γ = M/N . It can be seen that the DoF curve
is piecewise linear, depending on the parameters M and N ,
alternatively. This observation may remind us of the three-
user M × N Gaussian MIMO interference channel, where
the DoF curve is also piecewise linear, bouncing between



the DoF counting bound and the decomposition bound [2].
The piecewise linearity implies antenna redundancies at either
transmitters or receivers in general. For example, in Fig. 2,
each user is able to achieve d = N/5 DoF when γ = 1/5
(denoted as the first green circle). Then suppose we increase
the number of antennas at each transmitter such that the ratio
γ = M/N increases. Intuitively, increasing the number of
antennas to the network cannot decrease the channel capacity.
Thus, the DoF value per user, d = N/5, should still be
achievable. On the other hand, consider the case of γ = 1/4
where Theorem 2 implies that each user cannot achieve more
than d = N/5 DoF (denoted as the first black circle). If we
decrease the number of antennas at each transmitter such that
the ratio γ decreases, then d = N/5 DoF value per user
is still the outer bound because decreasing the number of
antennas cannot increase the channel capacity. Therefore, for
any case where γ ∈ [1/5, 1/4], each user has d = N/5 DoF,
which depends on the value of N only, i.e., there are antenna
redundancies at the transmitter side.

With the antenna redundancies argument, intuitively it suf-
fices to first show the DoF achievability at γ = 1

5 ,
5
18 ,

3
8 ,

2
3

with green circles, and the DoF converse at γ = 1
4 ,

1
3 ,

1
2 with

black circles, and then extend to the regimes between every
two adjacent transition points. Moreover, the DoF converse
for the regimes γ < 1/5 and γ > 2/3 are determined by
the single-user DoF bound and the cut-set DoF bound of the
network, respectively.

IV. 3-PAIR: DOF ACHIEVABILITY

Among the four transmission points γ = 1
5 ,

5
18 ,

3
8 ,

2
3 leading

to the DoF achievability, we only show the cases of γ = 5/18
and γ = 3/8 in this section due to the space limitation.
Rigorous proof for all DoF achievability is deferred to [1].

A. Example: (M,N) = (5, 18)⇒ d = 4

As implied by Theorem 2, we will show that each user
is able to achieve d = 4 DoF in this case. The entire
communication consists two phases, from users to the relay,
and then from the relay to users.
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Fig. 3. DoF achievability for (K,M,N) = (3, 5, 18)

1) From Users to the Relay: In the first phase, each User
k encodes its 4 symbols using a 5 × 4 beamforming matrix,
and the transmitted signal vector of User k can be written as

x[k] = V[k]u[k] = V
[k]
1 u

[k]
1 +V

[k]
2 u

[k]
2 (5)

where the 4 × 1 column vector u
[k]
1 represents the 4 inde-

pendent symbols. For convenience, we denote u
[k]
1 , u

[k]
2 as

two 2 × 1 column vectors, consisting of the first two and
last two entries of u[k], respectively, and V

[k]
1 V

[k]
2 are the

corresponding 5× 2 matrices.
Now let us consider the signals at the relay node. Our goal is

that for each pair, the signal subspace spanned by interference
contributed by the other two pairs has as lower dimensions as
possible, while d mixing data streams for each pair can still
be separable. Here, let us consider pair 3 as an example first.
In the 18-dimensional space at the relay, in order to protect a
4-dimensional subspace for pair 3, the signal coming from pair
1 and pair 2 cannot span more than 14 dimensions. Since they
have a total of 4d = 16 symbols, we need to align 2 symbols.
Thus, we align u

[5]
1 in the signal subspace spanned by the six

symbols u[1]
1 ,u

[2]
1 ,u

[4]
1 (shown in the blue color in Fig. 3). This

can be done since User 5 projects at the relay a 5-dimensional
subspace which has a 2-dimensional intersection with the 15-
dimensional subspace projected by User 1, User 2, User 4,
i.e., the number of common dimensions is 5 × 4 − 18 = 2.
Thus, we have the following alignment equation:

H[R1]V
[1]
1 +H[R2]V

[2]
1 +H[R4]V

[4]
1 = −H[R5]V

[5]
1 (6)

which can be solved by finding the solution of the equation:[
H[R1] H[R2] H[R4] H[R5]

][
V

[1]T

1 V
[2]T

1 V
[4]T

1 V
[5]T

1

]T
=O. (7)

