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Mobile devices carry sensitive information that is routinely transmitted over the network and is

often collected for analytics and targeted advertising purposes. Users are typically unaware of this

data collection and have little control over their information. In this thesis, we develop systems and

techniques that provide users with increased transparency and control over their mobile data. We

develop AntMonitor – a user space app that can inspect and analyze all network traffic coming in

and out of the device. AntMonitor outperforms prior art in terms of network throughput and CPU

usage. Our tool enables real-time packet interception and analysis on the mobile device, including

the following three applications. First, we build AntShield, which builds on top of AntMonitor

to intercept packets, and uses a combination of deep packet inspection and machine learning to

detect and block outgoing traffic that contains personally identifiable information. Second, we

develop NoMoAds – the first mobile-specific, cross-app, machine learning-based ad-blocker, and

we show that it outperforms state-of-the-art filter lists. Third, we build AutoLabel – a system for

automatically labeling which packets were sent by apps and which by third-party advertisement or

analytics libraries. This eliminates the need for manual labeling – which is the major bottleneck in

creating filter lists and classifiers. Overall, this thesis follows a network-based approach to enhance

mobile data transparency and give users control over their data.
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Chapter 1

Introduction

1.1 Motivation

As of 2019, two-thirds of the world’s population uses a mobile device [6]. Out of these 5.1 billion

mobile users, 3.9 billion actively use the Internet from their smartphone, leading to over 8 billion

mobile connections [6]. It is projected that global mobile data traffic will reach 77.5 exabytes per

month by 2022 [7]. Aside from being responsible for large volumes of network traffic, mobile

device also carry a wealth of personally identifiable information (PII), such as the user’s location,

phone number, email, etc. Furthermore, mobile applications (apps) offer a range of personal activ-

ities to users that range from navigation and financial transactions to diet and sleep trackers. Such

apps have access to personal information that is not an explicit identifier, such as a user’s sleeping

and driving habits.

Mobile apps often access and transmit sensitive information over the network. Sometimes this is

justified and required for the intended operation of the app, e.g. navigation apps require access

and transmission of location data. Although apps request permissions to sensitive resources and

users can choose grant or deny them, permissions have several limitations. First, they do not

1



Figure 1.1: Overview of contributions of this thesis. First, we build AntMonitor – a system
for efficient traffic interception on a mobile device (Sec. 1.2.1). Next, we apply AntMonitor to
different tasks: (i) detecting and preventing PII exposure (Sec. 1.2.2); (ii) detecting and blocking
ads (Sec. 1.2.3); and (iii) detecting and blocking third-party trackers (Sec. 1.2.4).

differentiate between access and transmission of data. Second, they do not protect against inter-

process communication where one app that has the permission for a PII can transmit this PII to

another app. Third, not all PII is protected by a permission, e.g. the Google Advertiser ID and

Android Device ID require no permissions on Android. Finally, once a permission is granted to

an app, any third-party library contained within is also granted the same permission. Third-party

libraries are used by developers to ease development and to generate revenue by including libraries

that serve advertisement (ads). These libraries often collect and transmit sensitive information to

advertising and tracking (A&T) servers.

Despite increasing user concern over privacy (42% of Internet users believe their data is being

misused [6]), few tools exist that provide smartphone users with transparency and control over

their data. In this thesis, we aim to provide such a tool, as described in the next Section.

1.2 Contributions

In this thesis, we take a network-based approach and propose several techniques that provide mo-

bile users with transparency and control over their data. We start by building an efficient system

for inspecting all incoming and outgoing network traffic on a mobile device (Sec. 1.2.1). Next, we

build several applications on top of the system, which analyze the traffic and provide additional

functionality, including detecting and blocking transmission of PII (Sec. 1.2.2) and blocking com-
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munication to A&T servers (Sections 1.2.3 and 1.2.4). Fig. 1.1 summarizes these contributions.

1.2.1 AntMonitor: Efficient Traffic Interception on a Mobile Device

We take a network-based approach, i.e. to intercept and analyze network traffic. To that end, the

first step is to build an efficient mechanism for inspecting and acting upon all outgoing traffic of

a mobile device. There are multiple ways to achieve this, including changing the underlying OS,

described in detail in Chapter 2. Since we want our system to be used by the average user, we chose

to use Android VPN APIs [8] to intercept all traffic on a mobile device without requiring rooting

or changing the OS. Although our prototype is for Android, VPN APIs are also available on iOS

[9]. Thus, our approach can be applied on Apple smartphones as well. Typically, VPN requires the

use of a VPN client on the device talking to a VPN server in the middle of the network. However,

users may not want to reroute their traffic through a 3rd party VPN server. To that end, our system

eliminates the need of a VPN server. Although such an approach provides some benefits (no extra

hop on the network path and better scalability), it also poses some challenges. Specifically, since

the use of raw sockets requires root, we have to perform layer-3 to layer-4 translation ourselves.

This requires careful system design with multiple optimizations to ensure that packet interception

and inspection can be done with minimal impact on network throughput and device battery life.

Chapter 3 provides background information on our system (AntMonitor) and our optimizations.

To enable more applications to be built on top of AntMonitor, we packaged it as an Android

library and have made it open source at [10].

1.2.2 AntShield: Detecting and Preventing Exposures of PII

Chapter 4 describes the AntShield system – an application of AntMonitor that detects and blocks

transmission of PII, referred to as exposure. Some PII, such as the Advertiser ID, are readily
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available on the device through Android APIs. In this case, it is possible to use Deep Packet

Inspection (DPI) to search outgoing packets for occurrences of such PII. However, some PII is not

available via Android APIs. For example, to get PII such as username and password, apps typically

present forms for users to fill out. Although the AntShield app could ask users to enter such PII,

users may not want to share this information with AntShield. To that end, we propose a machine

learning approach that can detect PII exposure without knowing PII values a priori. To encourage

reproducibility, we made our code and dataset available at [10].

1.2.3 NoMoAds: Detecting and Blocking Ads

App developers can collect PII for legitimate reasons, but the privacy concern is greater when

third-parties are involved in data collection. In the mobile ecosystem, third-parties take the form

of libraries that app developers include. These libraries have the potential to track user activities

across apps. Third-party libraries whose primary purpose is to provide ads have a special interest

in tracking user activity in order to serve more personalized content. To that end, we propose a

system for detecting requests for ads in outgoing network traffic. Our system, NoMoAds, is built

on top of AntMonitor and can be used for ad-blocking.

In Chapter 5, we explore two ways of blocking ads. First, we match outgoing URL requests

against a popular list of ad-blocking rules – EasyList [3]. We show that this list does not perform

well in the mobile ecosystem since it was curated for the desktop browsing ecosystem. Second,

we propose a machine learning approach for automatically detecting requests for ads. To the best

of our knowledge, NoMoAds is the first mobile ad-blocker to effectively and efficiently block ads

served across all apps using a machine learning approach. To encourage reproducibility and future

work on mobile ad-blocking, we made our code and dataset available at [11].
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1.2.4 AutoLabel: Detecting Third-Parties

The NoMoAds system presented in Chapter 5 has two limitations. First, to label ground truth

NoMoAds relies on EasyList and new mobile-specific rules that were manually curated. Second,

the approach described in Chapter 5 can only be applied to ads: a human can visually see an ad

and examine the packet traces captured around the time the ad was shown. However, stateless

tracking (tracking that does not require PII) is invisible, thus it is unclear how to manually label

such packets.

To that end, in Chapter 6, we present AutoLabel – a system that can automatically label packets

that are generated by any third-party library or category thereof. We are particularly interested in

A&T libraries. To that end, we use the Frida dynamic instrumentation framework to hook Android

networking APIs and collect outgoing network requests along with the stack trace leading to each

request. By examining package names in the stack trace, we can identify whether a third-party

library generated the request or the app itself. To automatically identify package names belonging

to libraries, we utilize advances in static analysis techniques. This eliminates the need to maintain

a list of package names and also provides a solution for package name obfuscation. The only

list required in the AutoLabel approach is one that maps which package names belong to A&T

libraries specifically. We use AutoLabel to collect a new dataset and extend the machine learning

framework of NoMoAds to trackers. To enable future research on mobile tracking, we will make

AutoLabel open source and we will also release our labeled dataset.

1.3 Definitions

In this chapter we have defined various terms that we will use throughout this thesis. For conve-

nience, these terms are summarized in Table 1.1.
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Term Definition
Apps Mobile applications
Ads Advertisements
A&T Advertising and Tracking
PII Personally identifiable information, i.e. explicit identifiers such as Advertiser

ID, etc.
Exposure The transmission of PII from the device to the network. This may be for any

(legitimate, tracking, or malicious) reason
Leak The transmission of PII from the device to the network for a nefarious reason

(tracking, exfiltration, lack of permission, etc.) as opposed to a legitimate use
of PII (for the functionality of the app and with user permission)

DPI Deep Packet Inspection
DT Decision Tree classifier
AntMonitor A system for efficient traffic interception on mobile devices (Chapter 3)
AntShield A system for detecting and preventing exposures of PII on mobile devices

(Chapter 4)
NoMoAds A system for detecting and blocking mobile ads (Chapter 5)
AutoLabel A system for detecting third-parties in mobile apps (Chapter 5)

Table 1.1: Definitions

1.4 Thesis Outline

The structure of the rest of this thesis is as follows. Chapter 2 discusses related work. Chapter 3

provides background on AntMonitor – a system for packet interception. Chapters 4, 5, 6 describe

the following applications of AntMonitor: (i) AntShield – detecting and preventing transmission

of PII, (ii) NoMoAds – ad-blocking based on filter lists and machine learning, and (iii) AutoLabel

– automatically labeling packets generated by third party libraries, and using it to train classifiers

for detecting A&T, respectively. Chapter 7 concludes the thesis.
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Chapter 2

Related Work

Various approaches have been proposed for providing mobile users with increased transparency

and control over their data. The approaches can be roughly split into three categories, as described

next.

2.1 Custom OS/Rooted Devices

Multiple studies have proposed privacy enhancing solutions that require either a custom OS or a

rooted device. For example, TaintDroid [12] was the first to propose taint tracking for mobile pri-

vacy. Specifically, TaintDroid adapted the Android OS to track how a taint (PII) propagates from

its sink (an API call that provides the PII) to its source (e.g. network APIs). Since TaintDroid

only considered unencrypted traffic as a sink, AppFence [13] extended the system to also consider

SSL traffic. However, both approaches could not deal with PII leaks sent over native code. Sim-

ilarly, ProtectMyPrivacy (PmP) [14] uses the Xposed framework [15] to dynamically hook into

PII-accessing APIs and record the stack trace leading to the API call. From the stack trace, they

are able to tell whether the PII is being accessed by the app or a third-party library. However, PmP
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was not able hook into networking APIs to trace which part of the app is sending out information.

In general, rooting a device or installing a custom OS can be difficult for the average user, and cer-

tain phone manufacturers make it altogether impossible. In our work, we use a rooted device for

data collection only: our proposed solution for the end-user requires no custom OS and no rooting.

Specifically, we combine and improve on the above approaches: we use the Frida framework [16]

to hook into networking APIs, including native APIs, and we collect the stack traces that have led

to each function call (Sec. 6.3.1.1).

2.2 Static Analysis

Android apps are packaged into APK (Android Package) files, which are essentially ZIP files that

can be extracted and analyzed. A separate body of work has proposed extracting and decompiling

these APK files to statically analyze the bytecode contained within. This type of analysis can be

used to identify potential privacy leaks or to detect presence of third-party libraries. For example,

FlowDroid [17], DroidSafe [18], and AndroidLeaks [19] use static taint tracking to detect poten-

tial leakage of PII. In another line of work, LibRadar [20] provides a tool for detecting third-party

libraries contained within an APK. AdRisk [21] identifies presence of ad libraries within apps and

analyzes them for potential privacy and security violations. PEDAL [22] goes a step further: after

identifying ad libraries and what sensitive resources they access, PEDAL rewrites the application

and blocks accesses to resources based on a user’s choice. Unfortunately, static analysis and ap-

plication rewriting can prove inaccurate and they cannot deal with native code [22], reflection, and

dynamically loaded code [23]. In this work, we use existing static analysis tools only to help us

identify package names of third-party libraries (see Sec. 6.2).
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(a) Client-Server (b) Mobile-Only

Figure 2.1: Client-Server vs. Mobile-Only VPN Approach: The former requires a VPN server in
the middle, while the latter does all inspection on the device.

2.3 Traffic Interception

Another approach to mobile privacy is traffic interception, since by definition, exposure of personal

information is transmitted over the network. There are several ways to perform network monitoring

on mobile devices: via tools such as tcpdump, at the ISP, or at a proxy server. Unfortunately,

using tcpdump requires root and it can only log traffic – not act on it in real-time. Additionally,

within the context of an app that any user can use, monitoring at the ISP is not a viable option

either. Therefore, the only way to intercept traffic without requiring root is to use VPN APIs.

VPN APIs are widely used: a 2016 study has examined 283 VPN-enabled apps from the Google

Play Store [24]. There are two VPN approaches: client-server and mobile-only, visualized in Fig.

2.1, described in Sections 2.3.1 and 2.3.2 respectively, and compared in Table 2.1. Once traffic is

intercepted with either method, multiple approaches can be used to block privacy-invasive traffic

(Sec. 2.3.3).

2.3.1 Client-Server VPN

In Client-Server VPN approaches (Fig. 2.1(a)), packets are tunneled from the VPN client on the

mobile device to a remote VPN server, where they can be processed or logged. A representative of

this approach is Meddle [25], which builds on top of the StrongSwan VPN software. Disadvan-

tages of this approach include the fact that packets are routed through a middle server thus posing

additional delay and privacy concerns, lack of client-side annotation (thus no ground truth avail-
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able at the server), and potentially complex control mechanisms (the client has to communicate

the selections of functionalities, e.g., ad blocking, to the server). An advantage of the client-server

VPN-based approach is that it can be combined with other VPN and proxy services (e.g., encryp-

tion, private browsing) and can be attractive for ISPs to offer as an added-value service.

2.3.2 Mobile-Only VPN

In Mobile-Only VPN approaches (Fig. 2.1(b)), the client establishes a VPN service on the phone

to intercept all IP packets and does not require a VPN server for routing. It extracts the content of

captured outgoing packets and sends them through newly created protected UDP/TCP sockets to

reach Internet hosts; and vice versa for incoming packets. This approach may have high overhead

due to the layer-3 to layer-4 translation, the need to maintain state per connection, and additional

required processing per packet. If not carefully implemented, this approach can significantly af-

fect network throughput: for example, [26] has shown the poor performance of tPacketCapture

[27] – an application currently available on Google Play that utilizes this mobile-only approach.

Therefore, careful implementation is crucial to achieve good performance. Two state-of-the-art

representatives of the mobile-only approach are Haystack (now renamed to “Lumen”) [28] and

Privacy Guard [29]. In Chapter 3 we show that our proposed AntMonitor system outperforms

both of these approaches.

2.3.3 Analyzing and Acting on Traffic

Once traffic interception is in place, packets can be analyzed via DPI, and encrypted traffic can

be decrypted via a man-in-the-middle proxy (e.g. see Sec. 3.2.1.1). From there, various privacy-

enhancing tools can be built. In literature, two approaches have been proposed: (i) blocking PII

and (ii) blocking connections to A&T servers.
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Figure 2.2: Extracting features from packets: a packet is broken into words based on delimiters
(e.g. ‘?’, ‘=’, ‘:’). Frequently occurring words, such as common HTTP headers, are removed. In
the case of PII prediction, PII is also removed.

2.3.3.1 Blocking PII

Privacy Guard [29] utilized the Mobile-Only VPN approach to detect and block PII exposures

in real-time based on a predefined list of strings. However, such an approach is unable to detect

exposure of information that changes dynamically or is not part of the list. To remedy this, ReCon

[2] used machine learning to predict PII exposure and block the offending packets at a VPN server,

using the Client-Server VPN approach. Specifically, they broke packets into words based on de-

limiters (e.g. ‘?’, ‘=’, ‘:’) and then used these words as features in classification. Various methods

were used to ensure that the PII themselves and strings that occur too often or too infrequently are

not part of the feature list, see [2] for details. This method of extracting features from packets is

summarized in Fig. 2.2. To decide whether or not a packet contains PII (a binary classification

problem), ReCon used the Java Weka library’s [30] C4.5 Decision Tree (DT), and then heuristics

for extracting the type of PII. To improve classification accuracy ReCon built specialized classi-

fiers for each destination domain that received enough data to train such a classifier. For the rest

of the domains, a general classifier was built. For the heuristic step, ReCon maintained a list of

probabilities that a particular key-word corresponds to a PII value. For each PII type, the proba-

bility was calculated by taking the number of times the key was present in a packet with the given

PII, and dividing it by the number of times the key appeared in all packets. During PII extraction,
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ReCon looked for keys with probability higher than an empirically computed threshold.

In this thesis, we build and improve on the ReCon approach for PII detection (Chapter 4) and we

also extend it to blocking ads (Chapter 5) and trackers (Chapter 6).

2.3.3.2 Blocking A&T Connections

Applying Filter Lists. Traditional ad-blocking for desktop browsers and mobile ad-blockers, such

as DNS66 [31] and AdGuard [32], rely on manually curated filter lists to math outgoing URL

requests. Unfortunately, many of such lists, e.g. EasyList [3], were created for the web browsing

ecosystem, and it was shown in [33, 34, 35] that they do not translate well to the mobile ecosystem.

Furthermore, [35] has shown that all popular filter lists that they tested failed to block stateless

fingerprinting. Thus, an automation framework is needed to at least assist in filter list creation.

Beyond Filter Lists. Due to the limitations of filter lists, various heuristics-based and machine

learning-based approaches emerged. For instance, PrivacyBadger [36] marks hosts as potential

trackers if they appear across multiple web pages. If a host is multi-purposed (i.e. both functional

and tracking), then PrivacyBadger only blocks cookies. However, since users can be tracked via PII

and fingerprinting, blocking cookies is not enough. Going a step further, Safari [37] uses machine

learning to identify trackers and provides only a simplified system profile to prevent fingerprinting.

Unfortunately, both PrivacyBadger and Safari provide protection within a web browser only. In

literature, multiple works have proposed machine learning approaches to detect A&T connections,

as discussed next. Bhagavatula et al. [38] trained a machine learning classifier on older versions

EasyList to detect previously undetected ads. More specifically, they extracted URL features (e.g.

ad-related keywords and query parameters) to train a k-nearest neighbor classifier for detecting ads

reported in the updated EasyList with 97.5% accuracy. Bau et al. [39] also used machine learning

to identify tracking domains within the web ecosystem. Later, Gugelmann et al. [40] trained

classifiers for complementing filter lists (EasyList and EasyPrivacy) used by popular ad-blockers.
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They extracted flow-level features (e.g. number of bytes and HTTP requests, bytes per request)

to train Naive Bayes, logistic regression, SVM, and tree classifiers for detecting advertising and

tracking services with 84% accuracy. Razaghpanah et al. [34] leveraged graph analysis to discover

219 mobile ad and tracking services that were unreported by EasyList. They identified third-party

hosts by noting which ones are contacted by more than one app, and then inspected each third party

host’s landing page for certain keywords that would mark it as an ad or tracking service. Recently,

Iqbal et al. [41] proposed an approach that relies on multiple layers of the web stack (HTML,

HTTP, and JavaScript) to train machine learning classifiers that detect ads and trackers.

Compared to prior work, our approach trains per-packet classifiers (thus maintaining less state than

per-flow) to detect A&T packets in mobile traffic (Chapters 5 and 6). Furthermore, regardless of

being mobile-specific or not, all of the proposed machine learning-based approaches suffer from

not having an automatic way to obtain ground truth. Specifically, to seed ground truth, prior art

relies on either filter lists [39, 38, 34, 41], manually labeled data [40], or a combination of both

[33]. In Chapter 6, we build a system that can be used to label data and provide ground truth for

any machine learning-based approach. To the best of our knowledge, prior research is lacking an

effective approach to automatically detect A&T traffic directly on the mobile device.

13



Which is
Discussion Better

Performance The Mobile-Only approach has significantly higher network
throughput and latency, with similar CPU, memory, and bat-
tery consumption (see Evaluation Chapter 4). Furthermore,
the Client-Server performance heavily relies on the location of
the VPN servers.

Mobile-Only

Scalability The Mobile-Only approach scales better as it does not require
a server component.

Mobile-Only

Privacy With the Mobile-Only approach, all data, including sensitive
ones, never traverses to a third-party server.

Mobile-Only

Routing
Path

The Mobile-Only approach preserver the routing paths of the
IP datagrams while the Client-Server approach alter the paths.

Mobile-Only

User Man-
agement

With the Client-Server approach, the server represents the
users when requesting data: from the service provider (e.g.,
YouTube) point of view, he is serving the server IP address.
Therefore, the server becomes liable when the users abuse the
service, e.g., to download illegal content. This makes it chal-
lenging to deploy Client-Server approach on a large scale.

Mobile-Only

Traffic Pat-
terns

The Mobile-Only approach breaks traffic patterns, including
inter-arrival time, burstiness, latency, and datagram size. These
information might be of critical importance in some applica-
tion, e.g., network flow classification if performed on a server
(see Chapter 5.3).

Client-Server

Seamless
Connectiv-
ity

The Client-Server approach can provide seamless connectivity
when a user traverses between different (Wi-Fi and cellular)
networks as they can maintain their connectivity with a static
(server) IP.

Client-Server

Security
and Other
Services

The Client-Server approach enables the possibility of offering
to users additional benefits, including encryption and dynamic
IP location (e.g., as traditional VPN services), data compres-
sion (e.g., Onavo and Opera Max).

Client-Server

Table 2.1: Comparison Between Client-Server and Mobile-Only VPN Approaches
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Chapter 3

Background: Efficient Traffic Interception

on a Mobile Device with AntMonitor

3.1 Overview

In this chapter, we present background information on the design and evaluation of AntMonitor

– a system for on-device packet interception and inspection. We note that an earlier version of

AntMonitor appeared in [42] and [43]. Compared to the earlier version of AntMonitor, the

AntMonitor system presented in this thesis contains notable extensions, including a modularized

design, new performance measurements, and a new Graphical User Interface (GUI). We start by

outlining the main objectives of AntMonitor and the key design choices made to meet them.

Objective 1: Capturing Packets and Contextual Information: The main purpose of AntMonitor

is to intercept, inspect, and collect mobile network traffic. To that end, AntMonitor uses the

public Virtual Private Network (VPN) API [8] provided by the Android OS (version 4.0+) to

capture all incoming and outgoing IP datagrams. In order to facilitate analysis, AntMonitor

saves each datagram in PCAP Next Generation (PCAPNG) format [44], which allows to append
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arbitrary information alongside the raw packets. Examples of useful contextual information to

append include names of apps that generate the packets and whether or not the packet contains any

PII. In many cases, such contextual information may only be collected accurately on the device at

the time of packet capture, and can play a critical role in subsequent analyses.

Objective 2: Modularized Design: AntMonitor is intended to be a tool that the community can

easily build on. For example, if a researcher wants to save packets in JSON format instead of

PCAPNG, she should be able to easily make that change by modifying only a few Java classes

of AntMonitor. Similarly, if a researcher wants to build a tool that blocks all packets contain-

ing PII, she should only have to change a few files. To that end, we build AntMonitor as an

Android library that other researchers can use or modify as needed. We expose several APIs that

allow developers to customize packet filtering and capture while hiding all the low-level details of

optimized traffic interception.

Objective 3: Ease-of-Use: Aside from being a research tool, AntMonitor is also meant to be

released to the general public. For example, other researchers may want to provide a privacy-

enhancing app for the end-user or to crowdsource data from a large number of users. This objec-

tive poses a number of system requirements. First, the app on the mobile device must run without

administrative privileges (root access). Thus, we cannot simply use tcpdump to capture traf-

fic since it requires a rooted device. In contrast, the VPN APIs do not require root and run on

Android versions of 4.0 and above – 99% of devices today [45]. Second, in order for users to

adopt AntMonitor, user experience must not be affected: monitoring must occur seamlessly in

the background while the user continues to use the mobile device as usual, and the overhead on the

device must be negligible in terms of network throughput, CPU, battery, and data cost. Third, the

performance must scale with the number of users. For this reason, we design AntMonitor to run

completely on the device, without needing to re-route traffic to a VPN server.

