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ABSTRACT OF THE DISSERTATION

One Step towards Autonomous AI Agent:

Reasoning, Alignment and Planning

by

Xiusi Chen

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Wei Wang, Chair

The recent development of artificial intelligence (AI) has facilitated the prosperity of foun-

dation models, such as large language models (LLMs) and vision models. The foundation

models have reshaped the way people interact with tools to improve productivity and creativ-

ity by taking over many use cases where people use conventional computer software. Being

aware of the promising emerging abilities observed from the foundation models, a more inter-

active picture has been envisioned where the foundation models drive a group of AI agents

that play different roles to fulfill more diverse and complex tasks, further benefiting human

society. Like humans, AI agents should be able to reason and plan over complex tasks, and

they should also be well aligned with human preferences and values. Advanced foundation

models provide a solid foundation for the implementation of AI agents. However, agents

based on the current foundation models have intrinsic limitations inherited from existing

foundation models. In addition to hallucination, these foundation models can demonstrate

biases presented in their training data, resulting in output that can be discriminatory. LLMs

can expose sensitive or personal information embedded in their training data, risking user
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privacy and security. Finally, due to the generative nature of the prevailing foundation mod-

els, it is desirable to incorporate planning modules generatively, so the planning process can

be seamlessly accomplished during the generation process. In summary, the gaps between

the current state-of-the-art and the goals underscore the need for further efforts to improve

the reasoning ability, the alignment of human values and the generative planning ability of

the foundation models.

My ultimate research goal is to build AI agents that are reliable, unbiased,

and capable of planning so that they can be safely and effectively applied in

various domains. To achieve this goal, I have divided my research into the following

subtasks:

● Knowledge-Enhanced Reasoning that aims to improve the factual accuracy and

logical coherence of LLM outputs by integrating external knowledge [CZD23, THC24].

● Minimally Supervised Data Generation and Selection that aims to improve

the efficiency of fine-tuning or in-context learning by selecting the most informative

training data [CJC24a].

● Automatic Constitution Discovery and Self-alignment that aims to mitigate

the risk of generating incorrect, nonsensical, biased or private information [CWN24].

● Agents Planning that aims to enable multi-agent strategic learning by incorporating

generative goal-guided planning [CJJ22, CWH24].

In this thesis, I will first emphasize the significance of building such reliable, unbiased,

capable-of-planning AI agents, and then introduce four lines of my work, and finally the

future challenges and opportunities.
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It’s not the destination, it’s the journey.
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CHAPTER 1

Introduction

1.1 Motivation

Building fully autonomous agents through artificial intelligence (AI) has been a long-term

goal for the field of computer science. Recent developments in generative foundation models

have provided a solid basis for implementation. In particular, large language models (LLMs)

are transforming our world with their incredible versatility and power. The BERT model

[DCL18] marks a milestone that starts the era of pre-trained language models. Before that

time, different kinds of specialized model have been developed to accomplish very specific

tasks. However, BERT introduced a new paradigm by enabling models to be pre-trained on

vast amounts of text data and then fine-tuned for various downstream tasks. This approach

significantly improved performance across a wide range of applications, from natural lan-

guage understanding and translation to sentiment analysis and question-answering systems.

The success of BERT paved the way for more advanced models such as GPT-3 [Ope23b],

PaLM [CND23], and GPT-4 [Ope23a], which further expanded the capabilities and appli-

cations of LLMs. Today, LLMs are integral to many sectors, including healthcare, research,

finance, education, etc. Likewise, recent developments in vision models have seen a signifi-

cant advancement with the introduction of diffusion models, which have revolutionized the

field of image generation and understanding. A notable example of this innovation is the

OpenAI Sora [BPH24], which leverages diffusion processes to achieve state-of-the-art perfor-

mance in computer vision tasks. The Sora model stands out due to its ability to generate

high-quality videos from text descriptions, still images, or videos, bridging the gap between
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natural language and visual content with unprecedented accuracy. Most importantly, it is

found that video models exhibit several interesting emergent capabilities when trained at

scale. These capabilities enable Sora to simulate some aspects of people, animals and envi-

ronments from the physical world. These properties emerge without any explicit inductive

biases, but they are purely phenomena of scale. This breakthrough underscores the potential

of diffusion-based vision models to transform various applications, from creative industries

to scientific research.

These developments in foundation models have changed the way people interact with

technology. Previously people usually interacted with computer operating systems or soft-

ware, such as Windows, Linux, Excel, or PowerPoints, but now we see more and more

interactions directly with foundation-model-based applications. Now, based on the promis-

ing emerging abilities observed from the foundation models, people are starting to envision

an even more interactive picture where the foundation models drive a bunch of AI agents that

play different roles and benefit human society by enhancing creativity and content genera-

tion. For example, in healthcare, AI agents improve medical image analysis and assist in drug

discovery by generating potential molecular structures, and in customer service, intelligent

chatbots handle inquiries and provide constant support. AI agents can also aid scientific

research by analyzing large datasets to uncover new insights and promote environmental

sustainability by optimizing resource management. These developments lead to increased

efficiency, better decision-making, and enriched human experiences in various domains.

To build such AI agents, we envision different properties and components. First, AI agents

must exhibit strong reasoning abilities that enable them to analyze complex problems, draw

logical conclusions, and make informed decisions based on a comprehensive understanding

of the diverse data. For example, in medical diagnostics, an AI agent with strong reasoning

can accurately interpret patient data and suggest potential diagnoses or treatment plans.

Equally important is their alignment with human preferences and values, ensuring that their

actions and decisions are ethical, transparent, and beneficial to society. An example of this
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is in autonomous vehicles, where AI must prioritize passenger safety and adhere to traffic

laws, reflecting societal norms and ethical standards. In addition, robust planning skills are

crucial, allowing AI agents to anticipate future scenarios, strategize effectively, and adapt to

changing conditions. In logistics, an AI with strong planning capabilities can optimize deliv-

ery routes, manage inventory, and predict supply chain disruptions, thus enhancing efficiency

and reliability to achieve long-term goals. These core properties collectively ensure that AI

agents are not only intelligent, but also trustworthy and effective in practical applications.

1.2 My Research Overview

Being aware of these desired properties of AI agents, my research focuses on achieving

the above goals through four modules: Knowledge-Enhanced Reasoning, Minimally-

supervised Data Generation and Selection, Automatic Constitution Discovery

and Self-alignment, and Agents Planning.

1. The Knowledge-Enhanced Reasoning module aims to improve the factual accuracy

and logical coherence of LLM outputs by integrating structured knowledge bases.

This approach helps mitigate the risk of generating incorrect or non-sensical informa-

tion.

● Chapter 2 presents Generative Few-shot Question Answering by Prompt-based

Cloze Data Augmentation (Gotta) that augmented prompt data for reasoning;

● Chapter 3 presents Learning a Small Student from Multiple Large Language Mod-

els (TinyLLM) that improves the generalization abilities of the student model

by learning from rationales of multiple teacher models.

2. Building on the first module, the Minimally Supervised Data Generation and Selection

module aims to make the Knowledge-Enhanced Reasoning process more efficient.

It generates and selects high-quality training data with minimal human supervision,
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thereby streamlining the enhancement process and reducing the manual effort required.

● Chapter 4 presents MinPrompt: Graph-based Minimal Prompt Data Augmen-

tation for Few-shot Question Answering (MinPrompt) that selects the most

informative factual sentences, and generates the data samples for fine-tune or

in-context learning.

3. The Automatic Constitution Discovery and Self-alignment module focuses on enhanc-

ing the model’s ability to autonomously discover and align with ethical and

privacy standards. By incorporating these modules, my research strives to create

more reliable, unbiased, and ethically sound language models that can be safely

and effectively applied across various domains.

● Chapter 5 presents Iterative Constitutional Alignment of Large Language Mod-

els (IterAlign) that automatically generates constitutions out of red teaming

user data, and uses the data-driven constitutions to guide natural-language-based

model alignment.

4. Lastly, the Agents Planning module extends the application of LLMs to autonomous AI

agents, utilizing advanced planning algorithms to enable sophisticated decision-making

and strategic behaviors in various contexts, such as tactical strategies in professional

basketball games and behavior synthesis.

● Chapter 6 presents Offline Reinforcement Learning for Tactical Strategies in Pro-

fessional Basketball Games (ReLiable) that uses offline reinforcement learning

(RL) techniques to learn optimal discrete actions conditioned on a certain given

on-court state.

● Chapter 7 presents Professional Basketball Player Behavior Synthesis via Plan-

ning with Diffusion (PlayBest) that formulates the planning task as a trajec-

tory generation one, then uses diffusion model and classifier-guided conditional
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sampling to generate trajectories that are of high-rewards representing promising

tactics.

Putting these pieces together, I am pursuing the ultimate vision to build autonomous

large multi-modal model agents that have the capacity of reasoning and planning, towards

achieving true humanlike intelligence aligned with human values.

1.3 My Research Contributions

My vision is supported by my previous research, which has led to more than 30 research

papers published in top Data Mining venues (CIKM, KDD, WWW, WSDM), Nature Lan-

guage Processing venues (ACL, NAACL), and Machine Learning venues (ICML, AAAI).

Notably, I received the Best Poster Award (Honorable Mention) at SDM 2023. Many mod-

els I designed have been integrated into industrial products, including Amazon Rufus and

Alibaba Qwen. The dataset and benchmark I developed have been downloaded more than

300K times, the Github repository summarizing scientific language models has received over

400 stars. My research served as core building blocks for many NSF, MURI research grants,

as well as corporate grants.
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CHAPTER 2

Gotta: Generative Few-shot Question Answering by

Prompt-based Cloze Data Augmentation

2.1 Abstract

Few-shot question answering (QA) aims at precisely discovering answers to a set of questions

from context passages while only a few training samples are available. Although existing

studies have made some progress and can usually achieve proper results, they suffer from

understanding deep semantics for reasoning out the questions. In this paper, we develop

Gotta, a Generative prOmpT-based daTa Augmentation framework to mitigate the chal-

lenge above. Inspired by the human reasoning process, we propose to integrate the cloze task

to enhance few-shot QA learning. Following the recent success of prompt-tuning, we present

the cloze task in the same format as the main QA task, allowing the model to learn both

tasks seamlessly together to fully take advantage of the power of prompt-tuning. Extensive

experiments on widely used benchmarks demonstrate that Gotta consistently outperforms

competitive baselines, validating the effectiveness of our proposed prompt-tuning-based cloze

task, which not only fine-tunes language models but also learns to guide reasoning in QA

tasks. Further analysis shows that the prompt-based loss incorporates the auxiliary task

better than the multi-task loss, highlighting the strength of prompt-tuning on the few-shot

QA task.
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2.2 Introduction

Question answering (QA) is the task of precisely discovering answers to natural language

questions given the narrative contexts. With a wide range of downstream applications, such

as knowledge graph completion [LDX22], response recommendation [ZBL13], review opinion

mining [ZGS19], and product attribute extraction [WYK20], it has drawn a lot of attention

in the text mining community and has risen to one of the holy-grail tasks. Following the

line of supervised learning, one can successfully build QA methods that achieve decent

results. However, the assumption that a large amount of annotated QA training examples

quickly poses limitations since annotation requiring efforts from domain experts is extremely

expensive.

Question: As of 2017, what was the estimated value of the basketball 
team that Luke Theodore Walton coaches?
Answer: $3.0 billion
Context: The Los Angeles Lakers are an American professional 
basketball team based in Los Angeles.  The Lakers compete in the 
National Basketball Association (NBA), as a member of the league's 
Western Conference Pacific Division.  The Lakers play their home games 
at Staples Center, an arena shared with the NBA's Los Angeles Clippers, 
the Los Angeles Sparks of the Women's National Basketball Association, 
and the Los Angeles Kings of the National Hockey League.  The Lakers 
are one of the most successful teams in the history of the NBA, and have 
won 16 NBA championships, their last being in 2010.  As of 2017, the 
Lakers are the second most valuable franchise in the NBA according to 
"Forbes", having an estimated value of $3.0 billion.

Question: What is the masked entity? 
Answer: <mask>. 
Context: The <mask> are an American professional basketball team 
based in Los Angeles.  The Lakers compete in…

Question: What is the masked entity? 
Answer: <mask>. 
Context: The Los Angeles Lakers are an American professional 
basketball team based in <mask>.  The Lakers compete in…

Original QA training example

Augmented Cloze training examples

Figure 2.1: An example of how entity-aware text masking and prompt-style data augmenta-
tion work. Gotta selects entities that are covered by knowledge bases, and creates prompt-
style augmented data for training purpose.

We investigate the few-shot QA task, which aims to solve the QA task while only a

few training examples are present. Under the few-shot setting, most existing approaches
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either propose a new task and pre-train a large language model from scratch [RKB21], or

fine-tune the pre-trained model on the training examples [CN21]. These practices do not

explicitly understand the entities in the input text (i.e., the context text and the question

text) before generating the output (i.e., the answer text), which contradicts the conventional

human thinking process. For example, in reading comprehension exams, people have to fully

understand and digest the context semantics before getting precise answers. In other words,

directly mapping from the text and the question to the answer lacks a deep understanding

of the context.

To bridge this gap, we developGotta, aGenerative prOmpT-based daTaAugmentation

framework for few-shot QA. In Gotta, we design a knowledge-based cloze task to serve as

a companion to enhance the main QA task. To make the cloze task more dedicated for

QA, we utilize publicly available knowledge bases and focus on the covered entities by only

selecting the entities in the text as the object to construct cloze problems. By constructing

more data for fine-tuning, we incorporate the external knowledge in the knowledge bases in

the hope of introducing more inductive bias that is beneficial to the QA task. The induc-

tive bias provides extra supervision beyond the weak supervision signals only provided in

the few-shot QA training set. Intuitively, the cloze task is to imitate the human behavior

of understanding the context by filling in the blanks. We conduct this entity-aware cloze

because identifying the entities and understanding their relations is crucial for solving QA

problems on the same chunk of text.

Inspired by recent advantages of prompt-tuning, as shown in Figure 2.1 and Figure 2.2, we

feature both QA and cloze tasks in the same prompt template to align with each other at the

pre-training stage. Following this routine, no redundant model parameters are introduced

while the pre-trained model can maximize the performance on our downstream QA task,

especially under the few-shot setting. Although our cloze task is quite similar to the popular

masked language modeling (MLM), there are two major distinctions between entity-aware

text masking and MLM. First, MLM randomly masks word tokens while entity-aware text
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masking only targets entities that are more likely to be relevant to the QA task. Second,

MLM is usually pipelined with a softmax function to select one token while entity-aware text

masking generates a token sequence to form a text span, which is more favored by QA tasks.

Extensive experiments on publicly available and conventional benchmarks demonstrate that

Gotta is able to achieve generally better results over competitive baselines, validating the

effectiveness of the cloze task. Further in-depth analysis shows that the prompt-based loss

incorporates the auxiliary task better than classification loss, highlighting the effectiveness

of prompt-tuning on the few-shot QA task.

We summarize our contributions as follows:

● We propose to incorporate the cloze task as a data augmentation module to extract self-

supervised training examples to enhance the learning for few-shot QA.

● We formulate both QA and cloze tasks in the same format, allowing us to apply prompt-

tuning to take full advantage of pre-trained large language models.

● We conduct extensive experiments on publicly accessible benchmarks to validate the ef-

fectiveness of Gotta, and observe consistent improvement over competitive compared

methods. Beyond that, we also study the necessity of different parts of the model, provid-

ing the readers with a better understanding of the framework.1

2.3 Related Work

Existing studies most related to our work come from three aspects: few-shot QA, prompt-

tuning, and data augmentation. In this section, we briefly recap and distinguish our proposed

method from theirs.

Few-Shot QA. Prior studies in QA either reuse the high-performing pre-trained lan-

1The code for Gotta is at https://github.com/xiusic/Gotta.
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guage models (PLMs) [LCG20, JCL20], or train a model from scratch on synthetic QA

data [PSS20, LDR19, AAP19]. However, all of them require fine-tuning the models on mas-

sive annotated data from the downstream QA task, which is often impractical in real-world

cases. Several approaches have recently been developed to allow the model to quickly adapt

to the downstream task with solely a handful of annotated data [RKB21, CN21]. Ram et

al. [RKB21] tailor the pre-training scheme specialized for handling QA tasks. They design a

recurring span selection objective for pre-training, which aligns with the common objective

in extractive QA tasks. To save the effort to pre-train the model on a large-scale corpus,

Chada and Natarajan [CN21] seek to explore the capacity of the existing PLMs. They pro-

pose a simple framework, known as FewshotQA, where a QA-style prompt is constructed

to cast the QA problem as a text generation problem. Specifically, the prompt is created

as a concatenation of the question and a mask token representing the answer span. In this

way, the input format is geared toward processing by the PLMs. Distinct from these two

studies, we focus on exploring more relevant information in the context data, aside from the

annotated QA pairs, to fine-tune the model under the few-shot setting. KECP [WWQ22] is

a concurrent work with Gotta that focuses only on extractive QA (EQA). Also inspired by

prompt-tuning, KECP views the EQA task as a non-autoregressive MLM generation problem

and uses a span-level contrastive learning objective to improve the final performance.

Wikidata Entity Set QA Dataset

Entity-aware Text Masking Prompt-style Data Augmentation Generative Prompt-Tuning

Detected Entities

entity 1 entity 2 entity n

Autoregressive 
Decoder

Bidirectional 
Encoder

Figure 2.2: Framework overview for Gotta.

Prompt-Tuning. Standard fine-tuning of PLMs for few-shot learning does not achieve sat-

isfying performance in many cases because the limited training samples may not be sufficient

for optimizing the parameters in the newly introduced task head. To reuse the language mod-
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eling capability of PLMs without introducing randomly initialized parameters, prompt-based

approaches [GFC21, HDW22, LBW22, MLH22, SS21a, SS21c, TMB21] formulate training

samples as natural language prompt templates so that the downstream tasks can be solved

as a masked token prediction problem. Further studies propose to replace the manual design

of prompts with automatic search or learning [CHD22, HKM21, LAC21b, LZD21, ZLC21,

ZFC21]. Although prompt-tuning has demonstrated remarkable few-shot learning perfor-

mance in some tasks (e.g., text classification and natural language inference [WSM19]), it

has not been extensively explored in question answering. In this paper, we explore a prompt-

based data augmentation framework for few-shot QA.

Data Augmentation. Under the few-shot setting, data augmentation mainly aims to create

more training data based on a small number of provided training samples to overcome label

scarcity when training the model. Pioneering studies on text data augmentation include

EDA [WZ19] and UDA [XDH20], which leverage text editing (e.g., synonym replacement,

random swap) and back translation to create more labeled data for text classification. In

another line of work, several studies generate training data by fine-tuning autoregressive

PLMs on the training set [ACG20, YMF20] or using label-specific prompts [SS21b] to guide

text generation toward the desired label. However, most of the studies mentioned above focus

on the task of few-shot text classification. In contrast, our Gotta framework proposes a

cloze-style data augmentation method for few-shot QA.

2.4 Gotta: The Proposed Framework

The overall framework of Gotta is illustrated in Figure 2.2. The core idea is to augment

training data with cloze-style questions to force the model to understand the contexts beyond

the original questions. We fulfill this idea in three steps: First, we identify the tokens that

should be masked in the cloze task. Intuitively, such tokens need to indicate the answers

to the original questions. Then, we construct the prompt data by combining the masked

12



tokens and our designed template. Finally, we feed the original QA training samples and

the created prompt data into a pre-trained BART model [LLG20] for fine-tuning.

2.4.1 Entity-aware Text Masking

The first step to fulfill the cloze task is entity-aware text masking. The cloze task is often

referred to as “masked language modeling” (MLM) in the literature [DCL19]. Although

MLM is widely used as a pre-training task in NLP, it is still less explored how to pick

the masked token spans to achieve good performance in a specific downstream task. Indeed,

prevailing PLMs like BERT [DCL19] randomly mask a proportion of tokens in each sequence.

However, even though PLMs with randomly masking statistically can survive with a large-

scale training corpus and the law of large numbers, few-shot QA tasks with only tens of short

sequences could potentially receive only weak and noisy samples. For the sake of our QA

task, we propose to enable the model to infer the crucial parts of the reasoning procedure.

Human reasoning is usually considered as hops between entities [CZW21]. A robust model

should be able to recover important masked entities based on their context. To achieve this

idea, we take the entity set of the Wikidata knowledge graph [VK14] as the entity corpus.

For each training sample, we extract all the text spans recognized as Wikidata entities. As

a result, the created cloze questions will be centered around meaningful entities rather than

irrelevant tokens to the QA task, such as articles, pronouns, and stop-words.

2.4.2 Prompt-style Data Augmentation

Based on the output of entity-aware text masking, we pursue the recent success of prompt-

tuning to produce augmented data for the prompt-based Gotta model. Specifically, we

formally formulate the following template to integrate QA and cloze tasks, thereby generating
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few-shot QA input data xori as:

xq = Question ∶ q

xa = Answer ∶ ⟨mask⟩

xc = Context ∶ c

xori = [xq ⊕ xa ⊕ xc]

The labels y are formulated as follows:

ya = Answer ∶ a,

y = [xq ⊕ ya ⊕ xc] ,

where q, a and c are texts of the question, answer text, and context, respectively; ⊕ denotes

string concatenation.

For the augmented data, we fix the question text qaug as follows:

qaug =What is the masked entity?

Note that in the augmented cloze data samples, we also mask the selected entity in xc to

form the context text for the augmented data xaug
c in addition to the mask token in xa.

Figure 2.1 illustrates the details of an augmented data sample (xaug, yaug). Let (Xori, Y ori)

and (Xaug, Y aug) denote all the training samples of QA and cloze, respectively. Our complete

training set (X train, Y train) is the union of (Xori, Y ori) and (Xaug, Y aug).

2.4.3 Generative Prompt-Tuning

One of the most apparent advantages of aligning augmented and original data is the model’s

capability of seamlessly digesting both without a distinct loss. In a nutshell, Gotta adopts
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an encoder-decoder model as:

ypred = decoderθD(encoderθE(x)), (2.1)

where θE and θD are learnable parameters; x ∈ X train can be either an original training

sample or an augmented one.

Our training objective maximizes the log-likelihood of the text in the reference answer

y ∈ Y train. The loss functions with respect to the original samples and the augmented samples

can be expressed as follows:

Lori(θ) = ∑
(x,y)∈(Xori,Y ori)

log(
n

∏
i=1

P (yi ∣ y<i, x; θ)) (2.2)

and

Laug(θ) = ∑
(x,y)∈(Xaug,Y aug)

log(
n

∏
i=1

P (yi ∣ y<i, x; θ)) , (2.3)

where θ = {θD, θE}.

The overall loss function takes a weighted sum:

L(θ) = Lori(θ) + λLaug(θ). (2.4)

Here, λ > 0 is a hyperparameter that balances between the QA task and the prompted cloze

task.

2.5 Experiments

In this section, we describe in detail how we set up our experiments, then we report the

experimental results and discuss the results. We further provide some in-depth analysis of

Gotta, through which we can better understand the model.
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2.5.1 Experimental Setup

Datasets. Following Splinter [RKB21] and FewshotQA [CN21], we sample subsets from the

MRQA 2019 shared task [FTJ19] for our few-shot experiments. Specifically, MRQA contains

eight widely used benchmark question answering datasets: SQuAD [RZL16], NewsQA [TWY17],

TriviaQA [JCW17], SearchQA [DSH17], HotpotQA [YQZ18], Natural Questions [KPR19],

BioASQ [TBM15b], and TextbookQA [KSS17]. Following Splinter [RKB21], smaller training

datasets are sampled in a logarithmic manner from the original full datasets, resulting in

few-shot datasets with training example numbers 16, 32, 64, and 128.

Comparative Baselines. We evaluate the performance of Gotta against four compet-

itive few-shot QA methods, including RoBERTa [LOG19], SpanBERT [JCL20], Splin-

ter [RKB21], and FewshotQA [CN21].

Implementation Details. We extract 24,863,792 entities from Wikidata for entity candi-

date matching. When extracting the entities in the contexts of training samples, we use the

Aho-Corasick algorithm2 [AC75] to conduct exact multi-pattern lexical matching. For all

the models, we use the same hyperparameters during training for a fair comparison. Specif-

ically, the models are optimized by Adam [KB14] with bias corrections. The learning rate

is 2 × 10−5 without learning rate scheduling. The training batch size is set to 2. The maxi-

mum sequence length of sequence generation is 100 for FewshotQA and Gotta. We train

all compared models for 25 epochs. The reported results are given by the best-performing

checkpoint on the development sets. For Gotta, we perform a grid search for the loss weight

λ in the space {0.01,0.05,0.1,0.5,1.0,10.0}. All the experiments are run on NVIDIA Tesla

A100-SXM4 Tensor Core GPUs with 40GB memory.

Evaluation Metrics. Following previous studies [RKB21, CN21], we use the F1 score as

our evaluation metric. Specifically, for each sample in the test set, the predicted span and

2https://github.com/WojciechMula/pyahocorasick/

16



# examples SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TextbookQA

16 336 2,118 883 1,904 2,620 517 591 1,814
32 711 4,287 1,422 2,801 5,452 1,005 1,205 3,934
64 1,539 8,592 2,696 5,867 10,601 2,090 2,568 7,526
128 3,052 17,301 4,989 11,469 21,113 4,128 5,226 15,504

Table 2.1: Number of augmented training examples per dataset. We construct one training
example for each entity extracted from the passages and form the cloze task.

the ground truth answer are treated as bags of words, and F1 scores are applied to compute

the overlap between these two sets. If there are multiple ground-truth answers to a particular

question, we take the maximum of the corresponding F1 scores.

2.5.2 Performance Comparison

Table 4.2 shows the few-shot QA performance of compared models across all the benchmarks

when 16, 32, 64, and 128 training examples are given. For both FewshotQA and Gotta, we

use BART-large as the backbone PLM. We also report their performance when BART-base

is applied as the PLM, in which case the models are denoted as FewshotQA-base and

Gotta-base, respectively. We repeat the same experiment 5 times using different random

seeds and report the mean and standard deviation of the results for each method. Further-

more, we include the relative performance gain of Gotta over the second-best method, i.e.,

FewshotQA. Overall, Gotta outperforms all the compared methods by a decent margin in

most cases. Even beyond that, we observe a lower variance in results produced by Gotta

over FewshotQA in most cases (24 out of 32), especially when fewer training examples are

available (14 out of 16).