Once we guarantee interference alignment for pair 3, we
continue to look into pair 2 and pair 1, respectively. For pair
2, the 4d = 16 symbols of pair 1 and pair 3 are interference.
Similarly, in order to protect a 4-dimensional subspace at the
relay for pair 2, we need to ensure that the 16 interfering
symbols span no more than 14 dimensions. Hence, we align
the two symbols u[4]

2 in the signal subspace spanned by the six
symbols u

[3]
1 ,u

[1]
2 ,u

[6]
1 (shown in the gray color). Again, this

can be done since the 5-dimensional subspace projected by
User 4 at the relay has a 2-dimensional intersection with the
15-dimensional subspace projected by User 1, User 3, User
6. Similarly, for pair 3, the 16 symbols of pair 1 and pair
2 are interference, and we align the two symbols u

[6]
2 in the

space spanned by the six symbols u[2]
2 ,u

[3]
2 ,u

[5]
2 (shown in the

green color). These two operations produce the following two
alignment equations:

H[R3]V
[3]
1 +H[R1]V

[1]
2 +H[R6]V

[6]
1 = −H[R4]V

[4]
2 , (8)

H[R2]V
[2]
2 +H[R3]V

[3]
2 +H[R5]V

[5]
2 = −H[R6]V

[6]
2 . (9)

Both equations above can be solved by finding the solutions
of the following two equations:[
H[R3] H[R1] H[R6] H[R4]

][
V

[3]T

1 V
[1]T

2 V
[6]T

1 V
[4]T

2

]T
=O, (10)[

H[R2] H[R3] H[R5] H[R6]
][
V

[2]T

2 V
[3]T

2 V
[5]T

2 V
[6]T

2

]T
=O. (11)

So far, it can be easily seen that for all 4d = 16 symbols
of arbitrary two pairs, we align 2 symbols into the subspace



spanned by the other 14 symbols at the relay. What remains to
be guaranteed is: (a) those 14 symbols span a 14-dimensional
signal subspace, i.e., to ensure the linear independencies
among the beamforming vectors carrying the 4 symbols per
user, and then (b) the vector subspace projected by each user
of the remaining pair and that 14-dimensional subspace span
the entire 18-dimensional signal space at the relay, i.e., to
ensure the separability of the 4 mixing (linear combinations)
symbols of the remaining pair from interference caused by the
other two pairs. Due to the symmetry of the design, it suffices
to show that the first two pairs consisting of User 1, User 2,
User 4 and User 5 project a 14-dimensional subspace at the
relay, which has only null intersection with the 4-dimensional
subspace projected by User 3. That is, we need to ensure that
the following 18×18 square matrix has full rank almost surely:[
H[R1]V[1] H[R2]V[2] H[R4]V[4] H[R5]V

[5]
2 H[R3]V[3]

]
.

As a matter of fact, this can be verified through a simple
numerical test, and we defer the rigorous proof to [1].

2) From the Relay to Users: The transmission in the
second phase, from the relay to users, basically follows a dual
approach for the reciprocal channel. We introduce the scheme
in the following.

Since we already reserve a 4-dimensional inter-pair
interference-free subspace for each pair at the relay, we can
obtain 4 mixing symbols for each pair. Due to the symmetry
of the design, we consider User 3 in pair 3 only. We define
the following 18× 14 matrix

G3 ,
[
H[R1]V[1] H[R2]V[2] H[R4]V[4] H[R5]V

[5]
2

]
, (12)

whose column subspace is the 14-dimensional subspace pro-
jected from pair 1 and pair 2. Also, we denote Gc

3 as a 18×4
(randomly picked) full rank matrix which lies in the null space
of GT

3 , i.e., (Gc
3)
TG3 = O. Recall that the received signal at

the relay is given by:

y[R]=
∑6
k=1 H

[Rk]x[k] + z[R] (13)

=
∑6
k=1 H

[Rk](V
[k]
1 u

[k]
1 +V

[k]
2 u

[k]
2 ) + z[R] (14)

=
[
H[R1]V

[1]
1 · · ·H[R6]V

[6]
2

][
u
[1]T

1 · · ·u[6]T

2

]T
+z[R]. (15)

To obtain the 4 mixing symbols of pair 3, denoted by a 4× 1
vector uR3, the relay uses the receive beamforming matrix Gc

3

to obtain the four noisy mixing symbols as:

uR3 = (Gc
3)
Ty[R] = (Gc

3)
TH[R3](V

[3]
1 u

[3]
1 +V

[3]
2 u

[3]
2 ) +

+(Gc
3)
TH[R6](V

[6]
1 u

[6]
1 +V

[6]
2 u

[6]
2 ) + (Gc

3)
T z[R].(16)

Following the similar approach, the relay can also obtain the
four noisy mixing symbols uR1 for pair 1 and uR2 for pair
2, respectively. Now we use uRi1 , uRi2 to represent the two
column vectors consisting of the first two and last two entries
of uRi for i = 1, 2, 3.