The rest of the chapter is organized as follows: Sec. 3.2 describes the implementation of Ant-

Monitor and Sec. 3.3 evaluates our system in terms of network throughput, latency, and resource

16



LOG

     UDP 
Forwarder

TUN

Queue

Packets

ForwarderManager

AntMonitor

TCP 
Forwarder

Application

Unprotected 
Sockets

Request Response

Android Device

Server

upload

TCP 
Forwarder

TLS 
Proxy

Target 
Internet 

Host

P
rotected S

ockets

Offline Analysis

   PacketConsumer
consumePacket
mapPacketToApp
getFullPacketSize
getHeadersSize

log

Online Analysis

PacketFilter
acceptIPDatagram

acceptDecryptedSSLPacket
mapDatagramToApp
mapParamsToApp

Deep Packet 
Inspection

AhoCorasick
Interface

init
search

PCAPNG
Files

Outgoing Traffic

Offline Logs
Incoming Traffic

Figure 3.1: The AntMonitor Architecture. Packet interception is performed via the VPN TUN
interface. Three modules provide APIs for use by other researchers: Online Analysis (allows
packet filtering), Offline Analysis (allows analysis to be performed after packets are sent), and
Deep Packet Inspection (provides the ability to inspect packets in real-time).

usage. Sec. 3.4 concludes the chapter.

3.2 System Implementation

As shown in Fig. 3.1, the AntMonitor system consists of four components. The Forwarder is

responsible for traffic interception and routing (Sec. 3.2.1). Details of the Forwarder are hidden

from AntMonitor’s users, who are only provided with high-level APIs within the other three

modules, namely the Online Analysis, Offline Analysis, and Deep Packet Inspection modules (Sec.

3.2.2).
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3.2.1 Traffic Interception and Routing

To intercept traffic, AntMonitor establishes a VPN service on the device that runs seamlessly in

the background. The VPN service is available on 99% of Android devices today [45] and has also

been released for iOS versions 8.0 and above [9]. Thus, our approach can also be implemented

on iOS. Using a VPN service allows us to intercept all outgoing and incoming IP datagrams by

creating a virtual (layer-3) TUN interface [8] and updating the routing table so that all outgoing

traffic, generated by any app on the device, is sent to the TUN interface. Once a datagram is

captured from the TUN interface, AntMonitor must route it to the target host on the Internet.

When the host responds, the response will be routed back to AntMonitor, which then forwards

the response to the intended app by writing to TUN.

To route IP datagrams generated by the mobile apps and arriving at the TUN interface, the intuitive

solution would be to use raw sockets, which unfortunately is not available on non-rooted devices.

Therefore, the datagrams have to be sent out using layer-4 (UDP/TCP) sockets, which can be done

in one of the following two ways:

1. Client-Server Routing: This follows the design of a typical VPN service: all traffic is routed

through a VPN server [46, 25, 26]. The main advantage is the simplicity of implementation: the

routing is done seamlessly by the operating system at the server with IP forwarding enabled. How-

ever, this approach has several limitations. First, if AntMonitor is to be used as a crowdsourcing

system, requiring a VPN server poses scalability challenges. Second, adding an extra hop to the

network path may negatively impact network throughput and user experience. Finally, redirecting

users’ traffic to a server expands the trust base: users not only have to trust the app running on

their phone, but also the server. Therefore, we use an alternative routing approach that can work

entirely on the mobile device, without the need for a VPN server, as described next.

2. Mobile-Only Routing: Routing IP datagrams to target hosts through layer-4 sockets requires

a translation between layer-3 datagrams and layer-4 packets. For outgoing traffic, data of the
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IP datagrams has to be extracted and sent directly to the target hosts through UDP/TCP sockets.

When a target host responds, its response data is read from the UDP/TCP sockets and must be

wrapped in IP datagrams, which are then written to the TUN interface. The Mobile-Only design

removes the dependency on a VPN server, thus making AntMonitor self-contained and easy to

scale. Furthermore, this design enhances user privacy as all data can now stay on the mobile device

and is not routed through a middlebox. If a researcher needs to crowdsource data, packets can be

temporarily logged on the device then uploaded to a remote server, as described in the next section.

3.2.1.1 Implementation Details

The Forwarder manages the TUN interface and is responsible for the translation between layer-3

datagrams and layer-4 packets. The current implementation of AntMonitor supports only IPv4

traffic, but it can be easily extended to support IPv6. As depicted in Fig. 3.1, the Forwarder consists

of three main components: the UDP and TCP Forwarders and a TLS Proxy, as described below.

The UDP Forwarder is simpler, since UDP connections are stateless. When an app sends out

an IP datagram containing a UDP packet, the UDP Forwarder records the mapping of the source

and destination tuples (a tuple consists of an IP address and a port number), to be used later for

reverse lookup. The Forwarder then extracts the data of the UDP packet and sends the data to the

remote host through a protected UDP socket. When a response is read from the UDP socket, the

Forwarder creates a new IP datagram, changes the destination tuple to the corresponding source

tuple in the recorded mapping, and writes the datagram to TUN.

The TCP Forwarder works like a proxy server. For each TCP connection made by an app on the

device, a TCP Forwarder instance is created. This instance maintains the TCP connection with the

app by responding to IP datagrams read from the TUN interface with appropriately constructed

IP datagrams. This entails following the states of a TCP connection (LISTEN, SYN RECEIVED,

ESTABLISHED, etc.) on both sides (app and TCP Forwarder) and careful construction of TCP
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packets with appropriate flags (SYN, ACK, RST, etc.), options, and sequence and acknowledgment

numbers. At the same time, the TCP Forwarder creates an external TCP connection to the intended

remote host through a protected socket to forward the data that the app sent to the server and the

response data from the server to the app.

The TLS proxy allows us to decrypt TLS traffic in real-time so that analysis can be performed

on plain text. This is necessary since much of the traffic is encrypted and can be used to fetch

ads or leak PII. We based our TLS Proxy implementation on Privacy Guard, which uses the

SandroProxy library [47] to intercept secure connections. Upon install time, AntMonitor asks

the user to install a root certificate. This certificate, by default, is trusted by all other apps. When

an app wants to establish a secure connection, the SSL hello is intercepted by the proxy, as shown

in Figure 3.2. The proxy then sends a fake certificate back to the app, which is signed by the root

certificate that was installed by the user. The app and the proxy then finish negotiating keys using

the fake certificate, and the proxy and the server exchange keys using the actual server certificate.

Once the key exchange is complete, the proxy can successfully decrypt packets coming in from

the app and from the server, and then re-encrypt them before forwarding. This method works for

most apps, but it cannot intercept traffic from highly sensitive apps, such as banking apps, that use

certificate pinning. These apps only trust locally stored certificates, and will not trust the installed

root certificate. Due to the intrusive nature of intercepting TLS/SSL traffic, we allow users to

disable this option at any time.

3.2.2 APIs Provided

Next, we describe the APIs provided by AntMonitor in the Online Analysis, Offline Analysis,

and Deep Packet Inspection modules (see Fig. 3.1).

The Online Analysis module provides the capability to take action on live traffic, e.g., preventing

private information from leaking. Since this analysis is done on the device, private information is
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Figure 3.2: TLS Interception: Kp+ and Ks+ stand for the public key of the proxy and server,
respectively.

never leaked out, setting AntMonitor apart from systems like Meddle [25], that perform leakage

analysis at a VPN server. In addition, this module provides APIs for mapping intercepted data-

grams to the names of the apps that generated them. The mapping to app names is done by looking

up the packets’ source and destination IPs and port numbers in the list of active connections avail-

able in /proc/net, which provides UIDs of apps responsible for each connection. Given a UID, we

get the corresponding package name using Android APIs. This can be useful if users want to take

different actions for different apps. For instance, Google Maps may be allowed to sent location

data, but a flashlight app may not.

The Offline Analysis module allows users to take action on traffic after it has been sent. For

example, if a researcher wants to crowdsource data, she can save captured datagrams. AntMonitor

provides APIs for saving datagrams in PCAPNG format, so developers can also append various

comments to each packet. For instance, they can use the mapping of datagrams to apps (as in the

Online Analysis module) to save the name of the app responsible for generating the datagram. In

general, this module can be used for any heavy processing of datagrams that cannot be performed

on live traffic without impacting performance. Finally, this module also provides the ability to
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upload captured PCAPNG files to a server specified by the developer.

The Deep Packet Inspection module provides developers with the ability to match strings within

live traffic. Thanks to various optimizations (see Sec. 3.2.3), this module can inspect traffic in

real-time without causing a significant impact on performance. Users specify the strings that they

are interested in using the initialization API call, and can then inspect every datagram for those

strings using the search API call. For example, researchers may be interested in searching for PII.

3.2.3 Optimizations

Since AntMonitor processes raw IP datagrams in user-space, it is highly non-trivial to achieve

good performance. We investigated the performance bottlenecks of our approach specifically and

VPN approaches in general. We also provide a detailed comparison of our design to Privacy-

Guard [29] (whose source code is publicly available); in contrast, Haystack’s (now renamed to

“Lumen”) source code is unavailable, therefore we qualitatively compare a subset of techniques

that we could infer from Haystack’s description [28] and our observations.

3.2.3.1 Minimizing Resource Usage

First, to minimize the impact of AntMonitor on the mobile device, we strive to use the minimum

number of resources while achieving high performance. Specifically, we use the minimum number

of: (i) threads (two) for network routing, and (ii) sockets, as described next.

Thread Allocation. We have fully utilized Java New I/O (NIO) with non-blocking sockets for the

implementation of the Forwarder. In particular, Forwarder is implemented as a high-performance

(proxy) server, that is capable of serving hundreds of TCP connections (made by apps) at once,

while using only two threads: one thread is for reading IP datagrams from the TUN and another

thread is for actual network I/O using the Java NIO Selector and for writing to TUN. Minimizing
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the number of threads used is critical on a resource constrained mobile platform so that Ant-

Monitor (which runs in the background) does not interfere with other apps that run in the fore-

ground. For comparison, Privacy Guard creates one thread per TCP connection, which rapidly

exhausts the system resources even in a benign scenario, e.g., opening the CNN.com page could

create about 50 TCP connections, which results in low performance (see Sec. 3.3).

Socket Allocation. Since the Forwarder needs to create sockets to forward data and the Android

system imposes a limit of 1024 open file descriptors per user process, sockets must be carefully

managed. To this end, we minimize the number of sockets used by the Forwarder by (i) multi-

plexing the use of UDP sockets: we use a single UDP socket for all UDP connections, and (ii)

carefully managing the life cycle of a TCP socket to reclaim it as soon as the server or the client

closes the connection. Using a single socket per UDP connection poses a challenge when routing

DNS packets. This is because when we read data from our UDP socket, we are only returned the

IP and port number of the server sending us UDP data. In most cases, we can keep a mapping of

this tuple (server IP and port number) to the intended destination port number on the device (IP

address of the device remains the same during a VPN session). However, in the case of DNS, the

server IP address (e.g., 8.8.8.8 – Google’s DNS server) and port number (53) are always the same.

Thus, when multiple DNS requests are issued in close proximity to each other, we cannot keep

an accurate mapping of the server tuple to the port number on the device. To handle this special

case, we use the DNS transaction ID to identify DNS connections and reconstruct DNS responses

with correct destination port numbers. For comparison, Privacy Guard uses 1 socket per UDP

connection and 2 sockets per TCP connection; Haystack uses 1 socket per UDP connection and 1

socket per TCP connection.

3.2.3.2 Achieving High Performance

Aside from using the minimum amount of resources, we also address multiple bottlenecks that

arise at various points of VPN-based packet inspection – see Fig. 3.3. We address these bottle-
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Figure 3.3: Performance Optimization Points.

necks through a combination of approaches: from typical optimization methods (including imple-

menting custom native C libraries and deploying high-performance network I/O patterns) to highly

customized techniques that we specifically devised for the VPN-based architecture.

Traffic Routing (Points One, Two, and Three). The techniques that we adopted are as follows:

(i) we explicitly manage and utilize a Direct ByteBuffer for I/O operations with the TUN interface

and the sockets, (ii) we store packet data in byte arrays, and (iii) we minimize the number of copy

operations and any operations that traverse through the data byte-by-byte. These techniques are

based on the following observations: Direct ByteBuffer gives the best I/O performance because it

eliminates copy operations when I/O is performed in native code. Plus, Direct ByteBuffer on An-

droid is actually backed by an array (which is not typically the case on a general Linux platform).

Therefore, it creates synergy with byte arrays: making a copy of the buffer to a byte array (e.g. for

manipulation or packet logging) can be done efficiently by performing a memory block copy as

opposed to iterating through the buffer byte-by-byte. Memory copy is also used whenever a copy

of the data is needed, e.g., for IP datagram construction. Finally, because the allocation of a Direct

ByteBuffer is an expensive operation, we carefully manage its life cycle: for an I/O operation, i.e.,

read from TUN, we reuse the buffer for every operation instead of allocating a new one.

TUN Read/Write (Point One). The Android API does not provide a way to poll the TUN interface

for available data. The official Android tutorial [48], as well as Privacy Guard and Haystack

[29, 28], employ periodic sleeping (e.g., 100 ms) between read attempts. This results in wasted

CPU cycles if sleeping time is small, or in slow read speeds if the sleeping time is large, as the

data may be available more frequently than the sleep time. To address this issue, we implemented

24



a native C library that performs the native poll() to read data to a Direct ByteBuffer (which is then

available in the Java code without extra copies). It is also important to read from (and write to) the

TUN interface in large blocks to avoid the high overhead of crossing the Java-Native boundary and

of the system calls (read() and write()). In early implementations, we observed that IP datagrams

read from the TUN interface have a maximum size of 576 B (which is the minimal IPv4 datagram

size). This results in a maximum read speed of about 25 Mbps on a Nexus 6 for a TCP connection,

thus limiting the upload speed. We were able to increase the datagram size by (i) increasing the

Maximum Transmission Unit (MTU) of the TUN interface to a large value, e.g., 16 KB and (ii)

including an appropriate Maximum Segment Size (MSS) in the TCP Options field of SYN-ACKs

sent by the TCP Forwarder when responding to apps’ SYN datagrams. These changes help ensure

that an app can acquire a high MTU when performing Path MTU Discovery, so that each read

from TUN results in a large IP datagram. This results in the maximum read speed, i.e., more than

80 Mbps on our Nexus 6. Similarly, it is important to write to TUN in large blocks. We have

experimented with several large block values (e.g., 8K, 32K) and found that a datagram size of 16

KB achieves the highest throughput on a Nexus 6.

Socket Read/Write (Point Three). Similar to when interacting with the TUN interface, in order

to achieve high throughput, it is important to read from (and write to) TCP sockets in large blocks.

In particular, we match the size of the buffer used for socket read (e.g., 16 KB minus 40 B for

TCP and IP headers) to the size of the buffer used for TUN write (e.g., 16 KB). Similarly, we

also matched the size of the buffer used for socket write to that of the buffer used for TUN read.

For comparison, Privacy Guard does not implement this matching. Although sending a large

IP datagram read from TUN might through a UDP or TCP socket may cause fragmentation, it is

handled efficiently by the kernel.

Packet-to-App Mapping (Point Two). Android keeps active network connections in four separate

files in the /proc/net directory: one each for UDP, TCP via IPv4 and IPv6. Because parsing these

files is an expensive I/O operation, we minimize the number of times we have to read and parse
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them by storing the mapping of app names to the source port numbers in a HashMap. This way,

when the API call for packet-to-app mapping in invoked, we first check the Map for the given

source port. If the mapping does not exist, we re-parse the /proc files and update the Map. We

note that it is also possible to do file parsing in native C, but based on our experiments this technique

does not provide benefits in this case. This is because only Direct ByteBuffers can be shared

across the native C and Java boundary, while other structures, such as Maps, require an additional

copy. In addition, we made the choice to key our Map by source port alone, because adding IP

addresses can cause a high overhead when key comparison is performed during an item fetch.

Specifically, in earlier versions of AntMonitor, we keyed our Map by IP destination, destination

port, and the source port, all concatenated into a String. However, this implementation could not

be used in real-time: we were only able to reach a throughput of one Mbps when testing with

Speedtest. Switching to source port as a key allowed us to do real-time packet-to-app mapping

while achieving network speeds close to regular device operation speeds. We note that it is also

possible to store a 32-bit IPv4 address and both port numbers (16 bits each) in a 64-bit primitive

type, such as a long, which can be used for fast lookup in a HashMap. However, this technique

cannot extend to 128-bit IPv6 addresses. Thus, we keep the source port as the key to our Map.

Since each TCP and UDP connection must have a unique source port, using it as the only key is

acceptable.

DPI: Deep Packet Inspection (Point Two). A researcher may want to inspect every packet for

a list of strings, which can be a costly operation. To allow such analysis to happen in real-time

without significantly impacting throughput and resource usage (see Sec. 3.3.1.3), we leverage

the Aho-Corasick algorithm [49] written in native C [50]. However, this alone is not enough:

we must also minimize the number of copies of each packet. Although the algorithm generally

operates on Strings, AntMonitor uses Direct ByteBuffers for routing, and creating a String out of

a ByteBuffer object costs us one extra copy. Moreover, Java Strings use UTF-16 encoding and JNI

Strings are in Modified UTF-8 format. Therefore, any String passed from Java to native C requires

another copy while converting from UTF-16 to UTF-8 [51]. To avoid two extra copies, we pass
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the Direct ByteBuffer object and let the Aho-Corasick algorithm interpret the bytes in memory as

characters. This enables us to perform an order of magnitude faster than Java-based approaches,

such as Privacy Guard’s Java-based string matching and Haystack’s Java-based Aho-Corasick

implementation (Sec. 3.3.3).

3.3 Performance Evaluation

Tool. In order to evaluate AntMonitor, we built a custom app – AntEvaluator. It transfers files

and computes a number of performance metrics, including network throughput, CPU and memory

usage, and power consumption. It helps us tightly control the setup and compute metrics that are

not available using off-the-shelf tools, such as Speedtest.

Scenarios. We use AntEvaluator in two types of experiments. In Sec. 3.3.1, Stress Test performs

downloads and uploads of large files so that AntMonitor has to continuously process packets.

In Sec. 3.3.2, Idle Test considers an idling mobile device so that AntMonitor handles very few

packets.

Baselines for Comparison. We report the performance of AntMonitor v0.0.1 and compare it to

state-of-the-art baselines from Sec. 2.3:

• Raw Device: no VPN service running on the device; this is the ideal performance limit to

compare against.

• State-of-the-art mobile-only approaches: Privacy Guard [29] v1.0 and Haystack [28]

v1.0.0.8. (We omit the testing of tPacketCapture [27] since it was shown to have very

poor performance in [26].)

• Client-server VPN approaches: industrial grade StrongSwan VPN client v1.5.0 with server

v5.2.1, and an AntMonitor Client-Server implementation based on [26]. Note, that in the
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labels of the performance figures, we refer to the latter as “AM. Client-Server,” to distinguish

it from the actual proposed AntMonitor, referred to as “AM. Mobile-Only”. The VPN

servers used by each app were hosted on the same machine.

Setup. All experiments were performed on a Nexus 6, with Android 5.0, a Quad-Core 2.7 Ghz

CPU, 3 GB RAM, and 3220 mAh battery. Nexus 6 has a built-in hardware sensor, Maxim

MAX17050, that allows us to measure battery consumption accurately. Throughout the experi-

ments, the device was unplugged from power, the screen remained on, and the battery was above

30%. To minimize background traffic, we performed all experiments during late night hours in our

lab to avoid interference, we did not sign into Google on the device, and we kept only pre-installed

apps and the apps being tested. Unless stated otherwise, the apps being tested had TLS interception

disabled and AntMonitor was logging full packets of all applications and inspecting all outgoing

packets. In terms of versions, all tests were done with AntMonitor v0.0.1 and Haystack v1.0.0.8,

unless indicated otherwise (Sec. 3.3.1.1). VPN servers ran on a Linux machine with 48-Core 800

Mhz CPU, 512 GB RAM, 1 Gbit Internet; the Wi-Fi network was 2.4Ghz 802.11ac. Each test case

was repeated 10 times and we report the average.

3.3.1 Stress Test

3.3.1.1 Large File Over a Single Flow

Setup. For this set of experiments, we use AntEvaluator to perform downloads and uploads

of a 500 MB file over a single TCP connection. In the background, AntEvaluator periodically

measures the following metrics:

• Network Throughput: AntEvaluator reports the number of bytes transferred after the first

10 sec (to allow the TCP connection to reach its top speed) and the transfer duration. We use

these numbers to calculate throughput.

28



98.1
92.4

35.5
52.3

43.0
46.6

Throughput (Mbps)

No VPN
AM. Mobile-Only

Haystack
PrivacyGuard

AM. Client-Server
strongSwan

88.5
118.8

87.5
97.7

79.0
Memory (MB)

7.0, 0.22%
10.0, 0.31%

24.6, 0.76%
21.2, 0.66%

25.8, 0.80%
20.9, 0.65%

Battery (mAh, %)

29.0
44.2

54.0
58.8

55.8
49.4

CPU Usage (%)

(a) Download

87.2
66.1

8.2
8.3

35.2
70.0

Throughput (Mbps)

No VPN
AM. Mobile-Only

Haystack
PrivacyGuard

AM. Client-Server
strongSwan

86.3
252.8

88.6
92.2

81.1
Memory (MB)

9.4, 0.29%
16.6, 0.52%

194.4, 6.04%
99.8, 3.10%

30.8, 0.96%
16.4, 0.51%

Battery (mAh, %)

7.8
53.8

90.4
37.9

54.4
59.6
CPU Usage (%)

(b) Upload

Figure 3.4: Performance of all VPN apps when downloading or uploading a 500 MB file on Wi-
Fi. “AM.” stands for AntMonitor. “AM. Mobile-Only” stands for AntMonitor proposed in this
thesis. “AM. Client-Server” is only used as a baseline for comparison.

• Memory Usage: AntEvaluator uses the top command to sample the Resident Set Size

(RSS) value.

• Battery Usage: AntEvaluator uses the APIs available with the hardware power sensor

Maxim MAX17050 to compute the energy consumption during each test in mAh [52].

• CPU Usage: AntEvaluator uses the top command to measure the CPU usage.

At the end of each experiment, AntEvaluator reports the calculated throughput and battery usage,

and the average memory and CPU (considering the sum of CPU usage of AntEvaluator and the

VPN app) usage.

Results for AntMonitor v0.0.1 in Dec. 2015. Fig. 3.4(a) shows that the download throughput

of AntMonitor significantly outperforms all other approaches. It was able to achieve about 94%

of the raw speed, with throughput 2x more than StrongSwan & Privacy Guard and 2.6x more

than Haystack. We further note that all VPN apps tested have similar memory, battery, and CPU
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usage. Although StrongSwan does not perform L3-L4 translation, it performs encryption and

decryption, which results in about 5% higher CPU usage than AntMonitor. Fig. 3.4(b) reports

the upload performance. AntMonitor achieves 76% of the raw speed while performing data

logging and DPI. Most significantly, its performance is 8x faster than both state-of-the-art mobile-

only approaches. The gains provided by the optimizations discussed in Sec. 3.2.3 have a greater

impact on upload speeds because both Privacy Guard and Haystack favor downstream traffic

since the responses from the Internet are read as streams from sockets and the responses from

applications are read from TUN packet-by-packet [28]. StrongSwan outperforms AntMonitor

as expected since, unlike with incoming packets, AntMonitor performs DPI on each outgoing

packet. Nevertheless, Fig. 3.6(a) shows that AntMonitor has the higher upload speed (and closest

to the raw speed) if DPI is disabled. Fig. 3.4(b) also shows that all VPN apps have similar memory

and CPU usage, except for Haystack, which incurs significant overhead. Since the test took longer

for the slower approaches, Privacy Guard and Haystack used significantly more battery.