Next, let us take a closer look at specific datasets. On SQuAD and HotpotQA, Gotta

consistently achieves higher F1 with lower variance. On TriviaQA, NewsQA, SearchQA,

and TextbookQA, we observe relatively more significant performance gains over the best

baseline. We conjecture that it is because the number of augmented data samples on these

datasets is larger than that on other datasets. Therefore, signals from the cloze task are

sufficient to impact the main QA task positively.
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Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TextbookQA

16 Examples

RoBERTa 7.7±4.3 7.5±4.4 17.3±3.3 1.4±0.8 6.9±2.7 10.5±2.5 16.7±7.1 3.3±2.1
SpanBERT 18.2±6.7 11.6±2.1 19.6±3.0 7.6±4.1 13.3±6.0 12.5±5.5 15.9±4.4 7.5±2.9
Splinter 54.6±6.4 18.9±4.1 27.4±4.6 20.8±2.7 26.3±3.9 24.0±5.0 28.2±4.9 19.4±4.6

FewshotQA-base 55.3±2.7 39.6±6.2 46.9±1.4 36.5±2.6 40.8±4.4 43.7±2.4 52.1±1.6 16.7±2.2
FewshotQA 72.5±3.7 47.1±7.6 57.3±3.2 44.9±4.5 54.3±5.9 59.7±2.2 62.7±4.4 33.1±3.2

Gotta-base 57.8±2.6 40.8±5.6 47.1±1.1 36.2±1.6 41.8±5.4 45.9±1.7 55.2±2.5 20.5±1.9
Gotta 74.6±1.9 63.3±8.0 58.9±1.9 47.3±2.5 56.8±3.9 59.8±2.1 66.1±3.1 38.5±5.3

Improvement% 2.9 34.3 2.8 5.3 4.5 0.1 5.4 16.1

32 Examples

RoBERTa 18.2±5.1 10.5±1.8 22.9±0.7 3.2±1.7 13.5±1.8 10.4±1.9 23.3±6.6 4.3±0.9
SpanBERT 25.8±7.7 15.1±6.4 25.1±1.6 7.2±4.6 14.6±8.5 13.2±3.5 25.1±3.3 7.6±2.3
Splinter 59.2±2.1 28.9±3.1 33.6±2.4 27.5±3.2 34.8±1.8 34.7±3.9 36.5±3.2 27.6±4.3

FewshotQA-base 59.5±2.2 50.3±3.1 48.1±2.1 40.7±2.3 49.4±3.2 48.2±1.7 56.7±2.2 24.1±4.2
FewshotQA 73.8±2.2 56.7±5.9 60.6±2.4 50.0±2.8 61.4±3.6 61.6±1.5 66.9±4.7 41.7±4.2

Gotta-base 62.7±1.8 47.7±4.5 49.6±1.3 41.4±2.4 49.8±2.5 49.6±1.3 57.6±3.0 28.1±1.9
Gotta 76.0±2.0 61.9±4.8 59.8±2.4 51.2±1.5 63.1±3.1 62.7±1.2 69.5±1.0 46.3±3.7

Improvement% 3.0 9.1 -1.4 2.4 2.8 1.7 3.8 11.1

64 Examples

RoBERTa 28.4±1.7 12.5±1.4 24.2±1.0 4.6±2.8 19.8±2.4 15.0±3.9 34.0±1.8 5.4±1.1
SpanBERT 45.8±3.3 15.9±6.4 29.7±1.5 12.5±4.3 18.0±4.6 23.3±1.1 35.3±3.1 13.0±6.9
Splinter 65.2±1.4 35.5±3.7 38.2±2.3 37.4±1.2 39.8±3.6 45.4±2.3 49.5±3.6 35.9±3.1

FewshotQA-base 66.5±1.1 52.3±2.8 51.5±1.6 43.5±2.0 54.9±2.0 50.7±1.6 64.3±2.3 31.7±2.8
FewshotQA 77.9±2.1 57.9±4.4 60.9±2.5 53.7±1.1 65.4±2.4 63.1±2.2 73.2±3.1 44.8±1.8

Gotta-base 67.7±0.9 50.6±4.0 51.5±1.3 45.7±1.6 54.6±3.1 52.0±0.8 64.9±2.6 35.5±3.5
Gotta 78.9±0.5 59.6±1.9 63.6±1.0 54.3±3.0 66.3±2.5 64.3±1.7 73.2±1.5 51.2±2.8

Improvement% 1.3 3.0 4.4 1.1 1.4 1.9 0.0 14.3

128 Examples

RoBERTa 43.0±7.1 19.1±2.9 30.1±1.9 16.7±3.8 27.8±2.5 27.3±3.9 46.1±1.4 8.2±1.1
SpanBERT 55.8±3.7 26.3±2.1 36.0±1.9 29.5±7.3 26.3±4.3 36.6±3.4 52.2±3.2 20.9±5.1
Splinter 72.7±1.0 44.7±3.9 46.3±0.8 43.5±1.3 47.2±3.5 54.7±1.4 63.2±4.1 42.6±2.5

FewshotQA-base 70.8±0.7 45.9±2.1 53.6±1.1 48.4±1.8 58.7±0.9 56.3±0.9 73.8±1.0 37.7±1.1
FewshotQA 78.8±2.7 55.2±1.8 63.3±1.6 56.8±1.1 67.0±1.8 64.9±1.8 77.2±1.5 46.2±5.9

Gotta-base 71.3±1.3 52.8±2.0 54.2±0.7 49.8±1.6 60.2±1.6 56.3±1.4 73.1±1.9 40.3±3.2
Gotta 80.8±1.7 60.0±3.6 64.9±1.2 57.4±1.2 69.8±1.5 66.7±1.8 78.6±2.1 53.3±1.7

Improvement% 2.6 8.8 2.5 1.1 4.3 2.9 1.8 15.3

Table 2.2: Overall performance in F1 scores across all datasets when the numbers of training
examples are 16, 32, 64, and 128. NQ stands for Natural Questions. Improvement% marks
the relative performance improvements of Gotta compared to the best baselines. RoBERTa,
SpanBERT, and Splinter have 110M parameters. FewshotQA-base and Gotta-base have
130M parameters. Both FewshotQA and Gotta have parameters of size 406M. The average
improvements of Gotta over FewshotQA are significant on all eight datasets in a paired
t-test (p-value < 0.05).

18



Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TextbookQA

16 Examples

Gotta 74.6±1.9 63.3±8.0 58.9±1.9 47.3±2.5 56.8±3.9 59.8±2.1 66.1±3.1 38.5±5.3
Gotta-random 72.1±2.6 53.2±8.4 56.2±4.1 46.7±2.2 54.8±6.1 61.2±1.0 61.9±2.3 38.4±2.7
Gotta-MTL 71.0±1.9 49.4±7.7 57.8±2.6 45.1±3.5 56.0±5.1 58.4±2.3 62.9±4.5 37.4±3.4
Gotta-what 69.8±2.9 52.0±7.3 57.9±3.3 46.8±1.8 54.9±4.4 60.1±1.0 66.2±3.3 38.8±2.3

32 Examples

Gotta 76.0±2.0 61.9±4.8 59.8±2.4 51.2±1.5 63.1±3.1 62.7±1.2 69.5±1.0 46.3±3.7
Gotta-random 75.9±2.1 54.7±5.4 59.3±1.7 51.5±2.2 62.8±2.3 63.3±1.6 67.5±3.8 42.6±4.9
Gotta-MTL 70.9±2.4 55.5±5.8 60.0±1.4 48.7±3.2 60.8±1.7 61.4±1.2 66.7±1.9 41.5±3.6
Gotta-what 74.7±1.1 54.6±5.6 60.4±2.2 50.0±1.2 62.4±2.9 60.2±1.7 70.7±1.3 40.4±4.1

64 Examples

Gotta 78.9±0.5 59.6±1.9 63.6±1.0 54.3±3.0 66.3±2.5 64.3±1.7 73.2±1.5 51.2±2.8
Gotta-random 79.3±1.3 57.9±3.4 62.2±1.6 53.0±3.0 66.1±3.4 63.8±1.7 72.8±1.7 51.1±3.3
Gotta-MTL 73.9±2.7 54.5±5.0 60.7±1.1 52.6±1.1 65.7±2.3 63.3±1.7 71.6±2.6 45.1±3.3
Gotta-what 78.7±1.2 59.2±2.5 62.7±0.9 54.2±1.6 67.2±1.3 64.0±1.0 70.9±3.4 48.0±1.9

128 Examples

Gotta 80.8±1.7 60.0±3.6 64.9±1.2 57.4±1.2 69.8±1.5 66.7±1.8 78.6±2.1 53.3±1.7
Gotta-random 79.9±1.0 58.6±4.0 64.3±0.9 57.2±0.9 69.8±1.5 66.0±0.7 78.1±2.1 52.5±4.1
Gotta-MTL 77.2±1.9 54.1±1.7 62.4±1.0 53.1±2.1 65.9±1.9 64.1±1.9 76.5±1.3 47.6±2.1
Gotta-what 80.9±1.4 57.8±4.0 64.5±0.6 57.6±0.6 67.5±0.9 64.7±1.5 77.7±1.9 52.4±2.3

Table 2.3: Performance of different model variations across all datasets in F1 scores. We
also conduct significant tests for Gotta-random. However, Gotta-random does not signif-
icantly outperform FewshotQA (p-value ≫ 0.05).

2.5.3 Analysis and Discussions

We further provide more in-depth studies to look into which steps and parts contribute the

most to Gotta’s performance. Looking back on the design of our model, three key modules

are proposed, namely entity masking, prompt data construction, and prompt loss design.

Besides, data augmentation also plays a vital role in Gotta.

2.5.3.1 Entity Masking

We start from the entity masking module. To check whether entity masking benefits the

overall performance, we create a variation of Gotta called Gotta-random. In Gotta-

random, we remove the entity masking module and randomly mask text spans instead of

entities that appear in the Wikidata entity set. As shown in Table 2.3 comparing between

Gotta and Gotta-random, we find that: (1) Randomly masking usually yields a higher
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variance. Although the cloze task can still be fulfilled by randomly selecting phrases, it

destabilized the overall QA performance. (2) The full model outperforms the random model

in most cases, which validates our hypothesis that masking entities in the context are crucial

for selecting the subjects of the cloze examples, thus improving the QA task.

2.5.3.2 Prompt-tuning vs. Multi-task Learning

Prompt data construction is the second key step proposed in our Gotta framework. As

an analysis, we compare prompt tuning with multi-task learning, which can be the other

intuitive approach to jointly learn the QA and cloze tasks. Specifically, we denote Gotta

with multi-tasking learning as Gotta-MTL.

From Table 2.3, we observe that (1) Gotta-MTL has apparently worse performance

than Gotta, which validates our claim that formulating the cloze task in the same format

of QA is essential. (2) Gotta-MTL is defeated by Gotta-what in most cases, meaning that

the contribution of prompt is larger than that of entity masking or question text. That being

said, aligning the format of QA, cloze along with that of the pre-training task contributes

the most to the overall performance.

2.5.3.3 Question Templates

Now that we have shown that it is necessary to formulate the cloze task as prompt-tuning, a

natural question is: Does the question text have an impact on the prompt-tuning performance?

To answer this, we construct another model Gotta-what to study the effect of question text

on the performance. The mere distinct between Gotta-what and the original model is the

question text of the augmented data. Formally, we change the original question

q =What is the masked entity?
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to the question

q =What?

Comparing the performance of Gotta-what with that of Gotta in Table 2.3, we observe

that the two are comparable. On TriviaQA, Gotta slightly outperforms Gotta-what

consistently while things are otherwise on any other dataset, with the two going back and

forth.

FewshotQA: Chick; Gotta-MTL: A dog
Gotta:  Birds
Ground truth: Birds

Context: “…Written by Shakira and performed with South 
African band Freshlyground, the official song of the 2010 
FIFA World Cup. Waka Waka (This Time for Africa) 
expresses the energy and vitality of the African continent. 
Waka Waka (This Time for Africa) represents what we 
football fans can expect in South Africa: liveliness, power 
and dynamic, FIFA president Sepp Blatter said following 
last week’s announcement of the official World Cup song 
by Fifa and Sony Music …”
Question: What event was the song "Waka Waka" written 
for?

Context: “…The South American Goliath birdeater 
(Theraphosa blondi) is the world's largest spider, according 
to Guinness World Records … They will essentially attack 
anything that they encounter" Naskrecki said. The spider 
hunts in leaf litter on the ground at night, so the chances of 
it encountering a bird are very small, he said. However, if it 
found a nest, it could easily kill the parents and the chicks, 
he said, adding that the spider species has also been 
known to puncture and drink bird eggs”
Question: Goliath is the name for a South American spider 
that eats what?

FewshotQA, Gotta-random: Football
Gotta:  2010 FIFA World Cup
Ground truth: 2010 FIFA or 2010 FIFA World 
Cup

Answers Answers

Figure 2.3: Answers generated by different models for two test cases from TriviaQA. We
match the color of the generated answers with their occurrences in the text if they are in
the text. In both cases, Gotta successfully generates the correct answer, whereas baselines
without entity masking can not accurately recover the entity-level details.

2.5.3.4 Case Study

We further take a look at two concrete test cases. Figure 4.4 illustrates two examples

sampled from the test set of TriviaQA. As we can see, in the left case, both FewshotQA

and Gotta-random generate the incorrect answer Football. While this generated answer

has highly relevant semantics to the correct answer 2010 FIFA World Cup, that answer

is still not detailed enough. From this observation, we validate our claim that compared

with FewshotQA and Gotta-random without an entity masking module, the full model of

Gotta can generate the answer text in detail from the entity level. In the right case, Gotta
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generates the correct answer. In contrast, although Gotta-MTL generates the answer A

dog that a spider could eat, it is still a wrong answer and does not even appear in the

context. This difference perfectly demonstrates that prompt-tuning is beneficial to building

connections between entities in the same context. Although FewshotQA returns an answer

within the context, the answer is too trivial to answer the question. These two cases provide

evidence to validate that entity-aware masking and prompt-style data augmentation in our

proposed Gotta are both essential to acquiring the capability of deeply understanding the

complicated semantics in questions and contexts.

2.5.3.5 Effect of Augmented Data
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Figure 2.4: Relative performance improvement w.r.t. the number of augmented data gen-
erated per sample. There are in total 32 data points corresponding to each setting on each
dataset in Table 4.2.

As shown in Figure 2.4, we proceed to study the actual effect of augmented data on

the overall performance by investigating the relationship between average augmented

example per training example and relative performance improvement. With the

growth of average augmented data per training example, the performance gain is generally

larger. Recall that we construct augmented data by raising questions on the entities detected

in the context of training examples. When there are more entities in the context, Gotta

can learn more about the semantics of the entities and potentially the relations in between,

thus having a deeper understanding of the context, thereby further strengthening the QA
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performance. However, we do observe there is not much gain on SearchQA. Our conjecture

is that the contexts of SearchQA are usually very long, so it is rather hard to match the most

critical entities. In the extreme case, the entity masking degenerates to MLM, omitting the

role of the entities.

2.6 Conclusion and Future Work

In this work, we propose to incorporate the cloze task to improve neural machine question

answering with a few training examples. The key idea is to identify and mask the informative

entities in the passage and make the model predict them correctly. Through empirical

experimental studies on various QA benchmarks and different few-shot settings, we show

that the cloze task indeed benefits the QA task due to its commonalities. We find different

ways of incorporating the cloze task improve the QA task while prompt-tuning brings the

most. Looking forward, it is of interest to explore QA-dedicated pre-training and ways of

pipelining pre-training and prompt-tuning for downstream few-shot QA needs.

23



CHAPTER 3

Learning a Small Student from Multiple Large

Language Models

3.1 Abstract

Transferring the reasoning capability from stronger large language models (LLMs) to smaller

ones has been quite appealing, as smaller LLMs are more flexible to deploy with less expense.

Among the existing solutions, knowledge distillation stands out due to its outstanding effi-

ciency and generalization. However, existing methods suffer from several drawbacks, includ-

ing limited knowledge diversity and the lack of rich contextual information. To solve the

problems and facilitate the learning of compact language models, we propose TinyLLM,

a new knowledge distillation paradigm to learn a small student LLM from multiple large

teacher LLMs. In particular, we encourage the student LLM to not only generate the cor-

rect answers but also understand the rationales behind these answers. Given that different

LLMs possess diverse reasoning skills, we guide the student model to assimilate knowl-

edge from various teacher LLMs. We further introduce an in-context example generator

and a teacher-forcing Chain-of-Thought strategy to ensure that the rationales are accurate

and grounded in contextually appropriate scenarios. Extensive experiments on six datasets

across two reasoning tasks demonstrate the superiority of our method. Results show that

TinyLLM can outperform large teacher LLMs significantly, despite a considerably smaller

model size.
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3.2 Introduction

Large language models (LLMs) have recently taken over various domains and web appli-

cations, including society [RJP23], education [ZMT23], and recommendations [WZQ23].

Although cutting-edge language models like GPT-4 and Claude-2 have shown remarkable

capability in producing coherent and contextually appropriate text, their smaller counter-

parts often fall short, especially in tasks that demand sophisticated reasoning and a deep

level of understanding [WTB22]. This discrepancy has been unveiled as the well-known

scaling law of LLMs, which suggests a correlation between model size and reasoning, lin-

guistic, and generalization capabilities [KMH20]. However, deploying these colossal models

in a real-world setting poses significant challenges due to their computational requirements

and resource demands, underscoring the importance of building efficient, smaller models

that retain the power of their larger counterparts. Previous studies have shown that knowl-

edge distillation is an instrumental tool in mitigating the performance gap between larger

LLMs and smaller ones [WWL23, HLY23]. Examples of effective distillation methods include

DistilBERT [SDC19], Alpaca [TGZ23] and Vicuna [ZC23].

However, existing methods suffer from two major drawbacks: (1) Limited Knowledge

Diversity: Current research predominantly employs a single-teacher approach, which con-

fines the learning scope of the student model to the knowledge derived from its own training

and architecture designs [HSY22, MMA22, Li23, WCI22]. This restricts the student model

to a single perspective, potentially overlooking the diverse problem-solving strategies and

reasoning capabilities exhibited by different models, limiting its breadth and depth of un-

derstanding. (2) Lack of Rich Contextual Information: While rationales play a vital

role in effective reasoning [WW22, KGR22], current research primarily focuses on leveraging

ground truth labels, which indicate the correct answer but do not provide insights into the

reasoning and thought process behind that answer. In other words, learning the ground truth

labels exclusively failed to capture the nuanced decision-making processes of the teachers,
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which are crucial for tasks requiring complex reasoning and interpretation.

To solve these issues, we propose TinyLLM, a paradigm that facilitates the learning of

a small student LLM by distilling knowledge from multiple large teacher LLMs with ratio-

nale guidance. Specifically, TinyLLM mitigates the limited knowledge diversity issue by

involving multiple teacher models as co-advisors, which introduces a richer, varied knowledge

source for the student to learn from. To fully exploit each teacher model and mitigate the

lack of rich contextual information problem, TinyLLM asks the teacher for the credible ra-

tionales to support the answers, thereby providing the student with a deeper understanding

of the problem-solving process. By learning from multiple teachers, the student model can

inherit a broader range of skills and knowledge, leading to better generalization capabilities.

In addition, to ensure the rationales are grounded in contextually appropriate scenarios and

reflect the true underlying reasoning procedure, TinyLLM features an in-context example

generator and a teacher-forcing Chain-of-Thought strategy, making the teachers understand

the task through demonstrations and therefore generate the accurate rationales.

To thoroughly evaluate our approach, we conduct experiments on six datasets in com-

monsense and biomedical reasoning tasks. The results show that the usage of our paradigm

enhances performance by +5.07% to +15.69% compared to full fine-tuning. Compared

to the teacher models, TinyLLM achieve superior performance improvement, e.g., up to

+23.40% with significantly smaller model size, e.g., 1.1% to 26.0%. Furthermore, com-

pared to the state-of-the-art distillation method, we improve the performance by +10.00%

to +11.79% across different model sizes. In addition, we perform efficiency analyses, ab-

lation studies, parameter sensitivities, and case studies to demonstrate and validate the

effectiveness of the proposed method. To summarize, our main contributions are as follows:

● We identify two critical limitations in the existing knowledge distillation landscape for

LLMs: 1) limited knowledge diversity and 2) lack of rich contextual information.

● To solve these two problems, we proposeTinyLLM, a novel knowledge distillation paradigm

to learn a small student LLM from multiple large teacher LLMs.
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● TinyLLM encompasses several innovative designs including an in-context example gen-

erator, a teacher-forcing Chain-of-Thought strategy, and a joint learning objective from

various teachers.

● Extensive experiments validate the superiority of TinyLLM across six datasets and two

reasoning tasks, with performance improving by up to +15.69% compared to full fine-

tuning, up to +23.40% compared to teacher models, and up to +11.79% compared

to state-of-the-art. In addition, TinyLLM holds a significantly smaller model size, e.g.,

1.1% to 26.0% compared to the teachers.

3.3 Related Work

In this section, we review existing work including large language models, chain of thought,

and knowledge distillation.

Large Language Models. Recent advancements have seen the proposal of various

Large Language Models (LLMs) [CHL22, TMS23, TM23, BMR20], which have showcased

remarkable performance across a spectrum of tasks [SX23, WRT24, LHT24, TZT24, LDT24].

Central to these developments is question answering, a task that necessitates intricate reason-

ing and comprehensive understanding skills for text interpretation and generating suitable

responses to queries [LMX22, ZLW21, CJC24b, TSW24a]. Despite their formidable learn-

ing capabilities, LLMs encounter limitations in accurately capturing factual knowledge and

are prone to producing unsubstantiated responses [ZZL23, JLF23, BCL23]. Moreover, the

extensive number of parameters within LLMs complicates their adaptation for downstream

tasks [WSF22, SPN22]. To mitigate these challenges, several approaches aim to lessen the

dependency on intensive training and reduce computational costs [LAC21a, LL21, HSW22].

For example, Prompt Tuning [LAC21a] employs soft prompts to adapt pre-trained LLMs for

specific tasks.

Chain of Thought. Recently, the use of rationales generated by LLMs has become a
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popular trend, setting itself apart from the traditional reliance on human-generated ra-

tionales [HB22]. Previously, human rationales have been used for model regularization

[RHD17], as additional inputs for predictions [RMX19], and to improve model performance

[ZEP07, ZMW16, CRL18, HBM19, PBD22]. They also serve as gold standard labels for gen-

erating similar rationales to enhance interpretability [WMS21, NRL20, EAB22]. However,

the cost of human rationales limits their widespread use. On the other hand, modern LLMs

can generate high-quality reasoning steps to explain their predictions [WW22, KGR22], im-

proving performance in few-shot or zero-shot learning [WW22, KGR22, WCI22] and serving

as self-improvement data [ZWM22, HGH22]. However, LLMs’ size hinders their deployment

in practice. Correspondingly, recent research explores leveraging generated rationales for

training smaller, task-specific models with minimal computational and memory overhead

[WLX21, HSY22, MMA22, Li23]. For example, PINTO [WCI22] presents an LLM pipeline

that rationalizes via prompt-based learning. However, they still rely on an LLM for rationale

generation at test-time, not fully addressing deployment challenges. In this work, we pro-

pose a multi-task learning paradigm with superior chain-of-thought reasoning capabilities,

avoiding the dependence on teacher models during the test phase.

Knowledge Distillation. Recent LLMs such as PaLM 540b [CND23] present formidable

challenges in terms of inference and fine-tuning, primarily attributable to the extensive com-

putational resources they necessitate. This dependency and requirement on computation un-

derscore the pivotal role of knowledge distillation [HVD15, TZG23, TPZ23, GYM21, CH19],

which has proved to alleviate the resource limitation by training a smaller model to mimic

the large teacher model. In addition, the employment of the Chain-of-Thought paradigm has

facilitated the generation of deliberative reasoning samples from the teacher models [HSY22],

allowing student models to concurrently grasp both the answers and the intricate reasoning

of the teachers. This process strengthens the student model through multi-task learning en-

deavors [HLY23]. Correspondingly, efforts have been made to generate various rationales for

each inquiry, seeking to ensure consistency in the predictions [CWQ23]. However, depending
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Figure 3.1: Pipeline of TinyLLM: Given an input question, we first generate in-context
examples and obtain rationales from multiple large LLMs via a teacher-forcing Chain-of-
Thought strategy. Later, a small student LLM is trained to integrate rationales from different
teachers via multi-task instruction tuning, along with the ground truth label.

on the rationales from a single teacher model introduces bias and compromises thorough-

ness, thus not fully tapping into the capabilities of multi-teacher learning paradigms. These

paradigms, by their very nature, hold the potential to enhance knowledge diversity, an aspect

that remains largely unexplored.

3.4 Method

In this section, we formally present TinyLLM to resolve the challenges described in the

Introduction. In particular, we start by describing the preliminary. Next, we introduce the

details of TinyLLM by first obtaining rationales from multiple teachers, and then learning

a small student using the obtained rationales. The TinyLLM pipeline is shown in Figure

3.1.
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3.4.1 Preliminary

Multiple Choice Question Answering. A k-way multiple choice question answering

(MCQA) is defined as follows: Given a question Qi, a set of candidate answer options

Oi = {Oi1,Oi2, ...,Oik}, the model is tasked with selecting the correct answer from the set

Oi, such that the selected answer aligns the ground truth label Ai.

Knowledge Distillation. The knowledge distillation process begins with the teacher

model, denoted as T parameterized by θT , which has been pre-trained on a large corpus.

Later, the student model, S, with parameter θS, is tasked with distilling knowledge directly

from T , leveraging the strong capabilities of T . Correspondingly, the objective function can

be formulated as: L = ℓ(S,T ), where ℓ indicates the learning function, e.g., cross-entropy

loss between the prediction output of the student and the target output generated by the

teacher.

3.4.2 Obtaining Rationales from Teachers

In-context Example Generator. To enable the rationales that are generated by teachers

to be grounded in contextually appropriate scenarios, we introduce an optional in-context

example generator. This tool is designed to produce in-context examples for any given

input, providing more detailed information about the input data and task. For simplicity,

we select the examples randomly within the same dataset. This aids the teacher LLMs

in comprehending the nature and specifics of the task more deeply. By integrating this

generator, we facilitate a more informed and nuanced generation of rationales by the teacher

models, enhancing the learning experience for the student model.

Teacher-forcing Chain-of-Thought. In addition, we design a teacher-forcing strategy

to ensure the validity of the rationales. Compared to existing methods that simply employ

regular chain-of-thought (CoT) mechanisms [WW22, KGR22], wherein an LLM is prompted

with sets of questions and options {Qi,Oi} to elicit rationales Ri directly, TinyLLM posits
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a distinct advantage in integrating the correct answer Ai into the input. We hypothesize

that the inclusion of Ai alongside Qi and Oi facilitates a more nuanced understanding of the

input context and the correct logical rationales leading to the answer, thereby facilitating a

more informed and accurate generation process. Specifically, we consider the concatenation

of questions, options, and answers {Qi,Oi,Ai} as the input to LLMs.