In the second phase, the transmitted signal vector of the
relay is given by:

x[R] = η
∑3
i=1 V

RiuRi (17)

where VRk is the 18× 4 beamforming matrix for the mixing
symbols uRk which will be determined later, and η is the
scaling parameter to normalize the mixing symbols power,
which can be easily seen to be a bounded value in the scale
of 1/P , i.e., η = O(1/P ).

Next, let us consider the user side. Each User k applies a
5× 4 receiver beamforming matrix U[k] = [U

[k]
1 U

[k]
2 ] where

U
[k]
1 and U

[k]
2 are two 5×2 matrices. We design each receiver

beamforming matrix in such a approach as in the first phase,
by replacing V[k], H[Rk] with U[k] and H[kR], respectively.
That is, as a dual approach of phase 1, if we project the
receiver (user) subspaces back to the transmitter (relay), any
two pairs project a 14-dimensional subspace which has only
null intersection with the 4-dimensional subspace projected
by each user of the remaining pair. Thus, by using the design
above, we already reserve a 4-dimensional subspace for pair 3
at the relay, leaving the other 14 dimensions for the first two
pairs. The 14-dimensional subspace is given by the column
space of the following 18× 14 full rank matrix

G′3 ,[
(U[1]TH[1R])T (U[2]TH[2R])T (U[4]TH[4R])T (U

[5]T

2 H[5R])T
]
,(18)

which has the same form as G3 in (12) by replacing V[k] with
U[k], and H[Rk] with H[kR]T due to duality. Recall that User 3
desires the 4 symbols u[6]. In order for User 3 to decode u[6],
we design the receiver beamforming matrices VR3 = VR6 as
a 18× 4 (randomly picked) full rank matrix which lies in the
null space of G′3, i.e., G′T3 V

R3 = O. Thus, the 4 mixing
symbols uR3 of pair 3 are zero-forced at the four users of
pair 1 and pair 2. With the similar approach, we design the
beamforming matrices for pair 1 at the relay so that the 4
mixing symbols uR1 are zero-forced at the four users of pair
2 and pair 3, and the beamforming matrices of pair 2 so that
uR2 are zero-forced at the four users of pair 1 and pair 3,
respectively. Therefore, with its receiver beamforming matrix,
User 3 observes the signal vector

y[3]′ , U[3]T y[3] = U[3]T (H[3R]x[R] + z[3]) (19)

= U[3]TH[3R]η
∑3
i=1 V

RiuRi +U[3]T z[3] (20)

= γU[3]TH[3R]VR3uR3 +U[3]T z[3] (21)

= ηU[3]TH[3R]VR3(Gc
3)
TH[R3]V[3]u[3]︸ ︷︷ ︸

self-interference

+ ηU[3]TH[3R]VR3(Gc
3)
TH[R6]V[6]u[6]︸ ︷︷ ︸

desired signal

+ ηU[3]TH[3R]VR3(Gc
3)
T z[R]) +U[3]T z[3]︸ ︷︷ ︸

, z[3]′ : noise

. (22)

Since User 3 knows its own signals, it can subtract the self-
interference from y[3]′ to obtain an effective AWGN MIMO
channel from User 6, and the equivalent MIMO channel output
is given by:

y[3]′′ = ηU[3]TH[3R]VR3(Gc
3)
TH[R6]V[6]u[6] + z[3]

′
(23)



where U[3]TH[3R]VR3(Gc
3)
TH[R6]V[6] is the equivalent 4×4

full rank MIMO channel matrix. Since the vector VR3 charac-
terizes the power constraint, i.e., ||VR3||2 = O(P ), we have
||ηVR3||2 = O(1), which implies that the cumulative noise
z[3]

′
is transmission power independent. Therefore, User 3 can

decode its desired 4 symbols from User 6 to achieve 4 DoF.
Similarly, symmetric argument can be carried out for other
users to show each user achieves 4 DoF.