In general, using any VPN service roughly doubles the CPU usage during peak network activity.

Although the CPU usage of 38–90% on Wi-Fi seems high, the maximum CPU usage on the quad-

core Nexus 6 is 400%. In summary, this set of experiments demonstrates that among all VPN

approaches, for both downlink and uplink, AntMonitor has the highest throughput while having

similar or lower CPU, memory, and battery consumption.

Results for AntMonitor v0.1.5 in Feb. 2017. Since the time we performed the above evaluation

(in Dec. 2015), both AntMonitor and Haystack (now renamed to “Lumen”) were updated on

GooglePlay, to versions 0.1.5 and 1.1.2, respectively. The main change for AntMonitor from

version 0.0.1 to 0.1.5 was improving (and making more complex) the GUI and disabling packet

logging (in order to avoid dealing with PII of the general public participating in the open-beta); the

underlying design (including key optimizations, such as the use of two threads and minimum num-

ber of sockets, and the optimized reading/writing from the TUN) remains the same. The internal

changes in Haystack beyond the GUI are not available to us but the design of the system appears to
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Figure 3.5: Performance of updated VPN apps (in Feb. 2017) when downloading or uploading a
500 MB file over Wi-Fi.

remain the same, according to [53]. To see how the updates affected the performance of both apps,

we repeated a set of stress tests and we report these results separately in Fig. 3.5(a-b). The network

conditions have changed since the original tests were performed: NoVpn throughput is now 100

Mbps and 78 Mbps on the downlink and uplink, respectively. Haystack v1.1.2 has improved its

download throughput to 43 Mbps, and AntMonitor reached 96% of the raw speed with a 96 Mbps

throughput. The newer Haystack app also has improved its upload throughput to 26 Mbps. The

latest AntMonitor has stayed in the 70% range of the raw upload speed with a 56 Mbps through-

put. This confirms that the design and optimization techniques applied to AntMonitor still result

in significant performance benefits, despite the added complexity of the updated GUI.

3.3.1.2 Small Files Over Multiple Flows

Setup. To test the efficiency of AntMonitor’s thread and socket allocation, we used AntEvaluator

to create 16 threads, each downloading a 50 MB file. During the test AntEvaluator calculated

the throughput of each flow and reported the average of all flows.

Results. The average speed of a flow (in Mbps) for each test case was the following: Raw Device:
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Figure 3.6: Performance of VPN apps and variations of AntMonitor under various conditions.

6.82, AntMonitor: 6.57, Privacy Guard: 4.75, StrongSwan: 3.73, Haystack: 3.18, and Ant-

Monitor Client-Server: 3.06. Again, AntMonitor came out on top, achieving 96% of the raw

speed.

3.3.1.3 Impact of Logging and DPI

Setup. To assess the overhead caused by DPI and logging packets in PCAPNG format, we per-

formed the single-flow upload stress test on AntMonitor with all four combinations of logging

on/off and DPI on/off.

Results. First, Fig. 3.6(a) shows that logging does not have a significant impact on throughput.

This is thanks to (i) the optimization of AntMonitor that uses only two threads for network I/O

(see Sec. 3.2.3) and (ii) the fact that the data collection uses two threads for storage I/O. These

data logging threads do not significantly impact main network I/O threads on a quad-core Nexus

6 phone. Second, DPI is performed by one of the main network I/O threads and inflicts a 17%
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slow-down on upload speed. Although 17% is a significant overhead, AntMonitor is still able to

reach over 60 Mbps speed, which is more than enough for mobile apps. In addition, DPI causes a

28% and 33% overhead on battery and CPU, respectively. However, the CPU usage still remains

1/8 of the total possible CPU available on the Nexus 6 (of 400%), thus the overhead is acceptable.

Finally, without logging and DPI, AntMonitor achieves 94% of the raw speed without VPN.

3.3.1.4 Impact of TLS Proxy

Setup. To evaluate the performance impact the TLS Proxy (Sec. 3.2.1), we used AntEvaluator

to download a 500 MB file from a secure server over HTTPS and compared the throughput of

AntMonitor to that of the Raw Device.

Results. The average throughput (in Mbps) was 77.2 and 69.1 for the Raw Device and Ant-

Monitor, respectively. As expected, the proxy causes a significant overhead since it uses an extra

socket for each connection and performs one extra decryption and encryption operation per packet.

3.3.2 Idle Test

Setup. For this set of experiments, we kept the phone idle for two minutes with only background

apps running. We used AntEvaluator to measure the battery and memory consumption of each

VPN app. We also measured the aggregate CPU usage across all apps by summing the System

and User % CPU Usage provided by the top command.

Results. Fig. 3.6(b) shows that all apps tested create very little additional overhead when the

device is in idle mode. Among the mobile-only approaches, Haystack and AntMonitor used

more CPU than Privacy Guard because both of them have threads to log packets while Privacy-

Guard does not. Similarly, logging also results in slightly higher memory usage for Haystack

and AntMonitor. Note that StrongSwan does not log packets either, thus has lower CPU usage.
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Finally, the overall memory usage of the VPN apps (˜105 MB) is acceptable; many other popular

apps, e.g. Facebook, use as much as 200 MB of RAM.

3.3.3 Metrics Computed Outside AntEvaluator

Latency. We measured the latency of each VPN app by averaging over several pings to a nearby

server (in the same city). In order of increasing delay, the apps rank as follows: NoVpn: 3 ms,

StrongSwan: 4 ms, Haystack: 4 ms, AntMonitor Client-Server: 5 ms, AntMonitor: 7 ms,

and Privacy Guard: 83 ms. Compared to client-server approaches, mobile-only approaches

cannot forward ICMP packets; thus, we measure latency using TCP packets. The additional delay

is due to the time required to create, send, and receive packets through TCP sockets. Compared

to Haystack, AntMonitor has a small additional latency as sending and receiving TCP packets

involves two threads (one reads/writes the packet from/to TUN and one reads/writes the packet

from/to the socket), whereas Haystack might have used a single thread (source code unavailable).

DPI. During real traffic conditions, our native C implementation of Aho-Corasick has a maximum

run time of 25 ms. When benchmarking as a standalone library (running on the Android main

thread alone), our parsing time is less than one ms. For comparison, Haystack reports a 167 ms

maximum run time for string parsing with Aho-Corasick [28].

3.4 Summary

In this chapter, we presented the AntMonitor system for intercepting and inspecting network

traffic on mobile devices. AntMonitor uses VPN for traffic interception, without requiring a VPN

server or rooting of the device. Thanks to a number of optimizations, AntMonitor outperforms

previous state-of-the-art mobile-only approaches, namely Privacy Guard [29] and Haystack

[28]. Specifically, it achieves 2x and 8x faster (down and uplink) speeds, while using 2–12x
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less energy. This significant performance benefit allows other researchers to build a multitude of

applications on top of AntMonitor. These applications can then be easily adopted by users since

AntMonitor does not slow down the mobile device and does not drain its battery. The next three

chapters showcase some of the possible applications of AntMonitor. To enable further study of

mobile network traffic, we packaged AntMonitor as an Android library and made it open-source

at [10] for the community to maintain and evolve.
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Chapter 4

AntShield: Detecting and Preventing

Exposures of PII

4.1 Overview

In this chapter, we present AntShield – a system built on top of AntMonitor for detecting and

blocking exposures of personally identifiable information (PII). We refer to a PII exposure as the

transmission of PII from the device to the network. This transmission may be for any reason,

including tracking and legitimate usage of PII needed for the functionality of the app. In contrast,

a PII leak is the transmission of PII from the device to the network for a nefarious reason, such as

tracking and exfiltration. In this Chapter, we are interested in detecting exposures only, and leave

it up to the user to decide when an exposure is a leak.

To detect PII we use a combination of string matching and machine learning. Our approach runs

100% on the device, without routing traffic through a remote VPN server, and in real-time – around

one millisecond. This is enabled by careful system design and multiple optimizations discussed

in Sec. 4.2.4. Our multi-label classification methodology achieves significantly higher F-scores
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(7-49% improvement) and lower variance (a factor of two to six) compared to state-of-the-art.

We also design and advocate for per-app, instead of per-domain, classifiers: they achieve similar

classification accuracy, but allow faster and more scalable operation while covering more traffic.

In order to demonstrate the effectiveness of our approach, we collect a new dataset of privacy

exposures on mobile devices, which we made available to the community at [54].

4.2 System Design & Implementation

4.2.1 Goals and Design Rationale

Mobile devices have access to a wealth of resources and information, much of which is personal

and potentially sensitive. We will refer to such personally identifiable information as PII. Examples

include:

• Device Identifiers: IMEI, AndroidID, phone number, serial number, ICCID, MAC Address.

• User identifiers: credentials (per app, usually transmitted over HTTPS), advertiserID, email.

• User demographic: first/last name, gender, zipcode, city, etc. - unavailable through Android

APIs.

• Location: available through Android APIs.

• User-defined: the user can also define any custom string that should be monitored (e.g. see

GUI in Fig. 4.3(a)), such as digits of her credit card.

A key insight of our design is the distinction on whether PII of interest is known to the device or

not. We refer to PII that consists of strings known a priori on the device (e.g. via Android APIs,

or defined by the user) as predefined. We refer to PII that is not known to our system (e.g. hidden
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from apps) as unknown. Our system employs different techniques to detect the transmission of

predefined PII (String Matching) and unknown PII (classification). We refer to the transmission

of a packet from the device to the network, containing at least one PII, as a privacy exposure.

This transmission may be intended to collect information about the user; or can be benign, e.g.

necessary for the operation of the app, acceptable to the user, or more of the honest-but-curious

nature. On the other hand, a PII leak is the transmission of PII from the device to the network for

a nefarious reason, such as tracking and exfiltration. Distinguishing between privacy exposure and

an actual privacy leak is out of the scope of this thesis, and we leave it up to the user to decide when

an exposure is a leak. Our goal is to detect privacy exposures on the device with low overhead,

accurately and in real-time.

To that end, we build AntShield on top of the AntMonitor Library described in Chapter 3. This

provides us with all the advantages of AntMonitor: our solution can run completely on the device

and can be used by a non-sophisticated end-user. In addition, using AntMonitor provides us with

access to app names and predefined PII. To detect predefined PII (through String Matching), we

utilize the DPI API provided by AntMonitor (see Sec. 3.2.2). To detect the remaining unknown

PII, we build machine learning classifiers defined in Sec. 4.2.3. This hybrid approach allows us to

accurately detect a comprehensive range of PII in real-time.

4.2.2 AntShield Architecture

The overview of the AntShield architecture is depicted in Fig. 4.1. It consists of a mobile app and

an optional server. A brief overview of each component is provided next.

Online Exposure Detection. This is the core functionality of our PII exposure detection. As

shown in Fig. 4.1, AntShield leverages calls to AntMonitor Library (acceptIPDatagram

and acceptDecryptedSSLPacket) to intercept packets (in clear text or decrypted SSL, re-

spectively). Each outgoing intercepted packet is analyzed with DPI for predefined exposures and
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Figure 4.1: AntShield Architecture. It consists of a mobile app on the device and an (optional)
server. Real-time classification consists of the following steps: each packet is intercepted by Ant-

Monitor Library, mapped to an app, and analyzed for multiple predefined and unknown ex-
posures; detection occurs before the packet is forwarded towards its remote destination (and an
action may be taken to block the exposure). Offline operations include loading and (re)training the
classifiers, and (if the user agrees) uploading any logs.

for features. The features are then passed to classifiers to detect unknown exposures (described in

detail in Sec. 4.2.3). Either way, if a PII exposure is detected, the user is notified and the exposure

is logged. If the user chooses to, the offending packet can be blocked, or it can be allowed to

continue towards its remote destination. In the case of a predefined exposure, the user can also

choose the replace the PII with a randomly generated string.

Offline Analysis. This module can be used when heavier processing is required. For example, to

generate logs on the device, which require I/O operations, we use AntMonitor Library’s con-

sumePacket() API from this module. This module can be used to generate ground truth on the

device; and in the future, it can be extended to re-train classifiers on the device without sending

data to a central server.
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Storage. The AntShield app comes pre-loaded with classifiers trained on our existing dataset

(Sec. 4.3), so that users have no need to contact any server and can use the system as-is. Only if the

user chooses to do so, logs (e.g. packet traces) can be maintained on the device and occasionally

be uploaded to a server. The user has full control of these logs: by default, logs do not need

be collected or leave the device. In our work, we use the Offline Analysis module to generate

the dataset used in our evaluation: each captured packet is labeled with the type of PII that it is

exposing and the app name that generated the packet, the PII itself is replaced, and the packet is

converted to JSON format for easier processing at the machine learning training stage (see Sec. 4.3

for details). In general, this feature is useful for other researchers to generate their own datasets

manually or from user studies. Data can either be uploaded to a server or pulled from the device

using ADB (Android Debug Bridge).

Sever. The use of the server is optional: the user may choose this option for offline operations

such as storing data, sharing information with other users to get the benefits of crowdsourcing,

and training and retraining classifiers. In our work, we use a server for (i) data collection, (ii)

training/re-training on arriving ground truth, and (iii) keeping classifier files for users to download

upon app installation.

GUI. The GUI provides researchers and users with a multitude of options. Fig. 4.2(a) shows the

main menu of the AntShield app, from which users can explore the app and can turn the packet

interception on and off. Users can also choose which apps’ packet traces to log – see Fig. 4.2(b).

This can be useful for researchers who may only be interested in collecting data of one app at a

time. In the case of a user study, users may choose to not share data of sensitive apps, such as

banking apps. AntShield also takes a step towards data transparency: Fig. 4.2(c) showcases a

visualization of which apps talk to which remote servers. The visualization can either show real-

time TCP connections, or a history of which apps have exposed PII to which servers. AntShield

also provides users with the ability to specify which predefined PII to monitor, as shown in Fig.

4.3(a). By default, these include PII available to AntShield through Android APIs. Users that trust

40



(a) (b) (c)

Figure 4.2: Screenshots of the AntShield Android app for general use cases: (a) Main menu from
which users can explore the app and turn the packet interception on and off; (b) Users can select
which apps’ packet traces to log; (c) Visualization – can show real-time TCP connections between
apps and servers or a summary of PII exposed.

AntShield can also opt-in and predefine additional PII, such as name and gender or any string (e.g.

digits of a credit card). When a PII is exposed, AntShield’s GUI notifies the user in real-time – see

Fig. 4.3(b). From here, users can decide to allow the exposure to happen, replace the predefined

PII with a random string of the same length (so as not to alter the payload size), or block the packet

completely. Whatever action the user selects, it is remembered for future occurrences of the same

PII/app combination. As shown in Fig. 4.3(c), users can view a history of exposures at any time,

and they can alter the action taken for specific PII/app combinations. In the future, these actions

can be pre-filled for the user as recommendations based on research studies.
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(a) (b) (c)

Figure 4.3: Screenshots of the AntShield Android app that are specific to privacy: (a) predefined
PII, possible actions, and custom filters (name); (b) Privacy Exposure Notification; (c) History of
Exposures.

4.2.3 PII Detection Methodology

At the heart of AntShield lies the online inspection of network packets to detect if they contain

PII. As described next, we utilize three novel ideas to improve on existing PII detection approaches.

4.2.3.1 Hybrid Classification Methodology

We use a hybrid String Matching-classification methodology. As described in Sec. 4.2.1, a key

insight is that PII can be split into two categories: predefined and unknown, depending on whether

they are known a priori or not. This is an inherent advantage of operating on the device: AntShield

has access to all the predefined strings and can use DPI to search for them; we refer to this method

as String Matching. This not only gives us 100% accuracy on finding predefined exposures, if

they are not obfuscated, but also reduces the set of PII that classifiers must learn, thereby improving
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the accuracy of finding unknown exposures and reducing variance (see Sec. 4.4).

4.2.3.2 PII: A Multi-Label Problem

We treat PII detection as a Multi-Label problem, since a packet may contain zero, one, or mul-

tiple PII. Our classifiers decide, in one step, if any PII are contained in a packet, and if so - what

type. More specifically, we use Mulan [55] to perform multi-label classification using the Binary

Relevance (BR) transformation method [56]. The idea is to train a separate binary classifier for

each label. Since the C4.5 DTs worked well for classifying exposure vs. non-exposure, we use

them as independent classifiers in BR. For feature extraction, we follow the same methodology as

in ReCon (Sec. 2.3.3.1), but instead of randomizing PII values during training, we completely

exclude them from the set of features. This is possible because we replace all PII values with spe-

cific strings. For example, each occurrence of the IMEI number is replaced by “AntShield IMEI”

during the off-line data collection. Thus, all values starting with “AntShield ” can be excluded

from the feature set.

4.2.3.3 Per-App Classifiers

Instead of building a separate classifier for each second level domain (SLD), we build classifiers

per-app. This is possible thanks to AntShield running on the device: it can accurately map a

packet to the app that generated it. From a classification point of view, per-app classifiers per-

form similarly to per-domain classifiers, as shown in Sec. 4.4. However, per-app classifiers have

important system advantages.

First, they allow for easy setup and scalability. Consider the scenario when a new user wants to

sign up for our system – she will need to download our classifiers. In order to reduce impact on

RAM and disk space usage of her mobile device, she will want to download the minimal amount.

Since it is impossible to know in advance which SLDs will be contacted, the user will need to
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download classifiers belonging to all possible SLDs, of which there are millions. As of February

25th, 2019, the .com TLD (top level domain) alone consists of over 140 million SLDs [57]. In

contrast, according to a 2017 report by AppAnnie [58], U.S. users have less than 100 apps installed

on their phones, on average. The numbers are similar for other countries examined in the report.

Even if we could predict which SLDs apps will contact, the number of SLDs contacted will usually

be higher than the number of apps installed on a user’s phone. For example, in our dataset of 307

apps, 699 SLDs were contacted. With per-app classifiers, a new user to our system would need to

download less than 100 classifiers. Furthermore, when a user installs a new app, the appropriate

classifier can be downloaded, without the need to guess which SLDs the new app will contact.

Second, they apply to all TCP and UDP traffic, not just to HTTP(S) traffic. ReCon parsed

HTTP(S) packets to extract the hostname and then used a Public Suffix List (e.g. [59]) to get

the corresponding domain and apply the relevant classifier. This process is not only costly in terms

of CPU and memory, but is also not applicable to non-HTTP(S) packets, such as plain TCP and

UDP packets that do not contain a Host field. One possible solution is to do reverse-DNS lookup

to map (not only HTTP(S)) packets to their intended hosts. However, many companies opt-in to use

third-party web service providers (such as Amazon AWS), and for them, reverse-DNS returns host

names that are not very useful (e.g. ec2-54-164-159-29.compute1.amazonaws.com).

As a work-around, it may be possible to implement a reverse-DNS cache on the device by keeping

track of all the DNS requests. Unfortunately, we have seen many cases where the same IP maps to

multiple host names (again, due to third-party web service usage).

One problem with both per-app and per-domain classifiers is that sometimes there is not enough

training data. For apps that do not contain enough training samples, we train and use a general

classifier, which is trained on all apps’ data.
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4.2.4 Real-time Implementation on the Mobile Device

The classifiers described in the previous section have value on their own right. However, it is highly

non-trivial to apply them in real-time on a mobile device, with limited CPU and RAM. AntShield

is the first system to achieve this goal thanks to the following system optimizations.

4.2.4.1 Real-Time Prediction

Our hybrid approach relies on String Matching to search for predefined exposures and on classi-

fication methodology to detect unknown ones. The former benefits from the good performance of

AntMonitor Library’s efficient DPI module. The latter needs to parse packets to extract words

that are used as features of the classifiers. With off-the-shelf ReCon, to extract words from a

packet, several invocations of Java string parsing methods would be required, which are extremely

slow on a mobile device. We were able to extract features from the traffic while completely avoid-

ing parsing by exploiting the following observation: we only need to find the features that appear

in our resultant decision trees. Most of our decision trees are one-level deep and only a third of the

trees have a depth greater than two. Only the general classifier requires 500 or more features. We

propose using DPI to search for the features that appear in the classifiers. Since the Aho-Corasick

algorithm used in the AntMonitor Library can search for many strings in one pass of the packet,

having these extra words to search for does not affect performance.

Extracting words that appear in the decision tree nodes and using DPI to search for them works

well in most cases. However, in some cases the words are too small and can actually be part of a

longer word. In this case, our DPI search would mark a feature as existent, when in fact it’s part

of a different word, causing an incorrect prediction. As an example, hulu was receiving the word

‘profile’ in the packets that also contained the user’s first name. However, many packets that did

not contain any exposures, contained the word ‘video profile.’ To avoid these DPI-based false

positives, we decided to keep the delimiters surrounding each word during feature selection. So,
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in the case of hulu, we used ‘/profile?’ as the feature. This trick allowed us to extract the same

words with DPI as with Java parsing.

Evaluation in Sec. 4.5 shows that our methodology makes a crucial difference for running in real-

time. Java parsing often takes over 30 millisecond, while the Aho-Corasick search stays below one

millisecond. 30 milliseconds is too long of a delay for network packets, as certain TCP connections

have lower timeout values. Based on our experiments in Sec. 4.5, the classification itself takes

about 1 millisecond, which is an acceptable overhead for real-time performance. In ReCon’s

methodology there is also the extra step of PII extraction, which also requires Java parsing. Since

this steps occurs only for packets that are classified as containing PII, this delay may be tolerable.

However, with the Multi-Label method, we avoid this second step and completely avoid Java

parsing for all packets.

4.2.4.2 Minimizing Classifiers to Load in RAM

With limited RAM, care must be taken when loading machine learning models from disk to mem-

ory. To minimize the impact on RAM, we: (i) load per-app models only for those apps that are

installed on the device; and (ii) perform a two-step training method to reduce the general classifier

feature set (see Fig. 4.1). Specifically, the general classifier has a feature set size of over 12k, and

during prediction needs the allocation of a double array with size 12k+. While this is a small size

for a server, on the mobile device it causes major issues. Specifically, if one were to load the full

general classifier, most web pages and applications would not load. This is because each time a

packet that does not belong to a per-app classifier, it has to be predicted by the general one, and

the memory allocation becomes so large that a blocking garbage collection call has to be executed

by the Android OS after every prediction. This blocked our main networking thread, caused con-

nections to time-out, and prevented pages from loading. We were able to reduce the feature set

by exploiting the existing classifier tree: we re-trained the general classifier using only the words

that appear in the tree nodes as features. This resulted in a feature set size of only 509, i.e. a 24x
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ReCon
dataset(s)

AntShield
dataset(s)

Auto Manual Auto Manual
# of Apps 564 91 414 149

# of packets 16761 13079 21887 25189
# of destination domains 450 368 597 379
# of exposures detected 1566 1755 4760 3819

# of unknown exposures 4 78 483 516
# of exposures in encrypted traffic - - 1513 1526

# of packets with multiple exposures 50 224 1506 790
# of background exposures - - 2289 639

# of HTTP packets 16761 13079 13694 13648
# of HTTPS packets - - 6830 8103
# of TCP packets - - 867 2264

# of exposures in TCP (other ports) - - 38 7
# of UDP packets - - 496 1174

# of exposures in UDP - - 17 12

Table 4.1: Summary of Datasets. ReCon is the previous state-of-the-art, collected in the middle
of the network [2]. AntShield’s Manual and Automated datasets were collected on the device.

reduction for the general classifier, which in itself allowed AntShield to run in real-time. Over-

all, AntShield’s memory usage is around 100 MB, which is acceptable: many popular apps, e.g.

Facebook, use as much as 200 MB RAM.