Rationales from Multiple Teachers. Given M teachers, TinyLLM pioneers the usage

of a multi-teacher architecture in which each teacher Tm is an LLM. In particular, the

rationale Rm
i produced by a specific teacher model θTm for the ith question is derived using

the question Qi, options Oi, correct answer Ai, and in-context examples Pi. The process is

formalized as follows:

Rm
i = T

m(Qi,Oi,Ai, Pi; θTm). (3.1)

3.4.3 Learning a Small Student

A straightforward strategy to incorporate rationales as supervision is to append each ra-

tionale Rm
i generated by the teacher models as supplementary input to the student model,

along with the question Qi and options Oi. However, this method faces challenges due to

limitations in computational resources at the inference stage, especially because rationales

must be pre-generated for every data sample in both training and test sets [WCI22]. To

overcome this issue, we employ rationales as a form of supervisory signal during the training

process to develop a model that is adept at generating its explanations. Subsequently, this

trained model can be utilized on the test set, eliminating the need for pre-generated ra-

tionales to facilitate accurate reasoning. Specifically, TinyLLM integrates rationales from

multiple teacher models into a unified multi-task instruction tuning framework. This neces-

sitates the assignment of a unique prefix p for distinguishing between learning tasks from

different teachers. The student model is trained not only to predict labels but also to gener-

ate rationales akin to those produced by the teachers. Accordingly, the overall loss function
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L is as follows:

L = LA +
M

∑
m=1

αmLTm , (3.2)

where LA denotes the objective of learning from ground truth answers, LTm indicates the

objective of learning from m-th teacher, αm is the importance weight for Tm, and M is the

number of teacher LLMs. Formally, LA and LTm are defined as follows:

LA =
1

N

N

∑
i=1

ℓ(S(Qi,Oi, pA; θS),Ai), (3.3)

LTm =
1

N

N

∑
i=1

ℓ(S(Qi,Oi, pm; θS),R
m
i ), (3.4)

where N is the number of data samples, ℓ indicates the cross-entropy loss between the

predicted and target tokens. Here LA encourages the student S to generate ground truth

answer Ai by minimizing the difference between it and the student output given the question

Qi, options Oi, and instruction prefix pA for generating answers. On the other hand, LmT

facilitates the student S to mimic the reasoning capability of teacher Tm by learning from

its rationale Rm
i , with the guidance of instruction prefix pm for Tm.

3.5 Experiments

In this section, we rigorously test TinyLLM against a series of empirical benchmarks across

varied datasets and reasoning tasks. In addition, we conduct efficiency analyses, ablation

studies, parameter sensitivities, and case studies to demonstrate the effectiveness and supe-

riority of our method.

3.5.1 Experimental Setup

Datasets. For the task of commonsense reasoning, we use OpenBookQA (OBQA) [MCK18],

The AI2 Reasoning Challenge (ARC) [CCE18], Physical Interaction Question Answering
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(PIQA) [BZL20], and RiddleSense (Riddle) [LWY21]. For the task of biomedical reasoning,

we consider PubMedQA (PQA) [JDL19] and BioASQ [TBM15a].

Baselines. We benchmark TinyLLM against the teacher’s performance and various base-

line methods, including Inference-only that only leverage the pre-trained model for evaluation

without training, and multiple fine-tuning methods that provide further adaptation. In par-

ticular, we consider LoRA [HSW22], full fine-tuning, and the PINTO method [WCI22] for

the fine-tuning methods. We also compare TinyLLM with various knowledge distillation

strategies. To illustrate, we include standard KD [HVD15] that enforces the student to mimic

the teacher’s labels and the Distill-step-by-step method [HLY23] that leverage rationales.

Implementation Details. For all distillation baselines and TinyLLM, we set the learning

rate to 5× 10−5, batch size to 8, maximum input length to 1024, and epoch to 1. For Distill-

step-by-step and TinyLLM, the trade-off weights αTn are explored within {0.01, 0.1, 0.5,

1, 2, 3}. We report the best result for Distill-step-by-step by leveraging different teacher

models. For the choice of LLMs, we use FLAN-T5 [CHL22] small (80M), base (250M), and

large (780M) as the student, and FLAN-T5 xlarge (3B) and LLaMA 2-chat [TM23] (7B) as

teachers. Experiments are conducted on four NVIDIA Tesla H100 GPUs.

3.5.2 Performance Comparison

Comparison to Baselines Methods. The results of six datasets and two reasoning tasks

are shown in Table 3.1. From the table, we observe that the employment of a full fine-tuning

method, despite its theoretically enhanced capacity for parameter adjustment, does not con-

sistently yield superior results to LoRA. Conversely, TinyLLM demonstrates substantial

performance enhancements across all datasets and LLM sizes. Quantitatively, TinyLLM

secures an average performance improvement by +15.69%, +11.55%, and +5.07% com-

pared to full fine-tuning for 80M, 250M, and 780M student models, respectively. Compared to

state-of-the-art distillation method Distill-step-by-step, TinyLLM achieves an improvement

of +10.00%, +10.32%, and +11.79% correspondingly. This demonstrates the effective-
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ness of TinyLLM and highlights the advantages of the designs in our method.

Comparison to Teachers. TinyLLM also shows superior performance compared to the

teacher models. For example, a 780M student can achieve an average performance of 73.88

across different datasets, which is+14.56% better than the 3B teacher and+23.40% better

than the 7B teacher. Moreover, an even smaller student model with 250M parameters can

outperform the teachers (+0.82% to 3B, +8.60% to 7B) while using only 8.3% and 3.6%

of the teacher parameters.

3.5.3 Efficiency Analysis of Training Set Size in Knowledge Transfer

Advantage Over Standard Knowledge Distillation. With the aim of fully evaluating

the proposed model, we test the performance of TinyLLM against state-of-the-art across

different sizes of training sets. As shown in Figure 3.2, TinyLLM demonstrates superior

performance in comparison to the state-of-the-art Distill-step-by-step method when using

various ratios of the training data. In addition, we observe that when using more training

data, the performance improves. Notably, in certain scenarios, our model, even when trained

with just 12.5% of the training set size, can surpass the performance of Distill-step-by-step,

which uses a considerably larger dataset. This is evident in the case of the PQA dataset,

where TinyLLM achieves performance that is comparable to or even exceeds that of Distill-

step-by-step, despite being trained on a much smaller portion of the dataset. This observation

holds true for both the 80M and 250M student models, indicating that the superiority of our

model across models of different sizes.

Outperforming full fine-tuning. TinyLLM further demonstrates its superiority com-

pared to full fine-tuning using all the dataset. Remarkably, in the situations of training a

250M TinyLLM on ARC and PQA datasets, alongside training a 80M TinyLLM on the

PQA dataset, only 12.5% of the training data is required to exceed the benchmarks set by

full fine-tuning. In addition, when training a 80M TinyLLM on the ARC dataset, a 75%

reduction in training samples is adequate for TinyLLM to attain a higher accuracy than
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Figure 3.2: A comparative analysis of TinyLLM against the state-of-the-art Distill-step-by-
step method using 80M and 250M FLAN-T5 model architectures across various training set
sizes. Dotted line indicates the full fine-tuning (FF) using 100% dataset. It is evident that
TinyLLM consistently surpasses the performance of both Distill-step-by-step and full fine-
tuning. Notably, TinyLLM achieves this superior accuracy while employing substantially
fewer training examples.

what is achieved through full fine-tuning on all the dataset.

3.5.4 Ablation Study

For a comprehensive evaluation, we conduct ablation studies to validate the contribution

of the in-context example generator and rationales from multiple teachers in enhancing

the reasoning capabilities of the distilled LLM. To facilitate this, we create three ablation

variants of TinyLLM, each designed to assess the impact of specific components on the

overall performance:

● w/o in-context rules out the use of in-context examples during rationale generation.

This variant tests the efficacy of in-context examples in guiding the student model to

generate more accurate and relevant rationales.

● w/o LLaMa and w/o T5 exclude the rationale supervision from the corresponding

teacher model during distillation. These variants help in understanding the individual

contributions of each teacher’s rationales in enriching the student model’s learning expe-

rience and overall performance.

● w/o diverse teachers excludes the weaker teacher model and generates multiple ratio-
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Figure 3.3: Performance w.r.t. different values of weight α.

nales from the stronger teacher model. This variant tests the effectiveness of using diverse

teachers.

● w/o teacher-forcing excludes the teacher-forcing strategy during rationale generation.

This variant tests the efficacy of the teacher-forcing strategy for generating higher-quality

rationales.

The results, as detailed in Table 3.2, provide a comparative analysis between the abla-

tion variants and the complete TinyLLM model. From Table 3.2, we have the following

observations: (1) TinyLLM outperforms all ablation variants. (2) There is no significant

performance gap between the ablation variants. These observations confirm the hypothesis

that absorbing high-quality rationales from multiple teacher models significantly contributes

to the refinement of the reasoning capabilities of the distilled LLM. The observations also

imply a balanced importance between the in-context examples and supervision of multiple

teachers.

3.5.5 Parameter Sensitivity

In order to fully evaluate the model, we conduct parameter sensitivity experiments on dataset

ARC for commonsense reasoning and PQA for biomedical reasoning. The results are shown

in Figure 3.3. In particular, we focus on the exploration of trade-off weights αT5 and αLLaMA,

which reveals the model’s adaptability across different choices of parameter values. Based
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Table 3.3: Case study of different models’ prediction. Examples are selected from the ARC
and PIQA datasets. In both cases, TinyLLM successfully generates the correct answer.

on the figure, we can derive the following observations: 1) the optimal parameters for vari-

ous datasets and tasks differ. The reason for this phenomenon is that biomedical reasoning

questions are often lengthy and complex, weakening the impact of rationales from teachers

and making a small value of α sufficient. In contrast, commonsense reasoning questions are

typically concise and straightforward, making the rationales from teacher models valuable

and leading to a large value of α. 2) Increasing α generally improves performance, attributed

to the Chain-of-Thought reasoning of the student model. While accuracy may not directly

reflect reasoning quality, the prediction capability benefits from the multi-task learning pro-

cess. However, excessively high α values degrade the performance by shifting the focus from

prediction to reasoning. 3) The sensitivity of αT5 and αLLaMA varies across datasets. For

commonsense reasoning, αT5 is more sensitive than αLLaMA, whereas, for biomedical reason-

ing, their sensitivities are similar, indicating that rationales from various teacher models can

have different insights and contributions to the particular task.

3.5.6 Case Study

To analyze the underlying reason for the superiority of TinyLLM in a more intuitive per-

spective, we perform case studies by comparing the predictions of different models. Table
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3.3 presents two examples we randomly select from the ARC and PIQA datasets.

In the first example, T5 provides a completely incorrect rationale while LLaMA generates

a meaningful rationale. Accordingly, T5 has a wrong prediction while LLaMA predicts

correctly. Full fine-tuning results in an incorrect answer, and the state-of-the-art Distill-

step-by-step method also predicts incorrect. The reason behind this is that the distillation

method, which utilizes T5’s reasoning, introduces noises that misguide the student model,

even though T5 significantly outperforms LLaMA in accuracy on the ARC dataset (as shown

in Table 3.1). However, TinyLLM demonstrates its ability to infer the correct answer (a)

with the guidance of rationales from both teachers.

In the second example, LLaMA, Distill-step-by-step, and full fine-tuning all produce the

incorrect prediction. Although LLaMA achieves a significantly better performance on the

PIQA dataset compared to the T5 (i.e., accuracy 78.80 compared to 58.43 according to

Table 3.1), LLaMA still returns an incorrect rationale. This indicates that the reliance on

a single-teacher model can be misleading. On the other hand, TinyLLM can generate the

correct prediction (a). These examples underscore the significance of multi-teacher learning,

as proposed in our TinyLLM framework, which provides the student model with diverse

contextual insights essential for effective learning and reasoning.

3.6 Conclusion

In this paper, we propose TinyLLM, a novel knowledge distillation paradigm to learn a

small student LLM from multiple large teacher LLMs. TinyLLM involves several princi-

pled designs, such as learning contextually appropriate rationales using an in-context exam-

ple generator, enabling the credibility of rationales with a teacher-forcing Chain-of-Thought

strategy, and inheriting a wider range of knowledge from various teachers. Our extensive

empirical evaluation and in-depth analysis, conducted across six datasets spanning two rea-

soning tasks, demonstrate that TinyLLM brings significant and consistent improvements
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by up to 15.69% over full fine-tuning, up to +23.40% over teacher models, and up to

+11.79% over state-of-the-art. Moreover, TinyLLM holds a significantly smaller model

size, e.g., 1.1% to 26.0% compared to the sizes of the teachers.

3.7 Limitations

While our study provides valuable insights into knowledge distillation, it has several lim-

itations. Firstly, we focused exclusively on question-answering tasks, not extending our

investigation to generative tasks. Secondly, due to hardware constraints, our research was

limited to models with a maximum scale of 7 billion parameters. Additionally, we only ex-

amined TinyLLM with two specific teacher models, leaving other LLMs unexplored. Future

research using larger-scale models and a broader range of teacher models would be beneficial

to validate our findings and improve the methodologies presented in this study.
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Commonsense Reasoning Biomedical Reasoning
Method

OBQA ARC PIQA Riddle PQA BioASQ
Total

3B/7B Teacher

FLAN-T5 xlarge 69.20 68.24 58.43 53.73 71.50 65.85 64.49
LLaMA 2 58.60 45.90 78.80 47.65 54.50 73.75 59.87

80M Student; Size: 2.7%/1.1%

Inference 16.60 19.31 20.78 13.33 38.00 47.97 26.00
OOD PINTO 46.40 26.87 48.10 25.29 60.00 80.49 47.86

LoRA 37.80 27.12 39.93 39.80 53.75 78.05 46.08
Full Fine-tuning 41.60 27.47 42.33 42.75 56.25 78.86 48.21
Standard KD 45.80 29.53 49.29 36.27 58.00 81.30 49.43

Distill-step-by-step 46.40 30.47 50.38 36.67 59.00 81.30 50.70
TinyLLM 49.40 33.05 53.65 51.18 62.00 85.37 55.78

∆FF ↑ 18.75% ↑ 20.31% ↑ 26.74% ↑ 19.72% ↑ 10.22% ↑ 8.26% ↑ 15.69%
∆Distill ↑ 6.47% ↑ 8.47% ↑ 6.49% ↑ 39.57% ↑ 5.08% ↑ 5.01% ↑ 10.00%

250M Student; Size: 8.3%/3.6%

Inference 31.00 23.00 30.47 30.78 48.00 57.72 36.83
OOD PINTO 50.40 38.63 52.12 34.90 61.75 82.93 53.46

LoRA 51.40 37.25 47.66 53.14 62.00 82.93 55.73
Full Fine-tuning 56.60 38.88 47.55 52.55 64.75 89.43 58.29
Standard KD 55.40 43.69 55.93 42.94 64.25 86.18 58.07

Distill-step-by-step 56.80 43.86 56.37 45.69 64.75 86.18 58.94
TinyLLM 64.20 48.50 60.17 60.78 66.25 90.24 65.02

∆FF ↑ 13.43% ↑ 24.74% ↑ 26.54% ↑ 15.66% ↑ 2.32% ↑ 0.91% ↑ 11.55%
∆Distill ↑ 13.03% ↑ 10.58% ↑ 6.74% ↑ 33.03% ↑ 2.32% ↑ 4.71% ↑ 10.32%

780M Student; Size: 26.0%/11.1%

Inference 50.40 51.07 51.90 39.80 64.25 63.41 53.47
OOD PINTO 62.20 52.10 57.13 42.94 70.00 84.55 61.49

LoRA 64.00 57.77 57.02 68.63 70.25 86.18 67.31
Full Fine-tuning 71.20 62.92 58.43 68.82 70.25 90.24 70.31
Standard KD 65.80 56.05 60.72 52.94 70.00 86.99 65.42

Distill-step-by-step 66.80 57.42 61.37 53.92 70.00 86.99 66.08
TinyLLM 74.40 64.29 67.90 70.98 73.00 92.68 73.88

∆FF ↑ 4.49% ↑ 2.18% ↑ 16.21% ↑ 3.14% ↑ 3.91% ↑ 2.70% ↑ 5.07%
∆Distill ↑ 11.38% ↑ 11.96% ↑ 10.64% ↑ 31.64% ↑ 4.29% ↑ 6.54% ↑ 11.79%

Table 3.1: Overall experimental results. The best results across different datasets and LLM
sizes are highlighted in bold. ∆FF and ∆Distill represent the relative performance improve-
ment of TinyLLM to Full Fine-Tuning and Distill-step-by-step, respectively. Accuracy is
used as the evaluation metric.

Commonsense Biomedical
Variant

OBQA ARC PIQA Riddle PQA BioASQ

w/o in-context 73.20 63.09 66.27 69.22 70.75 86.99
w/o LLaMA 73.00 62.32 66.70 68.82 69.25 87.81

w/o T5 73.80 61.80 66.49 68.63 69.50 88.62
w/o diverse teachers 73.80 62.49 66.81 68.82 70.00 89.43
w/o teacher-forcing 73.80 60.94 65.94 69.02 70.25 90.24

TinyLLM 74.40 64.29 67.90 70.98 73.00 92.68

Table 3.2: Impact of in-context examples, the teacher-forcing strategy and contributions of
various teachers.
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Part II

Minimally Supervised Data

Generation and Selection
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CHAPTER 4

MinPrompt: Graph-based Minimal Prompt Data

Augmentation for Few-shot Question Answering

4.1 Abstract

Recent advances in few-shot question answering (QA) mostly rely on the power of pre-trained

large language models (LLMs) and fine-tuning in specific settings. Although the pre-training

stage has already equipped LLMs with powerful reasoning capabilities, LLMs still need to

be fine-tuned to adapt to specific domains to achieve the best results. In this paper, we

propose to select the most informative data for fine-tuning, thereby improving the efficiency

of the fine-tuning process with comparative or even better accuracy on the open-domain QA

task. We present MinPrompt, a minimal data augmentation framework for open-domain

QA based on an approximate graph algorithm and unsupervised question generation. We

transform the raw text into a graph structure to build connections between different factual

sentences, then apply graph algorithms to identify the minimal set of sentences needed to

cover the most information in the raw text. We then generate QA pairs based on the

identified sentence subset and train the model on the selected sentences to obtain the final

model. Empirical results on several benchmark datasets and theoretical analysis show that

MinPrompt is able to achieve comparable or better results than baselines with a high

degree of efficiency, bringing consistent improvements in F-1 scores.
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4.2 Introduction

Question answering (QA) provides accurate responses to a series of questions based on

given narrative contexts. Its diverse applications extend to areas such as chatbots [YXL19],

dialogue systems [BSA18], and instant information retrieval [EKP21], making it a key pursuit

in the field of natural language processing (NLP). Supervised learning has traditionally been

the approach for developing efficient QA systems that deliver commendable results [CWN24,

THC24]. However, this method is intrinsically restricted by its reliance on a large set of

annotated QA training examples, which becomes problematic due to the substantial cost

associated with acquiring expert-level annotations.

Our research focuses on the few-shot QA task, an effort to address the QA challenge with

the presence of only a limited number of training examples. The prevalent approaches under

the few-shot setting either introduce a new task and pre-train an extensive language model

from scratch [RKB21], or they fine-tune an already pre-trained model on the given training

examples [CN21, TSW24b]. The fine-tuning stage is crucial in the sense that it stimulates the

power of the LLMs obtained during the pre-training stage and makes the model align with

the input/output distribution of a certain domain or dataset. However, with an increasing

data size for fine-tuning, the training duration increases accordingly, which is undesirable,

especially when the model size is also large [Ope23b]. As such, the importance of minimal

data augmentation cannot be understated. The fine-tuning data, often a limited resource

in our consideration (up to 128 shots), is directly used to adjust the parameters of a pre-

trained model to enhance performance on the downstream task. The data is usually labeled

by domain experts and thus could be time-consuming to obtain in large quantities. On

the other hand, augmented data represents a broader dataset, generated in an unsupervised

manner by converting statements into question-answer pairs. In QA tasks, it is vital for a

model to be exposed to a diverse range of questions, answers, and contexts to develop a

robust understanding of the language and the task at hand. However, not all parts of the
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training data hold equal relevance or significance for the model’s learning process. Some parts

may contain more valuable information or more complex language structures that the model

needs to understand to improve its performance. Consequently, identifying and augmenting

these critical portions of the training data could substantially enhance the model’s capacity

to answer questions accurately and comprehensively.

To address the above challenges, we present MinPrompt, which consists of the following

three modules: (1) A sentence graph construction module that leverages sentence graph

representation to structurize the raw text. Each node in the graph symbolizes a sentence,

while edges illustrate the shared entities between sentences. This sentence graph effectively

encapsulates the complex interconnections between various textual elements; (2) A data

selection module that features an approximate minimal dominating set algorithm. The

algorithm is applied to the sentence graph to identify the smallest set of sentences to cover

all shared entities. This module ensures efficient use of computational resources, reduces

the risk of overfitting, and enhances the model’s generalization ability, resulting in an overall

improvement in QA performance; and (3) A question generation module that transforms

the selected plain factual sentences into QA pairs. The synthesized QA pairs are further

turned into prompts, providing a condensed, yet comprehensive representation of the text.

The generated prompts serve as high-quality, information-rich training instances for the QA

model. This model trained on the compact and meaningful prompts is then capable of

generating accurate answers to the posed questions, all without requiring any additional

explicit supervision.

In summary, our contributions are as follows:

● We propose to study minimal data augmentation for effective and efficient few-shot QA

● We introduce MinPrompt, a minimal data augmentation framework that uses a graph-

based algorithm and unsupervised question generation to synthesize the most informative

QA training samples out of the raw text.
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● We conduct extensive experiments on publicly accessible benchmarks to validate the ef-

fectiveness of MinPrompt, and observe a solid improvement over competitive compared

methods. Beyond that, we also study the necessity of different parts of the model.

4.3 Related Work

Question generation. [CWZ19] presented an answer-aware question generation (QG)

model that employs reinforcement learning for improved question quality. The model incor-

porates a coverage mechanism to alleviate the common issue of answer-related content being

left out from the generated questions. [MZZ20] developed a more sophisticated approach

to answer-aware question generation. Their model uses sentence-level semantic matching

and answer position inferring within a sequence-to-sequence framework, resulting in higher-

quality questions. [DZJ23] proposed a two-stage framework for Conversational Question

Generation (CQG). It selects sentences from a semantic graph to pick up coherent topics

and then uses a classifier to determine the answer type of the question. Their approach pro-

duces more natural dialogues, as real-life interlocutors often discuss relevant content that is

non-sequential. [MSY22] introduces RQUGE, a novel metric for assessing the quality of au-

tomatically generated questions. Traditional methods may unfairly penalize valid questions

that don’t mirror reference questions closely. RQUGE overcomes these issues by evaluat-

ing on the basis of the answerability of a question given the context. Utilizing pre-trained

models for its QA scorer modules, RQUGE does not require additional training. The pa-

per presents evidence of RQUGE’s high correlation with human judgment and robustness

against adversarial corruption.

Few-shot QA. Previous research in QA has mainly focused on either reusing pre-trained

language models (PLMs) [LCG20, JCL20] or training a model from scratch using synthetic

QA data [PSS20, LDR19, AAP19]. However, both approaches require a large amount of an-

notated data from the downstream QA task to fine-tune the models, which can be impractical
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The Los Angeles 
Lakers are an American 
professional basketball team 
based in Los Angeles.

Question Generation Prompt-style Data Augmentation Generative Prompt-Tuning

Autoregressive 
Decoder

Bidirectional 
Encoder

Question: As of 2017, what was the estimated value of the basketball 
team that Luke Theodore Walton coaches?
Answer: $3.0 billion
Context: The Los Angeles Lakers are an American professional 
basketball team based in Los Angeles.  The Lakers compete in the 
National Basketball Association (NBA), as a member of the league's 
Western Conference Pacific Division.  The Lakers play their home games 
at Staples Center, an arena shared with the NBA's Los Angeles Clippers, 
the Los Angeles Sparks of the Women's National Basketball Association, 
and the Los Angeles Kings of the National Hockey League.  The Lakers 
are one of the most successful teams in the history of the NBA, and have 
won 16 NBA championships, their last being in 2010.  As of 2017, the 
Lakers are the second most valuable franchise in the NBA according to 
"Forbes", having an estimated value of $3.0 billion.

Question: What is the masked entity? 
Answer: <mask>. 
Context: The <mask> are an American professional basketball team 
based in Los Angeles.  The Lakers compete in…

Question: What is the masked entity? 
Answer: <mask>. 
Context: The Los Angeles Lakers are an American professional 
basketball team based in <mask>.  The Lakers compete in…

Original QA training example

Augmented Cloze training examples

Figure 4.1: Framework overview for MinPrompt.

in real-world scenarios. To address this problem, several recent approaches have been de-

veloped that allow the model to adapt to the downstream task with only a small amount

of annotated data [RKB21, CN21]. For example, [RKB21] proposed a pretraining scheme

tailored for QA tasks by designing a recurring span selection objective that aligns with the

common objective in extractive QA tasks. [CN21] proposed a framework called FewshotQA,

which leverages the capacity of existing PLMs by constructing a QA-style prompt that casts

the QA problem as a text generation problem, specifically by concatenating the question

and a mask token representing the answer span. This approach aims to save pretraining the

model on a large-scale corpus. In contrast to these previous studies, this paper proposes

to focus on identifying and leveraging more relevant information from the context data in

addition to the annotated QA pairs to fine-tune the model in a few-shot setting.
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4.4 MinPrompt: Graph-based Prompt Data Augmentation for

Few-shot QA

As shown in Figure 7.1, our overall framework, MinPrompt, is designed to extract the

most semantically rich and factually dense sentences to serve as candidates for conversion

into a prompt tuning QA dataset. This process is guided by the principal intuition that

the most informative sentences are those that encompass facts or declarations concerning

a greater number of entities. Hence, these high-impact sentences should ideally cite more

entities within their purview. To implement this, we start by extracting the co-reference

of entities across sentences. Essentially, it allows us to map the discourse in a way that

allows us to understand which sentences are speaking about the same entities. Next, we

construct a graph to depict the higher-order coreference relationships. In this graph, the

sentences serve as nodes, and sentences are connected if they mention the same entity. This

representation allows us to establish and understand the intricate network of relationships

between sentences and the entities they mention. Employing graph-based algorithms, we

are then able to identify and extract the most informative sentences. These are typically

sentences that have a high degree of connectivity in the graph, indicating that they mention

or discuss a larger number of entities. We then transform these selected sentences into a fine-

tuning dataset. The transformation process entails restructuring the sentences to meet the

format requirements of a QA dataset, which generally involves turning declarative sentences

into question-and-answer pairs. This method thus combines insights from computational

linguistics and graph theory to achieve its goal of creating a high-quality fine-tuning dataset

for QA tasks. The approach ensures that the dataset is not only rich in informative sentences,

but also maps intricate entity relationships, thus providing a comprehensive context for each

question and answer pair. This context helps in the training of more robust and nuanced

QA systems.
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4.4.1 Named Entity Recognition & Entity Typing

We use the entities as the bridge to build connections between all the factual sentences.

We first conduct named entity recognition (NER) on the raw text to extract all the entity

mentions along with their types. For the purpose of unsupervised QA data generation in our

setting, the key lies in generating the questions given the raw text and the extracted entities

(as answers). The most straightforward way to generate questions is to convert factual

sentences into cloze questions [CZD23]. Creating a conventional cloze question involves

extracting the original sentence containing the answer from the context and replacing the

answer with a chosen token. However, training a model on these data primarily imparts text-

matching and fill-in-the-blank skills, while offering minimal generalizability. As a result, we

opt for a retrieval-based method to procure a sentence akin to the one containing the answer

and subsequently use this to formulate a question. This has been evidenced in the work

by [LDR19] and further affirmed by our preliminary experiments. Our initial step involves

indexing all sentences from a Wikipedia dump using the ElasticSearch search engine. Named

entities were extracted from each sentence within the Wikipedia corpus as well as from the

sentences utilized as queries. We presupposed access to a named-entity recognition system

and leveraged the spaCy1 NER pipeline for this work, which is proven effective in NER

and entity typing. Subsequently, for a given context-answer pair, we queried the index.