Remark: Once we finish the transmission design for the first
phase, the scheme for the second phase can be automatically
designed owing to duality. That is, from the DoF perspective,
we only need to ensure the separability of the d mixing
symbols for each pair from interference at the relay caused
by the other pairs.

B. Example: (M,N) = (3, 8)⇒ d = 2

We study the case of (M,N) = (3, 8) as another example,
to show that each user achieves d = 2 DoF. With the remark
message at the send of Section IV-A, and due to the space
limitation as well, we only show the signal transmission and
reception in the first phase.

8

3

3

3

3

3

3

User 1

User 2

User 3

User 5

User 6

User 4

6
6

42

Fig. 4. DoF Achievability for (K,M,N) = (3, 3, 8)

In the first phase, User k encodes its two symbols using a
3 × 2 beamforming matrix V[k]. Then the transmitted signal
vector of User k is given by:

x[k] = V[k]u[k] (24)

where u[k] is a 2 × 1 vector representing 2 independent
symbols.

Now consider the signals at the relay. Again, we first
consider pair 3. Since the relay has 8 antennas, it has a
8-dimensional space. In order to protect a 2-dimensional
subspace for pair 3, the 4d = 8 symbols of pair 1 and pair 2
needs to be accommodated into the remaining 6-dimensional
subspace. Thus, we align the two symbols u[5] in the subspace
spanned by u[1],u[2],u[4] (shown in the blue circle in Fig.
4). This can be done since User 1, User 2, User 4 and User
5, each with 3 antennas, will jointly have a 4-dimensional
subspace in common at the relay, i.e., the number of common
dimensions is 3 × 4 − 8 = 4. Therefore, we have the first
alignment equation:

H[R1]V[1] +H[R2]V[2] +H[R4]V[4] = −H[R5]V[5]. (25)

With the similar argument, when we reserve a 2-dimensional
subspace for pair 1 at the relay, we align two symbols u[6] in
the subspace spanned by u[2],u[3],u[5] (shown in the green
circle) at the relay, to produce the second alignment equation:

H[R2]V[2] +H[R3]V[3] +H[R5]V[5] = −H[R6]V[6]. (26)

Subtracting (26) from (25), we obtain

H[R1]V[1] −H[R3]V[3] +H[R4]V[4] = H[R6]V[6], (27)

which implies that the two symbols u[6] are in the subspace
spanned by u[1],u[3],u[4] (shown in the gray circle). That
is, when we reserve a 2-dimensional subspace for pair 2 at
the relay, the requirement of aligning 2 interfering symbols is
already satisfied. In fact, this is quite interesting since once
we have the first two alignment equations (25) and (26), the
third alignment constraint (27) is automatically satisfied.

Finally, rewriting the alignment equations (25) and (26) in
a compact form, we obtain:

[
H[R1] H[R2] O H[R4] H[R5] O
O H[R2] H[R3] O H[R5] H[R6]

]
︸ ︷︷ ︸

,H[R·]: 16×18

V
[1]

...
V[6]

=O.(28)

Notice that H[R·] is a 16 × 18, and it can be proved to have
full rank almost surely. Thus, the beamforming matrices of
each user can be determined in the null space of H[R·] as
in (28), and each of them has full rank to ensure the linear
independencices among the 2 beamforming vectors carrying
its 2 symbols.

So far, all signals from arbitrary two pairs span a 6-
dimensional subspace at the relay. What remains to be shown
is for every pair, the 6-dimensional interfering subspace and
the 2-dimensional subspace projected by each user of the
remaining pair span the entire 8-dimensional signal space at
the relay, to ensure the 2-dimensional desired subspace for the
remaining pair is reserved. Due to symmetry of the design, it
suffices to show that the 6-dimensional interfering subspace
projected by User 1, User 2, User 4 and User 5, and the
2-dimensional desired subspace projected from User 3 has
only null intersection. That is, we need to guarantee that the
following 8× 8 square matrix has full rank:[

H[R1]V[1] H[R2]V[2] H[R3]V[3] H[R4]V[4]
]
. (29)

Again, this can be verified through a simple numerical test,
and we defer the rigorous proof to [1].

This completes the design in the first phase.
In the second phase, the beamforming approach is dual to

that in the first phase. As similar as in the (M,N) = (5, 18)
setting, after separating the mixing symbols for each pair at
the relay in the first phase, and then after post-precessing and
subtracting its own signal in the second phase, each user only
sees an equivalent AWGN 3×3 full rank MIMO channel from
the paired user without inter-pair interference. Thus, each user
is able to achieve 2 DoF.
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