4.3 The AntShield Datasets

In order to evaluate the effectiveness of our methodology in detecting private information exposure,

we collected and analyzed two AntShield datasets. We logged all packets generated by different

apps on a test device (Nexus 6) and used the JSON format to save any relevant fields, such as

destination IP address and port number, HTTP method, HTTP headers, and etc. Each packet was

also annotated with any PII exposures (see 4.2.1 for a list) that it contained. We collected two

different datasets, depending on how we interacted with apps, described next.
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Manual Testing. First, in order to assess PII exposures during typical user behavior, we tested 100

most popular and free Android apps, based on rankings in AppAnnie [60]. Since AntShield can

map each packet to the app that generated it, we tested apps in batches to catch packets sent by

apps when they are in the foreground and in the background. Specifically, we installed five apps

on the test device and used AntShield to intercept and log packets while interacting with each app

for five minutes. This way, while another app is being tested, the other applications on the phone

can send background traffic. After all applications in the batch were tested, we switched off the

screen on our test device and waited for five minutes for any additional background traffic of the

app that was tested last. Finally, we uninstalled each application in the order they were installed

and turned off AntShield.

Automatic Testing. We also used the UI/Application Exerciser Monkey [61] to automatically

interact with apps. This does not capture typical user behavior but enables extensive and stress

testing of more apps. We installed four batches of 100 applications each, and had Monkey perform

1,000 random actions in each tested app while AntShield logged the generated traffic. Due to

random actions of Monkey, we skipped apps that can make a payments or require a real phone

number. For apps that required a login, we first logged in manually (with test credentials) and then

ran Monkey. At the end of each batch, we switched off the screen of the test device and waited for

ten minutes to capture background traffic.

Advantages. Using AntShield to capture packets on the device has several advantages compared

to previous datasets collected in the middle of the network. First, AntMonitor provides accurate

packet-to-app mapping. This obviates the need to infer the application through ML or heuristics

and reduces restrictions in testing - multiple apps can be installed at once. Second, we are able

to collect contextual information on the phone, such as which app is in the foreground. Such

information can provide insights into the mobile ecosystem and, in the future, it can be used as

a feature in machine learning. Third, we gained insight into TLS, UDP, and regular TCP traffic,

in addition to HTTP. Finally, scrubbing PII and labeling packets with the type of PII they expose
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was fully automated: AntShield already provides predefined strings, and we entered the unknown

strings (e.g. fake test account credentials) as custom filters (as in Fig. 4.3(a)).

Summary. For the purposes of training and testing classifiers, we merged the Automatic and

Manual datasets into one, referred to as the AntShield dataset. Our dataset is summarized in Table

4.1, next to the prior state-of-the-art PII datasets collected by ReCon [2]. The AntShield dataset

contains more and richer information about exposures than before. We note that some advantages

are inherent to running on the device (i.e. the ability to capture contextual information, including

the app names). Other differences are due to changes in app versions and exposure behavior over

time. Therefore, in addition to being used to evaluate our methodology (Section 4.4), our datasets

have value on their own and we have made them available to the community at [54].

4.4 Classification Evaluation

4.4.1 Setup

Classification Schemes under Comparison. In this section, we use our datasets to compare the

classification accuracy of the proposed AntShield approach (Sec. 4.2.3) to the previous state-of-

the-art ReCon approach (Sec. 2.3.3.1). Since our proposed method combines several ideas, we

also report results from the evaluation of individual ideas, to help assess which idea brings the most

benefit:

1. Complete ReCon approach as per Sec. 2.3.3.1: classify all (predefined and unknown) expo-

sures, using binary classifiers first to detect exposure, then heuristics to determine the type

of PII.1

2. ReCon classifying unknown exposures only.
1We use the ReCon code available here: https://github.com/Eyasics/recon
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3. String Matching on predefined exposures, ReCon trained on unknown; testing done on all

exposures.

4. Multi-Label classification trained and tested on predefined and unknown exposures.

5. Multi-Label classification trained and tested only on unknown.

6. Complete AntShield as per Section 4.2.3: String Matching for predefined and Multi-

Label classification for unknown exposures; Multi-Label trained on unknown only, testing

done on all exposures.

Per-app vs. Per-domain classifiers. In Section 4.2.3, we discussed the system advantages of

using per-app instead of per-domain classifiers. In this section, we show that their classification

performance is similar. For each method, we compare how well the per-domain, per-app, and

general classifiers perform. We train specialized classifiers for those domains and apps that contain

at least one positive sample (packet with an exposure), and one negative sample (packet with no

exposure). In that sense, we find that per-app classifiers are able to cover more data than the

per-domain classifiers. In particular, we obtain the following numbers for packets “covered” by a

classifier:

• All PII, per-app classifiers: 211 (93.3% of traffic, 99.5% of packets with PII)

• All PII, per-domain classifiers: 182 (63.6% of traffic, 95.0% of packets with PII)

• unknown PII, per-app classifiers: 47 (54.4% of traffic, 99.5% of packets with unknown PII)

• unknown PII, per-domain classifiers: 49 (24.5% of traffic, 87.4% of packets with unknown

PII)

This is expected since apps generally exhibit more diverse behavior by connecting to various do-

mains, some of which collect PII and some of which do not. Thus, we are more likely to find apps
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Figure 4.4: Evaluation approaches: (1) Binary Classification: we assess how well we identify
whether or not a packet contains a PII (Sec. 4.4.2); (2) Exposure Classification: we assess how
well we infer the PII type from packets that already contain a PII, ignoring packets without PII
(Sec. 4.4.3); (3) Combined Classification - assess how well we identify the PII type and the No
Exposure label, considering all packets (Sec. 4.4.4).

that have sent at least one packet containing PII and one packet without PII, as opposed to domains

that receive packets with and without PII.

Evaluation Approaches and Metrics. After classifying a packet, either an exposure is detected

with a particular PII type, or No Exposure is detected. Depending on how one summarizes these

numbers over all packets classified, we may have different assessments. In particular, whether or

not we consider packets that do not contain PII, affects the numbers, since this is the majority of

the packets. We considered three evaluation schemes, summarized in Fig. 4.4:

1. Binary Classification: this approach evaluates how well the applicable algorithms classify a

packet as containing an exposure or not (Sec. 4.4.2).

2. Exposure Classification: this approach evaluates how well each algorithm distinguishes PII

types in packets that contain an exposure (Sec. 4.4.3), i.e. packets without a PII are not taken

into account.

3. Combined Classification: this approach evaluates how well each algorithms distinguishes

among PII types and “no exposure” (Sec. 4.4.4), i.e. packets without a PII are taken into

account.

For each approach, we perform five-fold cross-validation on the given model (unless otherwise
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specified), and calculate the average and the standard deviation across the trained specialized clas-

sifiers. Since ReCon’s second (non-binary) step and String Matching are both heuristic, we did

not perform cross-validation on these methods when evaluating exposure and combined classifica-

tion, but simply ran the algorithms on the entire applicable dataset (columns one through three and

six) in the Tables.

Because a packet can expose more than one PII type, for the latter two approaches, we use eval-

uation metrics specific to multi-labeling problems [62]. We report precision, recall, and F-score

using their standard definitions:

• Precision: the number of correct labels, divided by the number of predicted labels.

• Recall: the number of correct labels, divided by the number of true labels.

• F-score: two times the product of precision and recall, divided by the sum of precision and

recall.

4.4.2 Binary Classification

We report the binary classification results in Table 4.2 for the two machine learning algorithms

under consideration: ReCon’s DT, and our Multi-Label BR. We report the standard metrics for

binary classification: F-score, specificity, and recall. The first column is consistent with ReCon’s

own reports in [2] - the model achieves high F-scores and low false positives/negatives. The second

column shows that there is little benefit in focusing on unknown exposures only. This makes sense,

since in this binary step, we only want to see whether or not a packet contains PII, and not to

extract what type of PII it is (see Fig. 4.4). The third and fourth columns also show little benefit

from our Multi-Label approach since within the BR, we still use a similar decision tree to classify

exposure vs. non-exposure. We also note that the standard deviation is higher when focusing on

unknown exposures only (columns two and four). This is expected since there is now less data to
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ReCon on All 

PII

ReCon on 

unknown

Multi-Label on 

All PII

Multi-Label on 

unknown

F-score 98.0% ± 6.80 97.2% ± 14.2 97.1% ± 9.32 97.2% ± 11.3

Specificity 97.5% ± 8.10 98.5% ± 4.35 98.4 ± 5.75 98.9% ± 5.72

Recall 98.5% ± 6.78 97.9% ± 14.1 97.1% ± 9.38 97.3% ± 9.46

F-score 97.0% ± 7.99 96.4% ± 14.9 96.2% ± 7.25 96.4% ± 12.0

Specificity 98.1% ± 4.24 96.8% ± 11.3 96.4% ± 7.30 98.3 ± 8.87

Recall 96.4% ± 8.95 97.6% ± 14.5 97.4% ± 6.48 95.9% ± 12.1

F-score 97.5% 94.9% 95.5% 99.5%

Specificity 98.9% 99.8% 95.6% 91.8%

Recall 95.8% 91.9% 98.4% 99.8%

Method

Per-Domain Average

Per-App Average

General

Table 4.2: Binary Classification Results (Sec. 4.4.2)

work with and some domains send unknown PII only once in a while. Furthermore, in the case of

binary classification, the general classifiers perform close to the specialized ones. However, we are

interested in improving the accuracy on the type of PII classification, and as we show in the next

two subsections, our approaches and the specialized classifiers bring benefit there.

4.4.3 Exposure Classification

The results are shown in Table 4.3. First, standard deviation is high because certain domains are

easy to learn and get near 100%, while a small set of domains are difficult (some even have 0%

F-score). ReCon’s heuristic scores low when attempting to extract the PII type (column one);

see Sec. 2.3.3.1 and [2] for a description of the heuristic. Second, when we reduce the set of

PII types to look for (column two), the heuristic performs slightly worse, probably due to not

having enough samples of unknown exposures. Third, as expected, String Matching can find

predefined exposures with 100% accuracy, thus the overall F-score improves by ~20% (column

three vs. column one), and standard deviation decreases. Fourth, the Multi-Label approach shows

significant improvement when compared to ReCon’s heuristic (column four vs. column one, and

column five vs. column two); this is expected, since we do not need to estimate probabilities or

calculate out thresholds. Fifth, the complete AntShield achieves near perfect performance, and
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(1) (2) (3) (4) (5) (6)

ReCon on All 

PII

ReCon on 

unknown

String Matching & 

ReCon on unknown

Multi-Label on 

All PII

Multi-Label on 

unknown

String Matching & 

Multi-Label

F-score 72.7% ± 39.7 69.5% ± 45.5 95.9% ± 18.4 99.2% ± 1.90 99.3% ± 2.88 98.5% ± 11.0

Precision 74.8% ± 39.3 69.5% ± 45.5 96.2% ± 18.1 99.3% ± 1.95 99.3% ± 3.21 98.5% ± 11.0

Recall 73.5% ± 39.6 69.5% ± 45.5 95.9% ± 18.4 99.3% ± 1.79 99.5% ± 2.11 98.9% ± 10.4

F-score 73.2% ± 31.1 69.0% ± 42.7 97.6% ± 13.1 98.8% ± 2.24 98.9% ± 3.23 99.4% ± 4.58

Precision 76.7% ± 30.4 69.0% ± 42.7 98.0% ± 12.8 98.9% ± 2.20 99.0% ± 3.29 99.4% ± 4.58

Recall 73.5% ± 31.0 69.1% ± 42.8 97.6% ± 13.1 98.9% ± 2.18 99.1% ± 2.40 100% ± 0.06

F-score 49.9% 50.2% 97.1% 77.4% 81.8% 99.3%

Precision 58.2% 50.3% 97.6% 79.6% 84.7% 99.5%

Recall 53.3% 50.3% 97.1% 75.9% 79.4% 99.7%

Per-

Domain 

Average

Per-App 

Average

General

Table 4.3: Exposure Classification Results (Sec. 4.4.3)

decreases the standard deviation (column six vs. columns one through three). Finally, in all cases:

(i) the specialized classifiers outperform the general ones, and (ii) the per-app classifiers achieve

higher F-scores and lower standard deviation in our final method (column six).

4.4.4 Combined Classification

The results for combined classification are shown in Table 4.4 and the difference between the

performance of different classification methods is less pronounced than before. This is because the

majority of packets do not contain PII, the binary classifiers work well (see Sec. 4.4.2) and classify

the ”no exposure” packets correctly, making the results look deceivingly good. This is why we

also report the Exposure Classification performance (Sec. 4.4.3), as it provides deeper insight into

the classifiers’ performance. We note that in this case, the Multi-Label general classifiers appears

to do worse than the ReCon ones; but this is because the results reported for columns four and five

are based on cross-validation, so the general classifiers don’t get to see all the training data and do

worse on some folds.
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(1) (2) (3) (4) (5) (6)

ReCon on All 

PII

ReCon on 

unknown

String Matching & 

ReCon on unknown

Multi-Label on 

All PII

Multi-Label on 

unknown

String Matching & 

Multi-Label

F-score 89.1% ± 22.1 91.8% ± 17.7 98.5% ± 7.81 99.2% ± 2.02 99.3% ± 2.54 99.5% ± 3.99

Precision 90.0% ± 21.5 91.8% ± 17.7 98.7% ± 7.55 99.2% ± 2.10 99.3% ± 2.82 99.5% ± 3.99

Recall 89.2% ± 22.0 91.8% ± 17.7 98.5% ± 7.80 99.2% ± 1.83 99.5% ± 1.87 99.8% ± 1.60

F-score 91.3% ± 15.2 95.0% ± 12.6 99.5% ± 3.09 98.7% ± 2.31 98.9% ± 2.83 99.1% ± 7.35

Precision 92.7% ± 14.1 95.0% ± 12.6 99.5% ± 2.96 98.7% ± 2.24 99.0% ± 2.89 99.1% ± 7.35

Recall 91.4% ± 15.2 95.0% ± 12.6 99.5% ± 3.06 98.7% ± 2.26 99.1% ± 2.11 99.4% ± 6.91

F-score 89.9% 99.1% 99.3% 78.5% 76.5% 99.8%

Precision 91.3% 99.1% 99.4% 80.6% 79.1% 99.8%

Recall 90.4% 99.1% 99.4% 77.0% 74.4% 99.9%

Per-App 

Average

General

Method

Per-

Domain 

Average

Table 4.4: Combined Classification Results (Sec. 4.4.4)

4.5 Prediction and Training Time

In order to run privacy exposure detection in real-time on the device, performance is key. Thus,

we evaluate the two feature extraction approaches: (1) ReCon’s Java string parsing, and (2) Ant-

Monitor Library’s Aho-Corasick search for features and predefined PII. We also compare: (1)

ReCon’s binary classification, and (2) AntShield’s Multi-Label classification. We find that our

classifiers have negligible impact on battery and can run in real-time. This is mainly thanks to the

use of (i) Aho-Corasik for searching for multiple strings, and (ii) the lean extraction of words to

feed into the classifiers. To the best of our knowledge, this is the first time that PII classification is

achieved in real-time on a mobile device.

Setup. The tests were ran on a Nexus 6P with Android 7.1.1 and an 8-core QUALCOMM Snap-

dragon 810 processor with a clock speed of 2 GHz and battery capacity of 3450 mAh. We fed 10

HTTP packets of varying sizes (between 300-2000B) to each function under evaluation and timed

how long it took using System.nanoTime(). We repeated each test case 100 times and calculated

the average run-time and standard deviation. Each function was tested in isolation, running on the

main thread, so as to minimize timing the overhead of possible thread switching.

Results. The results for the feature extraction approaches are as follows: (1) ReCon’s Java string

parsing: 36 ms ± 17 ms; (2) Aho-Corasick search: 0.107 ms ± 0.149 ms. Clearly, AntMonitor
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Library’s efficient Aho-Corasick implementation brings orders of magnitude of benefit.

The results for classification techniques are: (1) ReCon’s binary classification: 0.041 ms ± 0.029

ms; (2) Multi-Label classification: 0.751 ms ± 1.35 ms. As expected, the Multi-Label classifica-

tion takes a little longer, but it is still reasonable and will not significantly impact user experience.

Training Time. Training Multi-Label classifiers generally takes twice as long as ReCon’s binary

classifiers. However, in both cases, a specialized classifier is trained within tens of milliseconds

even when done on a standard Windows 10 laptop. General classifiers can take up to tens of

minutes. A binary general classifier takes about one hour to train. Since the Multi-Label classifier

needs to train a separate decision tree for each label, this training time scales linearly with the

number of labels. In a naive implementation of BR, this would result in over 10 hours of training

time. We exploited the fact that BR is easy to parallelize to reduce training time (we modified

the Mulan library to train multiple trees at the same time) and we were able to produce a general

classifier in about 90 minutes. When considering only unknown exposures, the number of labels

is reduced, and both the binary and the Multi-Label general classifiers take under 10 minutes to

train. However, since training is performed infrequently, and can be done at a remote server (the

classifiers can be fetched later by user devices), we consider the training times a non-issue.

4.6 Summary

We presented AntShield - a system that performs, for the first time, on-device detection of prede-

fined PII and classification of unknown PII, accurately and with low overhead. Rather than using

binary classification and heuristics to determine PII types contained within packets, we explored

the usage of Multi-Label classification and found that it outperforms prior art in terms of F-scores

and variance. We have also shown that our approach can run in real-time on the device, detecting

PII within milliseconds. Our code and dataset are available to the community at [10].
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Chapter 5

NoMoAds: Detecting and Blocking Ads

5.1 Overview

Online advertising supports millions of free applications (apps) in the mobile ecosystem. Mobile

app developers are able to generate revenue through ads that are served via third-party ad libraries

such as AdMob and MoPub [1]. Unfortunately, the mobile advertising ecosystem is rife with

different types of abuses. First, many mobile apps show intrusive ads that annoy users due to

the limited mobile screen size [63]. Second, mobile ads consume significant energy and data

resources [64]. Third, third-party mobile ad libraries have been reported to leak private information

without explicit permission from app developers or users [65]. Finally, there have been reports of

malware spreading through advertising in mobile apps [66]. Due to the aforementioned usability,

performance, privacy, and security abuses, it is often desirable to detect and block ads on mobile

devices.

Mobile ad-blocking apps such as Adblock Browser by Eyeo GmbH [67] and UC Browser by

Alibaba [68] are used by millions of users. There are two key limitations of existing ad-blocking

apps. First, most ad-blockers rely on manually curated filter lists (or blacklists) to block ads. For
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example, EasyList [3] is an informally crowdsourced filter list that is used to block ads on desktop

browsers. Unfortunately, these filter lists do not perform well in the app-based mobile ecosystem

because they are intended for a very different desktop-based web browsing ecosystem. Second,

most of the existing mobile ad-blocking apps are meant to replace mobile web browsers and can

only block ads inside the browser app itself. Specifically, these browser apps cannot block ads

across all apps because mobile operating systems use sandboxing to isolate apps and prevent them

from reading or modifying each other’s data.

In this chapter, we propose NoMoAds to effectively and efficiently detect and block ads across

all apps on mobile devices while operating in user-space (without requiring root access). We

make two contributions to address the aforementioned challenges. First, to achieve cross-app

mobile ad-blocking, we inspect the network traffic leaving the mobile device. Our design choice

of intercepting packets at the network layer provides a universal vantage point into traffic coming

from all mobile apps. Our packet interception implementation is optimized to achieve real-time

filtering of packets on the mobile device. Second, we train machine learning classifiers to detect ad-

requesting packets based on automatically extracted features from packet headers and/or payload.

Our machine learning approach has several advantages over manual filter list curation. It automates

the creation and maintenance of filtering rules, and thus can gracefully adapt to evolving ad traffic

characteristics. Moreover, it shortens the list of features and rules, making them more explanatory

and expressive than the regular expressions that are used by popular blacklists to match against

URLs.

Our prototype implementation of NoMoAds can run on Android versions 5.0 and above. We eval-

uate the effectiveness of NoMoAds on a dataset labeled using EasyList and manually created rules

that target mobile ads. The results show that EasyList misses more than one-third of mobile ads

in our dataset, which NoMoAds successfully detects. We evaluate different feature sets on our

dataset and provide insights into their usefulness for mobile ad detection. In particular, network-

layer features alone achieve 87.6% F-score, adding URL features achieves 93.7% F-score, adding
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other header features achieves 96.3% F-score, and finally, adding personally identifiable informa-

tion (PII) labels and application names achieves up to 97.8% F-score. Furthermore, when tested

on applications not included in the training data, NoMoAds achieves more than 80% F-score for

70% of the tested apps. We also evaluate the efficiency of NoMoAds operating in real-time on the

mobile device and find that NoMoAds can classify a packet within three milliseconds on average.

To encourage reproducibility and future work, we make our code and dataset publicly available at

[11].

5.2 Background

Deployment of ad-blockers has been steadily increasing for the last several years due to their

usability, performance, privacy, and security benefits. According to PageFair [69], 615 million

desktop and mobile devices globally use ad-blockers. While ad-blocking was initially aimed at

desktop devices mainly as browser extensions such as AdBlock, Adblock Plus, and uBlock Origin,

there has been a surge in mobile ad-blocking since 2015 [70]. Mobile browsing apps such as UC

Browser and Adblock Browser are used by millions of iOS and Android users, particularly in the

Asia-Pacific region due to partnerships with device manufacturers and telecommunication compa-

nies [70]. Moreover, Apple itself began offering ad-blocking features within their Safari browser

since iOS9 [71]. As we discuss next, mobile ad-blocking is fundamentally more challenging as

compared to desktop ad-blocking.

5.2.1 Challenges

Cross-App Ad-Blocking. It is challenging to block ads across all apps on a mobile device. Mobile

operating systems, including Android and iOS, use sandboxing to isolate apps and prevent them

from reading or modifying each other’s data. Thus, ad-blocking apps like UC Browser or Adblock
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Browser can only block ads inside their own browser unless the device is rooted. Specifically,

Adblock has an Android app for blocking ads across all apps, but it can work only on rooted

devices, or it has to be setup as a proxy to filter Wi-Fi traffic only [72]. Neither of these options

are suitable for an average user who may not wish to root their device and may not know how

to setup a proxy. A recent survey of ad-blocking apps on the Google Play Store found that 86%

of the apps only block ads inside their browser app [73]. Recent work on leveraging VPNs for

mobile traffic monitoring has considered interception in the middle of the network (e.g.ReCon

[2]) as well as directly on the mobile device (e.g.Haystack [53]), primarily for the purpose of

detecting privacy leaks and only secondarily for ad-blocking [64, 34]. In this Chapter, we build

on top of the AntMonitor Library presented in Chapter 3 to efficiently implement a cross-app

mobile ad-blocker.

Cross-app ad-blocking is not only technically challenging but is also considered a violation of the

Terms of Service (ToS) of the official Apple and Android app stores [74]. However, there are still

ways to install cross-app ad-blocking apps without rooting or jailbreaking a mobile device (e.g.

through a third-party app store). Legally speaking, ad-blockers have withstood legal challenges

in multiple European court cases [75]: acting on users’ behalf with explicit opt-in consent, ad-

blockers have the right to control what is downloaded. We are unaware of any successful challenges

against ad-blockers under the Computer Fraud and Abuse Act (CFAA) in the U.S.

Avoiding Blacklists. Desktop ad-blockers rely on manually curated filter lists consisting of regular

expressions such as the ones depicted in Tables 5.2 and 5.3. Unfortunately these lists are not

tailored to the app-based mobile ecosystem, and hence we cannot simply reuse them to effectively

block mobile ads. We either have to replicate the crowdsourcing effort for the mobile ecosystem

or design approaches to automatically generate blacklist rules to block mobile ads.