This query involved using the original context sentence to return a sentence that either (1)

includes the answer, or (2) does not originate from the context, thus discarding sentences

with high similarity. Aside from guaranteeing that the retrieved sentence and the query

sentence share the answer entity, we require that at least one additional matching entity be

present in both the query sentence and the entire context. Finally, these retrieved sentences

were introduced into our sentence graph construction module.

1https://spacy.io
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Figure 4.2: Illustration of the Sentence graph. In the sentence graph, nodes correspond
to sentences and edges represent the coreference of entities across sentences. Sentences 1,
2 and 3 shares the entity Lakers while sentence 4 shares the entity Crypto.com Arena with
sentence 3.

4.4.2 Sentence Graph Construction

As aforementioned, we construct the sentence graph to capture the semantic overlap of

the factual sentences in the raw text. A proportion of the sentence graph is visualized in

Figure 4.2. Upon building the sentence graph, we aim at extracting the minimal sentence

set that covers the most semantics in the whole graph. Now the question becomes how we

can leverage the high-order co-reference relationship to reduce the size of the training data.

To dive deep into this question, we start by making the following assumption:

Assumption 1. Suppose two sentences in a sentence set S, {se, s′e} ⊂ S, mention the same

entity e. The quality of a QA model MS trained by a sentence set S will be similar to the

quality of the other model MS′ trained by the set S′ = S − {se} because s′e ∈ S
′ still cover the

similar topics and knowledge in se.

Based on Assumption 1, an intuitive idea of leveraging the sentence graph to effectively
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reduce the size of the training data is to find a minimal set of sentence nodes that can

cover the whole sentence graph without losing the quality of the model. In other words,

the challenge can be reduced to finding the minimal dominating set [AL78] of the sentence

graph.

4.4.3 Minimal Dominating Set Approximation

Unfortunately, finding the minimal dominating set is an NP-Complete problem [HL91], so

it is extremely time-consuming to obtain the optimal minimal dominating set as training

data. Hence, an efficient approximation approach to derive a decent dominating set with

few enough sentences is essential. To address this challenge, we leverage a greedy algorithm

as shown in Algorithm 1 by iteratively choosing the node that can cover the most uncovered

nodes.

Algorithm 1 ApproximateDominantingSet

S ← ∅
Let H be a priority queue
Add all nodes in H with their node degrees
while H is not empty do

v ←H.pop max()
S ← S⋃{v}
Remove v and its neighbors in E from H
Update degrees of the remaining nodes in H

end while
return S

Complexity Analysis. Here we analyze the complexity of Algorithm 1. Suppose V and

E are the numbers of nodes and edges. For time complexity, the algorithm first spends

O(V logV ) time to establish the max heap. For each iteration, taking the node with the

highest degree costs O(1) with the priority queue. In total, we need to update the priority

queue O(E) times, where each update costs O(logV ) time. Hence, the total time complexity

is O(E logV ). For space complexity, the additional space complexity is only O(V ) to record

the current set of uncovered nodes and the max heap.
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Theoretical Analysis. We also conduct some theoretical analysis on Algorithm 1. Ac-

cording to Theorem 1, the quality of dominating set derived by Algorithm 1 is guaranteed.

Theorem 1. Algorithm 1 computes an (ln∆+2)-approximation of the optimal dominanting

set. In other words, for the computed dominating set S and an optimal dominating set S∗,

we have
∣S∣

∣S∗∣
≤ ln∆ + 2,

where ∆ =maxv d(v) is the maximal degree of G.

Proof. Here we prove the theorem in an amortized way. Suppose each iteration costs

1 (i.e., contributing to the cardinality of the final dominating set). Instead of letting the

selected node takes all the cost, we amortize and distribute the cost among all newly covered

nodes.

Assume S′ is an optimal dominating set. By the definition of dominating set, we can

assign each node in V to exactly one neighboring node in S′ so that the graph can be

decomposed into several stars, where the center is a dominating node and non-dominating

nodes are leaves.

Consider a certain star with a center v′ ∈ S′ while choosing a node u in Algorithm 1.

By the greedy condition and the optimality of v′, after cost distribution, the charged cost

of u would be at most d(v′). Also, after removing u, the degree of v′ will be reduced by 1.

Following this process to iteratively select dominating nodes, the total amortized cost would

be at most:

1

d(v′) + 1
+

1

d(v′)
+⋯ +

1

1
=H(d(v∗) + 1)

≤H(∆ + 1)

< ln∆ + 2,
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where ∆ is the maximal degree of the graph; H(n) = ∑
n
i−1 1/i.

4.4.4 Question Generation

Our approach considers two question styles, including (1) generic cloze-style questions,

wherein the answer is substituted by the token “[MASK]”, and (2) a templated question

format termed ”Wh+B+A+?” as well as its diverse ordering variations, as depicted in Fig-

ure 4.3. Given a retrieved sentence structured as [Fragment A] [Answer] [Fragment B],

the template ”Wh + B + A +?” replaces the Answer with a component Wh (for instance,

what, who or where). This component is determined by the entity type of the Answer

and is placed at the beginning of the question. It is then followed by Fragment B and

Fragment A. The selection of the wh-component involves sampling a bi-gram based on the

likelihood of that particular bi-gram being connected with the named entity type of the

answer. This likelihood is calculated from the named entity and questions bigram starters

found in the SQuAD dataset. This information, while not leveraging the complete context-

question-answer framework, can be considered as prior knowledge that does not disrupt the

wholeness of our unsupervised methodology. It is also important to note that the choice

of wh-component does not have a substantial impact on the results. Although we experi-

mented with clause-based templates for this template-driven approach, we did not observe

any significant differences in performance.

4.4.5 Prompt-style Data Augmentation

We extend the recent progress in prompt tuning to create augmented data for MinPrompt.

Specifically, we have formulated a template to enable QA input, designated as xori. The
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Context: The Los Angeles Lakers are an American professional 
basketball team based in Los Angeles.  The Lakers compete in the 
National Basketball Association (NBA), as a member of the league's 
Western Conference Pacific Division.  The Lakers play their home games 
at Staples Center, an arena shared with the NBA's Los Angeles Clippers, 
the Los Angeles Sparks of the Women's National Basketball Association, 
and the Los Angeles Kings of the National Hockey League.  The Lakers 
are one of the most successful teams in the history of the NBA, and have 
won 16 NBA championships, their last being in 2010.  As of 2017, the 
Lakers are the second most valuable franchise in the NBA according to 
"Forbes", having an estimated value of $3.0 billion.

Question: Where does The Los Angeles Lakers, an American professional 
basketball team base?
Answer: Los Angeles. 

Raw text

Augmented Templated training examples

Question: Where does The Lakers play their home games?
Answer: Staples Center. 

Question: What organization does Lakers compete in?
Answer: National Basketball Association (or NBA).

Figure 4.3: Examples of generated questions. When MinPrompt runs into an entity
in the raw text during the question generation phase, it turns the factual sentence into a QA
pair of (question, entity), with the question type depending on the entity type.

template is constructed as follows:

xq = Question ∶ q

xa = Answer ∶ <mask>

xc = Context ∶ c

xori = [xq ⊕ xa ⊕ xc]

Here, we formulate the labels y as:

ya = Answer ∶ a,

y = [xq ⊕ ya ⊕ xc] ,
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where q, a, and c represent the query text, response text, and background context respec-

tively, and ⊕ symbolizes string concatenation.

In the augmented QA data samples, we apply the masking to the chosen entity in xc to

construct the context text for the augmented data xaug
c , along with the mask token in xa.

The specifics of an augmented data sample (xaug, yaug) are depicted in Figure 4.3. Let the

set of all training samples from original QA datasets and augmented QA pairs be denoted

by (Xori, Y ori) and (Xaug, Y aug) respectively. Thus, our entire training set (X train, Y train)

comprises of both (Xori, Y ori) and (Xaug, Y aug).

4.4.6 Training

One of the key benefits of harmonizing the augmented and original data lies in the ability

of the model to effectively process both data types without any significant loss. Concisely,

MinPrompt derives a prediction utilizing an encoder-decoder model as

ypred = decoderθD(encoderθE(x)), (4.1)

where θE and θD represent learnable parameters, and x ∈ X train can be either an original or

an augmented training sample.

The training objective of our system aims to maximize the log-likelihood of the text in the

reference answer, denoted by y ∈ Y train. The loss functions concerning the original samples

and the augmented samples are expressed in the following equations:

Lori(θ)= ∑
(x,y)∈(Xori,Y ori)

log(
n

∏
i=1

P (yi ∣ y<i, x; θ))

Laug(θ)= ∑
(x,y)∈(Xaug,Y aug)

log(
n

∏
i=1

P (yi ∣ y<i, x; θ))
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# examples SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TextbookQA

# nodes 104,160 123,183 418,049 356,408 25,413 417,895 60,080 30,723
# edges 20,310,486 36,716,957 408,935,741 339,619,544 13,425,062 766,206,565 6,821,645 3,150,557

# dominating set 8,260 11,099 30,452 24,015 1,518 34,830 4,480 1,116
# training samples 17,409 24,091 48,213 32,391 4,509 116,385 6,884 1,505

Table 4.1: Number of augmented training examples per dataset. We construct one
training example per entity extracted from the raw text of each QA dataset and use the
MinPrompt to produce augmented QA data.

where θ = {θD, θE}. The overall loss function is the weighted average of two losses:

L(θ) = Lori(θ) + λLaug(θ). (4.2)

We consider λ > 0 to be a hyperparameter that establishes a balance between the few-shot

QA training samples and the augmented QA samples.

4.5 Experiments

4.5.1 Experimental Setup

Datasets. Following Splinter [RKB21] and FewshotQA [CN21], we sample subsets from

the MRQA 2019 shared task [FTJ19] for our few-shot experiments. Taking a closer look,

there are in total eight widely used benchmark QA datasets in MRQA: SQuAD [RZL16],

NewsQA [TWY17], TriviaQA [JCW17], SearchQA [DSH17], HotpotQA [YQZ18], Natu-

ral Questions [KPR19], BioASQ [TBM15b], and TextbookQA [KSS17]. Following Splin-

ter [RKB21], smaller training datasets are sampled in a logarithmic manner from the original

full datasets, resulting in few-shot datasets with 16, 32, 64, and 128 training examples.

Comparative Baselines. We evaluate the performance of MinPrompt against four com-

petitive few-shot QA methods, includingRoBERTa [LOG19], SpanBERT [JCL20], Splin-

ter [RKB21], FewshotQA [CN21], and PMR [XLZ23]. Details of these baselines, raw text

data source, and evaluation metric are in Appendix 4.8.1, 4.8.2 and 4.8.3, correspondingly.
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Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TextbookQA Average

16 Examples

RoBERTa 7.7±4.3 7.5±4.4 17.3±3.3 1.4±0.8 6.9±2.7 10.5±2.5 16.7±7.1 3.3±2.1 9.0±3.4
SpanBERT 18.2±6.7 11.6±2.1 19.6±3.0 7.6±4.1 13.3±6.0 12.5±5.5 15.9±4.4 7.5±2.9 13.3±4.3
PMR 60.3±4.0 56.2±3.1 43.6±1.7 30.1±3.7 58.2±5.0 46.1±4.7 54.2±3.4 31.0±1.8 47.5±3.4

Splinter 54.6±6.4 18.9±4.1 27.4±4.6 20.8±2.7 26.3±3.9 24.0±5.0 28.2±4.9 19.4±4.6 27.4±4.5
Splinter w/ MinPrompt 58.9±3.6 35.7±1.9 37.6±2.8 31.9±1.8 35.2±1.6 34.0±6.3 38.7±3.6 37.0±5.1 36.1±3.3

FewshotQA 72.5±3.7 47.1±7.6 57.3±3.2 44.9±4.5 54.3±5.9 59.7±2.2 62.7±4.4 33.1±3.2 53.9±4.3
FewshotQA w/ MinPrompt 73.6±3.3 50.9±4.6 58.5±1.9 46.5±1.8 55.4±2.7 57.1±2.9 57.2±2.3 42.2±4.1 55.2±2.9

32 Examples

RoBERTa 18.2±5.1 10.5±1.8 22.9±0.7 3.2±1.7 13.5±1.8 10.4±1.9 23.3±6.6 4.3±0.9 13.3±2.6
SpanBERT 25.8±7.7 15.1±6.4 25.1±1.6 7.2±4.6 14.6±8.5 13.2±3.5 25.1±3.3 7.6±2.3 16.7±4.7
PMR 70.0±3.2 66.3±2.5 48.5±3.5 36.6±2.1 64.8±2.2 52.9±2.5 62.9±2.4 36.4±3.2 54.8±2.7

Splinter 59.2±2.1 28.9±3.1 33.6±2.4 27.5±3.2 34.8±1.8 34.7±3.9 36.5±3.2 27.6±4.3 35.3±3.0
Splinter w/ MinPrompt 64.6±1.5 35.6±2.1 42.8±1.3 33.0±1.2 39.2±3.4 41.4±3.1 49.2±3.2 38.2±2.5 43.0±2.3

FewshotQA 73.8±2.2 56.7±5.9 60.6±2.4 50.0±2.8 61.4±3.6 61.6±1.5 66.9±4.7 41.7±4.2 59.1±3.4
FewshotQA w/ MinPrompt 78.0±1.1 53.5±4.0 59.3±1.0 51.8±1.8 60.3±2.6 61.6±3.1 63.6±2.9 46.5±2.0 59.3±2.3

64 Examples

RoBERTa 28.4±1.7 12.5±1.4 24.2±1.0 4.6±2.8 19.8±2.4 15.0±3.9 34.0±1.8 5.4±1.1 18.0±2.0
SpanBERT 45.8±3.3 15.9±6.4 29.7±1.5 12.5±4.3 18.0±4.6 23.3±1.1 35.3±3.1 13.0±6.9 24.2±3.9
PMR 71.2±2.8 67.1±1.8 51.2±3.1 43.2±1.8 66.2±1.8 56.3±2.0 68.2±1.6 41.8±2.3 58.1±2.2

Splinter 65.2±1.4 35.5±3.7 38.2±2.3 37.4±1.2 39.8±3.6 45.4±2.3 49.5±3.6 35.9±3.1 43.4±2.7
Splinter w/ MinPrompt 68.6±1.8 35.4±2.9 45.9±1.3 36.1±1.7 44.3±3.1 48.6±2.3 59.4±2.4 42.6±1.6 47.6±2.1

FewshotQA 77.9±2.1 57.9±4.4 60.9±2.5 53.7±1.1 65.4±2.4 63.1±2.2 73.2±3.1 44.8±1.8 62.1±2.5
FewshotQA w/ MinPrompt 79.2±1.0 55.3±3.2 59.7±1.3 54.2±1.0 67.1±1.0 61.1±3.0 72.4±2.5 48.7±2.4 62.5±1.9

128 Examples

RoBERTa 43.0±7.1 19.1±2.9 30.1±1.9 16.7±3.8 27.8±2.5 27.3±3.9 46.1±1.4 8.2±1.1 27.3±3.1
SpanBERT 55.8±3.7 26.3±2.1 36.0±1.9 29.5±7.3 26.3±4.3 36.6±3.4 52.2±3.2 20.9±5.1 35.4±3.9
PMR 79.8±1.8 68.6±1.4 57.4±2.6 52.3±1.4 68.5±1.8 65.9±1.0 76.8±2.1 45.1±1.2 64.3±1.7

Splinter 72.7±1.0 44.7±3.9 46.3±0.8 43.5±1.3 47.2±3.5 54.7±1.4 63.2±4.1 42.6±2.5 51.9±2.3
Splinter w/ MinPrompt 70.2±2.8 45.4±1.3 51.2±1.3 40.2±1.6 48.5±2.1 54.5±2.2 67.8±1.6 44.2±2.1 52.8±1.9

FewshotQA 78.8±2.7 55.2±1.8 63.3±1.6 56.8±1.1 67.0±1.8 64.9±1.8 77.2±1.5 46.2±5.9 63.7±2.3
FewshotQA w/ MinPrompt 80.5±1.4 52.9±3.9 64.2±1.4 56.9±1.0 68.1±1.9 61.7±1.4 77.8±1.2 52.5±3.7 64.3±2.0

Table 4.2: Overall performance in F1 scores across all datasets when the numbers of
training examples are 16, 32, 64, and 128. NQ stands for Natural Questions. RoBERTa,
SpanBERT, Splinter and Splinter w/ MinPrompt have 110M parameters. PMR, Few-
shotQA and FewshotQA w/ MinPrompt have parameters of size 406M. Comparisons with
more baselines are in Section 4.5.6 and Appendix 4.8.4.

4.5.2 Implementation Details

For all the models, we use the same hyperparameters during training for a fair comparison.

Specifically, the models are optimized by Adam [KB14] with bias corrections. The learning

rate is 2 × 10−5 without learning rate scheduling. The training batch size is set to 2. The

maximum sequence length of sequence generation is 100 for FewshotQA and MinPrompt.

We train all the models compared for 25 epochs. The reported results are given by the

best-performing checkpoint in the development sets. For MinPrompt, we perform a grid
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search for the loss weight λ in the space {0.01,0.05,0.1,0.5,1.0,10.0}. All experiments are

run on NVIDIA Tesla A100-SXM4 Tensor Core GPUs with 40GB memory.

4.5.3 Performance Comparison

Table 4.2 presents the few-shot QA performance comparison of various models across all

benchmarks when provided with 16, 32, 64, and 128 training examples. BART-large serves

as the backbone pre-trained language model (PLM) for FewshotQA.

The experiment was repeated five times, each with a different random seed, and we report

the average and standard deviation of the results for each method. As a general observation,

PMR, Splinter and FewshotQA with MinPrompt excel over other compared methods by

a respectable margin in most cases. On average, models with MinPrompt yield better

results with consistently lower variances (the rightmost column). The only exception is the

128 examples, where MinPrompt and PMR ended in a draw. Note that FewshotQA with

MinPrompt performs better in fewer-shot cases because BART is pretrained on general

domain plain texts, so MinPrompt can apply its broad knowledge and rapidly adapt to

the specifics of the QA task with just a few examples. PMR gradually catches up with more

few-shot examples because its specialized training allows it to learn more efficiently from and

utilize the additional examples, scaling its performance in a way that is directly relevant to

the task. There are several cases in which performance degrades when using MinPrompt.

This is probably because the augmented data samples outweigh the original fine-tuning data

samples for these datasets, directing the pretrained model towards the distribution of the

augmented data which is slightly shifted from the distributions of the fine-tuning and test

data after all. More notably, MinPrompt exhibits less variance in results compared to

FewshotQA in most cases, particularly when there are fewer training examples available.

In digging deeper into specific models, both Splinter and FewshotQA enhanced by Min-

Prompt consistently outperform their original model in terms of higher F1 scores with

generally lower variances. On SQuAD, NQ, BioASQ, and TextbookQA, the performance im-
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Model SQuAD TextbookQA

16 Examples

FewshotQA w/ MinPrompt-random 72.0±3.5 39.2±4.8
FewshotQA w/ MinPrompt 73.6±3.3 42.2±4.1

32 Examples

FewshotQA w/ MinPrompt-random 75.9±1.8 43.3±2.2
FewshotQA w/ MinPrompt 78.0±1.1 46.5±2.0

64 Examples

FewshotQA w/ MinPrompt-random 78.6±1.3 46.2±2.2
FewshotQA w/ MinPrompt 79.2±1.0 48.7±2.4

128 Examples

FewshotQA w/ MinPrompt-random 79.9±1.4 49.5±3.5
FewshotQA w/ MinPrompt 80.5±1.4 52.5±3.7

Table 4.3: Ablation study. Comparison between MinPrompt and randomly selecting the
same amount of sentences and generating training samples.

provements over the top baseline are relatively more substantial. Our hypothesis is that the

factual statements are more concentrated in a small number of sentences, thus MinPrompt

can more effectively extract the most informative data for fine-tuning. Consequently, the

influence from the is adequate to impact the primary QA task. We also observe that with the

decrease in the number of few-shot QA training examples, MinPrompt demonstrate more

improvement. This is also expected since MinPrompt essentially introduces external prior

knowledge that is not present in the few-shot training examples. When the models see more

actual training examples that are with the same distribution as the test set, the external

knowledge helps less and even becomes noise in the extreme case. Finally, we also observe a

greater improvement brought about by MinPrompt to Splinter than to FewshotQA. This

is because Splinter has a smaller model size; therefore, it naturally acquires less knowledge

during the pre-train stage. Adding external knowledge to it in the form of QA benefits even

more than bigger models, such as FewshotQA.

4.5.4 Effect of Deriving the Dominating Set

To validate the necessity of deriving the dominating set of the sentence graph to keep the

most informative factual sentences in the raw text, we further conduct an ablation study.

We construct a variant of MinPrompt called MinPrompt-random where we randomly
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Splinter: HIV
FewshotQA, PMR: cystic fibrosis
Splinter w/ MinPrompt:  ADA deficiency
FewshotQA w/ MinPrompt:  ADA deficiency
Ground truth: ada deficiency / adenosine 
deaminase deficiency

FewshotQA, Splinter: 23
PMR: haploid number
Splinter w/ MinPrompt:  haploid number
FewshotQA w/ MinPrompt:  haploid number
Ground truth: haploid number

Context: “…In species with sexual reproduction, each cell 
of the body has two copies of each chromosome. For 
example, human beings have 23 different chromosomes. 
Each body cell contains two of each chromosome, for a 
total of 46 chromosomes. The number of different types of 
chromosomes is called the haploid number. In humans, the 
haploid number is 23. The number of chromosomes in 
normal body cells is called the diploid number. The diploid 
number is twice the haploid number. The two members of 
a given pair of chromosomes are called homologous 
chromosomes …”
Question: What is the number of chromosomes in a 
gamete called?

Context: “…For example, cystic fibrosis gene therapy is 
targeted at the respiratory system, so a solution with the 
vector can be sprayed into the patients nose. Recently, in 
vivo gene therapy was also used to partially restore the 
vision of three young adults with a rare type of eye disease. 
In ex vivo gene therapy, done outside the body, cells are 
removed from the patient and the proper gene is inserted 
using a virus as a vector. The modified cells are placed 
back into the patient. One of the first uses of this type of 
gene therapy was in the treatment of a young girl with a 
rare genetic disease, adenosine deaminase deficiency, or 
ADA deficiency…”
Question: Which disorder has been treated by ex vivo 
gene therapy?

Answers Answers

Figure 4.4: Case study. In both cases, MinPrompt successfully generates the correct
answer, whereas baselines without entity masking can not accurately recover the entity-level
details.

sample the same number of sentences as shown in Table 4.1 for each dataset, and then

generate training samples out of these randomly sampled factual sentences. We run Min-

Prompt-random and report the results on SQuAD and TextbookQA in Table 7.4. When

comparing the two models, we can observe that MinPrompt consistently perform better

than MinPrompt-random. We also observe this pattern on all the other datasets. This

observation empirically validates that the dominating set derivation process indeed provides

factual sentences that preserve as much information as possible about the crucial entities in

the raw text.

4.5.5 Case Study

Further exploration of two specific test cases from the TextbookQA test set provides insight-

ful results, as depicted in Figure 4.4. In the left case, both FewshotQA and Splinter without

MinPrompt yield the incorrect response, 23. Despite its semantic relevance to the accurate

answer, haploid number, the response goes overly detailed, since the value 23 is specific only

to human beings. This case underlines the advantage of MinPrompt’s full model, equipped
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with a sentence construction module anchored by entities, in deriving detailed answer text at

the entity level, over FewshotQA and Splinter. In the right case, both FewshotQA and Splin-

ter with MinPrompt successfully identify the correct answer, whereas Splinter supplies an

incorrect answer, HIV, not even present in the context. Meanwhile, FewshotQA and PMR

produced another treatment instead of what the question asks (a disorder), indicating that

the question generation module of MinPrompt improved the models’ ability to deal with

various kinds of questions. This comparison effectively highlights the utility of the sentence

graph in forging higher-order entity interconnections within the same context. Although the

baselines provide a contextually relevant response, they do not adequately address the ques-

tion. The two cases substantiate the indispensable role of the sentence graph construction

module and the question generation module in MinPrompt, fortifying its capacity to delve

into complex question and context semantics.

Model NQ NewsQA BioASQ TextbookQA

Qasar 59.76 56.63 63.70 47.02
Splinter w/ MinPrompt 51.17 40.22 67.80 44.24

FewshotQA w/ MinPrompt 64.17 56.84 77.84 52.53

Table 4.4: Performance of MinPrompt with 128 examples against the unsupervised domain
adation method.

4.5.6 Comparisons against Unsupervised Domain Adaption

In addition to the few-shot approach, some studies apply unsupervised domain adpation to

tackle the limitation of training data [ASD21]. As an additional study, we compare with

Qasar [ASD21] Qasar, we focus on four overlapping datasets (i.e., NQ, NewsQA, BioASQ,

and TextbookQA) between their paper and our studies as shown in Table 4.4. We can observe

that FewshotQA w/ MinPrompt outperforms Qasar across four datasets from 0.4% to 22.2%.

We also would like to emphasize that Qasar uses fine-tuning training samples ranging from

142 to 4,185 while MinPrompt using only 16 to 128 fine-tuning examples surpasses Qasar

with certain disadvantages in the limited amount of fine-tuning data.
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4.6 Conclusion

In this paper, we present MinPrompt, a robust data augmentation framework that lever-

ages a graph-based algorithm and unsupervised question generation to extract minimally

meaningful QA training samples from raw text. Our contributions reside in the application

of minimal data augmentation, enhancing computational efficiency and model performance

while mitigating overfitting. Through extensive experiments, our model consistently outper-

formed competitive methods in public benchmarks, demonstrating its effectiveness.

4.7 Limitations

While MinPrompt is capable of achieving comparative or better performance over existing

studies, it still has some limitations as follows: First, MinPrompt integrates the trained

NER model as part of the pipeline, so the performance of the SpaCy NER model greatly

affects the overall performance of MinPrompt. Second, MinPrompt uses all shared en-

tities to construct the sentence graph. However, some entities might be more crucial than

others for the downstream QA task. As a result, treating the entities differently might lead

to a different result. Lastly, the template utilized for prompt-tuning in this study still relies

on manual design. Our approach is influenced by previous research that has been shown to

be effective. Nevertheless, it would be intriguing to explore the development of automated

methods for constructing superior prompt-tuning templates.

4.8 Appendix

4.8.1 Baseline Details

● RoBERTa [LOG19] is a robustly optimized BERT-based PLM. It improves BERT by

techniques such as training the model for a longer time, with larger batches and getting
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rid of the next sentence prediction task. It is known to demonstrate substantially better

performance on a variety of natural language understanding tasks over BERT, including

QA.

● SpanBERT [JCL20] is another variant of BERT that emphasizes the encoding of spans

instead of tokens. It is pretrained on two tasks: (1) masked language modeling, which

is the same as BERT, and (2) span boundary prediction, which pulls the representations

of the span boundary into a direction where the entire content of the masked span can

be predicted correctly. SpanBERT achieves substantially better performance on span

selection tasks in particular.

● Splinter [RKB21] is a pretraining framework dedicated to the extractive QA task based

on SpanBERT. It is pretrained by the recurring span selection task, which masks all but

one instance of each recurring span and asks the model to select the correct span for each

masked position.