Ad-blocking apps on the Google Play Store also rely on blacklists to block ads [73, 35]. More than

half of these apps rely on publicly-maintained lists such as EasyList and some rely on customized

60



Target 
Internet 

Host

Android Device

NoMoAds Application

Detecting Ad Requests

Block Decision Log 
Packets

Labeling 
Packets

Other 
Apps

Packet Monitoring

AntMonitorLib

Packet 
Consumer

Packet-to-App 
Mapping

Packet Filter

Storage
PCAPNG Files

Classifiers/Lists

Applying Classifiers 
to Packets

DPI

Features

Classifier

Matching Packets 
with Blacklists

HTTP Parsing

URL

ContentType

Referer

AdBlockPlus Lib

EasyList

Match Rules

acceptDecryptedSSLPacket(); acceptIPDatagram()

consume
Packet()

Server

Training Classifiers

Training Module

Classifiers

JSON Files

m
ap

Packet()

Connector Type

Incoming Traffic

Offline Logs
Training

Outgoing Traffic

Figure 5.1: The NoMoAds system: it consists of the NoMoAds application on the device and a
remote server used to (re)train classifiers. The app uses the AntMonitor Library to intercept,
inspect, and save captured packets. All outgoing packets are analyzed for ads either by the Ad-
blockPlus Library or by our classifiers. The former is used to label our ground truth dataset, as
well, as a baseline for comparison, and the latter is the proposed approach of this Chapter.

filter lists. In addition, cross-app ad-blockers that are not allowed on the Google Play Store, such

as DNS66 [31] and Disconnect [76], also rely on both public and customized blacklists. Unfortu-

nately, these blacklists are manually curated, which is a laborious and error-prone process. They

are also slow to update and do not keep up with the rapidly evolving mobile advertising ecosystem

[77]. Furthermore, they contain obsolete filter rules that are redundant, which results in undesirable

performance overheads on mobile devices.

5.3 The NoMoAds Approach

Fig. 5.1 provides an overview of our cross-app mobile ad-blocking system. It consists of user-

space software NoMoAds and a server used for training classifiers. The NoMoAds app intercepts
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every packet on the device and inspects it for ad requests, extracting features and passing them

on to a classifier (Sec. 5.3.1). To obtain the ground truth, we match packets with blacklists (Sec.

5.3.2.1), log the labeled packets, and then upload them to the server for training (Sec. 5.3.3.1).

While the detection of ad packets is done in real-time on the device itself, the selection of features

and the training of classifiers is done offline at a server in longer time scales (Sec. 5.3.3.2).

5.3.1 Packet Monitoring

NoMoAds relies on the ability to intercept, analyze, and filter network traffic from all apps on

a mobile device. To that end, NoMoAds leverages the APIs of the AntMonitor Library (Sec.

3.2.2), as described next.

Packet Interception. As shown in Fig. 5.1, we use the acceptIPDatagram and accept-

DecryptedSSLPacket API calls provided by the AntMonitor Library to intercept unen-

crypted and successfully decrypted SSL/TLS packets, respectively. While the AntMonitor Li-

brary cannot decrypt SSL/TLS packets when certificate pinning is used, it can still analyze infor-

mation from the TCP/IP packet headers.

Packet Analysis. Given a list of strings to search for, the AntMonitor Library can perform DPI

within one millisecond (ms) per packet (see Chapter 3). When strings of interest are not known

a priori, we can use AntMonitor Library’s visibility into the entire packet to parse and extract

features from TCP/IP and HTTP/S headers and payload. For example, we can use IP address

information in the IP header, port numbers and flag information in the TCP header, hostnames

and query strings in the HTTP header, string signatures from the HTTP payload, and server name

indication (SNI) from TLS extensions. In addition, the AntMonitor Library provides contextual

information, such as which app is responsible for generating a given packet via the mapPacket

API call.
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Packet Filtering. For each packet, we can decide to block it (by returning false within one of

the API calls) or to allow it (by returning true). By default, if our classifier returns a match,

we block the packet and return an empty HTTP response back to the application that generated

the ad request. It is critical to return feedback to the application, otherwise it triggers wasteful

retransmissions that eat up the mobile device’s scarce resources.

Leveraging the aforementioned packet interception, analysis, and filtering techniques, NoMoAds

aims to detect and block packets that contain ad requests.

5.3.2 Detecting Ad Requests in Outgoing Packets

Ads are typically fetched from the network via HTTP/S requests. To detect them, we take the

approach of inspecting every outgoing packet. Blocking requests for ads is consistent with the

widely used practice of most ad-blockers. Note that ad-blockers also sometimes modify incoming

ads (e.g. through CSS analysis) when it is impossible to cleanly block outgoing HTTP requests.

The approach of outgoing HTTP request filtering is preferred because it treats the problem at

its root. First, the ad request is never generated, which saves network bandwidth. Second, this

approach prevents misleading the ad network into thinking that it served an ad, when it actually

did not (this keeps attribution analytics and payments for ad placements honest and correct). Third,

this approach circumvents the need to modify the rendered HTML content (e.g. CSS values).

The rest of this section compares two approaches for blocking ad requests: the traditional, blacklist-

based approach (Sec. 5.3.2.1) and the proposed machine learning-based approach taken by NoMo-

Ads (Sec. 5.3.2.2).
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5.3.2.1 Blacklists

According to a recent survey, mobile ad-blocking apps on the Google Play Store rely on blacklists

to block ads [73]. These blacklists (such as EasyList in AdblockPlus) capture the ad-blocking

community’s knowledge about characteristics of advertisements through informal crowdsourcing.

However, blacklists suffer from the following limitations.

1. Maintenance. Blacklists are primarily created and maintained by humans domain-experts,

often assisted by crowdsourcing. This is a tedious, time-consuming, and expensive process.

Furthermore, as the characteristics of ad traffic change over time, some filer rules become

obsolete and new filter rules need to be defined and added to the blacklist.

2. Rules Compactness and Expressiveness. Humans may not always come up with the most

compact or explanatory filter rules. For example, they may come up with redundant rules,

which could have been summarized by fewer rules. We faced this issue ourselves when

coming up with our own set of rules tailored to mobile traffic (e.g. see rows 20 and 25 in

Table 5.3). In addition, filter rules in today’s blacklists are limited in their expressiveness:

they are an “OR” or an “AND” of multiple rules. On the other hand, classifiers can come up

with more complicated but intuitive rules, such as the decision tree depicted in Fig. 5.4.

3. Size. Blacklists can be quite lengthy. For instance, EasyList contains approximately 64K

rules. This is a problem for implementations on the mobile device with limited CPU and

memory resources.

4. URL-focused Rules. Most of today’s blacklists were specifically created for browsers and

web traffic, and they typically operate on the extracted URL and HTTP Referer header. As

we show later, this is one of the reasons that these lists do not translate well when applied

to mobile traffic. By exploiting AntMonitor Library’s visibility into the entire payload

(beyond just URLs), we can leverage the information from all headers to more accurately

detect ads in mobile traffic.
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In this work, we used EasyList (the most popular publicly-maintained blacklist [73]) as (i) a base-

line for comparison against our proposed learning approach – see Section 5.5.1, and for (ii) par-

tially labeling packets as containing ads or not – see Section 5.4. In order to match packets against

EasyList, we incorporated the open source AdblockPlus Library for Android [78] into NoMoAds,

as shown in Fig. 5.1. The AdblockPlus Library takes as input the following parameters: URL,

content type, and HTTP Referer. The content type is inferred from the requested file’s extension

type (e.g. .js, .html, .jpg) and is mapped into general categories (e.g. script, document,

image). Relying on these parameters to detect ad requests restricts us to HTTP and to success-

fully decrypted HTTPS traffic. Hence, we first have to parse each TCP packet to see if it contains

HTTP, and then extract the URL and HTTP Referer. Afterwards, we pass these parameters to the

AdblockPlus Library, which does the matching with EasyList.

5.3.2.2 Classifiers

NoMoAds uses decision tree classifiers for detecting whether a packet contains an ad request.

While feature selection and classifier training is conducted offline, the trained classifier is pushed

to the NoMoAds application on the mobile device to match every outgoing packet in real-time.

To extract features from a given packet and pass them to the classifier, one typically needs to

invoke various Java string parsing methods and to match multiple regular expressions. Since these

methods are extremely slow on a mobile device, we use the AntMonitor Library’s efficient

DPI mechanism (approximately one millisecond per packet) to search each packet for features that

appear in the decision tree. We pass any features found to the classifier, and based on the prediction

result we can block (and send an empty response back) or allow the packet.

Classifiers vs. Blacklists. NoMoAds essentially uses a set of rules that correspond to decision

tree features instead of blacklist rules. The decision tree classifier approach addresses the afore-

mentioned limitations of blacklists.
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1. Mobile vs. Desktop. Since EasyList is developed mostly for the desktop-based web browsing

ecosystem, it is prone to miss many ad requests in mobile traffic. In contrast, NoMoAds uses

decision tree classifiers that are trained specifically on mobile traffic. This leads to more

effective classification in terms of the number of false positives and false negatives.

2. Fewer and more Expressive Rules. A classifier contains significantly fewer features than

the number of rules in blacklists. While EasyList contains approximately 64K rules, our

trained decision tree classifiers are expected to use orders of magnitude fewer rules. This

ensures that the classifier approach scales well – fewer rules in the decision tree result in

faster prediction times. Decision tree rules are also easier to interpret while providing more

expressiveness than simple AND/OR.

3. Automatically Generated Rules. Since decision tree classifiers are automatically trained, it is

straightforward to generate rules in response to changing advertising characteristics. These

automatically generated rules can also help human experts create better blacklists.

5.3.3 Training Classifiers

This section explains our approach to training classifiers, which is done offline and at longer time

scales. The trained classifier (i.e. decision tree model) is pushed to the mobile device and is applied

to each outgoing packet in real-time (Sec. 5.3.2.2).

5.3.3.1 Labeling Packets (on the Mobile)

In order to train classifiers, we first need to collect ground truth, i.e. a dataset with packets and

their labels (whether or not the packet contains an ad request). As shown in Fig. 5.1, we use

the AntMonitor Library’s API to store packets in PCAPNG format, i.e. the packets in PCAP

format plus useful information for each packet, such as the packet label. We make modifications to
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the AntMonitor Library to allow us to block ad-related packets from going to the network, but

still save and label them to be used as ground truth. We use tshark to convert PCAPNG to JSON,

extracting any relevant HTTP/S fields, such as URI, host, and other HTTP/S headers. The JSON

format offers more flexibility in terms of parsing and modifying stored information, and hence is a

more amenable format for training classifiers.

We further extend the AntMonitor Library to annotate each packet with the following informa-

tion: (i) its label provided by AdblockPlus, (ii) the name of the app responsible for the packet

(available via AntMonitor Library’s API calls), and (iii) whether or not the packet contains any

personally identifiable information, as defined next.

We consider the following pieces of information as personally identifiable information (PII): De-

vice ID, IMEI, Phone Number, Email, Location, Serial Number, ICC ID, MAC address, and Ad-

vertiser ID. Some of these identifiers (e.g. Advertiser ID) are used by major ad libraries to track

users and serve personalized ads, and hence can be used as features in classification. PII values are

available to the AntMonitor Library through various API calls provided by Android. Since these

values are known, the library can easily search for them with DPI. We refer the reader to Chapter

4 for the full discussion of PII. Within the NoMoAds system, we use the AntMonitor Library’s

capability to find PII and label our packets accordingly.

5.3.3.2 Training Classifiers (at the Server)

We train decision tree classifiers to detect outgoing packet containing an ad request. We use the

decision tree model for the following reasons. First, as discussed in Chapter 4, this model has

performed well in terms of accuracy, training and prediction time. Second, decision trees provide

insight into what features are useful (they end up closer to the root of the tree). Finally, decision

trees make the real-time implementation on the device possible since we know which features to

search for.
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For training, we adopt the same approach as in Chapter 4 and ReCon [2], described in detail in

Sec. 2.3.3.1. We adapt the idea for ads and learn which specific words within packets are useful

features when it comes to predicting ad traffic. As an improvement on feature selection, we also

discard words that are specific to our setup, such as version numbers and device/OS identifiers

(e.g. “Nexus” and “shamu”), since we would like our classifier to be applicable to other users. We

systematically extract features from different parts of the packet (i.e. TCP/IP headers, URL, and

HTTP headers) to compare and analyze their relative importance (Sec. 5.5.1.1).

5.4 The NoMoAds Dataset

In order to train and test our classifiers for detecting ads, we collected and analyzed our own

dataset consisting of packets generated by mobile apps and the corresponding labels that indicate

which packets contain an ad request. Sec. 5.3.3.1 describes the format of our packet traces and the

system used to collect them. In this section, we describe the selection process of mobile apps for

generation of these packet traces.

App developers typically use third-party libraries to serve ads within their apps. We want to have

sufficient apps in our dataset to cover a vast majority of third-party ad libraries. According to

AppBrain [1], about 100 third-party ad libraries are used by a vast majority of Android apps to

serve ads. Among these third-party ad libraries, only 17 are used by at least 1% of Android apps.

The most popular third-party ad library, AdMob, alone is used by more than 55% of Android apps.

Therefore, we can gain a comprehensive view of the mobile advertising ecosystem by selecting

apps that cover the most popular third-party ad libraries.

We tested the most popular applications from the Google Play Store as ranked by AppBrain [1].

While we mainly focused on apps that contain third-party ad libraries, we also included a couple

popular apps (Facebook and Pinterest) that fetch ads from first-party domains. More specifically,

68



0

5

10

15

20

25

30

35

40

45

50

0

10

20

30

40

50

60

70

ad
m

o
b

u
n

it
y_

ad
s

ch
ar

tb
o

o
st

m
o

p
u

b

ad
co

lo
n

y

ap
p

lo
vi

n

ap
p

sf
ly

er

in
m

o
b

i

ta
p

jo
y

ad
ju

st

vu
n

gl
e

m
ill

en
n

ia
l

am
az

o
n

_a
d

s

ir
o

n
so

u
rc

e

st
ar

ta
p

p

h
ey

za
p

m
o

b
vi

st
a

fy
b

er d
u

ap
p

n
ex

t

le
ad

b
o

lt

sm
aa

to

m
o

b
ile

ap
p

tr
ac

ki
n

g

ko
ch

av
a

h
yp

rm
x

ap
p

o
d

ea
l

ch
ee

ta
h

_m
o

b
ile

av
o

ca
rr

o
t

yu
m

e

b
ee

7

ad
m

ar
ve

l

re
ce

p
ti

v

ae
rs

er
v

re
vm

o
b

sm
ar

ta
d

se
rv

er

n
at

iv
ex

ta
b

o
o

la

ad
lib

m
d

o
tm

lif
es

tr
ee

t

am
p

ir
i

N
u

m
b

e
r 

o
f 

A
p

p
s 

Te
st

e
d

P
e

rc
e

n
t 

o
f 

In
st

al
ls

Ad Libraries

Number of Apps Percent of Installs

Figure 5.2: Third-party ad libraries that we tested and the number of apps that were used to test
each library. The line plot in orange shows the percentage of installed apps from the Google Play
Store that use each library according to AppBrain [1]. In order to obtain a representative dataset
we made sure to test each ad library with a fraction of apps that is proportional to the fraction of
this ad library’s installs in the real world.

we selected 50 apps that display ads with the goal of capturing all third-party libraries that account

for at least 2% of app installs on the Google Play Store (as reported by AppBrain [1]). Fig. 5.2

shows the 41 third-party ad libraries that are covered by at least one app in our selection of 50 apps.

We note that the third-party ad libraries covered in our dataset account for a vast majority of app

installs on the Google Play Store.

To label ad packets, we manually interacted with the aforementioned 50 apps from the Google Play

Store using NoMoAds integrated with the AdblockPlus Library. We noticed that certain ads were

still displayed which means that they were not detected by the filter rules in EasyList. We manually

analyzed the outgoing packets using Wireshark [79] to identify the packets responsible for the

displayed ads. For instance, some packets contained obvious strings such as /network_ads_

common and /ads, and others were contacting advertising domains such as applovin.com and

api.appodealx.com. To help us identify such strings, we utilized two more popular ad lists –

AdAway Hosts [4] and hpHosts [5]. We picked AdAway Hosts because it is specific to mobile ad

blocking; and hpHosts has been reported by [34] to find more mobile advertisers and trackers as

compared to EasyList. However, we did not always find relevant matches with these lists because
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Figure 5.3: Manual interaction with apps to find blind spots in EasyList and create new, mobile-
specific rules to cover these blind spots.

they tend to have many false positives and false negatives (see Table 5.4). Using manual inspection

along with suggestions from AdAway Hosts and hpHosts, we were able to create Custom Rules, in

the EasyList format, that are specifically targeted at mobile ads. In summary, we use the following

strategy to develop a list of filter rules to detect all ads by each app, summarized in Fig. 5.3:

1. Run the app with NoMoAds using both EasyList and our Custom Rules. If there are no

residual ads, then interact with the app for 5 minutes and save the packets generated during

this time. If there are residual ads displayed, then proceed to the next step.

2. Each time an ad is displayed, stop and extract the capture, and inspect the last few packets

to find the one responsible for the ad. Use AdAway Hosts and hpHosts for suggestions and

develop new Custom Rules. Add the new rule to the list to be used by the AdblockPlus

Library.

3. Run the app again to see if the freshly created rule was successful in blocking a given ad. If

the new rule matched, but the same ad was still shown, that means the rule triggered a false

positive. Remove the rule and repeat Step 2. If the new rule matched, and a different ad was

shown, repeat Step 2. The repetition is important as applications often keep trying various

ad networks available to them until they find one that will correctly produce an ad. We
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Count

Apps Tested 50

Ad Libraries Covered 41

Total Packets 15,351

Packets with Ads 4,866

HTTPS Packets with Ads 2,657

Ads Captured by EasyList 3,054

Ads Captured by Custom Rules 1,812

Table 5.1: Dataset Summary

stop repeating when there are no more ads being displayed for the duration of the 5 minute

interaction with the app in question.

Table 5.1 summarizes key statistics of our dataset. The 50 tested apps in our dataset use 41 different

third-party ad libraries. Our packet traces contain 15,351 outgoing HTTP(S) packets out of which

4,866 (over 30%) contain an ad request. Interestingly enough, about half of the ad requests are

sent over HTTPS. This indicates good practices among ad libraries, but also demands the TLS-

interception ability that is provided by the AntMonitor Library.

It is noteworthy that EasyList fails to detect more than one-third (37%) of ad requests in our

dataset. We notice that EasyList seems to catch most of the ads generated by AdMob [80] and

MoPub [81] – two of the most popular ad libraries, owned by Google and Twitter, respectively.

Both of these companies also serve ads on desktop browsers, and hence it is expected that EasyList

covers these particular ad exchanges. However, when applications use ad libraries that only have

mobile components (e.g. UnityAds and AppsFlyer), EasyList misses many ads and we have to

create Custom Rules for them. This observation highlights that EasyList is not well suited for

today’s app-based mobile advertising ecosystem. Table 5.2 shows some of the 91 EasyList rules

that matched packets in our dataset. 91 is a tiny fraction of the approximately 64K filter rules in

EasyList. Thus, we conclude that EasyList not only fails to capture one third of ad requests but

also consists of mostly unused or redundant filter rules. Table 5.3 further shows the Custom Rules

that we manually curated to detect ad requests that evaded EasyList. There were dozens of rules
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EasyList Rules

Number of 

Occurrences

1 /googleads. 951

2 ://ads.$domain=...~ads.red… 686

3 ://ads.$domain=...~ads.route.cc… 168

4 .com/adv_ 135

5 ||vungle.com^$third-party 124

6 ||inmobi.com^$third-party 107

7 /pubads. 74

8 &ad_type= 64

9 ||adcolony.com^$third-party 61

10 /videoads/* 60

11 .com/ad.$domain=~ad-tuning.de 47

12 ||smaato.net^$third-party 36

13 ||rubiconproject.com^$third-party 34

14 .com/ad/$~image,third-party,domain… 33

15 ||adnxs.com^$third-party 28

16 ||moatads.com^$third-party 28

17 ||appnext.com^$third-party 24

18 ||mobfox.com^$third-party 23

19 ||andomedia.com^$third-party 23

20 /advertiser/*$domain=~affili.net|~bi… 19

21 /api/ad/* 19

22 ||teads.tv^$third-party 17

23 ||spotxchange.com^$third-party 17

24 /adunit/*$domain=~propelmedia.com 15

25 /securepubads. 14

26 /adserver.$~xmlhttprequest 13

27 ||vdopia.com^$third-party 11

28 /curveball/ads/* 11

29 ||ads.tremorhub.com^ 10

30 &advid=$~image 10

… …

Total 3054

Table 5.2: EasyList rules that matched at least 10 packets in our dataset. A total of just 91 rules
were triggered by our dataset.

that we discarded as they triggered false positives or false negatives (in Step 3 above) and are thus

omitted from the table. This finding illustrates the challenge of manually creating filter rules.

Our dataset is publicly available at [11].
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Custom Rules

Number of 

Occurrences

1 antsmasher_Advertiser ID 611

2 /bee7/*/advertiser_ 414

3 ||applovin.com^ 203

4 /network_ads_common^ 169

5 /adunion^ 87

6 ||ssdk.adkmob.com^ 62

7 /mpapi/ad*adid^ 49

8 /simpleM2M^ 41

9 ||placements.tapjoy.com^ 36

10 ||ads.flurry.com^ 33

11 |https://t.appsflyer.com/api/*app_id^ 26

12 ||api.appodealx.com^ 25

13 ||cdn.flurry.com^ 18

14 ||api.tinyhoneybee.com/api/getAD* 6

15 ||init.supersonicads.com^ 5

16 /ads^ 5

17 |https://publisher-config.unityads… 5

18 ||ap.lijit.com^$third-party 3

19 ||advs2sonline.goforandroid.com^ 3

20 ||doodlemobile.com/feature_server^ 3

21 ||live.chartboost.com/api^ 2

22 |https://api.eqmob.com/?publisher_id^ 2

23 ||impact.applifier.com/mobile/camp… 1

24 |http://newfeatureview.perfectionholic… 1

25 ||doodlemobile.com:8080/feature_ser… 1

26 ||i.bpapi.beautyplus.com/operation/ad^ 1

… 0

Total 1812

Table 5.3: The set of Custom Rules that we manually came up with to capture ad requests that
escaped EasyList, and the number of packets that match each rule in our dataset. Only the rules
that triggered true positives are shown.

5.5 Evaluation

In this section, we evaluate NoMoAds in terms of effectiveness of the classification (Section 5.5.1)

as well as efficiency when running on the mobile device (Section 5.5.2). In terms of effectiveness,

we show that NoMoAds achieves an F-score of up to 97.8% depending on the feature set. Further-

more, we show that NoMoAds performs effectively even when used to detect ads for previously

unseen apps and third-party ad libraries. In terms of efficiency, we show that NoMoAds can op-
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erate in real-time by adding approximately three milliseconds of additional processing time per

packet.

5.5.1 Effectiveness

For evaluation of the classification methodology, we can split the packets in our dataset into training

and testing sets, at different levels of granularity, namely packets (Section 5.5.1.1), apps (Section

5.5.1.2), or ad libraries (Section 5.5.1.3). Next, we show that our machine learning approach

performs well for each of these three cases. Along the way, we provide useful insights into the

classification performance as well as on practical deployment scenarios.

5.5.1.1 Testing on Previously Unseen Packets

First, we consider the entire NoMoAds dataset, described in Section 5.4, and we randomly split the

packets into training and testing sets without taking into account any notion of apps or ad libraries

that generated those packets.

We note that this splitting may result in overlap of apps in the training and test sets. Training

on packets of apps that are expected to be used (and will generate more packets on which we

then apply the classifiers) may be both desirable and feasible in some deployment scenarios. For

example, if data are crowdsourced from mobile devices and training is done at a central server, the

most popular apps are likely to be part of both the training and testing sets. Even in a distributed

deployment that operates only on the device, users might want to do preliminary training of the

classifiers on the apps they routinely use.

Setup. We train C4.5 decision tree classifiers on various combinations of features, extracted from

each packet’s headers and payload. The bottom rows of Table 5.4 summarize our results for

each feature set. We report the F-score, accuracy, specificity, and recall based on five-fold cross-
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Approaches Under 

Comparison

F-score 

(%)   

Accuracy 

(%)

Specificity 

(%)

Recall 

(%)

Number 

of Initial 

Features

Training 

Time (ms)

Tree 

Size

Per-packet 

Prediction 

Time (ms)

EasyList: URL + Content 

Type + HTTP Referer 77.1 88.2 100.0 62.8 63,977 N/A N/A 0.54  ± 2.88

hpHosts: Host 61.7 78.3 89.1 55.2 47,557 N/A N/A 0.60 ± 1.74

AdAwayHosts: Host 58.1 81.2 99.8 41.1 409 N/A N/A 0.35 ± 0.10

Destination IP + Port 87.6 92.2 94.5 87.3 2 298 304 0.38 ± 0.47

Domain 86.3 91.0 91.9 89.3 1 26 1 0.12 ± 0.43

Path Component of URL 92.7 95.1 99.2 86.1 3,557 424,986 188 2.89 ± 1.28

URL 93.7 96.2 99.7 88.7 4,133 483,224 196 3.28 ± 1.75

URL+Headers 96.3 97.7 99.2 94.5 5,320 755,202 274 3.16 ± 1.76

URL+Headers+PII 96.9 98.1 99.4 95.3 5,326 770,015 277 2.97 ± 1.75

URL+Headers+Apps+PII 97.7 98.5 99.2 97.1 5,327 555,126 223 1.71 ± 1.83

URL+Headers+Apps 97.8 98.6 99.1 97.5 5,321 635,400 247 1.81 ± 1.62
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Table 5.4: Evaluation of decision trees trained on different sets of features, using our NoMoAds
dataset (described in Section 5.4) and five-fold cross-validation. We report the F-score, accu-
racy specificity, recall, initial number of features, the training time (on the entire dataset at the
server), the resulting tree size (the total number of nodes excluding the leaf nodes), and the av-
erage per-packet prediction time (on the mobile device). The top rows also show our baselines
for comparison, namely three popular ad blocking lists: EasyList [3] (alone, without our Custom
Rules), AdAway Hosts [4], and hpHosts [5].

validation. We also report the initial size of the feature set and the training time (how long it takes

to train on our entire dataset on a standard Windows 10 laptop). Finally, we report the resulting tree

size (number of nodes in the decision tree, excluding the leaf nodes), and the average per-packet

prediction time on a mobile device. This helps us gain an understanding of which combination of

features are essential for classifying packets as containing ad requests or not.

Network-based Features. We started by using destination IP and port number as our only features.

With these features alone, we were able to train a classifier that achieved an F-score of 87.6%.

However, IPs change based on a user’s location since different servers may get contacted. A natural

next step is to train on domain names instead. With this approach, our decision tree classifier

achieved an F-score of 86.3%. As expected, training on domains performs similarly to training on

IPs since these two features are closely related.

URL and HTTP headers. Domain-based ad blocking is often too coarse as some domains are
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Figure 5.4: Partial view of the classifier tree when using URL, HTTP headers, and PII as features.
Out of the 5,326 initial features, only 277 were selected for the decision tree depicted here. At the
root of the tree is the feature with the most information gain – “&dnt=”, which is a key that stands
for “do not track” and takes in a value of 0 or 1. From there, the tree splits on “ads.mopub.com”
– a well known advertiser, and when it is the destination host of the packet, the tree identifies the
packet as an ad. Other interesting keys are “&eid” and “&ifa” both of which are associated with
various IDs used to track the user. Finally, the keys “&model=” and “&width=” are often needed
by advertisers to see the specs of a mobile device and fetch ads appropriate for a given screen size.

multi-purposed, which is why ad-blocking blacklists typically operate on URLs. Thus, we trained

decision trees with the following combinations: using the path component of the URL only, using

the full URL only, and using the full URL and all other HTTP headers. As shown in Table 5.4,

breaking the contents of packets into words significantly increases the training time since the num-

ber of features grows dramatically from one or two to several thousands. However, having more

features increases the F-score to more than 90%. We note that the F-score increases as we use

more packet content.

PII as features. Since many ad libraries use various identifiers to track users and provide personal-

ized ads, a natural question to ask is whether or not these identifiers can be useful for detecting ads.

The AntMonitor Library already provides the capability to search for any PII contained within a

packet, including Advertiser ID, Device ID, location, etc. Typically, these features cannot be used

in lists since they change from user to user. But, since our system runs on-device, it has access to
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these values and can provide labels (instead of the actual PII values) as features for classification.

However, Table 5.4 shows that using PII as features has a very small effect on effectiveness: al-

though it slightly decreases the amount of false positives (higher specificity), it does so at the cost

of increasing the number of false negatives (lower recall). Fig. 5.4 shows a partial view of the final

classifier tree when training on URLs, headers, and PII with zoom-ins on areas of interest. At the

root of the tree is the feature with the most information gain – “&dnt=”, which is a key that stands

for “do not track” and takes in a value of 0 or 1. From there, the tree splits on “ads.mopub.com”

– a well known advertiser, and when it is the destination host of the packet, the tree identifies the

packet as an ad request. Other interesting keys are “&eid” and “&ifa” both of which are associated

with various IDs used to track the user. The keys “&model=” and “&width=” are often needed by

advertisers to see the specs of a mobile device and fetch ads appropriate for a given screen size.

Finally, we note that PII (such as Advertiser ID shown in Fig. 5.4) does not appear until later in

the tree, meaning it has little information gain. This is most likely due to the fact that advertisers

are not the only ones collecting user information, and that there are services that exist for tracking

purposes only.

App names. Next, we examined whether or not additional information available on the mobile

device through the AntMonitor Library can further improve classification. We considered the

application package name as a feature, e.g. whether a packet is generated by Facebook or other

apps. This is a unique opportunity on the mobile device: a packet can be mapped to the application,

which may not be the case if the packet is examined in the middle of the network. As shown in

Table 5.4, adding the app as a feature slightly increased the F-score while decreasing the training

time by 214 seconds and shrinking the resultant tree size. Training on URLs, headers, and app

names alone (without PII) achieves the highest F-score. However, using app names is not ideal

since this feature is not available when we classify packets that belong to applications that were

not part of the training set. Yet, the better performance of the classifier and faster training time

indicates the need to further explore contextual features. For instance, as part of future work, we
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plan to use the set of ad libraries belonging to an app as a feature. Moreover, we expect the saving

in training time to become more important when training on larger datasets. As we show in Chapter

6, training on a larger dataset takes over six hours, which may be acceptable when running on a

server. However, more than that can quickly become unusable, as ideally, we would like to re-train

our classifiers daily and push updates to our users, similarly to what EasyList does. Chapter 6

further explores how app names can be used to train per-app classifiers (as in Chapter 4) to reduce

training times.

Blacklists as Baselines. The top rows of Table 5.4 also report the performance of three popular ad-

blocking lists, which we use as baselines for comparison, namely: EasyList [3] (alone, without our

Custom Rules), AdAway Hosts [4], and hpHosts [5]. EasyList is the best performing of the three,

achieving an F-score of 77.1%, 88.2% accuracy, 100% specificity (no false positives), and 62.8%

recall (many false negatives). Since EasyList filter rules operate on URL, content type and HTTP

referer, they are most comparable to our classifiers trained on URL and HTTP Header features.

AdAway Hosts and hpHosts perform worse than EasyList since they operate on the granularity of

hosts and end up with many false positives and even more false negatives. hpHosts contains more

rules than AdAway Hosts, and thus performs slightly better in terms of F-score. However, since

hpHosts is more aggressive, it ends up with a lower specificity score.

5.5.1.2 Testing on Previously Unseen Apps

Setup. We split the NoMoAds dataset so that we train and test on different apps. From a classi-

fication point of view, this is the most challenging (“in the wild”) scenario, where testing is done

on previously unseen apps. This may occur as new apps get installed or updated, potentially using

new ad libraries, and exhibiting behavior not captured in the training set. From a practical point

of view, if one can do preliminary re-training of the classifier on the new apps, before using and

pushing it to users, that would be recommended. However, we show that our classifiers perform
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Figure 5.5: Complementary Cumulative Distribution Function (CCDF) of F-score and accuracy
for the 50 apps in our dataset.

quite well even in this challenging scenario of testing on packets of previously unseen apps.

We use the decision tree with the URL, HTTP headers, and PII feature set because it performed

quite well in Table 5.4 (see row highlighted in bold) and does not use the app name as a feature

(which is not useful when testing on unseen apps). To test our system against apps that may not

appear in our training set, we performed 10-fold cross-validation, this time separating the packets

into training and testing sets based on the apps that generated those packets. Specifically, we

divided our dataset into 10 sets, each consisting of five apps, randomly selected. We then trained a

classifier on nine of those sets (i.e. 45 apps total) and tested on the remaining set of five apps. We

repeated this procedure 10 times so that each set was tested exactly once. Therefore, each app was

tested exactly once using a classifier trained on different apps (i.e. the 45 apps outside that app’s

test set).

Results. Fig. 5.5 summarizes the classification results (F-score and accuracy). We see that the

classifier performs well on a large majority of the apps: over 70% of the apps have an F-score of

80% or higher, while half of the apps have an F-score above 90%. Accuracy is even better: over

80% have an accuracy of 80% or higher. This is expected since there are more negative samples

than positive ones, making the true negative rate (and hence the accuracy) high.

Next, we investigated the reasons behind the good classification performance. One plausible hy-
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Figure 5.6: Accuracy and F-score of NoMoAds when training on 45 apps in our dataset and testing
on the remaining five apps (see Sec. 5.5.1.2). We repeated the procedure 10 times so that all
apps were in the test set exactly once. We list the F-score, the accuracy, and the Ad Libraries
Overlap (the percentage of a given app’s ad libraries that also appeared in the training set) for each
individual app. The x-axis orders the 50 apps (i.e. the 50 most popular apps on Google Play) in
our dataset in decreasing F-score.

pothesis is that the classifier performs well on previously unseen apps because apps use the same

ad libraries. To assess this hypothesis, for each app, we computed not only its F-score/accuracy

(on each individual app’s data) but also the overlap in ad libraries. We define the overlap in ad

libraries as the percentage of the app’s ad libraries that appeared in the training set. An overlap of

100% means that all ad libraries used by the app in question were seen during training.

Fig. 5.6 shows the results for each app. The apps are ordered on the x-axis in terms of decreasing

F-scores. We note that all apps have high overlap in ad libraries: all of them are above 50% and

most of them have 100%. There are several apps (e.g. apps 2, 6, 10, 13, and 25) with near perfect

F-scores even though they contain some ad libraries not seen during training (i.e. have a less than

100% overlap in ad libraries). However, there are a few apps with low F-scores despite the fact that

they had all their ad libraries captured in the training set (overlap 100%). One possible explanation

is that each app employs different functionalities of each ad library and some functions may have

been absent from the training set.

False Negatives. We took a closer look into the five worst performing apps (e.g. apps 46-50, on

the right of Fig. 5.6 that had a very low F-score). The main reason behind their poor performance

was the low number of positive samples. For instance, App #48 is Spotify, which had no positive
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samples, and hence no true positives, making the F-score equal to 0%. Apps #49 and #50 are

YouTube and LINE: Free Calls & Messages, respectively. These two apps had eight and 19 positive

samples, respectively – a small number in comparison to an average of about 97 positive samples

per app. NoMoAds was unable to detect these positive samples correctly. However, in both cases

NoMoAds achieved a 0% false positive rate, and hence the accuracy for both of these cases is

relatively high.

Next, we examined the two apps with a low (13% and 14.8%) but non-zero F-score. The two apps

are Facebook (App #47) and Pinterest (App #46), and they are the only ones in our dataset that are

serving ads as a first party, while all the other apps use third-party ad libraries. In other words, the

first-party ad serving behavior was not seen during training in both cases, which led to the poor

performance of the classifiers.

Finally, for the four poorly performing apps with a non-zero amount of positive samples, we per-

formed another experiment. Specifically, we trained on all 49 apps plus 50% of the packets be-

longing to each app in question and tested on the remaining 50% of packets belonging to that app.

In some cases, the F-score improved significantly: the LINE: Free Calls & Messages app was able

to achieve an F-score of 100%. YouTube stayed at 0% F-score due to a very low number of posi-

tive samples (eight total, with just four in the training set). Facebook and Pinterest improved only

slightly: an F-score of 52.2% and 50%, respectively. This can be explained by the fact that both of

these apps not only serve ads from a first-party, but also fetch very diverse content depending on

what the user clicks. In contrast, most of the other apps in our dataset have a very specific set of

functionalities and do not exhibit a wide range of network behavior. For example, games tend to

contact their servers for periodic updates and third party servers for ads. Whereas Facebook and

Pinterest can contact many different servers based on which pages the user visits. This finding sug-

gests a deployment approach where the classifier is pre-trained on some packets of these popular

apps before being deployed on the mobile device.
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False Positives. We also examined apps with a high false positive rate. For instance, Shadow Fight

2 (App #40) only had 48% specificity, but looking at the packets that were incorrectly labeled as

positive revealed that all of the false positives were actually related to ads and/or tracking. Specifi-

cally, the URLs within those packets contained the advertiser ID and strings such as the following:

“ad format=video,” “tracker,” and “rewarded.” Similarly, other apps that had specificity below

80% (Angry Birds Seasons (App #17), Spotify (App #48), Plants vs. Zombies FREE (App #43),

and BeautyPlus - Easy Photo Editor (App #28)) also had explainable false positives that contained

the following strings within the URLs: “/impression/,” “spotify.ads-payload,” “/tracking/api/,” and

“pagead/conversion/.” One possible explanation for these packets getting through our labeling

process (Sec. 5.4) is that not all ad-related packets directly lead to an ad. For instance, some are

simply specifying phone specs to fetch an ad of the correct size in the future, others track if and

when an ad was actually served, and some track the user’s actions to serve more personalized ads.

This indicates that even our Custom Rules are incomplete, but our classifiers can suggest more

rules for further improvement of ad-blocking.

5.5.1.3 Testing on Previously Unseen Ad Libraries

Another way to test the performance of our machine learning approach is to see if our classifiers can

perform well on libraries that were not present in the training set. This would require to partition

the packets in the dataset into testing and training parts, so as to separate different ad libraries, and

then train on some and test on the remaining ones.

Unfortunately, this is not possible with network-based approach from user-space (VPN) alone:

we can identify which app generated a packet, but we cannot reliably identify which ad library is

responsible for a given packet. Using AppBrain’s database, we can tell which ad libraries an app

contains, but we do not know which ones are actually used. This is because 90% of the apps in

our dataset use more than one ad library, and 80% use more than two. Facebook and Pinterest

are examples of apps with no ad libraries, and we discussed them in detail in the previous section.
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There are three apps with just one ad library, and they all contain AdMob [80] - the ad library

that is present in all of the apps in our dataset (except Facebook and Pinterest). Therefore, we

cannot partition our dataset based on ad libraries. The next chapter (Chapter 6) discusses how

static analysis and dynamic instrumentation can be used to facilitate this mapping by tracing API

calls to the network.

In this chapter, we analyzed the overlap in ad libraries to get some insight into the performance of

our system in the presence of previously unseen ad libraries. Fig. 5.6 shows that NoMoAds does

not need to see all the ad libraries in training in order to correctly classify packets belonging to apps

with unseen ad libraries. Specifically, there are several apps (e.g. apps 2, 6, 10, 13, and 25) with

near perfect F-scores even though they contain some ad libraries not seen during training (i.e. have

a less than 100% overlap in ad libraries). This can be easily explained by the fact that multiple ad

libraries may end up contacting the same ad networks even though their software implementation

for mobile devices may differ. Moreover, as we stated earlier, some apps may contain multiple ad

libraries, but use only a subset. We refer the reader to Section 5.5.1.2 for details on how the overlap

of ad libraries relates to the classification performance.

5.5.2 Efficiency

5.5.2.1 Classification on the Mobile Device

In this section, we discuss experiments performed on a mobile device and we demonstrate that

our decision tree classifiers can run in real-time – on the order of three milliseconds per packet.

The experiments were performed on a Nexus 6 (Quad-Core 2.7 Ghz CPU, 3 GB RAM) running

Android 6.0.1. To minimize noise from background processes, we kept only pre-installed apps and

an instrumented version of NoMoAds.

To evaluate how much extra processing NoMoAds incurs, we fed 10 HTTP packets of vary-
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ing sizes (between 300-2000B) to our classification function and timed how long it took using

System.nanoTime(). As a baseline for comparison, we also timed how long parsing out

HTTP features and using the AdblockPlus Library (with EasyList) takes to label a packet. We re-

peated each test case 100 times and calculated the average run-time and standard deviation. Each

function was tested in isolation, running on the main thread, so as to minimize timing the overhead

of possible thread switching. The results are as follows.

• The total time for NoMoAds to extract features and apply the decision tree classifier is: 2.96 ms

± 2.07 ms.

• The total time for HTTP parsing and applying the AdblockPlus Library is: 1.95 ms ± 0.75 ms.

Although the AdblockPlus Library outperforms NoMoAds by one millisecond (on average), it

does so at the cost of a nearly 20% degradation in the F-score performance (Table 5.4).

In order to understand how much latency overhead prediction by itself adds, we tested the same

10 HTTP packets (100 times each) and timed the prediction time of each variant of our classifier

(see the last column in Table 5.4). As we can see, the prediction time closely follows the tree size

– the smaller the tree, the quicker we can make a prediction. Hence, it is important to know which

features to train on in order to produce a small and efficient tree that can be used on mobile devices

in real-time without significantly degrading user experience. Our tree of choice (URL, HTTP

Headers, and PII), on average, predicts within three milliseconds. For comparison, we repeated

the experiment with the AdblockPlus Library, this time isolating the matching of URL, Content

Type, and HTTP Referer. We report the result in the last column of Table 5.4. The AdblockPlus

Library is more efficient than our classifier in prediction time, indicating that most of the delay,

when using the AdblockPlus Library approach, comes from HTTP parsing. Conversely, in the

NoMoAds approach, most of the delay comes from the prediction itself, and not the search for

features.
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5.5.2.2 (Re)training Time

In Table 5.4, we reported the training time when using our entire dataset, as well as the size of the

initial feature set extracted from all packets, and the final size of the tree (number of non-leaf nodes

in the decision tree). We note that only a small subset of the features is selected by the decision

tree. The selected features are up to an order of magnitude less in size than the initial feature

set. This results in relatively small and intuitive classifiers, like the one depicted in Fig. 5.4.

Furthermore, the selection of features significantly affects the training time and has a moderate

effect on classification performance. In this Chapter, our training dataset was relatively small,

and training our classifiers from scratch did not take more than 13 minutes (Table 5.4). This is

acceptable since training is currently done offline at a remote server. In future work, we plan to

further investigate training time as a function of the size of the training dataset and the selected

features. Our goal is to be able to train and retrain our classifiers within a couple hours, in order to

be able to push them from the server to mobile devices at least once a day, or a few times a day, as

EasyList does.

5.6 Summary

NoMoAds is the first mobile ad-blocker to effectively and efficiently block ads served across all

apps using a machine learning approach. Our work complements blacklist-based ad-blocking ap-

proaches, such as EasyList [3], DNS66 [31], and recent work on learning flow-based features [40].

To encourage reproducibility and future work, we make our code and dataset available at [11]. One

limitation of NoMoAds is the limited size of the training set. In this Chapter, we manually labeled

packets, which is not scalable if larger datasets are desired for training. The next Chapter discusses

an automatic approach for labeling packets, which not only enables us to expand our dataset, but

also provides the ability to map each packet to the library responsible for generating it.
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Chapter 6

AutoLabel: Detecting Third-Parties

6.1 Overview

The NoMoAds system presented in the previous Chapter was an improvement over filter-based

ad-blocking tools. However, NoMoAds had a major limitation – the system had no way of auto-

matically labeling datasets. The same bottleneck applies to all other prior art on ad-blocking and

anti-tracking. Specifically, to seed ground truth, prior art relies on either filter lists [39, 38, 34, 41],

manually labeled data [40], or a combination of both [33].

In this Chapter, we aim to solve the problem of manual labeling of mobile network requests that are

either requesting ads or are tracking the user (A&T requests). We start by noting that tracking and

advertising on mobile devices is usually done by third-party libraries that app developers include

in their apps to generate revenue. Throughout this Chapter, we will refer to a request as an A&T

request, if it was generated by a library whose primary purpose is advertising or analytics (A&T

libraries). Another key observation is that it’s possible to determine if a network request came from

the application itself or from a library by examining the Java stack trace leading to the network

API call. More specifically, stack traces contain package names that identify different entities: app
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vs. library code. It is possible to manually curate a list of package names belonging to libraries

by downloading and analyzing their JAR files, as was done in [22]. However, since we aim to

minimize manual list curation efforts, we leverage advances in static analysis of apps in order to

identify A&T libraries’ package names [20, 82]. We combine the aforementioned ideas to make

the following contributions:

• We design and develop AutoLabel – a system for automatically identifying and labeling

A&T requests. Our approach does not rely on filter lists nor manual labeling of requests.

Instead, it examines the Java stack trace leading to the network API call to determine whether

the request was generated by an A&T library.

• We use AutoLabel to collect the first large-scale dataset of network requests, where each

request is automatically labeled based on its origin: the app itself or an A&T library.

• Prior work has trained classifiers that use features extracted from packet headers and/or

payload to predict ad requests [33], but it does not scale well on our large dataset. We build

on and improve the state-of-the-art classification framework [33]: we use our labeled dataset

to train a classifier on a per-app basis and to predict both advertising and tracking (A&T).

Our classifiers can be trained quickly (on the orders of milliseconds) while achieving average

F-scores of 94%.

• Finally, we evaluate both our labeling system and machine learning prediction against pop-

ular filter lists, namely EasyPrivacy [3] and Mother of All Ad-Blocking (MoaAB) [83]. Our

labeling system discovers thousands of requests destined to hundreds of different hosts that

evade filter lists and are potentially engaged in A&T activities. We also show that our clas-

sifiers generalize and find trackers that were missed by our labeling procedure.

Our classifiers can be applied in real-time on mobile devices to predict and block A&T requests

when running on top of the AntMonitor system presented in Chapter 3, or any other efficient
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Figure 6.1: Comparison of manual and automatic labeling approaches.

VPN-based interception system for mobile devices, such as [2, 29, 53]. To provide other re-

searchers the ability to collect their own mobile tracking datasets, we will make AutoLabel open-

source. We will also release our labeled dataset and will contribute back to the NoMoAds [33]

project with our improvements on classifier training.
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(a) (b)

Figure 6.2: Example stack traces captured from the ZEDGE™Ringtones & Wallpapers app: (a)
The app itself is initiating an SSL handshake, as indicated by the presence of the package name
net.zedge.android in the stack trace; (b) The MoPub ad library is starting an SSL hand-
shake, as indicated by the com.mopub package name.

6.2 Labeling

In this Chapter, we are interested in automatically labeling which mobile network requests are

either tracking the user or are requesting ads for the user. Prior art, such as NoMoAds (Chapter 5),

was limited in its ability to label A&T requests: it required a human to first detect an ad and then

to manually come up with a rule in AdblockPlus format [84] that would block future occurrences

of such ads. We illustrate this manual and iterative process in Fig. 6.1(a). Not only is this approach

prone to human error, it is also not scalable and is limited to ads only because tracking activities

are invisible.

AutoLabel aims to solve the problem of manual labeling of mobile A&T requests. We start by

noting that tracking and advertising on mobile devices is usually done by third-party libraries that

app developers include in their apps to generate revenue. Throughout this Chapter, we will refer

to a network request as an A&T request, if it was generated by a library whose primary purpose is

advertising or analytics (A&T libraries). Another key observation is that it’s possible to determine

if a network request came from the application itself or from a library by examining the Java stack

trace leading to the network API call. For example, consider the trimmed stack traces shown in

Listings 6.2(a) and 6.2(b). Both were captured within the ZEDGE™Ringtones & Wallpapers app,
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which has the package name net.zedge.android. Listing 6.2(a) shows the app starting an

SSL handshake, as indicated by the presence of the package name net.zedge.android in

the stack trace. On the other hand, Listing 6.2(b) shows the MoPub ad library starting an SSL

handshake, as indicated by the com.mopub package name. Prior art, such as PmP [14], has

also used stack trace analysis to infer which third-party libraries were accessing sensitive APIs.