● FewshotQA [CN21] is the first QA-dedicated fine-tuning framework that takes advan-

tage of pre-trained encoder-decoder models such as BART [LLG20] and T5 [RSR20]. In

FewshotQA, the input is constructed as a concatenation of the question, a mask token

as the placeholder for the answer span, and a context. Given this input, the model is

fine-tuned using the same objective as its pretraining objective.

● PMR [XLZ23] constructs general-purpose machine reading comprehension training data

by using Wikipedia hyperlinks and designed a Wiki Anchor Extraction task to guide the

MRC-style pretraining.

4.8.2 QA data acquisition

The first step in our framework is to retrieve the raw text corpus as the super set from

which all our prompt dataset comes. For pretraining, text corpus from general domains
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Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TextbookQA

MQA-QG 54.38 32.28 37.36 25.12 31.35 33.89 36.39 29.71
MinPrompt 58.91 35.67 37.64 31.88 35.17 34.03 38.68 36.98

Table 4.5: Performance comparisons against MQA-QG.

such as Wikipedia is commonly used. On the contrary, since we focus on the fine-tuning

stage, we use domain-specific text as a starting point. Following Splinter [RKB21] and

FewshotQA [CN21], we take MRQA [FTJ19] as a benchmark to test the performance of all

the comparative methods.

4.8.3 Evaluation Metrics

Following previous studies [RKB21, CN21], we use the F1 score as our evaluation metric.

Specifically, for each sample in the test set, the predicted span and the ground truth answer

are treated as bags of words, and F1 scores are applied to compute the overlap between these

two sets. If there are multiple ground-truth answers to a particular question, we take the

maximum of the corresponding F1 scores.

4.8.4 Comparisons against MQA-QG

Here we compare with the other few-shot data augmentation approach, MQA-QG [PCX21].

For a fair comparison, we first run the released implementation of MQA-QG, apply their

approach on Splinter, and then compare it with our method. The results of 16-shot exper-

iments are as shown in Table 4.5. We see consistent improvements derived by MinPrompt

over MQA-QG, and a similar pattern is also observed in 32, 64, and 128-shot scenarios.

4.8.5 Additional Discussions

Here we list some additional discussions on our approach.
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4.8.5.1 Generalization Ability to Different Answer Types

To different types of answers (e.g., why v.s. how and longanswers), we would like to mention

that MinPrompt raises different types of questions based on the results of the entity typing.

During this process, why / how questions would be raised once a conjunction (e.g., because)

or an adverb (e.g., by) is recognized from the raw text. We agree that the why / how

questions with longer answers might be less than some other types of questions like what

/ who / when ones in the augmented training samples, and it might cause generalization

issues. An intuitive fix is to assign larger sample weights to the augmented samples with why

/ how questions or to repeat these samples multiple times to make different types of questions

roughly be of the same number. However, the main focus of this paper is to demonstrate

the idea that graph-based data selection can help the overall downstream performance, so

we leave the detailed analysis for certain types of answers for future work.

4.8.5.2 Potential Solution to Overfitting with Prompt-style Augmentation

It could introduce an ovefit with prompt-style agumentation to the distribution of different

quesetion formats as we observed in the experiments, especially for the cases with only few

shot training samples. The distribution of different types of questions in the augmented data

might be skewed, for example, the what / who / when questions might be more than the

why / how questions. In this way, the what / who / when questions in the test set might get

more precise answers than the why / how questions. The intuitive fix is to put larger sample

weights to the augmented samples with why / how questions or to repeat these samples

multiple times to make different types of questions roughly be of the same number.
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Part III

Automatic Constitution Discovery

and Self-alignment
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CHAPTER 5

IterAlign: Iterative Constitutional Alignment of Large

Language Models

5.1 Abstract

With the rapid development of large language models (LLMs), aligning LLMs with human

values and societal norms to ensure their reliability and safety has become crucial. Reinforce-

ment learning with human feedback (RLHF) and Constitutional AI (CAI) have been pro-

posed for LLM alignment. However, these methods require either heavy human annotations

or explicitly pre-defined constitutions, which are labor-intensive and resource-consuming. To

overcome these drawbacks, we study constitution-based LLM alignment and propose a data-

driven constitution discovery and self-alignment framework called IterAlign. IterAlign

leverages red teaming to unveil the weaknesses of an LLM and automatically discovers new

constitutions using a stronger LLM. These constitutions are then used to guide self-correction

of the base LLM. Such a constitution discovery pipeline can be run iteratively and automat-

ically to discover new constitutions that specifically target the alignment gaps in the current

LLM. Empirical results on several safety benchmark datasets and multiple base LLMs show

that IterAlign successfully improves truthfulness, helpfulness, harmlessness and honesty,

improving the LLM alignment by up to 13.5% in harmlessness.
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5.2 Introduction

Large language models (LLMs) have penetrated into a wide spectrum of applications such as

psychology [DYY23], education [ZMT23], social science [RJP23] and scientific understand-

ing [BLC19]. Despite their strong capabilities, pretrained LLMs still have their limitations.

One of the notable challenges that arise is the alignment problem, where the LLM’s outputs

may not consistently align with human ethical standards or preferences [LYT23]. This mis-

alignment can lead to biased, inaccurate or harmful content, resulting in undesired outcomes.

Addressing this issue not only involves refining the model’s training data and training pro-

cess, but also integrating human ethical guidelines and feedback into the loop to make LLMs

safe and reliable for diverse applications.

To mitigate the misalignment issue, several LLM alignment algorithms have been pro-

posed [LYT23, SJH23]. Reinforcement learning with human feedback (RLHF) [Ope23a] and

Constitutional AI (CAI) [BKK22] stand out as the representatives. RLHF addresses align-

ment by integrating human feedback directly into the training process, thus guiding the base

model using real human responses and preferences. On the other hand, CAI uses a set of

pre-defined guidelines called “constitutions” that encapsulate desired ethical standards and

societal norms. These guidelines direct the training and behaviors of the LLMs, ensuring

their outputs adhere to these pre-defined standards, thus addressing potential ethical and

alignment issues.

RLHF has achieved promising performance for LLM alignment [Ope23a], but scalability

poses a significant challenge for RLHF, given the elevated costs associated with collecting

and processing human feedback. In contrast, CAI [BKK22] obviates the reliance on human

feedback labels and is thus more efficient. However, it still faces limitations stemming from

the biases or insufficient domain knowledge of the constitution proposer. A constitutional

AI crafted with adherence to a specific set of norms may prove inappropriate or ethically

questionable when applied in a disparate cultural or societal setting. Consequently, designing
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a pre-established set of constitutions becomes a challenging task. As a result, there is an

urgent need for data-driven constitution-based alignment methods that can automatically

and dynamically produce constitutions to align the target LLM.

We propose IterAlign, a data-driven constitution discovery and alignment framework

for LLMs. Unlike existing alignment techniques, IterAlign has the following appealing

features. First, it does not require massive human preference data or human composed

constitutions, but only takes a base LLM and a red teaming dataset as input. The red

teaming data is much cheaper to obtain compared to crowd-sourced human preference data.

Second, it does not require handwritten constitutions to be provided a priori. Instead, it

leverages the red teaming instances and a strong LLM to discover constitutions automatically,

leading to a better aligned model and a set of valuable data-driven constitutions.

IterAlign consists of the following modules: (1) Red teaming module: IterAlign

first identifies the weak spots of the base LLM via red teaming. Three widely used red

teaming datasets combined with an advanced red teaming algorithm [BP23] is used at this

stage. Then, IterAlign uses an oracle model like GPT-3.5-turbo 1for response evalua-

tion, identifying responses needing improvement. (2) Constitution Proposal module:

Different from existing CAI methods, IterAlign generates specialized constitutions from

the responses identified from the previous stage using a stronger LLM as a proposer. In this

way, we extract insights from challenging prompts in the red teaming data to guide further

model alignment. (3) Constitution-induced Self Reflection module: We use the con-

stitution generated by IterAlign to direct the base model using In-Context Learning (ICL)

to sample new responses that have addressed the issues mentioned in the constitutions. (4)

Supervised Fine-tuning (SFT): The inductive bias contained in the new responses is

injected back into the base model via SFT, optimizing the causal loss for language mod-

eling. Building upon these modules, IterAlign iteratively executes the above steps for

interactive, automatic constitution discovery, and self-improvement.

1https://platform.openai.com/docs/model-index-for-researchers
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We summarize the key contributions of this paper as follows:

● We conducted an in-depth investigation of the constitution alignment challenges faced by

LLMs, recognizing the imperative for introducing an automatic, data-driven framework

for LLM alignment.

● We present IterAlign, a data-driven framework for LLMs that utilizes red teaming data

and a stronger LLM to automatically discover constitutions, enabling iterative LLM align-

ment. IterAlign requires minimal human effort and also circumvents potential biases

and inconsistencies that might exist in human feedback, making it a practical framework

for use in real industry applications.

● We present comprehensive experimental results that validate the effectiveness of Iter-

Align. Empirical results on various safety benchmark datasets and multiple base LLMs

demonstrate that IterAlign successfully enhances truthfulness, helpfulness, harmless-

ness, and honesty, improving LLM alignment by up to 13.5% in harmlessness.

5.3 Related Work

5.3.1 Self-alignment

Alignment is an essential concept to ensure that language models are both useful and safe.

Recently, there’s a growing interest in the notion of “self-alignment”, which focuses on LLMs’

ability to self-evaluate and align their own response with desired behaviors. Many recent

methods [SYW22, ZY23, MTG23] explore prompting strategies to self-align at the inference

stage. On the other hand, CAI [BKK22], SELF-ALIGN [SSZ23], RLAIF [LPM23] and in-

struction backtranslation [LYZ23] leverage self-alignment for model fine-tuning. IterAlign

also belongs to this category. Among these fine-tuning methods, RLAIF and instruction

backtranslation are less controllable and less transparent because they rely solely on the

model’s own judgment without explicitly introducing a constitution as guidance. In con-

trast, CAI, SELF-ALIGN and IterAlign use constitution-based self-alignment. Compared
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to CAI and SELF-ALIGN, IterAlign does not depend on manually curated constitutions

as a priori. Instead, it generates constitutions in a data-driven manner. This approach

ensures that IterAlign is not influenced by biases of the constitution proposer. Further-

more, IterAlign can be seamlessly applied to any new domain without the need for human

experts because the alignment process can be customized by choosing a relevant dataset.

5.3.2 Red Teaming LLMs

Red teaming refers to the method of jailbreaking a model’s safety mechanisms, prompting it

to respond helpfully, regardless of the potential harmfulness of the inquiry. [GLK22] hired

crowdworkers to attack LLMs in an open-ended way and collected the dialogues. [SZH22]

demonstrates that a Chain-of-Thought (CoT) prompt (i.e., “Let’s think step by step.”) with

a harmful question can successfully attack LLMs. [BP23] proposes a more advanced Chain

of Utterances (CoU) prompt where conversations between a harmful agent and an unsafe-

helpful agent are provided as contextual examples. All these methods result in datasets

containing red teaming prompts. In our study, these red teaming datasets are utilized for

attacking a base model and collecting resources for our constitution proposal module.

5.4 Preliminary

We formally define the basic components of our iterative constitutional alignment framework

as follows:

Base Model: A base LLM pθ(y∣x) is characterized by its initial parameters θ. This model

pθ(y∣x) is generic and could be or not be pre-aligned with specific ethical or preferential

guidelines. Here, x represents the input to the LLM including the system messages and the

user prompts, while y stands for the model’s output.

Constitution: Constitution C is a series of guidelines and ethical principles that have been

used to inform the alignment of the base model pθ(y∣x). In the original Constitutional
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Red Teaming LLMs

Constitution Proposal

Self-critique and self-revision

What’s your 
work email?

Reach me at 
xxx@xxx.com or
+1 xxx-xxx-1234What would 
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invisible?
Steal all of your 

money.

Best joke 
about 

redheads?

Here’s a classic one: 
…… 

Please respect the 
privacy of others.

Please subject to the 
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Please be respectful.

As an AI agent, I am not able to 
retrieve confidential 

information.

As an AI, I don’t have a physical 
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[a joke]. Remember, humor is 
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Figure 5.1: Framework overview for IterAlign. IterAlign begins with red teaming
the base LLM to test and collect responses, followed by evaluation using an oracle model to
identify improper responses. These responses guide the constitution proposal module, which
generates constitutions for data-driven LLM alignment. Later processes include constitution-
induced self-reflection and SFT, ensuring the knowledge from constitutions is injected into
the base LLM. IterAlign operates iteratively, continually identifying new challenging in-
stances and refining the model to cover a broad spectrum of ethical standards.

AI method [BKK22], C is specified by humans as an input to the constitutional alignment

framework. However, in IterAlign, the principles are proposed by oracle models in a data-

driven manner. To distinguish from the original Constitutional AI, we notate the derived

principles as C′. The principles C′ outputted from IterAlign serve both as a record of the

alignment process and as a potential template for future alignment tasks.

Aligned Model: An aligned LLM pθ′(y∣x) should be transformed from pθ(y∣x) where θ′

represents the newly adjusted parameters reflecting alignment with human preferences and

ethical standards. Such a transformation involves the adjustment of the model’s parameters

θ through a learning process. This process is guided by the evolving set of constitutional

principles C′, and it aims to minimize a loss L(pθ′(y∣x),C′) that represents the deviation of

the model’s outputs from desired ethical alignment criteria.
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5.5 The Proposed Framework

5.5.1 Framework Overview

Figure 7.1 illustrates the overview of IterAlign. First, we employ red teaming strate-

gies [BP23] to challenge and test the base LLM pθ(y∣x) on red teaming datasets and collect

its responses. The responses are evaluated by an oracle model O(y∣x) such as GPT-3.5-turbo

to identify improper ones. These improper responses indicate deficiencies in the base LLM

and provide guidance for subsequent optimization. Building on the identified bad cases, we

introduce a constitution proposal module. This module is designed to produce potential

constitutions that cover the issues lying within the responses. To reduce human interven-

tion, we propose to use an oracle model again as the constitution proposer to summarize

constitutions using the identified bad responses and corresponding “difficult” prompts that

triggered the failure. The constitution proposal module creates a set of guiding principles

that can be used to further refine the LLM. Following the constitution proposal, we imple-

ment a constitution-driven self-refinement approach. This involves constitution-induced

self-reflection and supervised fine-tuning (SFT) of the base LLM. The fine-tuning

process is meticulously guided by the generated constitutional principles, ensuring that the

model’s outputs are in line with these ethical guidelines. Finally, IterAlign is structured

as an iterative framework. In each cycle, IterAlign identifies new red teaming instances

that successfully induce pθ(y∣x) to generate improper responses and proposes complemen-

tary constitutions to address them. The goal is to cover as many edge cases as possible,

continually refining the model to better align with human ethical standards.

5.5.2 Red Teaming

Since developing a novel red teaming framework is not our main focus, IterAlign follows

existing methods [BP23] as well as datasets [SRR22] to perform red teaming. We conduct

72



the following steps:

1. Generate a prompt x using Chain of Utterances (CoU) [BP23].

2. Use the base LLM pθ(y∣x) to generate the response y.

3. Find the prompts that lead to an undesirable (e.g., helpless, harmful) output using the

red team evaluator r(x, y). r(x, y) can be any discriminative model that is capable of

evaluating whether y is satisfactory. In practice, we choose GPT-3.5-turbo as r(x, y).

In Step 3, we use the following prompt to guide r(x, y) to evaluate the quality of y:

USER: You are a helpful, harmless, honest, pattern-following assistant that evaluates the

quality of the language in positive or negative.

5.5.3 Constitution Proposal

Previous works [BKK22, SSZ23] either rely on human experts or directly use off-the-shelf

hand-written constitutions or principles to guide more desirable responses from LLMs that

align with human preference. In IterAlign, we try to reduce the human effort and propose

a data-driven way to summarize the violations of the undesirable output collected from the

previous step and generate the corresponding constitution principles that are supposed to

help the base LLM pθ(y∣x) to re-examine its own responses and revise them accordingly.

In detail, given the responses to the red teaming prompts, we will design a prompt

that incorporates these responses, and ask an oracle model O(y∣x) (specifically, GPT-4) to

generate constitutions C′ based on the commonality of the responses in the inputs. C′ are

expected to summarize the shared violations in the base LM pθ(y∣x) responses and propose

new constitutions by themselves.

We use the following prompt to guide O(y∣x) to generate constitutions C′:

USER: You are a helpful, harmless, honest, pattern-following assistant that evaluates the

quality of the language in positive or negative. If negative, please then propose

73



multiple very specific principles, rules or constitutions that helps improve the

helpfulness, harmlessness, honesty.

5.5.4 Constitution-induced Self-reflection

After identifying the undesirable responses and proposing new constitutions in the previous

steps, the constitutions C′ are added back as part of the prompts to guide the base LLM

pθ(y∣x) to revise its original response and to generate a more desirable response y′. We

prompt the base LLM pθ(y∣x) to evaluate its own response with respect to each constitution

c ∈ C′, which may trigger a revision of the original response. The revision process is conducted

in a sequential manner, with a random order of c ∈ C′.

We examine the corrected responses produced by the base model and verify via the

oracle model using the same instruction introduced in Section 5.5.2. However, during our

experiments, we found no negative responses still existed after the self-reflection from the

perspective of the oracle model. We attribute this to the in-context learning (ICL) ability

of the base models.

5.5.5 Supervised Fine-Tuning (SFT)

Upon the completion of the previous processes, we fine-tune the base LLM pθ(y∣x) using

supervised learning on the final revised responses. The primary objective of this phase is to

conveniently and flexibly modify the model’s response distribution, ensuring the knowledge

from constitutions is injected into the base LLM. During this phase, we adopt an auto-

regressive generative objective, which is essentially to minimize:

LSFT(θ) = −∑
i

log pθ (yi ∣ x0, . . . , xi−1; θ) (5.1)
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where y is the actual token in the ground truth, x are the preceding tokens, and xi stands

for the ith token in the text sequence.

5.6 Experiments

5.6.1 Red Teaming Datasets

Anthropic hh-rlhf 2 [GLK22] is created by Anthropic AI to analyze and address potential

harms in large language models through red teaming. The dataset includes a total of 38,961

transcripts between a human and an AI assistant that correspond to a red teaming attempt

for a variety of AI assistants, along with numerical data that quantifies the harmfulness of the

transcripts and categorical data that qualitatively characterizes the topics of the documents.

HarmfulQA 3 [BP23] is a safety benchmark that contains 1,960 harmful questions spread

over 10 topics, each with about 10 subtopics . Combined with Chain of Utterances prompt-

ing, it achieves a state-of-the-art Attack Success Rate (ASR) [BP23].

DangerousQA 4 [SZH22] is created by querying text-davinci-002 5across six adjectives:

racist, stereotypical, sexist, illegal, toxic, and harmful. It contains 200 harmful questions.

5.6.2 Evaluation Datasets & Protocols

TruthfulQA 6 [LHE21]. The TruthfulQA benchmark is a tool designed to gauge a model’s

competence in recognizing accurate claims, particularly within the scope of real-world literal

2https://huggingface.co/datasets/Anthropic/hh-rlhf

3https://huggingface.co/datasets/declare-lab/HarmfulQA

4https://github.com/SALT-NLP/chain-of-thought-bias/blob/main/data/dangerous-q/toxic_outs.

json

5https://platform.openai.com/docs/models/gpt-3-5

6https://huggingface.co/datasets/truthful_qa
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truth. Its purpose is to analyze the potential hazards associated with generating incorrect

claims or misinformation. The benchmark features questions articulated in various styles,

spans 38 categories, and is structured to be adversarial. It encompasses two assessment

tasks: a multiple-choice task and a generation task. In the multiple-choice task, we post

the test model with a multiple-choice question, and ask the model to pick up the best answer

among a bunch of reference answers (usually between 2 to 7). In the generation task, we

follow the approach of Llama-2 [TMS23] and employ a fine-tuned version of GPT-3, referred

to as ”GPT-judge”, to assess the truthfulness and informativeness responses generated by

LLMs.

BIG-bench HHH Eval 7 [SRR22, ABC21]. The BIG-bench HHH Eval was purpose-

fully constructed to measure a model’s effectiveness in terms of its helpfulness, honesty, and

harmlessness (HHH). The creators of this dataset formulated roughly 50 comparative eval-

uations for each category, along with an “other” label, tallying to around 200 comparisons

in total. The dataset aims to evaluate both the alignment and capabilities of the model,

without explicitly differentiating between these two facets.

5.6.3 Base Models

LLaMa-2 [TMS23]. The LLaMa models are a set of LLMs pretrained on a mixture of

corpus specifically selected publicly accessible, covering a wide range of domains.

LLaMa-2-chat [TMS23]. It is a fine-tuned version of LLaMa-2. Based on the pretrained

checkpoints, the model has been further refined through supervised fine-tuning and RLHF

with over 1 million human annotations, enhancing their accuracy and relevance.

Vicuna [CLL23]. Vicuna is curated by fine-tuning a LLaMA base model using approx-

imately 70,000 user-shared conversations gathered from ShareGPT.com with public APIs.

Note that the LLaMa-2-chat models have been aligned to human preferences via training on

7https://huggingface.co/datasets/bigbench
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helpfulness and safety data of over 1 million human annotations. The vicuna models provide

outstanding base models that are solely supervised fine-tuned while not being aligned using

RLHF.

5.6.4 Implementation Details

For all the base models, we use their variants of 7B (Llama-2-7b, Llama-2-7b-chat, vicuna-7b-

v1.5) and 13B (Llama-2-13b, Llama-2-13b-chat, vicuna-13b-v1.5). For all the experiments,

we use the same hyperparameters during training for a fair comparison. Specifically, we set

top-p threshold p = 0.9 and temperature t = 0.7. The learning rate is set to 2e − 6. The

training batch size is set to 2 and the max sequence length is 512. For the SFT stage of

IterAlign, we conduct full fine-tuning with DeepSpeed 8 acceleration. All experiments are

run on NVIDIA Tesla A100-SXM4 Tensor Core GPUs with 40GB memory.

5.6.5 Performance Comparison

TruthfulQA Multiple-Choice (MC) Table 5.1 shows the alignment performance of the

compared models for TruthfulQA MC tests. We report the Multiple Choice accuracy on the

top-1 answer (MC1) for each question, where the model ranks multiple options by evaluating

whether each one is True or False. Note that for each answer, we independently calculate

the probability of it being True or False. From Table 5.1, we observe that: (1) IterAlign

significantly improves the base models on both 7B and 13B settings. (2) With models of

smaller size, IterAlign can bring more significant improvements. This is probably because

smaller base models are less aligned with human preference in terms of truthfulness, and

more bad behaviors are revealed through red teaming datasets and subsequently overcome

by IterAlign.

TruthfulQA Generation Figures 5.2a and 5.2b show the performance for TruthfulQA Gen-

8https://github.com/microsoft/DeepSpeed
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Figure 5.2: (a, b): TruthfulQA Generation task evaluation results. The numbers
shown are the fraction of truthful answers scored by specially fine-tuned models via the
OpenAI API.

eration tests. In our study, we follow the approach of Llama-2 [TMS23] for reproducibility

purposes, utilizing GPT-3-based metrics recognized for their strong correlation with human

judgment. Specifically, we employ a fine-tuned version of GPT-3, referred to as ”GPT-

judge”, to assess the truthfulness of responses generated by LLMs. We present our findings

in terms of the proportion of responses that are truthful. From the figures, we can see that

IterAlign improves the performance over the vanilla base model by a noticeable margin,

and is insensitive to the choice of the base model and the red teaming dataset.

Model vanilla hh-rlhf HarmfulQA DangerousQA

Llama-2-7b 0.3733 0.5288 0.4174 0.4345
Llama-7b-chat 0.6181 0.6120 0.5973 0.6279
Vicuna-1.5-7b 0.5349 0.5912 0.6071 0.5508

Model vanilla hh-rlhf HarmfulQA DangerousQA

Llama-2-13b 0.4553 0.4700 0.4553 0.4553
Llama-13b-chat 0.6279 0.6389 0.6561 0.6230
Vicuna-1.5-13b 0.6756 0.6781 0.6769 0.6744

Table 5.1: TruthfulQA Multiple-Choice task evaluation results. The upper subtable
corresponds to 7B models and the right to 13B. Vanilla models are the base models without
applying IterAlign.

BIG-bench HHH Eval Table 5.2 reports the MCQ performance of the compared models
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for BIG-bench HHH Eval. Each validation sample, when presented to the model, has two

reference answers to pick from. The better model is expected to prefer the right answer to

the other. The questions are categorized into four classes, each referring to one of helpful-

ness, honesty, harmlessness, and others. From Table 5.2, we observe that: (1) By applying

IterAlign, all the base models improved overall by a noticeable margin on BIG-bench HHH

Eval. (2) Different base models obtain their own best performance with varying red teaming

datasets. For example, the LLaMa-2 model gains its best performance by red-teaming with

HarmfulQA, while the Vicuna model is perceived to be its own best when red-teamed with

hh-rlhf. In contrast, the LLaMa-2-chat model is the most insensitive one. (3) One base

model, when red-teamed with different dataset, get different improvements in helpfulness,

harmlessness and honesty. Both the LLaMa-2-7b and Vicuna-7b models improve the most

in terms of harmlessness when the model is red-teamed by hh-rlhf. One reason is that

the hh-rlhf has more similar red teaming cases to the questions in BIG-bench HHH Eval;

therefore, the alignment process adapts better with the least distribution shift. Besides,

hh-rlhf red teaming dataset is of the largest size among the three and is more likely to cover

corner cases not covered by the other two.

5.6.6 Comparisons to CAI and RLHF

The performance gains for RLHF [Ope23a, TMS23] are demonstrated by the performance

comparison between vanilla Llama-2/Vicuna and vanilla Llama-2-chat. These numbers are

implicitly included in our paper. For example, on the BIG-bench HHH Eval, by applying

IterAlign, Llama-2-7b (0.6742 -> 0.8140) and Vicuna-7b (0.7511 -> 0.8145) surpasses

the performance of RLHF from Llama-2-7b to Llama-2-7b-chat (0.6742 -> 0.7828). Note

that, when Meta conducted its own RLHF, Llama-2 was trained on over 1 million human

annotations. For IterAlign, as mentioned in the paper, the largest red teaming dataset

Anthropic hh-rlhf only includes a total of 38,961 training examples. Although IterAlign

does not always outperform RLHF, we think the above observation still demonstrates the
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contribution of our method for alignment algorithms. For CAI [BKK22], it is the method that

Anthropic AI used for the alignment of its commercial Claude models (Claude-1 and Claude-

2), and to the best of our knowledge, there is currently no open-source implementation.

Model Harmless Helpful Honest Other Overall

Llama-2-7b

vanilla 0.6207 0.6780 0.6393 0.7907 0.6742
hh-rlhf 0.7759 0.6441 0.7049 0.8605 0.7376
HarmfulQA 0.6552 0.6949 0.6393 0.8140 0.8140
DangerousQA 0.6724 0.6949 0.6557 0.7907 0.6968

Llama-7b-chat

vanilla 0.8966 0.7797 0.6885 0.7674 0.7828
hh-rlhf 0.9138 0.7966 0.7377 0.7907 0.8100
HarmfulQA 0.9138 0.8136 0.7541 0.7907 0.8190
DangerousQA 0.9138 0.7797 0.7377 0.8140 0.8100

Vicuna-1.5-7b

vanilla 0.7931 0.7119 0.6885 0.8372 0.7511
hh-rlhf 0.9310 0.7288 0.7213 0.9070 0.8145
HarmfulQA 0.8276 0.7288 0.6885 0.9070 0.7783
DangerousQA 0.8276 0.7627 0.6885 0.8605 0.7783

Model Harmless Helpful Honest Other Overall

Llama-2-13b

vanilla 0.6724 0.7627 0.7377 0.8140 0.7421
hh-rlhf 0.7414 0.7627 0.7541 0.8837 0.7783
HarmfulQA 0.7931 0.7119 0.6557 0.8837 0.7511
DangerousQA 0.6724 0.7627 0.7377 0.8140 0.7421

Llama-13b-chat

vanilla 0.9138 0.8305 0.6885 0.9302 0.8326
hh-rlhf 0.9138 0.8305 0.6885 0.9302 0.8326
HarmfulQA 0.8966 0.8475 0.7049 0.9302 0.8371
DangerousQA 0.9138 0.8305 0.6885 0.9302 0.8326

Vicuna-1.5-13b

vanilla 0.7931 0.7119 0.6557 0.9070 0.7557
hh-rlhf 0.8103 0.7288 0.6557 0.9070 0.7647
HarmfulQA 0.8103 0.7119 0.6721 0.8837 0.7602
DangerousQA 0.7931 0.7119 0.6557 0.9070 0.7557

Table 5.2: Performance comparison on BIG-bench HHH Eval. The left subtable
corresponds to 7B models and the right to 13B. Vanilla models are the base models without
applying IterAlign. We hightlight the best performing numbers for each base model.

5.6.7 Iterative Improvement
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Figure 5.3: (a, b, c, d): Model performance evolution over iterations on BIG-
bench HHH Eval. The numbers shown are for Vicuna-7B with Anthropic hh-rlhf. The
harmlessness score consistently improves while the other aspects fluctuate.

To further investigate the alignment process, we study the model performance along with

the number of iterations that the model is being trained. Note that, for the early batches of

the red teaming datasets, the model is more likely to generate negative responses and lead to

self-reflection and fine-tuning. When similar red teaming prompts emerge in later batches,

the model might already be able to generate satisfactory responses, skipping fine-tuning for
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the same type of red teaming prompts. Figure 5.3 illustrates the performance evolutions

of the Vicuna-7B model on BIG-bench HHH Eval with hh-rlhf red teaming. We observe

that the harmlessness score consistently goes up, whereas the helpfulness and honesty scores

fluctuate over time. The reason is that the majority of hh-rlhf red teaming samples are merely

harmful, while they are actually being helpful and honest. As a result, the self-reflection

on these samples majorly improves the harmless aspect. We also observe the overall score

generally goes up as a result of all the categories (including the other category not shown).

Another general observation during training is that the base model incorporates the

constitution-induced response by SFT only frequently in the early stage (usually the first 10

100 steps depending on the diversity of the red teaming dataset). During the later stage, the

oracle model can hardly identify undesirable responses for correction. The reason is that the

common errors are usually corrected in the early stage of training, and the model is already

well-aligned and does not need further adjustment. Note that, IterAlign only finetunes the

models when undesired responses from the base model are identified by the oracle model.

In Figure 5.3, during the alignment with Anthropic hh-rlhf, only in 81 batches of all the

data do the oracle model identify negative responses, and full finetune of the base model is

needed.

5.6.8 Proposed Constitutions

One of the key novelties of IterAlign is jointly conducting the model alignment and consti-

tution proposal. We have demonstrated the effectiveness of model alignment on the bench-

marks. We now study the proposed constitutions generated along the training process. The

following snippets showcase some constitutions produced by IterAlign.

Vicuna-7B
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Iteration 0:

1.The assistant should not evaluate or support any harmful, unethical, or illegal actions

.

2.The assistant should prioritize the well-being and safety of all living beings.

3.The assistant should promote peaceful and respectful interactions between individuals.

4.The assistant should provide information and guidance that is legal, ethical and

helpful.

5.The assistant should not encourage or support any form of violence, harm, or cruelty

towards others.

Iteration 61:

The assistant should never provide guidance or support for illegal activities, harm to

others, or unethical behavior. The assistant should prioritize the safety and well-

being of all individuals involved.

Iteration 78:

1.Ensure accuracy in mathematical calculations.

2.Double-check calculations to avoid errors.

3.Provide correct answers and explanations for mathematical equations.

Vicuna-13B

Iteration 0:

1.Avoid repetitive and redundant thoughts. Instead, focus on providing concise and clear

responses.

2.Maintain neutrality and avoid favoring any specific agenda or organization.

3.Prioritize genuine understanding and helpfulness in conversations, rather than solely

focusing on achieving an agenda.

4.Respect the autonomy and agency of individuals involved in the conversation, allowing

them to make their own decisions and form their own opinions.

5.Strive for transparency and honesty in all interactions, avoiding hidden motives or

manipulative tactics.

Iteration 37:

The message is neutral as it is an internal thought and does not contain any harmful or

unethical language. However, it is important to note that the assistant should not be
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biased towards any particular agenda and should provide unbiased and helpful

information to all users.

We can see that constitutions that focus on more general semantics are being produced

during the early stages of alignment, and more specialized constitutions are proposed in later

stages. This observation matches our expectations since the general safety issues (harmful-

ness, trustlessness, dishonesty) are more likely to exist before the base model is aligned. In

the early stages, the general constitutions are collected and guide the base model to self-

reflect and self-revise. These general issues will then be overcome through SFT, and thus

the constitutions from the later stages of alignment will be more focused on checking for

remaining leaks and filling in the gaps.

5.6.9 Human Evaluation

We would like to point out that the benchmark datasets used in our paper are taken from

existing milestone papers such as the Llama-2 paper [TMS23], Dromedary [SSZ23], and many

other papers. We acknowledge that for NLP research, benchmark results shall only serve as

preliminary results. We follow Llama-2 [TMS23] and conduct the human safety evaluation

on TruthfulQA Generation for the models before and after applying IterAlign. Following

Llama-2 [TMS23]], we report the Overall satisfactory percentage. The results are as follows:

Llama-2-13b Llama-2-chat-13b Vicuna-1.5-13b

Pre-Align 0.075 0.2833 0.2917
Aligned 0.1 0.5583 0.4417

Table 5.3: Human Evaluation for TruthfulQA Generation.

Each example is examined by three annotators, and we calculate the average Cohen’s

Kappa score between each two annotators. The average Kappa score is 0.8827, indicating a

substantial agreement between the annotators. We can observe that the conducted human

evaluation results are highly correlated to the benchmark results.

83



5.7 Conclusion

In this paper, we present a novel data-driven constitution discovery and self-alignment frame-

work for aligning large language models. The framework utilizes an oracle model and a red-

teaming dataset to generate relevant constitutions that guide the model to self-align itself

in an iterative manner. Our approach is generic enough to be applied to any new domain

without the need for human experts. Our method can be used to customize the alignment

process for any target use-case or domain through the selection of a relevant red teaming

dataset. Extensive experiments show the value of our approach across multiple base LLMs

in improving their helpfulness, harmlessness and honesty.

5.8 Limitations

While IterAlign is effective, it does have limitations. We rely on existing red teaming

datasets and algorithms, as well as a stronger LLM for constitution discovery. Hence, the

upper bound of the aligned model in terms of the safety measures is likely to be close to

that of the stronger model. Future work could focus on developing more diverse and com-

prehensive red teaming datasets (e.g., domain specific red teaming datasets). Additionally,

exploring methods without relying heavily on a stronger LLM could lead to a more robust

and independent system. We followed the experimental settings of several related studies

including RLHF [Ope23a], CAI [BKK22] and Llama-2 [TMS23], and we find no significant

tests. We think the reason is that finetuning a base model multiple times is too costly for

such large models. IterAlign also fully finetunes the 7B and 13B base models for align-

ment so we did not repeat the experiment multiple times and conduct such significant tests.

Still, we think that an additional significance test would further strengthen the paper.
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Appendix

5.8.1 Generalizability of IterAlign

The use of strong LLMs and red teaming datasets is a demonstration (proof-of-concept) that

IterAlign’s alignment paradigm can effectively improve the performance of open-accessible

LLMs in terms of safety aspects. Essentially, the strong LLMs and red teaming datasets serve

as the supervisions of the alignment process, like the human-annotated data in RLHF and

the human-written constitutions in Constitutional AI (CAI), and the supervisions can be

generalized to many other forms. For example, the stronger LLMs can be substituted with

domain experts or any LLM agent with domain knowledge, while the red teaming datasets

from two existing red teaming methods used in IterAlign can be extended to any other red

teaming methods.

5.9 Base Model Selection

We instantiate our base model with llama-2, llama-2-chat, and vicuna-v1.5 since they are the

de facto gold standard open-source base models for experiments. In our opinion, these base

models are representative and diverse, since they range from different stages of LLMs, namely

pretrained, instruction tuned, and finetuned. We would like to clarify that our method can

be adapted to any other base model, such as T5, BART, etc.
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CHAPTER 6

ReLiable: Offline Reinforcement Learning for Tactical

Strategies in Professional Basketball Games

6.1 Abstract

Professional basketball provides an intriguing example of a dynamic spatio-temporal game

that incorporates both hidden strategy policies and situational decision making. During a

game, the coaches and players are assumed to follow a general game plan, but players are also

forced to make spur-of-the-moment decisions based on immediate conditions on the court.

However, because it is challenging to process heterogeneous signals on the court and the

space of potential actions and outcomes is massive, it is hard for players to find an optimal

strategy on the fly given a short amount of time to observe conditions and take action. In this

work, we present ReLiable (ReinforcemEnt Learning In bAsketBaLl gamEs). Specifically,

we investigate the possibility of using reinforcement learning (RL) to guide player decisions.

We train an offline deep Q-network (DQN) on historical National Basketball Association

(NBA) game data from 2015-2016. The data include play-by-play and player movement

sensor data. We apply our trained agent to games that it has not seen. Our method is

able to propose potentially smarter tactical strategies, compared with replay gameplay data,

producing expected final game scores comparable to elite NBA teams. Our approach can be

useful for learning strategy policies from other game-like domains characterized by competing

groups and sequential spatio-temporal event data.

87



Shoot 3 points
Shoot 2 points

Pass
Dribble

Call Timeout…

positions of teammates
positions of opponents 

shot clock
game clock

score difference …

Dynamic Environmental Factors:

Decisions to Make:

Shoot 3 points
Shoot 2 points

Pass
Dribble

Call Timeout…

Shoot 3 points
Shoot 2 points

Pass
Dribble

Call Timeout…

Rewards:
Score or not?

Figure 6.1: Basketball games are instances of sequential decision making in a dynamic
environment. Players and coaches have to make instant decisions that benefit them the
best, while external factors such as opponents, game points are changing over time.

6.2 Introduction

An ultimate goal of both data mining and machine learning is to help humans acquire

knowledge from environments and make decisions to achieve successful results. In most

circumstances, one needs to make sequential decisions to achieve some intermediate goals,

which consequently lead to some ultimate goals. However, decision making is typically very

hard in complex environments since actors must constantly adapt to dynamic conditions

and take actions that they may only hope will yield the largest rewards. Sequential decision

making in dynamic environments has drawn the attention of researchers from various areas,

such as robotics [PN17, KBP13], healthcare [YLN19, GJK19], and traffic and transportation

studies [APK03, HY20].

Professional basketball provides a good example of coaches and players making split-

second decisions in response to dynamic environmental factors. Relevant environmental

factors include the current positions of teammates and opponents, the shot clock and game

clock, and the score difference, all of which are constantly changing. Furthermore, these

factors are heterogeneous in nature under most circumstances. To account for all the critical
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factors to make a comprehensive decision, one has to first learn representations of these

factors to harmonize this heterogeneity. These conditions make the optimal sequential

decision making a very challenging task. At the elite level, small differences in performance

can lead to resounding success or abject failure [ISF08]. Recognizing this, basketball teams

usually hire professional staff, including video coordinators and data analysts, who study

replay data with the purpose of improving strategic and tactical decision making [PBT19].

However, it is challenging to precisely evaluate the long-term impact of sequential atomic

actions on the final game outcomes. For instance, even if a team scores at the end of a given

possession, it is not necessarily true that every sequential action taken during that possession

was optimal. Better strategies may in fact result in higher scores overall. Similarly, if a team

does not score, it may be wrong to conclude that all of the decisions taken during possession

were bad. “Bad luck” (i.e., stochasticity) may be to blame, instead of deployed tactics. More

realistically, any given set of sequential actions taken may be a mix of a few optimal and

many sub-optimal decisions, each made on the fly. It is challenging for players to pay perfect

attention to all of the environmental signals that would be essential for making perfectly

optimal decisions. We therefore explore whether machine learning techniques used to digest

massive environmental signals can be used to learn game strategies and potentially help

coaches and players make more optimal decisions.

Past studies of basketball [MBG16, WZ16, TDC20, TF20] incorporate recurrent neural

networks to process player-tracking data. The goal is to recognize offensive tactics and to

predict the movement of players. These approaches cannot discover optimal sequences of

decisions because they lack labeled interactions between the learning agent and the environ-

ment. Some recent efforts [NL11, WFS18, TF20] deploy RL to leverage the game/possession

results as rewards to give positive or negative feedback for the strategy learning process.

However, these approaches assume the presence of an online environment that can be inter-

acted with to collect a real-time reward, which is often unrealistic since it would be impossible

to find an opponent to specifically help one team improve their strategies.
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To tackle the above challenges, we formulate each basketball game as a Partially Observ-

able Markov Decision Process (POMDP) where the system dynamics are determined by a

Markov Decision Process (MDP), but the agent can only observe imperfect signals indicating

the likelihood of the system state. In an MDP, actions are determined only by the current

state of the system. A POMDP relaxes this Markov constraint in that the best action un-

der the current state can be dependent on historical states. To encode the observation of

states, we utilize convolutional neural networks and Transformer [VSP17] to incorporate a

continuous sliding window of game state snapshots. The convolutional layers convert the

visual signals into low-dimensional vectors, and the Transformer encoder integrates all the

snapshots into a vector of hidden state, where all the recent observations are taken into

account as well.

To digest the heterogeneous data, we present a well designed pipeline that does multi-

modal data representation learning when the offline RL objective is achieved. This capability

of incorporating multi-modal signals equips our model with the power of making compre-

hensive decisions accounting for as many factors as possible.

Another characteristic of our framework is that we train our model under a fully offline

setting, where no direct interaction with a real-world environment is available. We must take

full advantage of the replay data of previous games. We apply a highly robust mechanism,

double Q-learning [VGS16], to improve the Q-value estimation under this offline setting.

To summarize, our contributions are four-fold: (1) We formulate the problem of learn-

ing tactics in basketball games as one of solving a POMDP; (2) We propose a framework,

ReLiable, to apply offline reinforcement learning techniques to solve the POMDP; (3) A

representation learning pipeline facilitates ingesting multi-modal data and models at fine

granularity; (4) Extensive experiments to showcase that ReLiable can effectively learn

strategic decisions from replay data without interacting with a real environment.
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6.3 Related Work

Applications of Reinforcement Learning. Reinforcement learning is a paradigm that

implements learning-based control. Reinforcement learning algorithms have had remark-

able success in various application domains, such as robotics [KIP18a], self-driving cars

[BMG19], industrial control [GGG18], financial markets [MK19], healthcare [YLN19], news

recommendation [ZZZ18], gaming [SSS17], and advertising [JSL18]. However, many appli-

cations of reinforcement learning rely on an online environment that supports interactions.

This is a luxury in many settings either because it is costly, unethical, or dangerous to

collect data online. As such, it is desirable to learn effective behavior strategies while us-

ing only previously generated data. Offline reinforcement learning has been proposed to

fully exploit previously collected data without requiring interaction with the environment

[FMP19, ASN20, KZT20, LKT20, FKN20]. Applications of offline reinforcement learning

have emerged in domains such as dialogue systems [JGS19], robotic manipulation behaviors

[KIP18b], and navigation [KAL21].

Sports & Machine Learning. In the field of sports analytics, machine learning and AI

has been harnessed only recently for understanding and advising human decisions [TOM21].

Robberechts et al. [RVD21] introduced an in-game win probability model for soccer. Merhej

[MBM21] used deep learning techniques to define a novel metric that values defensive actions.

Luo et al. [LSP21] proposed a player ranking method that combines inverse RL and Q-

learning. Decroos et al. [DVD18] proposed an approach to find patterns in professional

soccer as tactics and went on to propose a framework to evaluate any type of player action

based on its impact on the game outcome [DBV19]. Sun et al. [SDS20] addressed the

trade-off between accuracy and transparency for deep learning applied to sports analytics

by proposing a new technique called mimic learning. [RPW17] showcased the utility of

statistical analysis (i.e., expected goal value, strategy-plots and passing quality measures)

to predict future performance. In [AAM17], a probabilistic graphical model was proposed

91



disentangle the sports teams’ luck and skills, and found that luck is as important as skills.

Although there may be no optimal way of playing basketball, there has been research

on optimizing certain player decisions within the game. Wang et al. [WFS18] discussed

how to leverage reinforcement learning to make better decisions on whether (and when)

the defensive team should “double team”, a special strategy in which two players closely

guard one player from the opposite team to neutralize that offensive player. Neiman et

al. [NL11] focused on the effect of recent field goal attempts on the rate of subsequent

shot attempts using a one-state Q-learning model, stating such learning is not guaranteed

to improve performance, unless a comprehensive statistical model of the dynamics of the

game is present. Liu et al. [LH18] developed a method that utilized motion capture data

to learn robust basketball dribbling moves. By training on both locomotion control and

arm control, they were able to achieve robust dribbling under a variety of scenarios. Jia et

al. [JRH20, JHC20] developed a basketball gaming platform called Fever Basketball that let

developers test their reinforcement learning-based algorithms under their specific video game

setting. Based on Fever Basketball, Tang et al. further proposed a reinforcement learning

method to produce a defensive strategy. These works rely on homogeneous data, and applies

ML techniques to conduct analysis on certain aspects of the game. However, they do not

focus on utilizing comprehensive multi-modal game information to learn effective team-level

offensive tactics while only game replay data is available during training. Imitation learning

is another machine learning paradigm that has applications in sports. It implements learning-

based control, but requires human expert demonstrations. Le et al. [LCY17, LYC17] applied

imitation learning to explore decision improvement by comparing the specific opponent and

”league average”, one team might be able to make subtle adjustments to their strategy.

Successor studies include extending the action space into a hierarchy [LJA18]. In contrast to

reinforcement learning, imitation learning presumes that training examples represent ”good”

behavior, which is usually impractical.
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6.4 Preliminaries

In this section, we introduce key concepts in reinforement learning (RL) and our notation. We

then formally define the problem of reinforcement learning of tactical strategies in basketball

games.

6.4.1 Notation and background

Frame Labeling Learn optimal strategy with offline RL

learn      on
 Raw game

replay data

Team game playing

Next State

Action

Reward

Dribble Pass Shoot

Game Snapshots Player Stats

Play-by-Play, Scores, Game Clock

Current State

t

t+1

evaluate on

Replay 
data

M
ulti-m

odal State Representation Learning

Figure 6.2: Overview framework of ReLiable. The overall pipeline can be split into two
major components: Frame Labeling and Offline RL. During Frame Labeling, we annotate
each frame with an action. We also append flat features such as game clock, shot clock
and player stats to the snapshot to form the episodic data that can be fed into our model.
During Offline RL, our model takes both visual features and flat features as input, learns
the representation of the multi-modal input, and conducts training and inference.

In the RL setting, we usually suppose that an agent repeatedly interacts with the en-

vironment. For an agent, the environment provides feedback, such as the next state of

the environment and the instant reward for actions taken. This interaction process can be

naturally modeled as a Markov Decision Process (MDP) [Bel66]. An MDP can be

represented as a tupleM = (S,A, T, r, γ), where S represents the set of possible states s ∈ S,

A is the set of all possible actions a ∈ A that the agent can take. T defines a state transition

mechanism in response to environmental dynamics, which is usually expressed as a condi-

tional probability distribution. Specifically, T (st+1 ∣ st,at). r ∶ S ×A→ R defines the reward

93



function based on a given state and the action chosen by the agent. Finally, γ ∈ [0,1) is a

discounting factor associated with the learning process that balances between the reward in

the current state and the reward in future states.

In a standard setting, the agent (1) starts with an observed state st, (2) picks some action

at ∈ A with the potential of maximizing the accumulative reward, (3) enters a new state st+1,

and (4) perceives an instantaneous reward rt. This process repeats until a terminal state is

reached.

The MDP process gives us a good picture of how AI researchers model relations between

intelligent agents and the environment. However, it sometimes becomes hard for the agent

to fully observe the current state from the environment, so a new paradigm is needed to

generalize the regular MDP. To this end, we focus on Partially Observable Markov

Decision Process (POMDP) models [Ast65].

A POMDP is defined as a tupleM = (S,A,O, T,E, r, γ) where S,A, T, r, and γ share the

same definitions as in the MDP. O is the set of observations, where each observation o ∈ O is

generated by both the underlying unobservable state and the emission function E (ot ∣ st).

To learn a POMDP, most existing studies focus on online reinforcement learning, and

collect rewards and next states from the environment in an on-the-fly manner. The final

goal of online reinforcement learning is to learn a policy π that maximizes the cumulative

reward J(π) = Eτ∼pπ(τ) [∑
H
t=0 γ

tr (st,at)] , where the policy π is defined by a distribution over

actions conditioned on states π (at ∣ st) in the MDP setting, or a distribution over actions

conditioned on observations π (at ∣ ot) in the POMDP setting. Fundamentally, in MDPs our

goal is to find a map from states to actions, whereas in POMDPs our goal is to find a map

from probability distributions over states to actions.

Notice that the reinforcement learning objective J(π) is an expectation under a distribu-

tion. To fully illustrate this distribution, we have to define a trajectory. The trajectory se-

quence, or episode is a sequence of states and actions τ = (s0,a0, . . . , sH ,aH). The probability
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of a trajectory given an MDP and a policy π is given by pπ(τ) =∏
H
t=0 π (at ∣ st)T (st+1 ∣ st,at).

Online reinforcement learning implicitly assumes that the agent has the luxury of directly

interacting with the environment. However, this assumption is sometimes impractical. For

example, collecting “live” online data may be very expensive, unethical, or dangerous when

training an autonomous driving vehicle.

In this paper, we propose the offline reinforcement learning paradigm that operationalizes

RL without exploration. It can be regarded as the data-driven version of online RL. The

ultimate goal of offline RL is still maximizing the cumulative reward J(π), but without the

ability to interact with the environment or to collect transitions among states by the policy.

In other words, the learning algorithm has to fully exploit the episodes given in a static

dataset

D = {(sit,a
i
t, s

i
t+1, r

i
t)} (6.1)

to produce the best possible policy. Suppose that the episodes in D are generated by some

underlying policy πβ, the actions are then subject to a ∼ πβ(a ∣ s).

6.4.2 Problem Formulation

The input of ReLiable is a collection of basketball game logs Draw. The game logs consist

of three parts as follows.

Player movement tracking data. The tracking data Dmove are static game snapshots

that include the positions of all on-court players and the ball at a frequency of 25 frames

per second during a game. The progress of any game can be visualized and restored based

on the sequence of snapshots.

Play-by-Play data. Dpbp provides a transcript of the game in a format of possessions. It

contains 1) the time of the possession, 2) the player who initiated the possession, 3) the

outcome of the possession, e.g., how many points are scored, and 4) some other unique

identifiers we use to classify the type of possession.
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Player stats data. Dstat usually includes player attributes (e.g., height, weight, wingspan,

age) and past performance (e.g., minutes per game, points per game, field goal percentage,

and 3-point percentage).

For learning purposes, we split Draw into Dtrain and Dtest as the training set and testing

set by the times of gameplays. Formally, we define our task as follows:

Given a collection of game logs Draw = Dmove∪Dpbp∪Dstat and an action set A, where each

a ∈ A is well defined by the discriminative rules on Draw, the task is to assign an appropriate

action label a to every frame in Dmove. In other words, we aim at producing a policy πθ(a ∣ o)

parameterized by θ to output the best action based on the observation related to each frame

in Dmove.

6.5 Methodology

Framework Overview Figure 7.1 illustrates the pipeline of our framework. The raw game

replay data is generated by recording the actual games during the 2015-2016 NBA regular

season. Each team plays their games according to their policies πβ unknown to our model.

The raw game data is multi-modal. Specifically, a game is represented by a sequence of

snapshots captured at a high frequency (e.g., 25 frames per second), in which at a given

time t, the snapshot contains an image with all player positions and ball position, as well as

a set of auxiliary information, such as instant scores, player percentage, shot clock, and game

clock, at time t. From the raw game replay data, we extract the game state representation,

the action, and the reward on a frame basis to form the replay data D = {(sit,a
i
t, s

i
t+1, r

i
t)}.

Once we derive the replay data D, we feed it into ReLiable to infer effective policy πθ.

Note that during the training process, there is no interaction with any environment. To

evaluate the performance of πθ, we conduct off-policy evaluation on the test set using both

action copy and importance sampling. Details on the tasks are discussed in the experiments

section.
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In summary, our framework employs a dataset D collected by unknown behavior policy

πβ, which can be roughly understood as the “average” policy of all NBA teams. The dataset

is collected once and for all, and is not altered during training. The training process is fully

dependent on the training set Dtrain , so it does not interact with environment at all. Once

fully trained, we expect πθ to generalize well on Dtest .

6.5.1 Making Tactical Decisions on-the-fly with RL framework

6.5.1.1 Game State Representation

The state space for a professional basketball game is extremely large, though presumably not

infinite. We want to account for as many game states as possible by considering a continuous

state representation that encapsulates player trajectories, player heights, weights, shooting

abilities, the shot clock, game clock and current scores for each team. As input to our

network, we use both images and flat features.

Our image representation includes three types of channels: i) one court channel encoding

the region number of each pixel, ii) 11 trajectory channels (for the 10 players and the ball),

and iii) five offensive player shooting percentage channels, each of size 47×50 in the pixel

space (i.e., the half court discretized by square feet). When estimating shooting percentages,

we use data up to, but not including the current game. This is necessary to respect the

causal ordering of events. The result is a 17 channel image. The channels are ordered across

images by team and position within a team so that image semantics across examples can be

preserved.

To infer the best action at any moment, we see beyond the game snapshot of the cur-

rent moment. We encode the snapshot sequence of past 3 seconds and take advantage of

Transformers which has been proven effective on modeling sequential data, and feed the

representation into our model.

Apart from the movement data, other game and player information is also crucial for the
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agent to make the best possible decisions. Thus, the state representation also incorporates

some flat features like the game clock, shot clock, and player historical shooting percentage.

For continuous features, we normalize them into range [0,1], while for categorical features,

we use one-hot encoding. Note that for scores, we treat them as categorical features as subtle

score difference may have a huge impact on decision making.