However, hooking into networking APIs is challenging (see Sec. 6.3.1.1), and thus PmP was

unable to fetch such detailed traces for network access [14]. How we obtain the stack traces

leading to each network request is described in Sec. 6.3.1.1.

In order to use stack traces for labeling A&T requests, we also need a list of package names

belonging to libraries, and we need to know which ones are A&T libraries. To minimize manual

list curation efforts, we use advances in static analysis of apps to help us identify A&T libraries’

package names. Android apps are structured in a way where classes belonging to different entities

(e.g. app vs. library) are separated into different folders (packages). One such structure is shown

in the “APK” box in Fig. 6.1(b). As with the stack traces shown in Fig. 6.2, the APK pictured

in Fig. 6.1(b) also belongs to the ZEDGE™ app. Note how the APK is split between packages

belonging to Google, MoPub, and ZEDGE™ itself. We can use this splitting to extract package

names belonging to third-party libraries. In fact, that is exactly what LibRadar [20] does: they

build signatures for each packaged folder and then use clustering to identify third-party libraries.

Using this technique they have built an initial database of 29k libraries. Based on the extracted

library signatures, LibRadar can identify libraries in new apps and can provide the corresponding

packages names even when package name obfuscation is used. Recently, an updated version of

LibRadar was released – LibRadar++ [82]. This version of the tool is built over a larger set of apps

(six million) and libraries (5,102).

Thus, AutoLabel uses LibRadar++ [82] to analyze apps and automatically produce a list of library

package names contained within (Fig. 6.1(b)). Note that LibRadar++ provides two package names

as output: the first is the package name used in the APK and the second is the original package
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name of the library. Most of the time the two names are the same. If an app uses package-name

obfuscation, then the names are different, but LibRadar++ is still able to identify the library via

its database of library signatures. Although there are some cases in which this identification fails

(see Sec. 6.5.2), the LibRadar++ approach is still more resilient than matching against a static list

of library package names. Furthermore, if an updated version of LibRadar++ becomes available,

it can easily be plugged into AutoLabel. Based on the original package name that LibRadar++

provides it is trivial to identify popular A&T libraries: one can simply search the Internet or use an

existing list of library names and their purposes, such as AppBrain [1]. To identify A&T libraries,

we use the list prepared by LibRadar [85], which maps library package names to their primary

purpose.

Fig. 6.1(b) summarizes the AutoLabel method: we match the collected stack traces against a list

of package names belonging to A&T libraries produced by LibRadar++. We note that unlike the

approach depicted in Fig. 6.1(a), our method has minimal human involvement. The only point

where manual effort might be needed is in mapping package names to their primary purpose.

However, we note that unlike a list of rules to match against URLs, a mapping of library names to

their purpose will always be available and will remain up-to-date so that app developers can select

which libraries to use. In order to perform this labeling, we need a system that can collect network

requests and map them to the stack traces that led to each networking API call. The next section

describes how AutoLabel achieves this mapping.

6.3 Data Collection System

In this section, we describe the AutoLabel data collection system that can be used to collect outgo-

ing network traffic and the Java stack traces that have led to each request. At a later stage, the stack

traces can be used to identify which requests were sent by A&T libraries (Sec. 6.2). As shown in

Fig. 6.3, our data collection system consists of two main components, described next. First, we
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Figure 6.3: Our data collection system (Sec. 6.3): using Frida to hook into Android networking
APIs, capture network traces, and the Java stack traces leading to the networking API call.

use the Frida [16] dynamic instrumentation toolkit to hook into various Android API calls of in-

terest (Sec. 6.3.1). Second, we use the Droidbot [86] UI automation tool to automatically exercise

Android apps (Sec. 6.3.2).

6.3.1 Hooking Android Networking APIs

To hook into networking APIs and collected the stack traces that led to them, we use the Frida [16]

dynamic instrumentation toolkit. We choose Frida over Xposed [15] for two reasons. First, Xposed

can only be used on Android devices, whereas Frida can also hook into iOS. Therefore, with

some modifications, our approach has the potential to be applied on iOS devices. Second, Frida

is professionally maintained and is sponsored and used by NowSecure [87] – a mobile security

company. As shown in Fig. 6.3, Frida consists of two components: a Frida agent that runs on the

mobile device and a Frida client that runs on a connected computer. Sec. 6.3.1.1 describes our

Frida agent: how we hook into APIs that result in outgoing network requests and save the Java

stack traces that have led to each hooked function call. Sec. 6.3.1.2 describes how our Frida client

saves the captured network requests in either PCAPNG or JSON format, along with the Java stack

traces.
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6.3.1.1 Frida Agent

Frida allows developers to write JavaScript code that gets injected at run-time into an application

process. The injected code is referred to as the agent. The agent can monitor and modify the

behavior of the application by hooking into API calls of interest. Once inside a hooked function,

we can fetch the Java stack trace that led to the function being hooked. Since we are interested in

networking API calls only, we begin by providing some background on the Android OS and then

explain our hooking methodology. Our methods can be used by future researchers to gain deeper

insight into network activities within Android apps, not just in terms of advertising and tracking,

but across all types of third-party libraries.

Background. As shown in Fig. 6.3, Android apps typically access the network by using Java

API calls available through the Android Software Development Kit (SDK). These APIs can be

high level, such as java.net.URLConnection.openConnection, or low level, such as

java.net.Socket. Regardless of which API is used, every network operation eventually ends

up in a Posix socket operation, which then gets translated into a standard C library (libc)

socket API call. Previous studies, such as TaintDroid [12], have hooked into Posix sockets

to gain visibility into outgoing network traffic. However, apps can also use the Android Native

Development Kit (NDK) to write additional C modules for their apps. These native modules can

access the libc socket APIs and bypass any hooks installed in Java space (see Fig. 6.3). To send

encrypted traffic, apps typically use Java SSL APIs, such as javax.net.ssl.SSLSocket.

These API calls get translated into native OpenSSL operations. Although OpenSSL is not available

through the NDK, apps sometimes include their own SSL libraries [88].

To ensure that we catch all outgoing communication performed by an app along with the detailed

stack traces leading to each network request, we place the following Frida hooks, as depicted in

Fig. 6.3:
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Plain Text Traffic. Prior work in both static (e.g. [22]) and dynamic (e.g. [12, 13]) analysis of

Android apps suffered from not having visibility into native code. To overcome this limitation, we

hook into the libc sendto and write functions to collect plain text data sent via both the SDK

and the NDK API calls.

Encrypted Traffic. In order to read plain text traffic before it becomes ciphertext, we hook into

Android’s OpenSSL SSL write function.

WebView Traffic. WebView is a special GUI component in Android that provides developers with

ready-made browser-like functionalities. Although our previous two hooks can successfully cap-

ture WebView traffic, we also want the ability to accurately label if the traffic is coming from the

app or from a third-party library by examining stack traces. Unfortunately, in the case of WebView,

all network requests are handled by the Android System WebView app (see Fig. 6.3). This means

that regardless of if the WebView element was created by the app or by a library, the network re-

quests it generates will appear to be coming from the System WebView app. To handle this special

case, we hook into the WebViewClient constructor since applications are required to create a

WebViewClient object in order to control a WebView. From the WebViewClient construc-

tor we get a stack trace leading to the app or a library and we save each WebViewClient and

stack trace pair for later query. We also hook the shouldInterceptRequest function of the

WebView app’s WebViewContentsClientAdapter class. This function gets called every

time any WebView in the system attempts to load a resource. Since each WebViewContents-

ClientAdapter instance is tied to a specific WebViewClient object, we can refer to our

saved data structure containing WebViewClient and stack trace pairs to get the stack trace re-

sponsible for each WebView request.

Native Library Loading. Since apps can include their own versions of OpenSSL, we hook into the

java.lang.System loadLibrary and load function calls to catch occurrences of native

libraries being loaded. We check each loaded library for the inclusion of the OpenSSL SSL write
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method, and if such a method exists, we add a Frida hook to it. Although it is possible for apps

to include SSL libraries other than OpenSSL, a 2017 study has shown that only 14% of apps (out

of the studied 7,258) use third-party SSL libraries [88]. Furthermore, apps that do use other SSL

libraries are usually browser-type apps which are not the focus of this Chapter (see Sec. 6.4.1.1).

6.3.1.2 Frida Client

The Frida client runs outside of the inspected application. When Frida is used to inspect mobile

devices, the Frida client runs on a PC that is connected to the mobile device via USB. In the case of

Android, the Frida client and agent can communicate with each other through the Android Debug

Bridge (ADB), as shown in Fig. 6.3. When a hook has been triggered, our Frida agent sends the

Java stack trace leading to the hooked function, along with any relevant data, to the client. The

client can then save the collected data on the PC for any future analysis. Depending on the hook

triggered, the client saves the data in either PCAPNG or JSON format, as described next.

Non-WebView Traffic. Whenever a sendto, write, or SSL write is triggered, the Frida

agent has access to the full packet bytes that were about to be sent since the packet buffer is

passed as a pointer argument to each function. In the case of sendto and write, the socket file

descriptor is also passed. With the help of various libc functions and the file descriptor, the agent

can learn auxiliary information about the intercepted connection: the IP address of the remote

server, the destination port, and whether the traffic is TCP or UDP. To learn the same information

about an SSL connection, the agent can utilize a libssl function to fetch the file descriptor from

the SSL object which is passed as a pointer argument to SSL write. The agent then sends this

auxiliary information along with the captured packet bytes to the Frida client for further processing.

Based on the provided information, the client can reconstruct parts of the network and transport

layer headers and save the packet in PCAPNG format. We chose the PCAPNG format as it allows

the usage of common tools such as tshark for correctly parsing packet bytes. In addition, the
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PCAPNG format allows adding a comment to each captured packet. We utilize the packet comment

to store the Java stack trace leading to hooked function call.

WebView Traffic. WebView traffic is always sent over HTTP/S, and the shouldIntercept-

Request function’s argument ShouldInterceptRequestParams can be used to extract all

HTTP fields of interest. Since shouldInterceptRequest operates on the application layer,

these fields are available in plain text, even in the case of HTTPS. We extract the following fields

and save them in JSON format along with the stack trace of the responsible WebViewClinet

(see Sec. 6.3.1.1): the full URL, the HTTP headers, and the HTTP method.

6.3.2 Droidbot UI Control

As shown in Fig. 6.3, we use Droidbot [86] to automatically exercise apps at scale. Droidbot

is a lightweight tool that requires no modifications to the Android OS and no application instru-

mentation. Droidbot consists of two components, as shown in Fig. 6.3: an Android app and a

Python script that runs on a connected PC. The Droidbot Android app utilizes the Android Ac-

cessibility API [89] to find UI elements of an app in testing, in real-time. The app sends this

information through ADB to the Droidbot Python script. Upon receipt of the UI data, the script

can decide which UI element to exercise and send the command through ADB. Since UI elements

can be thought of as a graph, Droidbot offers two algorithms for UI exploration: Depth First Search

(DFS) and Breadth First Search (BFS). During our experiments we found the DFS variant to cause

apps to crash, hence we decided to use the BFS algorithm for exercising apps. We note that most

previous studies that collect mobile packet traces exercise apps either manually [33], or both man-

ually and with the UI/Application Exerciser Monkey [61] (e.g. [2]). However, manual testing does

not scale well. On the other hand, Monkey, when used as a standalone tool, can only send random

events to the device – it has no knowledge of the GUI. This can lead to limited coverage of the app,

and can even lead to other apps being exercised instead of the intended one. For example, Monkey
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can end up clicking on ads or links which open up browser apps. Droidbot can detect when it has

left the intended app and can send a command to go back to the application in testing. Jin et al.

[90] have also used Droidbot to exercise apps and collect network traces. We believe that this is

the correct direction for future research on mobile network traffic.

6.4 Machine Learning Application

One application of AutoLabel is providing a ground truth dataset to train machine learning clas-

sifiers. In this section, we explore this application, specifically for training classifiers to predict

A&T packets. We begin by collecting a new, diverse dataset using AutoLabel (Sec. 6.4.1) and then

we use that dataset as our ground truth for training machine learning classifiers (Sec. 6.4.2).

6.4.1 Data Collection

In this section, we describe our collected dataset. First, in Sec. 6.4.1.1, we discuss how we selected

and downloaded apps to test, and the testing environment we used when exercising the selected

apps. Next, in Sec. 6.4.1.2, we summarize our collected dataset.

6.4.1.1 Selecting Apps

To diversify our dataset, we used the Google Play Unofficial Python API v0.4.3 [91] to download

the top 10 free apps from each of the 35 Google Play categories on January 29, 2019. Previous

studies, such as [33] and [2] used top lists (e.g. AppAnnie) to select apps to test without taking

categories into consideration. However, in our experience we found that such lists are heavy on

certain categories, such as games and entertainment, and can sometimes miss less popular cate-

gories, such as art & design and family. This can cause problems because some categories of apps
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Count

Apps Tested 307

Total Packets 37,438

A&T Packets 13,512

Apps with Packets 298

Apps with 10+ Positive Samples 143

A&T Libraries 37

A&T Libraries with Packets 26

WebView Packets 17,057

SSL_Write Packets 17,028

libc sendto Packets 3,353

Table 6.1: Dataset summary. Packets are HTTP/S packets.

are more likely to use specific third-party libraries. For instance, game apps often use the Unity

Ads library [92] to display in-game ads. Since we want to gain a comprehensive view of the mo-

bile advertising and tracking ecosystem, we chose to diversify our app categories. In addition, we

manually verified that none of the selected apps are browser apps, such as Firefox. Since browser

apps function like any desktop browser, they can open up the entire web ecosystem. In this Chapter

we focus on learning mobile A&T behavior, and leave the in-browser anti-tracking protection to

standalone tools, such as the Brave browser [93].

Since some apps appear in multiple categories, we ended up with a total of 339 distinct apps. We

ran each app using the system described in Sec. 6.3 on a Nexus 6 device running Android 7.1. We

disabled the Chrome WebView and used the Android System WebView to ensure compatibility

with our Frida hooks (Sec. 6.3.1.1). Since the Frida hooks may be affected by updates of Google

Play Services and of the Android System WebView, for reproducibility purposes we indicate that

we used versions 9.8.79 and 55.0.2883.91, respectively. Each app was exercised with Droidbot for

5 minutes, sending inputs every 2 seconds. Certain apps could not be installed or had run-time

errors. For instance, a couple apps detected the rooted state of the device and would not start.

Some apps required a Google Play Services update, which we could not update as it would affect

our Frida hooks. In total, we had to exclude 32 apps, leaving us with a total of 307 apps to test.
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6.4.1.2 Data Summary

Table 6.1 summarizes our dataset. Out of 307 apps that we tested, 298 sent at least one HTTP/S

packet. In total, we collected 37,438 HTTP/S packets, 13,512 of which were A&T packets. This

means that over 36% of outgoing HTTP/S packets belong to A&T libraries. With our dataset of

307 apps we were able to test 37 different A&T libraries, 26 of which have sent out at least one net-

work request. Surprisingly, most (17,057) of the packets that we captured were sent by WebView

objects. This means that had we not placed the appropriate hooks within WebViewClient con-

structors (Sec. 6.3.1.1), we would have been unable to obtain stack traces for over 45% of captured

packets. Finally, although we have seen apps load their own versions of OpenSSL (Sec. 6.3.1.1),

we were unable to trigger the functionalities required to make the apps use their OpenSSL modules.

To facilitate parsing and training of machine learning classifiers, we convert all PCAPNG files

to JSON, keeping only the relevant HTTP/S fields, namely the full URL, the HTTP headers, and

the HTTP method. This also provides us consistency with the data collected from WebViews

(Sec. 6.3.1.2), which is already in the JSON format. Each JSON data point also contains a label

indicating whether or not it contains an A&T packet. These JSON files can then be used to train

machine learning classifiers, as shown in Fig. 6.6 and described in the next section.

6.4.2 Machine Learning Approach

First, we discuss our training setup in Sec. 6.4.2.1. Second, we train a general classifier on our

entire dataset of 37,438 packets (Sec. 6.4.2.2). We find that the hours-long training times of the

general classifier makes it unsuitable for real deployment. Third, we train and evaluate per-app

classifiers (Sec. 6.4.2.3).
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Feature Set

F-score 

(%)   

Accuracy 

(%)

Specificity 

(%)

Recall 

(%)

Training 

Time

Tree 

Size

Domain 85.33 91.18 93.99 84.71 182 ms 1

Host 90.28 92.70 92.01 93.93 96 ms 1

Path Component 

of URL
84.05 91.11 97.09 77.35 6.07 hr 500

Table 6.2: General Classifier Performance. Tree size here is the number of non-leaf nodes.

6.4.2.1 Setup

For training, we adopt the same approach as in Chapter 5 and ReCon [2], described in detail in

Sec. 2.3.3.1. To evaluate which features have the most importance, we selectively extract words

from various parts of packets as discussed next.

Host. First, we evaluate how well can our classifiers perform when operating only with second-

level domains (SLDs) or host names. Evaluating on SLDs can help identify which SLDs are only

involved in A&T activities. This can make filter lists, such as EasyList, shorter by eliminating the

need to list all possible hosts within an SLD. Using host names only is representative of a situation

where TLS traffic cannot be decrypted, and we are only left with DNS requests or with the server

name identification (SNI) headers from TLS handshakes.

URL. Second, we evaluate how using more of the packet helps with classification. Specifically,

how well can a classifier perform when using only the path component of the URL (including

query parameters) and when using the full URL (host name and the path component).

URL and HTTP Headers. Finally, we evaluate how adding HTTP headers helps in classification.

We note that some filter lists, such as EasyList, also use the Referer header and Content-Type

headers. Thus, for a fair comparison, we evaluate these two headers separately, and then we

evaluate all the HTTP headers.
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6.4.2.2 General Classifier

Table 6.2 summarizes the results of 10-fold cross-validation when training a general classifier

across the entire dataset. Using the SLD as the only feature yields an F-score of 85%. Unsur-

prisingly, using host names as a feature increases the F-score to 90%. This means that even when

traffic cannot be decrypted, we can still block 90% of A&T request by blocking DNS requests

to the corresponding hosts or by matching the SNI header from TLS handshakes. However, it is

possible for hosts to collect tracking data and to also serve content necessary for the functionality

of the app. For example, we found that the host lh3.googleusercontent.com is often con-

tacted by the AdMob library. However, lh3.googleusercontent.com is also often used to

fetch various Google content, such as images of apps displayed on the Google Play Store. In such

a scenario, more features are needed.

To that end, we train a general classifier using the path component of the URL, including query

parameters. As shown in Table 6.2, using these features actually decreases the performance of the

classifier. Furthermore, the resultant tree size is 500 (the maximum size we allow for our DTs),

which is much larger than the 188 non-leaf nodes reported in [33]. We believe the difference in

these findings is caused by our larger and more diverse dataset. In addition, we find that training

a general classifier on the path component of the URL takes over six hours. This means that to

perform 5-fold cross-validation for such a classifier, more than 24 hours are required. Even if

training time is not considered an issue as it can be done offline, prediction time is of essence

when operating on live network traffic. As was shown in [33], prediction time is closely correlated

with the tree size. Specifically, a tree consisting of close to 300 non-leaf nodes can cause a three

millisecond delay on every outgoing packet [33]. Our tree of 500 nodes can cause even larger

delays that can negatively impact user experience. Because of these shortcomings, we do not train

a general classifier on the remaining feature sets from Sec. 6.4.2.1, and instead propose a more

scalable approach, as discussed in the next section.
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Feature Set Avg. F-score (%)   Avg. Accuracy (%) Avg. Specificity (%) Avg. Recall (%) Avg. Training Time (ms) Avg. Tree Size

Domain 93.30 ±  10.16 94.64 ± 6.50 82.96 ± 27.64 94.64 ± 11.59 0.06 ± 0.23 0.93 ± 0.24

Host 93.87  ±  6.91 94.93  ±  5.59 85.14  ±  24.32 93.46  ±  9.93 0.13  ±  0.40 0.97  ±  0.16

Path Component of URL 90.74  ±  9.81 93.45  ±  5.94 83.08  ±  27.65 89.02  ±  14.21 25.24  ±  46.33 8.29  ±  7.34

URL (Host & Path) 93.81  ± 7.44 95.59  ± 5.10 88.04  ± 21.94 92.76  ± 10.87 26.99  ± 52.24 7.81  ± 6.81

URL + Referer + Content Type 94.42  ± 6.39 95.89  ± 4.50 89.61  ± 20.93 93.49  ± 8.04 19.65  ± 36.46 4.98  ± 4.30

URL and HTTP Headers 94.96  ± 6.65 96.54  ± 4.28 90.56  ± 19.97 94.97  ± 7.84 22.14  ± 37.37 3.24  ± 2.65

Table 6.3: Performance of per-app classifiers. Tree size here is the number of non-leaf nodes.

6.4.2.3 Per-App Classifiers

Rather than training one classifier over the entire dataset, we explore the idea of training a classifier

per-application. The advantages of such classifiers were discussed in Sec. 4.2.3.3. One problem

with both per-app classifiers is that sometimes there is not enough training data. For instance,

as shown in Table 6.1, our dataset contains only 143 apps that have at least 10 A&T packets –

positive samples. ReCon [2] proposed the general classifier as a means to deal with cases for

which no specialized classifier could be trained. However, this method does not solve the problem

of long training times of general classifiers. Fortunately, our per-app approach allows us a more

flexible solution.

In our dataset, the low number of samples is caused by the inability of Droidbot to adequately exer-

cise certain apps. For example, one app in our dataset, Extreme City GT Car Stunts, is a game app

written in Unity 3D [94]. Since, as was confirmed in [90], Droidbot struggles with extracting UI

elements when Unity is involved, the tool was unable to perform many meaningful actions inside

Extreme City GT Car Stunts. This led to the collection of just seven negative samples and three

positive ones – not enough to train a reasonable classifier. To confirm our hypothesis about Droid-

bot, we manually exercised the app for five minutes. As expected, the manual interaction generated

more packets: eleven negative samples and 226 positive ones. This procedure can be repeated for

any app with a low number of samples. In contrast, in the case of per-domain classifiers, it is

unclear how to increases samples for a given SLD. In the future, a crowdsourcing platform, such

as CHIMP [95] can be used to generate inputs for apps with a low number of samples. We note

that certain apps will always have zero positive samples. For instance, in our dataset we had four
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apps that contained no A&T libraries and thus they could not generate any A&T packets. Such

apps can have their traffic always be allowed by the AntMonitor Library.

For the purposes of this Chapter, we skip training classifiers for apps that have less than 10 positive

samples and report results on the remaining 143 apps. Specifically, we evaluate each feature set

from Sec. 6.4.2.1 with 10-fold cross-validation for each of the 143 apps. In Table 6.3, we report

the average and standard deviation for the following metrics: F-score, accuracy, specificity, recall,

training time, and tree size (non-leaf nodes). We find that, on average, the per-app classifiers

outperform the general one – Table 6.3 vs. Table 6.2. We find that using more features (the full

URL and all HTTP headers) yields the best results – an average F-score of close to 95%. Using

the full URL with just HTTP Referer and Content Type headers performs very closely to

using the full feature set. This justifies the choice list curators make when designing rules for their

lists. Interestingly, using hosts as a single feature also yields a high average F-score of close to

94%. Training on the path component of the URL performs the worst – an average F-score of 90%.