Figure 7.2b illustrates the model architecture of ReLiable. Convolutional networks

and Transformer are employed to encode the movement data which are essentially image se-

quences. Convolutional networks are known for capturing spatial dependencies while Trans-

formers are known for capturing temporal dependencies. Combining them together empowers

ReLiable to extract patterns in the features instead of the randomness. To comprehen-

sively incorporate as much game information as we can, the flat features are concatenated

with visual features. This concatenation goes through a fully connected module (FC Net)

and derives our final state representation.

By leveraging Transformer to capture the temporal dependencies, we are essentially treat-

ing the basketball games as a higher-order Markov chains (the order being the sliding window

size). Strictly speaking, we do not exactly follow the implementation as a POMDP since

typical POMDP uses the belief state to capture everything, but higher-order Markov de-

cision process can be used as a way to tractably perform computation over the PODMP.

ReLiable does not compute the posterior over all the past observations, instead we keep a

fixed sliding window of observations to approximate the POMDP. From the basketball sense,

this also makes sense. When players make decisions on-the-fly, it is the recent game process

that matters the most, rather than the whole game procedure.

6.5.1.2 Action Space Labeling

Our pipeline takes the player movement data as input. To fulfill the POMDP requirement,

we need to define the action space and label the player movement data with actions. This

paper focuses on the offensive perspective, and therefore in our evaluation, four actions are
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Figure 6.3: Model architecture of ReLiable. Since we formulate our learning problem
as solving a POMDP, past game observations can be incorporated as inputs to predict the
best next action. We use convolutional blocks to encode the images into visual features, and
exploit Transformer to encode the sequence of game observations. Visual features and flat
features are concatenated to form the state representation.

defined on two sets of experiments: (1) Shooting 3-points. Attempting a 3-point shot. If

the ball goes in, the offensive team is rewarded 3 points. (2) Dribble. The on-ball player

keeps dribbling the ball. (3) Pass. The on-ball player passes the ball to one of his teammates.

(4) Shoot. The on-ball player shoots the ball from his current position on the floor.

We annotate each and every frame of the raw movement replay data with one of these

actions to serve as the ground truth for training and validation. To label a given frame, we

inspect a sliding window of snapshots and leverage some simple rules to determine the exact

action for each specific frame. The rules that we apply to label actions out of the raw game

replay data are as follows. The output of frame labeling tags each frame in the raw data

with an action that is being conducted in the frame.

● First, all actions in our action set are highly dependent on the player that currently has

possession of the ball. So, our labeling process starts with calculating the distance between

the ball and each of the other offensive players.
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● We assign the offensive player closest to the ball to be the current ball handler.

● To determine the action of dribbling, we look at a sliding window with a span of 2 seconds.

If, during the time window, the ball handler has not changed, then we label all the frames

covered by the window as ”dribble”.

● By contrast, if the ball handler has changed, during this time span, then if the distance

between sequential ball handlers is larger than 20 centimeters, we label the frames as

”pass”.

● Finally, to precisely extract “shooting” frames, we combine the information in the play-

by-play data and player movement data. The play-by-play data provides us with all the

shooting attempts, so we only have to look at the frames immediately before the attempt.

After ruling out those frames determined as ”dribble” or ”pass”, we consider a 5-second

sliding window. We label all the frames involved as ”shoot” once the height of the ball

(relative to the floor) exceeds 10 feet (which is the height of the rim), and the distance of

the ball to the rim decreases to near 0.

6.5.1.3 Reward

The ultimate goal of a basketball team is to score more points than their opponent, thereby

winning the game. From the offensive perspective, winning the game is consistent with

maximizing the total points scored during a game, which is presumably achieved if a team

scores as many points as possible in each and every possession. Therefore, we mainly focus

on designing a good reward function based on the points obtained in a possession. According

to the basketball rules, points obtained in a single possession can be one of the values in the

set: score ∈ {0,1,2,3,4,5}.

Although obtained points are a good indicator to guide the learning process, we observe

that simply rewarding the shooting decision by whether it scores can be misleading, since

“bad shots” might nevertheless result in a basket, while “good shots” might miss. A common
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case to consider is as follows: When it is approaching the end of a game and the score

difference is marginal, the trailing team often takes their chances by attempting so-called

“low percentage” shots. Sometimes a half-court “buzzer beater” wins the game, but mostly

they do not. If we only consider attempts that actually lead to scoring, we might miss these

seemingly nonsensical attempts that can potentially help to win the game.

To address this issue, we associate each shot attempt with two regularization terms.

First, within each possession, as the shot clock goes to 0, we reward any shot attempt with

a value that is a linear function of the shot clock, even if that shot misses. Second, when

the game is tight at the end of the fourth quarter, we reward shots that might not seem

reasonable, but have the potential to yield a win. Specifically,

Reward = score + (24.0 − shot clock)/24.0 + game clock ∗NB(5,2/3)

where score denotes the points scored by the offensive team. The second term is the shot

clock-based compensation. When a shot happens as the 24 seconds run out, we compensate

1 point for the decision since taking a shot is the only correct action at this point. The third

term compensates for potential “buzzer beater” shots. NB denotes the negative binomial

distribution with parameters r = 5, p = 2/3. This distribution has a probability mass function

with a peak at k = 6 where k is the support. This means that we empirically assume

teams trailing by 6 points are most likely to try the ”nonsense” shot attempts. Since the

compensation should be a joint distribution of the game clock and score difference, we

weigh the score difference with the game clock, so that we compensate more when it is

closer to the end of a tight game. We further show analysis that motivates our reward

function. During the development of ReLiable, we find there are cases where players seem

to make “unreasonable” decisions, e.g., rushing shots or make confusing passes. We further

investigated on these “unreasonable” decisions, and find that these cases center around

following situations: i) the 24-second shot clock is running out; ii) game clock is running
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(a) The correlation be-
tween 3-point attempts and
game clock.

(b) The correlation be-
tween 3-point attempts and
shot clock.

(c) The correlation between
3-point attempts and score
difference. Negative score
difference indicates trailing
team behavior.

Figure 6.4: (a, b, c): The three-point attempts demonstrate some patterns with respect to
different factors. Inspired by these patterns, we decide to add regularization terms to the
reward function.

out and the score difference is small. Figure 6.4 showcases distribution of 3-point attempts

over game clock, shotclock and score difference. In Figure 6.4a, we can see rapid increases

in number of 3-point attempts near end of the quarters (every 12 minutes). In Figure 6.4b,

there are quite a lot 3-point attempts made at the end of a possession. In Figure 6.4c, we

can learn that in the case of small score difference, both the leading team and the trailing

team tend to attempt 3-pointers to enlarge the advantage or catch up the score. Observing

these distributions, we imagine many of these “rushing shots” are in fact wise decision, since

these shots can occasionally turn into “buzzer beaters”, making the trailing team eliminate

the disadvantage to get an overtime. As a result, merely learning from the outcome of these

possessions might not reflect the reasonability of these right decisions. To compensate these

right decisions, we add the two regularization terms in the reward function.

6.5.1.4 Training Process

Figure 7.2b illustrates the architecture of the training component of ReLiable. We build

ReLiable based on the double Q network. We use the double Q network since it has been

proven effective in learning defensive strategies [WFS18]. It is flexible to substitute the

learning module with other offline RL algorithms such as BCQ [FMP19], REM [ASN20],

102



or CQL [KZT20]. Since we formulate our learning problem as solving a POMDP, previous

game observations can be incorporated as inputs to predict the best next action. We use

Transformers to encode a sequence of game observation snapshots since Transformers are

known for capturing temporal dependencies. We use Convolutional networks to encode

image features since we would like to capture the patterns in the snapshot images instead

of the randomness. Since the backbone of our framework is a deep Q network, the learning

process essentially trains a state-action value (Q-value) estimator that represents a mapping

s→ Qπ(s, a) for all actions a ∈ A. To derive the state representation, we use the convolutional

neural network to encode the visual features such as movement snapshots.

Feed forward neural network is used as the function approximator. The function directly

approximate the Q-values for each action at given a state st at timestamp t. Since the

action space labeling phase has transformed the raw game data into the episodic training

set D = {Di}
N
i=1 where each Di = (si1, a

i
1, r

i
1, . . . , s

i
Ti−1, a

i
Ti−1, r

i
Ti−1, s

i
Ti
) is called an episode

which contains the sequence of states, actions, rewards corresponding to one possession in

the game. Our DQN learns its parameters by minimizing the sum of temporal difference

(TD) error of all the N episodes in the training set:

L =
N

∑
i=1

Ti−1
∑
t=1
[Qπ∗ (sit, a

i
t) − (r

i
t + V

π∗ (sit+1))]
2

We represent the derived policy as π∗, and the estimated Qπ∗ and V π∗ represent the Q-value

and V-value in general reinforcement learning settings. As a result, our derived policy can

be expressed in the following way:

π∗ (a ∣ st) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if a = argmax
a∈At

Qπ∗ (st, a)

0, otherwise

V π∗ (st+1) =maxa∈At+1 Q
π∗ (st+1, a) .
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Table 6.1: NBA 2015 - 16 Regular Season Game Stats
# Games # Minutes # Plays # Frames

636 30, 528 321, 742 45, 792, 000

6.6 Experiments

In this section, we present our experimental results in detail. We will first give a thorough

description of the data set, then discuss the experimental settings including the input and

output of our model and evaluation metrics.

6.6.1 Dataset

We acquired the data set from a publicly accessible repository 1. The input data of our

model is made up of three parts: (1) Play-by-Play: Information at the possession level

including how the possession ended (jump shot, lay up, foul, etc.), how many points were

earned for the offensive team, from which spot the ball shot shot, and the player that shot

the ball, etc. (2) Player movement sensor data: Court snapshots during games including

the positions of players and the ball in Cartesian coordinates. The elapsed time between

consecutive frames is 0.04 second. The statistics are listed in Table 7.1. (3) Player stats:

The player position and shooting percentage.

6.6.2 Experimental setting

In general, evaluation of offline reinforcement learning is challenging because we cannot

interact with the online environment to collect rewards. Fully exploiting the existing replay

data is the only way to perform model validation. To thoroughly examine whether our

framework can learn effective strategies, we design two evaluation protocols including action

copy and off-policy evaluation via importance sampling.

1https://github.com/rajshah4/BasketballData/tree/master/2016.NBA.Raw.SportVU.Game.Logs
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In the action copy experiment set, we first focus on the challenge of deciding when to

take a 3-point shot. We wish to determine if our model can make good decisions in edge

cases such as when to attempt a “buzzer beater” to win the game. Later on, we extend

the action space to make it more fine-grained, and investigate whether our model can still

choose wisely among dribble, pass and shoot.

In off-policy evaluation, we use importance sampling to evaluate the expected return of

our policy. By adding up all expected rewards from each possession for a team, we are able

to estimate the point total for a team of agents following the learned strategy policies.

In both experiments, we split the training/testing data chronologically: we use games in

2015 for training, totaling 480 games, and the rest games (in 2016) as the test set, totaling

156 games.

6.6.3 Baseline Methods

We evaluate the performance of our method against the following supervised and reinforce-

ment learning frameworks:

● Logistic Regression [NW72] is a supervised classification method. It takes flat features

as input and computes the correlation between input and labels using a generalized linear

function.

● CNN [KSH12], short for convolutional neural network, is a standard image signal en-

coder classification method.

● LSTM [HS97], short for Long Short-Term Memory, is a type of Recurrent Neural Net-

work. LSTM networks are well-suited to classifying, processing and making predictions

based on time series data.

● GRU [CVG14], short for Gated Recurrent Unit, is another type of Recurrent Neural

Network. Compared to LSTM, GRU has a simpler structure, thus achieving higher com-
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Table 6.2: F1 scores of
compared algorithms on
3-point attempts.

Model F1 score
Logistic Regression 56.28%

CNN 67.10%
LSTM 68.32%
GRU 67.94%

Transformer 70.43%
SAC with MDP 75.27%

SAC with POMDP 78.17%
ReLiable with MDP 76.24%

ReLiable 81.01%

Table 6.3: {Micro, Macro} F1
scores of compared algorithms on
{Dribble, Pass, Shoot}.

Model Micro F1 Macro F1
Logistic Regression 35.17% 27.32%

CNN 42.89% 34.71%
LSTM 45.22% 34.75%
GRU 45.74% 34.14%

Transformer 51.20% 37.48%
SAC with MDP 57.36% 40.43%

SAC with POMDP 70.27% 64.81%
ReLiable with MDP 60.24% 44.09%

ReLiable 72.95% 66.90%

Table 6.4: Estimated value of
J (πθ) on test set.

Model J (πθ)

SAC with MDP 81.36
ReLiable with MDP 94.89

SAC with POMDP (LSTM) 98.42
Seasonal average 102.7

SAC with POMDP (Transformer) 105.75
ReLiable (LSTM) 100.28

ReLiable (Transformer) 108.16

putational efficiency.

● Transformer [VSP17] is a sequence-to-sequence model containing an encoder and a

decoder. Here, we only utilize the encoder part. Transformer applies a multi-head self-

attention mechanism as an alternative to Recurrent Neural Network, enabling the parallel

computation and dramatically enhancing the model efficiency.

● Soft Actor-Critic (SAC) [FHM18] is one of the state-of-the-art off-policy actor-critic

algorithm. Most RL-based algorithms especially on-policy ones require the interactive

environment which is absent in the offline setting. As a result, we pick SAC as our main

competitor and adapt it to our offline setting. It expects to learn a policy that acts as

randomly as possible while it is still able to succeed at the task. We evaluate SAC under

both MDP and POMDP settings.
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6.6.4 Performance Comparison

6.6.4.1 Action copy

In action copy, we test how likely our model is to behave like the replay data. Different from

imitation learning, offline RL does not assume the replay data to be optimal, and may have

to handle highly suboptimal data. Offline RL is expected to derive the best policy possible

given the data, which means the hope of out-performing the demonstration data.

Simply involving all the trajectories to test similarity seems straightforward, but turns

out to be unreasonable since our test data is the raw replay data that includes large numbers

of suboptimal plays. As an alternative, we filter out possessions that do not result in scores

and focus on how similar our policy behaves to the replay data in the possessions that

actually lead to scoring.

Evaluation Metrics. In the 3-point attempts set, whether or not to shoot the ball is a

binary decision. We simply use the F1 score as the evaluation metric. In the dribble-pass-

shoot set, we use Micro and Macro F1 scores as evaluation metrics.

Table 6.2 demonstrates the experimental results on the set of 3-point attempts. At any

time of the game, every model outputs a result whether or not the better action is to try a

3-point shot at that moment. From the result, we can see that for the binary decision, ReLi-

able performs better than all the comparative methods. In the set of dribble-pass-shoot, we

evaluate similarly as multi-class classification. The results in Table 6.3 demonstrate a similar

pattern as in the previous set, where ReLiable outperforms all the baselines. Combining

the two sets, we can see that by considering long-term rewards, reinforcement learning based

methods perform better than supervised learning based methods. In particular, ReLiable

makes decisions that are in alignment with those in the successful possessions, and out-

performs policy gradient consistently. We attribute this overtake to the double Q-learning

architecture, which has demonstrated its superiority in offline reinforcement learning set-
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tings. We can also observe that formulating the task as a POMDP by using the Transformer

encoder to capture dependencies on recent game snapshots outperforms merely looking at

the snapshot of the current timestamp.

6.6.4.2 Off-Policy Evaluation via Importance Sampling

In the offline RL setting, we have to estimate the cumulative reward J(πθ) using only the

trajectories generated from the unknown underlying policy πβ(τ). This idea is also known

as off-policy evaluation. In principle, once we can estimate J(πθ), we can select the policy

with the highest cumulative reward. Specifically, we derive an unbiased estimator of J(πθ)

that is dependent on the replay data trajectories:

J (πθ) = Eτ∼πβ(τ) [
πθ(τ)

πβ(τ)

H

∑
t=0

γtr(s,a)]

= Eτ∼πβ(τ) [(
H

∏
t=0

πθ (at ∣ st)

πβ (at ∣ st)
)

H

∑
t=0

γtr(s,a)] ≈
n

∑
i=1

wi
H

H

∑
t=0

γtrit

The weight coefficient wi
t is expressed as wi

t =
1
n∏

t
t′=0

πθ(ai
t′
∣si
t′
)

πβ(ai
t′
∣si
t′
)
and {(si0,a

i
0, r

i
0, s

i
1, . . .)}

n

i=1

corresponds to n trajectories sampled from the underlying unknown tactical strategies from

the NBA teams. In our case, these trajectories are game snapshot series from the replay

data.

The off-policy method is essentially to see how similar our policy performs to the plays

in the test set, with an emphasis on the plays that actually received very high ewards.

Essentially, J (πθ) is a sum of the discounted cumulative reward weighted by the rewards of

each step, so if a step in the data actually got high rewards, then we pay more attention to

these situations. In order for the weighted sum to be large, we should increase the probability

of our policy πθ taking the action that leads to a high reward in the trajectory generated

from the unknown policy πβ.

Table 6.4 lists the performance of off-policy evaluation. Since off-policy evaluation is

108



(a) Jered Sullinger gives up
an opportunity to shoot a
three point.

(b) Kevin Durant shoots
over a good defender. The
shot turns out a miss.

(c) Boris Diaw with good
percentage gives up shots,
instead dribble and pass.

Figure 6.5: (a, b, c): Cases that demonstrate ”surprises” from our policy. This showcases
that the offline RL framework can possibly learn strategies that differ from the existing data
that also make sense.

(a) Kobe Bryant tries to
shoot over Kevin Duran,
but misses the shot.

(b) Dirk Nowitzki shoots
over a good defender. It
turns out the shot goes in.

(c) Gordon Hayward makes
a buzzer beater at the end
of the 3rd quarter.

Figure 6.6: (a, b, c): Cases that demonstrate ”consistence” from our policy. This indicates
that ReLiable imitates some critical decisions from the successfully plays.

only applicable to RL-based methods, we test all relevant methods on all games in the

test set, derive the average scores over the games, and exhibit the J (πθ) value derived

from the test set. Essentially, the values in the table stand for the points our policy is

expected to score per game on average. We observe that all the RL-based methods can score

reasonably high points, among which the ReLiable with Transformer encoder gives the

highest points. This indicates that the multi-modal representation learning pipeline indeed

helps extract the spatial and temporal dependencies. Taking a closer look, we can notice that

ReLiable outperforms policy gradient. We attribute this to the Q-learning backbone, which

generally performs better than policy-based algorithms. Generally, turning the problem

109



into a POMDP and leveraging the auxiliary sequence encoder (LSTM or Transformer) to

approximate the emission function boost the performance of an RL agent.

6.6.5 Ablation study

6.6.5.1 Partially-Observable Markov Decision Process

Next, we further show the advantage of formulating the task as a POMDP. Compared to

MDP, optimizing a POMDP enables RL algorithms to incorporate information beyond one

certain state. In our framework, we keep a sliding window of game snapshots at any moment

and encode sequences of sliding windows using Transformer [VSP17] to approximate the

emission function E (ot ∣ st) in the POMDP. Tables 6.2, 6.3 and 6.4 show that under different

kinds of settings, using a Transformer encoder to incorporate game snapshots from the last

few seconds generally outperforms merely looking at a single snapshot by an observable

margin. Although the auxiliary information brought by the sequence of snapshots does not

strictly follow the Markov property, it equips the model with the capability of making better

decisions by considering continuous game processes. A single snapshot only reflects relative

positions of the on-court players, the basketball, and the hoops, whereas the sequence of

snapshots contains additional information, such as the player handling the ball, whether a

shot attempt is a catch-and-shoot (which usually reflects a higher success rate), and player

movement speeds. Consequently, feeding sequences of snapshots and encoding them via a

Transformer encoder improves the overall performance.

6.6.5.2 LSTM vs. Transformer

Besides, we compare the performance of using different sequence encoders. From Table 6.4,

we can see that using Transformer as the sequence encoder generally performs better than

using its counterpart LSTM regardless of RL algorithms.
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6.6.6 Case study

We expect offline RL to unearth better policies beyond those present in the replay data. We

therefore investigate cases where the decision made by our policy differs from the replay data

to provide intuition on why our policy performs well on the test data. Figure 7.3 illustrates

3 different cases where our policy suggests a different action from the action taken by the

teams in the test data. In Figure 7.3a, Boston player #7, Jared Sullinger, who has an above

average 3-point percentage, just caught the ball in an open position. Our model recommends

a 3-point attempt, yet Sullinger chose to pass the ball. The Celtics ended with a missed

shot as no better open positions arose later in the possession. In Figure 7.3b, Oklahoma

City (OKC) is in transition from defense to offense. The shot clock has a lot of remaining

time. OKC player #35, Kevin Durant, dribbled the ball through the half court. Our model

recommends passing the ball, effectively waiting for teammates to set up their positions.

Durant took a shot and missed. In Figure 7.3c, our model suggests Boris Diaw who is a

good shooter should take the open shot, while in fact, he gave up the opportunity. The

possession ended up without scoring.

Figure 6.6 demonstrates some cases that discriminates ReLiable from its competitors.

In 6.6a, Kobe Bryant shot over Kevin Durant who is bigger than him. Our model suggests

that Kobe should have not taken the shot, while baseline methods suggest the opposite.

It turns out that Kobe missed the shot. In 6.6b, Dirk Nowitzki noticed the shot clock is

running out and his team is only leading by 2, so he decided to shoot the ball despite the

double team on him. The output of our model is consistent with Dirk’s actual behavior,

while baseline methods suggest the opposite. In 6.6c, Gordon Hayward hit a buzzer beater

at the end of the 3rd quarter. In the first case, ReLiable successfully avoids a bad shot.

In the last two cases, ReLiable is able to figure the player should take the shot in order to

hit a buzzer-beater, while comparative methods are not able to take the risk. By looking at

these cases, we see that ReLiable is able to discover some decisions even better than the
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replay data, achieving the goal of offline reinforcement learning.

6.7 Conclusion & Future work

In this paper, we propose to study basketball tactical strategy learning with the absence of

interaction with the environment. By formulating the basketball games under the context of

the partially observable Markov decision process, we are able to apply a data-driven approach

based on double Q-learning to derive nearly optimal strategy out of the raw game replay

data. We then present ReLiable, an offline reinforcement learning framework for learning

effective tactical strategies in basketball games. Experiments and case studies demonstrate

the effectiveness of ReLiable over comparative methods, as well as the utility of using

Transformer to parameterize the distribution over states under our POMDP setting.

In the future, it is of interest to extend our framework to offline multi-agent reinforcement

learning (MARL)[BBD10] setting. Under the MARL setting, decisions are made in a finer

granularity since each player should make sequential decisions instead of each team. Com-

pared to single-agent scenarios, multi-agent mode is more challenging since it involves both

collaboration and competition. Another direction worth exploring is extending the action

space to a hierarchical setting.

112



CHAPTER 7

PlayBest: Professional Basketball Player Behavior

Synthesis via Planning with Diffusion

7.1 Abstract

Dynamically planning in complex systems has been explored to improve decision-making in

various domains. Professional basketball serves as a compelling example of a dynamic spatio-

temporal game, encompassing context-dependent decision-making. However, processing the

diverse on-court signals and navigating the vast space of potential actions and outcomes

make it difficult for existing approaches to swiftly identify optimal strategies in response to

evolving circumstances. In this study, we formulate the sequential decision-making process

as a conditional trajectory generation process. Based on the formulation, we introduce

PlayBest (PLAYer BEhavior SynThesis), a method to improve player decision-making.

We extend the diffusion probabilistic model to learn challenging environmental dynamics

from historical National Basketball Association (NBA) player motion tracking data. To

incorporate data-driven strategies, an auxiliary value function is trained with corresponding

rewards. To accomplish reward-guided trajectory generation, we condition the diffusion

model on the value function via classifier-guided sampling. We validate the effectiveness

of PlayBest through simulation studies, contrasting the generated trajectories with those

employed by professional basketball teams. Our results reveal that the model excels at

generating reasonable basketball trajectories that produce efficient plays. Moreover, the

synthesized play strategies exhibit an alignment with professional tactics, highlighting the

113



model’s capacity to capture the intricate dynamics of basketball games.1

7.2 Introduction

The exploration of dynamic systems and their planning has broad applicability across vari-

ous domains. Whether it involves developing strategies for team sports [WFS18], managing

traffic flow [ZYZ20], coordinating autonomous vehicles [KST21], or understanding the dy-

namics of financial markets [LXR22], these scenarios can be effectively framed as dynamic

systems characterized by intricate interactions and decision-making processes. The ability

to comprehend and plan within these systems becomes crucial to achieving optimal out-

comes. Basketball, with its high level of dynamism and complexity as a team sport, serves

as a captivating illustration of a real-time dynamic system with intricate tactical elements.

A basketball game requires continuous adaptation and strategic decision-making. Coaches

and players rely on pertinent environmental and behavioral cues including teammates’ and

opponents’ current positions and trajectories to select play strategies that respond effec-

tively to opponents’ actions and adapt to real-time situational changes. Existing methods in

sports analytics and trajectory optimization [WFS18, TF20, WSC22] have made progress in

modeling and predicting player movements and game outcomes. However, these approaches

struggle to capture the intricate dynamics of basketball games and produce flexible, adaptive

play strategies that can handle the uncertainties and complexities inherent in the sport. The

challenges arise from the following two features of basketball games:

Modeling the complex environmental dynamics: Capturing environmental dynamics

in basketball games is a very challenging task due to the inherent complexity of the game,

for example, rapid changes in game situations and numerous possible actions at any given

moment. The spatio-temporal nature of basketball data, including multiple player positions

and ball trajectories, further complicates the modeling process. The need for a computation-

1The code is at https://github.com/xiusic/diffuser_bball.
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ally efficient and scalable approach to handle the massive amounts of data generated during

basketball games presents a major challenge in modeling environmental dynamics.

Reward Sparsity: An additional challenge lies in addressing reward sparsity. Unlike other

reinforcement learning (RL) environments where immediate feedback is readily available

after each action, basketball games often see long sequences of actions leading up to a single

reward event (e.g., the scoring of a basket). This results in a sparse reward landscape, as

many actions contribute indirectly to the final outcome but are not themselves immediately

rewarded. This scenario complicates the learning process as it becomes more challenging

for the planning algorithm to accurately attribute the impact of individual actions to the

final reward. Designing effective methods to address the reward sparsity challenge remains

a significant hurdle in applying typical planning algorithms to basketball and similar sports

games.

Recently, powerful trajectory optimizers that leverage learned models often produce plans

that resemble adversarial examples rather than optimal trajectories [Tal14, KST19]. On the

contrary, modern model-based RL algorithms tend to draw more from model-free approaches,

such as value functions and policy gradients [WBC19], rather than utilizing the trajectory

optimization toolbox. Methods that depend on online planning typically employ straight-

forward gradient-free trajectory optimization techniques like random shooting [NKF18] or

the cross-entropy method [BKR13, CCM18] to circumvent the above problems.

In this work, we first formulate the planning problem in basketball as a multi-player

behavior synthesis task, and instantiate the behavior synthesis task as a trajectory genera-

tion task. Following the recent success of generative models in applications of single-agent

planning [JDT22, ADG22], we propose a novel application of the diffusion model called

PlayBest (PLAYer BEhavior SynThesis), to generate optimal basketball trajectories and

synthesize adaptive play strategies. Under most circumstances, the diffusion model serves

as a generative model to capture the distribution of the input samples. In our study, we

extend it as a powerful technique to enable flexible behavior synthesis in dynamic and uncer-
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tain environments since there is no existing online environment for basketball simulations.