This shows that, as expected, the host name is one of the most important features for identifying

trackers, and that is why many common filter lists (e.g. MoaAB [83]) operate on the host level

alone. In addition, we note that training per-app classifiers takes milliseconds. This means that if

we need to provide a classifier for an app that was not part of our dataset or adapt a classifier for an

updated app, we can test the given for five minutes (either with Droidbot or manually) and build a

classifier for it, all in under 10 minutes. Finally, we note that the per-app classifiers have an average

tree size below 10 – orders of magnitude less than the size of the general classifier described in the

previous section. This means that they can be applied in real-time on top of a VPN service (Fig.

6.6) and predict packets within milliseconds, as was shown in Chapter 5.

For the rest of this section, we will focus on the best performing classifier – the one trained on the

full URL with all the HTTP headers. Fig. 6.4 shows the Complementary Cumulative Distribution

Function (CCDF) of F-scores of our per-app classifiers. We note that 23% of our per-app classifiers

achieve F-scores of 100%. 80% of our classifiers reach F-scores 90% or higher, and all of the clas-
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Figure 6.4: Complementary Cumulative Distribution Function (CCDF) of F-scores of the 143 per-
app classifiers: 80% of the classifiers reach F-scores of 90% or above.

sifiers achieve an F-score of at least 64%. Next, we examine the trees that our classifiers produce.

Fig. 6.5 shows one such tree. We note that the tree first splits on the query key app id. Such keys

are often followed by package names of apps from which they are sent. When an app displays an

ad, the ad network must know which app has shown an ad so that the corresponding developer can

get paid. However, this also leads to user profiling: over time ad networks learn what type of apps a

particular user uses. The last feature in the tree, x-crashlytics-api-client-version is

even more interesting. Crashlytics is considered to be a development library (not an A&T library),

but it also has the potential to track the user since it is installed across many apps. In fact, some

popular ad-blocking filter lists have began including hosts belonging to Crashlytics [83]. Fig. 6.5

shows that our classifiers generalize: the depicted classifier has learned to identify Crashlytics as

a tracking service even though it was not labeled in our ground truth. Therefore, although Table

6.3 shows a high false positive rate (low specificity with high variance), it does not mean that these

false positives are actual false positives that will cause app breakage. We explore this in more

detail in Sec. 6.5.
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Figure 6.5: An example decision tree of a per-app classifier trained on the full URL and all HTTP
headers.

6.4.2.4 Deployment

While the AutoLabel system described in Sec. 6.3 is useful as a research tool, it is not suitable

for large-scale adoption by users as it requires root. However, the classifiers that we described in

this section can be applied on top of a user-space VPN service, such as AntMonitor (Chapter 3),

as we did in AntShield (Chapter 4) and NoMoAds (Chapter 5). We illustrate this deployment

scenario in Fig. 6.6: at the server, we use AutoLabel to test apps and label their traffic, then we

train classifiers using the labeled dataset, and finally, we push the classifiers to the mobile device.

Since our proposed approach is to train per-app classifiers, the (re)training can be done on a per-

app basis, as needed. For example, if an application gets updated, we can re-run AutoLabel and

re-train our classifiers within minutes since the labeling is automatic and training classifiers takes

milliseconds (see Table 6.3).

6.5 Evaluation Results

To further analyze the quality of our A&T labels, by both AutoLabel and our classifiers, we look

into the disagreements between popular anti-tracking filter lists and our labels. We also seek to
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Figure 6.6: End-user system: classifiers are trained offline and are used to predict and block A&T
requests intercepted by a VPN service, such as AntMonitor (Chapter 3).

understand if our classifiers can generalize and learn to recognize A&T requests that were not

part of the training set. For a fair comparison this section of the Chapter focuses on the 24,786

requests that we were able to label with our per-app classifiers, i.e. requests belonging to apps with

less than 10 positive samples are absent from this analysis. We start by discussing our filter lists-

based labeling strategy (Sec. 6.5.1). Next, we evaluate the quality of our labeling methodology

by comparing our labels with those of filter lists (Sec. 6.5.2). Finally, we compare the labels

provided by filter lists with our prediction results and provide insight onto our false positives and

false negatives (Sec. 6.5.3).

6.5.1 Baseline of Comparison

As our baseline of comparison, we use popular ad-blocking and anti-tracking filter lists that are

publicly available, and we match them against the requests in our dataset. Specifically, we com-

pare against the filter list used by AdblockPlus – EasyPrivacy, and against the Mother of All Ad-

Blocking (MoaAB) [83] list. Although the latter is less popular and is mostly aimed at ads, it was
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reported in [35] to be the most effective list for mobile devices: it blocked the most requests to

third parties and also successfully blocked many fingerprinting scripts. To match against the filter

list rules, we use an open source Python parser – adblockparser [96]. The tool can work with any

list as long as it is in AdblockPlus format specified in [84]. EasyPrivacy already comes in this for-

mat. To convert MoaAB into AdblockPlus format, we follow the guidelines outlined in [84]. Since

MoaAB operates by modifying a rooted Android’s hosts file, the conversion is straightforward:

we simply need to write an AdblockPlus rule that blocks all the host names specified in MoaAB.

Rules that match against host names are written by appending two pipe symbols in front of the

host in question.

Once our lists are ready, we need to parse our collected requests and feed the required information

to adblockparser. The tool takes in the full URL and several options that are support by Adblock-

Plus. Key options are: whether the request is a request to a third-party (e.g. a site fetching content

from a different domain than its own), whether the request is an XML HTTP request (contains

the HTTP Header X-Requested-With: XMLHttpRequest), and what type of content is

being request (e.g. an image or an HTML document). We note that AdblockPlus has even more op-

tions, however they are not available when operating on a mobile device. For example, the option

“websocket” is used to identify requests initiated by WebSocket object. Such information is only

available when operating within a browser with the ability to hook into various APIs. On a mobile

device where we operate on a per-packet basis we can only use the three options described earlier.

In fact, the AdblockPlus library for Android [78] uses the exact same three options. To determine

the content type of the request, we follow the same logic as written in the AdblockPlus library for

Android [78]: we match the requested object from the path component of the URL against file end-

ings. For instance, to determine if the requested file is an image, we match against the following

file endings: .gif, .png, .jpg, .jpeg, .bmp, .ico. Determining whether the request is an

XML HTTP request is straightforward: we look for the presence of the X-Requested-With:

XMLHttpRequest HTTP header. Finally, to determine is the request is to a third-party, we com-

pare the origin (defined by the scheme, host, and port) of the URL being requested to the origin of
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Row EasyPrivacy MoaAB Count (%) Notes

1 0 0 0 8,077 (32.59%) negative samples

2 1 0 1 8,279 (33.40%)

3 1 1 1 1,607 (6.48%)

4 1 1 0 174 (0.70%)

5 1 0 0 2,960 (11.94%)
disagreements: new 

A&T samples found

6 0 0 1 3,089 (12.46%)

7 0 1 1 362 (1.46%)

8 0 1 0 238 (0.96%)

24,786 (100%)

Labels by each Method

Filter Lists

agreements with 

filter lists

disagreements: 

AutoLabel false 

negatives

Total Requests

Auto 

Label

Table 6.4: Comparing AutoLabel to popular anti-tracking filter lists. “0” = negative label; “1” =
a positive label (A&T request). Example: row five means that 2,960 requests were detected by
AutoLabel, but were not detected by state-of-the-art filter lists (EasyPrivacy and MoaAB).

the URL specified in the HTTP Referer header. This methodology allows us to extract the three

options needed to feed into adblockparser along with the full URL request.

Tables 6.4 and 6.5 summarize the results of matching against EasyPrivacy and MoaAB and com-

paring the outcome against AutoLabel and our machine learning prediction, respectively. A label

of “0” indicates a negative label, and a label of “1” indicates a positive label – an A&T request.

6.5.2 Evaluating AutoLabel

First, we examine the quality of the labels provided by AutoLabel by analyzing the agreements and

disagreements between our labels and the filter lists’ labels. Out of 24,786 requests, 8,077 (32.6%)

were labeled as negative (0 in Table 6.4) by all three approaches (first row).

Agreements with Filter Lists. We begin by analyzing rows two through four which represent

agreements between AutoLabel and the filter lists. We find that for over 33% of requests, the filter

lists agree with our labels. Since EasyList is less aggressive than MoaAB, there is greater overlap

between AutoLabel and MoaAB.
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Disagreements with Filter Lists: New A&T Samples Found. Next, we examine the cases where

AutoLabel disagreed with the other lists and found extra positive samples. Row five indicates that

2,960 (11.9%) positive samples were identified by our approach, but were undetected by either of

the filter lists. We examine the host names contacted by these 2,960 requests and find 150 distinct

hosts. Most (559) of these requests were destined to lh3.googleusercontent.com. Since

MoaAB operates at the host level (vs. the full URL level), it cannot block hosts belonging to the

googleusercontent.com SLD as it often servers essential content. However, in the case

of our 559 requests, they were all sent by either the com.google.android.gms.ads or the

com.google.android.gms.internal.ads package. This highlights the value of going

beyond host names and using other features from intercepted requests (Sec. 6.4.2.1). Similarly,

302 of the samples were destined to fonts.googleapis.com. Although these fonts are often

requested by first-parties, in the case of these 302 samples, they were generated by the AdMob

library. For closer examination, we randomly selected an application out of the 55 that requested

the fonts via AdMob. We found that these fonts were requested for display apps. Specifically,

they contained a doubleclick.net URL in the HTTP Referer header. Thus, these are

indeed true positives as the fonts were not being requested for a main document. It is possible

that MoaAB and other lists do not need to block these as they would never be generated if the

ad from doubleclick.net was never fetched. This finding illustrates that future work may

need to reconstruct the Referer chain and exclude requests that would never be generated to

avoid training on them. In the case of fonts, such filtering can be critical – we don’t want the

classifiers to get confused on which fonts.googleapis.com to block. Some of the other

samples out of our 2,960 positive ones detect hosts that should be included into MoaAB. For

example: 278 requests were destined to the startappservice.com SLD and Startapp is a

popular mobile advertising library; 67 requests contacted the tapjoy.com SLD and Tapjoy is yet

another advertising SDK; 22 requests contacted img.applovin.com and AppLovin is another

mobile advertiser.
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Disagreements with Filter Lists: False Negatives. Finally, we examine rows six through eight,

which represent AutoLabel false negatives. Row six shows that MoaAB found an additional 3,089

(12.5%) positive samples that were undetected by other methods. Most of these requests (589)

were going to graph.facebook.com, which is a known tracking domain. AutoLabel failed

to mark these requests as positive because they were sent by the social library – Facebook. Such

libraries, as well as various development libraries (e.g. Unity 3D), may sometimes need Internet

access for legitimate reasons. Distinguishing between legitimate and A&T requests of other (non-

A&T) libraries is the current limitation of our work. Another 160 requests (out of the 3,089) were

going to googleads.g.doubleclick.net. We examined some of the stack traces that led

to these request but were not marked to contain an A&T package name. We found that these re-

quests were sent by variations of the obfuscated com.google.android.gms.internal.-

zzabm.zza package. The parent com.google.android.gms package name belongs to

Google Play Services [97] and is responsible for fetching AdMob ads. However, we cannot sim-

ply block all requests sent by Google Play Services as this library of libraries provides additional

services that may be required for proper application functionality. For example, com.google.-

android.gms.maps provides Google Maps APIs for other apps to use. We note that most

requests to the doubleclick.net SLD are sent by com.google.android.gms.ads and

com.google.android.gms.internal.ads packages. It is difficult to say if the obfus-

cated package name is indeed the .ads package that was able to avoid detection by LibRadar++.

In either case, this suggests that future work may benefit from combining static and dynamic anal-

ysis to discover more package names in apps. To summarize, the 3,089 samples that were uniquely

identified by MoaAB as positive, were responsible for contacting 194 different hosts. Of these

hosts, 125 were never identified by AutoLabel. In contrast to MoaAB, EasyPrivacy was able to

identify only 238 positive samples that were undetected by AutoLabel (row eight). 362 samples

were labeled as positive by both EasyPrivacy and MoaAB (row seven), indicating that there is

some overlap between the two lists which is not captured by our methodologies.
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Row Prediction AutoLabel EasyPrivacy MoaAB Count (%) Notes

1 1 0 0 1 949 (3.83%)

2 1 0 1 0 37 (0.15%)

3 1 0 1 1 28 (0.11%)

4 1 0 0 0 799 (3.22%)

disagreements: 

new A&T samples 

found

5 0 1 0 1 514 (2.07%)

6 0 1 1 1  127 (0.51%)

7 0 1 1 0 21 (0.08%)

24,786 (100%)

agreements with 

filter lists

disagreements: 

prediction false 

negatives

Total Requests

Our Approaches Filter Lists

Labels by each Method

Table 6.5: Comparing our machine learning predictions to popular anti-tracking filter lists. “0” =
negative label; “1” = a positive label (A&T request). Example: row four means that 799 requests
were labeled as positive by our classifiers, but were labeled as negative by state-of-the-art filter
lists (EasyPrivacy and MoaAB).

Summary. We find that the AutoLabel approach is accurate when labeling requests generated by

A&T libraries. The reason our method misses the 125 hosts identified by MoaAB is partly caused

by the fact that we do not consider first-party tracking and tracking by social (e.g. Facebook)

and development (e.g. Unity 3D) third-party libraries. Another reason for missing these hosts

are package names that avoid detection by LibRadar++. On the other hand, our approach can

also provide suggestions for filter lists – it detected 150 hosts some of which should be included

ad-blocking or anti-tracking filter lists.

6.5.3 Prediction Evaluation

In this section, we evaluate the performance of our classifiers by examining the agreements and

disagreements between our predictions, AutoLabel, and filter lists. To that end, in Table 6.5, we

extend Table 6.4 to include a column for prediction.

Agreements with Filter Lists. If we examine Table 6.3 alone we will find an alarmingly high

false positive rate: specificity below 91% and with high variance between different per-app clas-

sifiers. In total, out of 11,766 samples labeled as negative by AutoLabel, 1,813 (over 15%) are

predicted as positive. However, Table 6.5 shows that 949 of those “false positives” are also labeled
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as true positives by MoaAB (row one). Similarly, 37 of the samples are labeled as positive by

EasyPrivacy, and 28 are labeled as positive by both MoaAB and EasyPrivacy. Therefore, a total of

1,014 samples (over 55%) out of 1,813 “false positive” ones are actually true positives that were

missed by AutoLabel for reasons discussed in the previous section. This finding illustrates that our

classifiers can pick up patterns that extend past the used training data.

Disagreements with Filter Lists: New A&T Samples Found. Next, we examine the remaining

799 false positives that were not detected by either filter list – row four in Table 6.5. We found that

95 of these samples were destined to api.jaumo.com – a dating service. Since the application

sending this request was a dating app, these 95 sample are indeed false positives that could lead

to app breakage. Examining the tree built for the dating app, we found that it contained only one

decision node which marked all requests containing the word “Accept-Language” as positive. This

indicates that we can further improve our feature selection process by eliminating common HTTP

headers. Other samples (of the 799) include 115 requests that were contacting the unity3d.com

SLD. It is likely that these requests were generated by the Unity 3D development library. Unfortu-

nately, we found that Frida was unable to provide the Java stack trace leading to these requests. Ad-

dressing this limitation is outside the scope of this thesis and we hope that future releases of Frida

will be able to provide the needed stack traces. If the 115 requests were indeed sent by Unity 3D, it

is possible they were true tracking requests as Unity also has a Unity Ads library. In total, we found

that the 799 false positive samples contacted 116 different hosts. Some of these identified hosts

should be considered for inclusion in filter lists. For example, we found 61 requests going to the

tapas.net SLD. Some of the hosts under this SLD are identified as advertisers by the VirusTotal

[98] URL categorization service. Other examples include 31 requests going to the ytimg.com

(an advertising SLD owned by YouTube), 28 requests going to app-measurement.com (an-

other tracking service), and 19 requests going to settings.crashlytics.com (Crashlytics

is considered a development library for crash-reporting library, but it can also engage in tracking

activities).
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Disagreements with Filter Lists: False Negatives. Rows five through seven show that our ma-

chine learning approach has 662 false negatives. These false negatives belonged to 56 distinct

apps – therefore only 56 per-app classifiers (out of 143) were suffering from false negatives. We

examined the apps in question and found that most of the false negatives were clustered in a few

apps. The app with the most (115) false negatives was Drum Pad Machine - Make Beats. We

examined the classifier tree generated for this app and found that its size was above average – 11

non-leaf nodes. As with some of the examples we discussed earlier, the tree contained some com-

mon HTTP headers which could have been the cause of confusion. The same problem plagued app

responsible for next most (74) false negatives. With better feature selection these false negatives

should disappear. We leave such feature engineering to future work.

Summary. We find that most of our false positives are actually false negatives in the AutoLabel

labeling mechanism. This finding is similar to the reports provided by [41]: machine learning

algorithms trained with popular filter lists result in “false positives” that highlight false negatives

in the ground truth data. Our findings illustrate that our classifiers can generalize past the ground

truth that was fed to them and can find new A&T hosts. In terms of false negatives, our classifiers

can be further improved with better feature selection.

6.6 Summary

In this Chapter, we presented a system that can automatically label outgoing mobile network pack-

ets with the A&T (advertising or analytics/tracking) library that was responsible for generating

them. Using our labeling system we collect a large dataset of mobile advertising and tracking. We

use our dataset to train machine learning classifiers that can detect A&T requests on mobile devices

in real-time using a VPN interception service, such as AntMonitor (Chapter 3). We have shown

that our classifiers can achieve high F-scores of 94% on average, and they can be trained in the or-

ders of milliseconds. Finally, using popular filter lists (EasyList and MoaAB), we have shown that

113



our classifiers generalize past the ground truth that they have been trained on: they find tracking

hosts that were not labeled by our ground truth but are present in the filter lists. To enable further

research, we will release our labeled dataset and will open-source our data collection and labeling

systems. We will also contribute back to the NoMoAds project [33] with our improvements on

classifier training.
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Chapter 7

Conclusion

7.1 Summary

The usage of mobile devices has been rapidly increasing over the last few years. People now spend

more time on their smartphones as opposed to their desktop computers [99]. Furthermore, when

users interact with their mobile device, they spend over 80% of their time on apps as opposed

to browsers [99]. Unfortunately, the mobile apps ecosystem is rife with abuses. Mobile phones

contain a multitude of PII and applications often transmit this sensitive data to third-party servers

for tracking and advertising purposes. Although certain PII are protected by permissions, the

current permissions model does not separate the app and the third-party libraries contained within

it. Thus, whatever permissions the app is granted, the same permission is also granted to any

library the app includes. This provides third-parties with an opportunity to track user activities

across different apps.

In this thesis, we proposed several tools to provide mobile device users with transparency and

control over their data. We started by developing and efficient packet interception system, called

AntMonitor, that runs on the mobile device without requiring root privileges (Chapter 3). Specif-
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ically, we leverage Android VPN APIs and we perform layer-3 to layer-4 translation to avoid

routing traffic through a VPN server. Making such a system run efficiently on a mobile device

poses various challenges which we solve with various optimization techniques. To allow other re-

searchers to take advantage of our optimizations, we made AntMonitor as a ready-to-use Android

library and have made it open-source at [10]. In subsequent Chapters, we also presented various

applications built on top of AntMonitor.

In Chapter 4, we presented a system for detecting blocking PII exposures. We started by noting

that some PII are available to all apps (including AntMonitor) via Android APIs. For such PII, we

proposed using DPI to detect it in outgoing network traffic. For PII that is unknown to our system,

we proposed a machine learning approach. Specifically, we collected a dataset of over 47 thousand

packets from 400 most popular free apps. Using AntMonitor’s DPI capability, we automatically

labeled each packet with the type of PII that they contained. Since we used test accounts, we were

able to have AntMonitor search for PII that are normally unavailable through Android APIs, such

as usernames and passwords. Using the labeled data, we trained multi-label machine learning

classifiers for predicting the type of PII a given packet contains. Our classifiers are able to achieve

F-scores of over 90% and can predict PII in real-time on the device. To encourage reproducibility,

we have made our dataset and code available at [10].

In Chapter 5, we presented a system, called NoMoAds, for blocking requests for ads. We started by

integrating AntMonitor with the AdblockPlus Library to match outgoing URL requests against

the list of rules in EasyList. Next, we manually interacted with 50 most popular free apps that serve

ads. If, during our interaction, an ad was shown, we created new rules to add to EasyList and block

packets responsible for the residue ads. Using our custom rules and EasyList we labeled over 15

thousand packets and found that close five thousand packets contained requests for ads. We used

our labeled dataset to train a classifier for predicting which packets contain requests for ads. To the

best of our knowledge, NoMoAds is the first mobile ad-blocker to effectively and efficiently block

ads served across all apps using a machine learning approach. Our dataset and code are available
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at [11].

In Chapter 6, we presented AutoLabel – a complete system for detecting packets that are generated

by third-party libraries. We are particularly interested in identifying packets generated by A&T

libraries, which is the bottleneck in blocking ads and trackers today. Using a combination of dy-

namic instrumentation and static analysis, AutoLabel addresses this bottleneck. AutoLabel can be

used to automatically label datasets, which can in turn be used to train machine learning classifiers

to detect A&T packets. In other words, there is no longer a need to maintain lengthy filter lists.

To the best of our knowledge, our system is the first to provide this automatic ground truth label-

ing. We used our system to collect a dataset of over 37 thousand packets from 307 popular free

apps. Next, we used our dataset to train machine learning classifiers for predicting A&T packets.

We showed that both our ground-truth labeling mechanism and our classifiers are in agreement

with popular filter lists and can also find new A&T services. To enable future research on mobile

tracking, we will release our collected dataset and we will open-source AutoLabel.

7.2 Future Directions

Over the last few years, concern over online privacy has led to several new laws. For example, in

Europe, the General Data Protection Regulation (GDPR) [100] has come into effect in 2018. The

law restricts how companies can collect data and requires full transparency over the data collection.

Similarly, in 2020, the California Consumer Privacy Act (CCPA) [101] will become effective,

enhancing privacy rights of California residents. While these laws will hopefully decrease the

amount of personal data collection and tracking, tools such as AntMonitor will still be needed to

check and enforce compliance.

In addition, as data collection becomes more regulated, advertisers and publishers will need to

come up with new ways to support online content and mobile apps. One idea is to use privacy-
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preserving techniques when collecting data for personalized ads purposes. For example, as of

2019, Google is already using federated learning to train machine learning classifiers for predictive

typing without collecting personal data [102]. The same idea can be extended to personalized ads.

Another approach is to re-define the advertising industry. For instance, the Brave browser [93] is

exploring the idea of blockchain-based advertising [103] where publishers are rewarded based on

user’s attention while browsing. Users’ attention is monitored within the browser only, and their

private data never leaves the device. As the advertising industry adapts, the need for ad-blockers

and anti-tracking tools may decrease. However, in order for the industry to change, the research

community needs to maintain the pressure on advertisers by continuously developing innovative

solutions to ad-blocking and anti-tracking, building on top of and extending tools such as NoMo-

Ads and AutoLabel.

Finally, in the years to come, Android APIs may change and may restrict functionalities that Ant-

Monitor and its derivatives rely on. For example, apps that target Android 7.0, by default, do not

trust user-added certificates [104]. This impairs AntMonitor’s ability to decrypt and analyze TLS

traffic. Although it is possible to perform limited analysis on various TLS features (e.g. the SNI

header, supported algorithms, etc.), TLS 1.3 encrypts all handshake messages after the ServerHello

[105], and, as of 2018, Cloudfare has started supporting encrypted SNI (ESNI) [106]. While these

measures provide users with extra security, they limit the type of analysis that can be done with

tools such as AntMonitor. Nevertheless, users should be allowed control over their data and

the community needs to develop a solution that provides users with both control and security.

For instance, on browsers, users can install extensions that provide an extra layer of control (e.g.

ad-blocking, cookie-blocking, etc.). A similar solution can be developed for mobile devices. In

fact, Facebook has already taken a step in this direction by allowing users to change their apps’

(Facebook, Messenger, Instagram) settings to allow user installed Certificate Authorities [107].
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