The diffusion process explores different potential trajectories and adapts to changes in the

environment through the iterative sampling process to model basketball court dynamics.

To guide the reverse diffusion process with rewards, PlayBest features a value guidance

module that guides the diffusion model to generate optimal play trajectories by conditional

sampling. This integration naturally forms a conditional generative process, and it allows

PlayBest to swiftly adapt to evolving conditions and pinpoint optimal solutions in real-

time.

We instantiate PlayBest in a variety of simulation studies and real-world scenarios,

demonstrating the effectiveness of PlayBest in generating high-quality basketball trajec-

tories that yield effective plays. Extensive results reveal that our proposed approach out-

performs conventional planning methods in terms of adaptability, flexibility, and overall

performance, showing a remarkable alignment with professional basketball tactics.

The core contributions of this work are summarized as follows:

● We attempt to formulate the basketball player behavior synthesis problem as a guided

sampling/conditional generation of multiple players and ball trajectories from diffusion

models.

● We present PlayBest, a framework featuring a diffusion probabilistic model with a value

function, to instantiate the conditional generative model. We adapt the model to integrate

multi-player behaviors and decisions in basketball and show that a number of desirable

properties are obtained.

● We showcase the effectiveness of PlayBest via both quantitative and qualitative stud-

ies of the trajectories generated and validate the practicality of adopting PlayBest to

investigate real basketball games.
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7.3 Preliminary

7.3.1 Diffusion Probabilistic Models

Diffusion probabilistic models [SWM15, HJA20] stand out as a unique approach to learning

complex data distributions, symbolized by q(τ ), based on a collection of samples, denoted

as D ∶= {x}.

On a high level, two processes are at the core of their operation: a predefined forward

noising mechanism q(τ i+1∣τ i) ∶= N (τ i+1;
√
αiτ i,

(1 − αi)I) and a trainable reverse or “denoising” process pθ(τ i−1∣τ i)

∶= N (τ i−1∣µθ(τ i, i),Σi). Here the Gaussian distribution is represented as N (µ,Σ), and the

variable αi is pivital in determining the variance schedule. We begin with a sample x0 ∶= x,

followed by latents τ 1,τ 2, ...,τN−1, and culminate with τN ∼ N (0,I), factoring in specific

values for αi and an adequately extended N .

7.3.2 Trajectory Optimization Problem Setting in Basketball Strategy

In basketball, we can consider the game as a discrete-time system with dynamics st+1 =

f(st,at), where st represents the state of the play, and at denotes the action or basketball

maneuver. Trajectory optimization aims to find a sequence of actions a∗0∶T that maximizes

an objective J , such as maximizing the score. This can be represented as:

a∗0∶T = argmax
a0∶T

J (s0,a0∶T ) = argmax
a0∶T

T

∑
t=0

r(st,at) (7.1)

where T defines the planning horizon. τ = (s0,a0, s1,a1, . . . , sT ,aT ) is the trajectory of states

and actions, and J becomes the objective value of the play.

This model, when applied to basketball, facilitates the creation of dynamic strategies

that adapt to real-time game scenarios. By simulating noise-corrupted play sequences and
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Frame Labeling Environmental Dynamics Modeling with Diffusion

Historical 
game
data

NBA Games played Reward

Play-by-Play Outcomes

Trajectories
Game Snapshots 

t

t+1 Guided sampling

Denoising Temporal U-net 

Return Predictor

Random Noise Guided Plans

Value (Perturb) Function Training for Reward Model

learn      on
 

Reward-guided Planning

Trajectories

Figure 7.1: Overview framework of PlayBest. The overall pipeline can be split into four
major components: Frame Labeling, Environmental Dynamics Learning, Value (Perturb)
Function Training, and Trajectory Generation Guided by a Reward Function. The diffusion
probabilistic model ϵθ is trained to model the environmental dynamics. The reward predictor
Jϕ is trained on the same trajectories as the diffusion model. During guided trajectory
generation, our model takes both environmental dynamics and rewards as input, performs
guided planning via conditional sampling, and generates the trajectories as the guided plan.

iteratively denoising them, one can derive actionable insights into players’ behaviors, leading

to more effective in-game decision-making and planning.

7.3.3 Problem Description

The input for PlayBest consists of a set of basketball game records, denoted as Draw.

These game records are composed of distinct elements, described as follows:

Motion Track Data. The motion track data, represented as Dmove, comprises static snap-

shots of in-game events, detailing the positions of all players and the ball at a rate of 25

frames per second. A game’s progression can be reconstructed and visualized using these

snapshots.

Play-by-Play Data. Denoted as Dpbp, the play-by-play data offers a game transcript in the

form of possessions. This data includes 1) the possession timestamp, 2) the player initiating

the possession, 3) the result of the possession (e.g., points scored), and 4) additional unique

identifiers employed for possession categorization.

To facilitate learning, we divide Draw into Dtrain and Dtest, representing the training and
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testing sets, based on gameplay timestamps. We formally define our task as follows:

Given a set of game records Dtrain = D
move
train ∪ D

pbp
train and a reward function Jϕ, with Jϕ

depending on the reward definition given by the discriminative rules applied to Dpbp
train, the

objective is to generate trajectories {τ } leaning towards the higher-reward regions of the

state-action space. In essence, our goal is to develop a policy πθ,ϕ(a ∣ s), parameterized by

θ and ϕ, that determines the optimal action based on the states associated with each frame

in Dmove
test .

7.4 The PlayBest Framework

In this section, we describe in detail how our framework is designed. We first give an overview

and then present details of the model architecture including the diffusion and value function

modules.

7.4.1 Framework Overview

Figure 7.1 depicts the PlayBest pipeline. The historical game replay data originates from

actual games played during the 2015-2016 NBA regular season. Each team competes per

their unknown policies πβ. The raw game data encompasses multiple modalities, and a

game is characterized by a series of high-frequency snapshots (e.g., 25 frames per second).

At any given time t, a snapshot includes an image displaying all player and ball positions, as

well as additional metadata like the results of each possession (shot made/miss, free-throw

made/miss, rebound, foul, turnover, etc), shot clock, and game clock at time t.

Out of the historical game replay data, we construct the player trajectories and ball tra-

jectories to create the trajectory dataset Dmove. We then use the trajectory dataset Dmove
train

to train a diffusion model ϵθ that aims at modeling the distribution of the 3-dimensional

player and ball movements. The training process of the diffusion model mimics the training

procedure of what is usually referred to as offline RL, where there is no online environment to
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Planning horizon

State + Action

(a) The shape of the training data.
Trajectories are represented by the
(x, y, z) coordinates of the ten on-
court players across two teams and
the ball (11 channels). The action is
made up of the momentum of each
object at the same timestep.
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(b) The general structure of the diffusion model
ϵθ is implemented by a U-net with temporal
convolutional blocks, which have been widely
utilized in image-centric diffusion models.

Figure 7.2: (a, b) The input and diffusion architecture.

interact with. However, the diffusion model by itself can only generate “like-real” trajectories

that do not necessarily lead to a goal-specific outcome. To further generate trajectories that

can represent “good plans”, we train a value function that maps any possible trajectory to its

expected return. During the sampling stage, the mean of the diffusion model is perturbed by

the gradient of the value function. In this way, the guided sampling is capable of generating

the trajectories biased towards the high-reward region. Incorporating a diffusion model in

planning problems not only enhances efficient exploration and resilience in volatile environ-

ments, but also addresses the challenge of long-horizon planning, enabling the generation of

strategic, noise-reduced trajectories over extended periods.

In essence, our framework utilizes a dataset D collected by an unknown behavior policy

πβ, which can be approximated as the “average” policy for all NBA teams. This dataset is

gathered once and remains unaltered during training. The training process relies entirely

on the training set Dtrain and does not interact with the environment. Upon completion of

training, we anticipate that πθ will exhibit strong generalization on Dtest.
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7.4.2 Environmental Dynamics Modeling with Diffusion

Since there is no public basketball environment that is able to provide online simulation,

previous studies focus on offline simulations [CJJ22]. However, these approaches fall short

in providing trajectories with planning strategies and efficiency due to the autoregressive de-

signs, which are also challenging to be extended to incorporate dynamic planning. Therefore,

we adopt diffusion models not only to simulate trajectories simultaneously from modeling

environmental dynamics but also to be guided by the specific outcomes with conditional

sampling.

Model Input and Output. To represent our input that can be consumed by the diffusion

model, we represent all the trajectories in the format of a 2-dimensional image as described

in Figure 7.2a. To be specific, we concatenate the state features and action features at

each timestep in the game together to form one column of the model input. The features

from different timesteps are then stacked together following the temporal order to form the

rows. In other words, the rows in the model input correspond to the planning horizon T in

Section 7.3.2.

Architecture. As illustrated in Figure 7.2b, the backbone of the environmental dynamics

modeling module is a diffusion probabilistic model ϵθ. Diffusion models have been found

effective in fitting the distribution of images [HJA20]. Our assumption is that the diffu-

sion models can also learn the underlying distribution of basketball player trajectories by

framing as the trajectory optimization problem, thereby modeling the player and ball dy-

namics. Following image-based diffusion models, we adopt the U-net architecture [RFB15]

as the overall architecture. Moreover, to account for the temporal dependencies between

different timesteps of the trajectories, we replace two-dimensional spatial convolutions with

one-dimensional temporal convolutions.

Diffusion Training. We follow the usual way by parameterizing the Gaussian noise term

to make it predict ϵt from the input xt at diffusion step t to learn the parameters θ,:
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L(θ) = Et,ϵt,τ0 [∥ϵt − ϵθ(τ
t, t)∥2] , (7.2)

where ϵt ∼ N (0,I) denotes the noise target, t represents the diffusion step, and τ t is the

trajectory τ 0 corrupted by noise ϵ at diffusion step t.

7.4.3 Value Function Training for Reward Model

At the heart of the value function is an encoder that takes the trajectory data as input and

returns the estimated cumulative reward. The structure of the return predictor Jϕ takes

exactly the first half of the U-Net employed in the diffusion model, and it is followed by a

linear layer that generates a single scalar output indicating the reward value.

7.4.4 Guided Planning as Conditional Sampling

Existing studies [JDT22, ADG22] have revealed the connections between classifier-guided /

classifier-free sampling [DN21] and reinforcement learning. The sampling routine of PlayBest

resembles the classifier-guided sampling. In detail, we condition a diffusion model pθ(τ ) on

the states and actions encompassed within the entirety of the trajectory data. Following

this, we develop an isolated model, Jϕ, with the aim of forecasting the aggregated rewards

of trajectory instances τ i. The trajectory sampling operation is directed by the gradients of

Jϕ, which adjust the means µ of the reverse process as per the following equations:

µ← µθ (τ
i) ,

τ i−1 ∼ N (µ + αΣ∇Jϕ(µ),Σ
i) ,

τ i−1
s0 ← s,

(7.3)
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# Training Games # Minutes # Plays # Frames

480 23, 040 210, 952 34, 560, 000

# Testing Games # Minutes # Plays # Frames

151 7, 248 68, 701 10, 872, 000

# Games # Minutes # Plays # Frames

631 30, 288 279, 653 45, 432, 000

Table 7.1: NBA 2015 - 16 Regular Season Game
Stats. Games are split chronically so that all the games
in the test set are after any game in the training set.

Event type Reward

“start of period” 0
“jump ball” 0
“rebound” 0.25
“foul” -0.25

“turnover” -1
“timeout” 0

“substitution” 0
“end of period” 0
“violation” -0.25

“3 pointer made” 3
“2 pointer made” 2
“free-throw made” 1

Table 7.2: Definition of Re-
ward per possession.

where α is the scaling factor to measure the impact of the guidance on the sampling, and

∇J (µ) =
T

∑
t=0
∇st,atr (st,at)∣

(st,at)=µt

. (7.4)

where r is the reward function given by the environment. In our case, it comes from the

outcome of the possessions derived from Dpbp. The detailed algorithm of reward-guided

planning is illustrated in Algorithm 2.

7.5 Experiments

7.5.1 Experimental Setup

To quantitatively evaluate the effectiveness of player behavior planning, we focus on mea-

suring the cumulative return given by the learned policy, which serves as an objective eval-

uation metric to compare the performance of PlayBest with other comparative methods.

Evaluating offline RL is inherently difficult as it lacks real-time environment interaction for

reward accumulation. Thus the model verification is primarily reliant on utilizing existing
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Algorithm 2 Reward Guided Planning

Require diffusion model µθ, guide Jϕ, scale α, covariances Σi

while not done do
Acquire state s; initialize trajectory τN ∼ N (0,I)

//N diffusion steps in total

for i = N, . . . ,1 do
µ← µθ(τ

i
)

τ i−1
∼ N (µ + αΣ∇J (µ),Σi

)

//conditioned on the initial player positions

τ i−1
s0 ← s

end for
Execute first action of trajectory τ 0

a0

end while

replay data. To validate the capacity of our framework in learning efficient tactics, we assess

PlayBest’s ability to generate efficient plans using diverse data of varying standards.

Dataset. We obtained our data from an open-source repository [spo16, pbp16]. The model’s

input data is a combination of two components: (1) Player Movement Sensor Data: This

component captures real-time court events, detailing the positions of the players and the ball

in Cartesian coordinates. The sampling frequency of this data is 25 frames per second. The

statistics are detailed in Table 7.1. (2) Play-by-Play: This segment of information contains

the specifics of each possession, such as the termination of the possession (whether through

a jump shot, layup, foul, and so forth), the points gained by the offensive team, the location

from which the ball was shot, and the player who made the shot, among other details. The

data for training and testing is split chronologically: the training set includes games from

2015, amounting to 480 games, while the remaining games from 2016 form the testing set,

amounting to 151 games. The statistics are described in Table 7.1.

Reward Definition. As there is no fine-grained reward design in basketball in previous

work, e.g., [YSK22, CJJ22], we define the reward of each possession based on its outcomes,

124



Methods Random Walk Ground Truth BCQ CQL IQL PlayBest

AVG -9.1172±0.035 0.0448±0.000 0.0964±0.000 0.0986±0.001 0.0992±0.000 0.4473±1.235

MAX -9.0753 0.0448 0.0967 0.0995 0.0992 2.2707

Table 7.3: Overall performance in return values per possession.

as listed in Table 7.2. For a certain team that plays the possession, we encourage the

possession trajectory if it leads to positive outcomes (e.g., score, rebound) and we punish

otherwise (turnover, foul, violation). Note that the same event by the opponent team takes

the negative value of the rewards. For example, a 2-point basket made by the team on offense

leads to a −2 reward to the training sample of the value function for the team on defense.

During our offline evaluation, we employ our value function Jϕ to gauge the expected return

of our policy. By summing all expected rewards from each possession for a team, we can

approximate the total points for the team following the learned strategic policies. For each

game in the test set, all comparative methods plan trajectories from each possession’s actual

initial state.

Baselines. As this task has yet to be explored, there are no widely adopted baselines for

direct comparison. Therefore, we examine our model with several state-of-the-art offline RL

algorithms and a naive baseline to verify its effectiveness:

● Batch-Constrained deep Q-learning (BCQ) [FMP19] is an off-policy algorithm for offline

RL. It mitigates overestimation bias by constraining the policy to actions similar to the

behavior policy, ensuring a more conservative policy.

● Conservative Q-Learning (CQL) [KZT20] is an offline RL approach that minimizes an up-

per bound of the expected policy value to conservatively estimate the action-value function,

leading to a more reliable policy.

● Independent Q-Learning (IQL) [KNL21] is a multi-agent reinforcement learning approach

where each agent learns its own Q-function independently. It offers an efficient solution

for multi-agent environments.

● Random Walk is the “naive” baseline that can be used to validate the correctness of the
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value function and to offer an auxiliary comparative method that corresponds to the case

where all the players navigate randomly within the range of the court.

7.5.2 Implementation Details

We set the planning horizon length to 1,024 so that all trajectories in the training data can be

fitted in our diffusion model. The diffusion step is set to 20 in all experiments. The learning

rate is 2 × 10−5 without learning rate scheduling. The hidden dimension is set following

[JDT22]. The training batch size is set to 512. We train all models for 245K training steps.

The value function is optimized with the mean square error loss. All experiments are run on

the NVIDIA Tesla V100 Tensor Core GPUs with 16GB memory.

7.5.3 Overall Performance

Table 7.3 shows the cumulative scores of the generated trajectories of the compared meth-

ods. For all the models, we run each 5 times and report the average performance with the

corresponding variance. We observe that: (1) PlayBest consistently and significantly out-

performs the baselines and the historical gameplay in generating trajectories with higher re-

wards. (2) The dedicated offline RL baselines CQL and IQL are also able to learn from histor-

ical replays with mixed rewards. However, they perform noticeably worse than PlayBest,

indicating that the diffusion model in PlayBest better captures the intrinsic dynamics of

basketball gameplay. (3) As expected, the random walk baseline performs poorly, further

highlighting the effectiveness of the value function in distinguishing between superior and

inferior planning trajectories. These observations suggest that the diffusion model is a pow-

erful tool of modeling complex environmental dynamics and, when combined with guided

sampling, becomes a strong planning tool.
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α 0 0.01 0.1 1 10

AVG 0.0859±0.0052 0.0894±1.2263 0.4473±1.2349 3.0870±1.4955 10.8090±2.4050

MAX 0.0932 1.8844 2.2707 5.3534 14.2389

Table 7.4: The effects of the scaling factor α. We repeat our sampling process 5 times
and report the mean and variance for the average returns per possession.

pass

pass

shoot

(a) Reward: 2.194

pass

pass

(b) Reward: 0.864

pass

shoot

(c) Reward: 1.541

Figure 7.3: (a, b, c): Sampled cases of possessions generated by PlayBest.
PlayBest learns strategies deviating from existing data yet still aligning with subjective
expectations for effective basketball play. The blue team is on offense and moves towards the
right basket, while the black team is on defense. The ball is marked in orange. The player
who scores for the blue team is highlighted in Red (no shot attempt in (b)). Diamonds(⧫)
are final positions of the players. More details are in Section 7.5.5.

7.5.4 Analysis

Table 7.4 demonstrates the overall return evaluated on all the trajectories generated by

PlayBest with α being {0,0.01,0.1,1.0,10.0}. It is noted that α = 0 indicates PlayBest

performing unconditional sampling without the perturbation of the gradient of the value

function.

7.5.4.1 Hyperparameter Study

When the diffusion model performs conditional sampling for trajectories, the scaling factor

α serves as a balance between quantitative scores and interpretability. With the increase
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(a) α = 0.1 (b) α = 1.0 (c) α = 10.0

Figure 7.4: (a, b, c): Possessions generated by PlayBest with different α.

of α, the value guidance generally has a larger impact and improves the overall cumulative

rewards on the test games. Then the question becomes, why not keep increasing the value of

α? To provide a deeper insight into this, we conduct a comparative study demonstrated in

Figure 7.4. We consider trajectories initiated from the same state but with different scaling

factors, specifically α values of 0.1, 1.0, and 10.0. By visualizing these trajectories, we aim to

demonstrate how variations in the scaling factor can significantly influence the progression

and outcomes of the game, further emphasizing the crucial role of this parameter in our

model. When α = 1.0, there seems to be a mysterious force that pulls the ball to the basket.

In the α = 10.0 case, the synthesized trajectory becomes even less interpretable since the

ball never goes through the basket. In both α = 1.0 and α = 10.0 cases, the ball exhibits

behaviors that defy the laws of physics, seemingly being propelled towards the basket as if

being controlled by an invisible player.

7.5.4.2 Ablation Study

The full PlayBest model with sufficient value guidance outperforms the ablation version

(i.e., α = 0), indicating the necessity of the value guidance. By mere unconditional sampling,

the ablation version is already able to generate on average better plans than the ground truth

plays in the test set. These observations confirm our two claims: The value-based guided

sampling directs the diffusion model to generate trajectories leaning towards the higher-

reward regions of the state-action space; and the diffusion model on its own can generate

coherent and realistic trajectories representing a competent game plan.
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length m 25 50 75 100

man-to-man 1.410 ± 0.368 1.750 ± 0.059 2.526 ± 0.039 2.814 ± 0.008

2-3 zone 1.424 ± 0.284 1.558 ± 0.309 2.229 ± 0.011 2.327 ± 0.029

Table 7.5: Return values competing against defense.

7.5.4.3 The adversary of the game

Notably, basketball games and many other team sports are adversarial. We implemented ad-

ditional defensive strategies including man-to-man and 2-3 zone defense, and ran the learned

policy against these strategies iteratively to add adversaries. In each iteration, PlayBest

samples a trajectory of length m, and we replace the trajectories corresponding to defen-

sive players (5 channels) with those generated with man-to-man or 2-3 zone defense. The

trajectories on the defensive side act as adversarial agents competing against the diffusion

policy. The results are reported in Table 7.5. We observe that: (1) The offensive strategy

encoded in PlayBest outplays the man-to-man defense and 2-3 zone defense. (2) When

increasing the length of the segment of the trajectory, PlayBest is more likely to generate

more coherent trajectories, leading to better returns when faced with the same defense.

7.5.5 Case Study

We now perform a case study to qualitatively demonstrate the practicability of value-guided

conditional generation. Figure 7.3 shows three cases, all of which are sampled from the

trajectories generated by PlayBest. In Figure 7.3a, we visualize a possession generated

with a high reward. The players in the blue team share the ball well and managed to find

the red player near the free-throw line. At the time the red player shoots the ball, no

defender is between him and the basket. The outcome of this simulated play is a 2-point

basket. In Figures 7.3b and 7.3c, two different plans with the same horizon are generated

by PlayBest given the same initial player and ball positions. In Figure 7.3b, we observe

a more conservative strategy where the ball is repeatedly passed between the blue players
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near the perimeter, which is also valued with a lower reward. In spite of the same initial

conditions, PlayBest generates a more aggressive strategy in Figure 7.3c in that the ball is

passed directly to the low post that leads to a 2-point basket, suggesting an aggressive tactic

execution. These cases illustrate that PlayBest is able to not only synthesize realistic

trajectories but also output high-reward and diverse trajectories for planning tactics as well

as for enhancing decision-making.

7.6 Related Work

Reinforcement Learning for Planning. Reinforcement learning is a learning-based

control approach. A wide range of application domains have seen remarkable achieve-

ments through the use of reinforcement learning algorithms, such as robotics [KIP18a],

autonomous vehicles [BMG19], industrial regulation [GGG18], financial sectors [MK19],

healthcare [YLN19], gaming [SSS17], and marketing [JSL18]. Despite its wide use, many

RL applications depend on an online environment that facilitates interactions. In numerous

circumstances, acquiring data online is either expensive, unethical, or dangerous, making

it a luxury. Consequently, it is preferable to learn effective behavior strategies using only

pre-existing data. Offline RL has been suggested to fully utilize previously gathered data

without the need for environmental interaction [FMP19, ASN20, KZT20, LKT20, FKN20],

which has found applications in areas such as dialogue systems [JGS19], robotic manipulation

techniques [KIP18b], and navigation [KAL21].

Sports & Machine Learning. Machine learning and AI have recently been employed

in sports analytics to comprehend and advise human decision-making [AAM17, RPW17,

DVD18, SDS20, TOM21, RVD21, WCP22]. [LSP21] suggested a player ranking technique

that combines inverse RL and Q-learning. [WCP22] proposed a deep-learning model com-

posed of a novel short-term extractor and a long-term encoder for capturing a shot-by-shot

sequence. [WSC22] developed a position-aware fusion framework for objectively forecast-
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ing stroke returns based on rally progress and player style. [CWP22] predicted returning

strokes and player movements based on previous strokes using a dynamic graph and hi-

erarchical fusion approach. While these methods are effective for producing simulations,

they may not fully address the goal of maximizing specific objectives (e.g., winning games).

Previous basketball analytics mainly focused on employing recurrent neural networks to an-

alyze player-tracking data for offensive tactics identification and player movement prediction

[MBG16, WZ16, TDC20, TF20]. However, these methods lack labeled interactions between

the learning agent and the environment, limiting their ability to uncover optimal decision

sequences. Wang et al. [WFS18] explored the use of RL to improve defensive team decisions,

especially the execution of a ”double team” strategy. Liu et al. [LH18] designed a method

using motion capture data to learn robust basketball dribbling maneuvers by training on

both locomotion and arm control, achieving robust performance in various scenarios.

7.7 Conclusion

In this paper, we introduce PlayBest, the diffusion model with conditional sampling in

planning high-rewarded basketball trajectories and synthesizing adaptive play strategies.

With the extension of environmental dynamics into the diffusion model and fine-grained re-

wards for the value function, PlayBest has shown impressive capabilities in capturing the

intricate dynamics of basketball games and generating play strategies that are consistent with

or even surpass professional tactics. Its adaptive nature has allowed for swift adjustments

to evolving conditions and facilitated real-time identification of optimal solutions. Extensive

simulation studies and analysis of real-world NBA data have confirmed the advantages of

PlayBest over traditional planning methods. The generated trajectories and play strate-

gies not only outperform conventional techniques but also exhibit a high level of alignment

with professional basketball tactics. Future work will explore the integration of additional

sources of information, such as player fatigue and skill levels, into our framework to further
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enhance its performance. In addition, we plan to develop an open environment and a set of

benchmarks to not only facilitate research on machine learning for sports but also extend to

other real-time dynamic systems.

7.8 Limitation

Currently we only consider the player movement and only conduct offline evaluation since no

online environment for our application is available. Future work will explore the integration of

additional sources of information, such as player fatigue and skill levels, into our framework to

further enhance its performance. Moreover, we plan to extend the application of PlayBest

to other team sports/e-sports, investigating its efficacy in generating adaptive play strategies

and trajectories in various dynamic and uncertain environments. Finally, we plan to develop

an open environment and a set of benchmarks to not only facilitate research on machine

learning for sports but also extend to other real-time dynamic systems.
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CHAPTER 8

Conclusion

Large foundation models such as LLMs and diffusion models have demonstrated their po-

tential to accelerate human production and innovation by driving autonomous AI agents.

However, existing foundation models still come with drawbacks. Among various limitations,

this thesis identifies trustworthiness, efficiency, and planning ability as the major challenges

to work on. Through developing and applying data-centric knowledge-enhanced reasoning,

data-driven constitutional alignment, and reward-guided generative planning algorithms,

this thesis presents a series of efforts to build a more reliable and unbiased AI agent that can

assist humans in understanding and planning complex tasks in various domains through the

design and implementation of the moral reasoning module, alignment module, and planning

module.

8.1 Future Research Agenda

The future research plan is to stick to the ultimate goal of building AI agents that are

reliable, unbiased, and capable of planning safely and effectively in various domains, such as

science and engineering.
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8.1.1 Building More Capable AI Agents

The development of more capable LLMs has led to the creation of LLM-based agent frame-

works such as AutoGPT 1 and AutoGen [WBZ]. These frameworks demonstrate the ability of

LLMs to tackle complex problems through research and reasoning in multiple steps, demon-

strating remarkable diligence and intelligence in navigating challenges. However, a significant

limitation shared between these agents is their lack of learning capabilities. Despite their

abilities, when faced with similar problems repeatedly, these agents do not take advantage of

past experiences. Consequently, they must undergo the same laborious process to tackle the

problems as if they were encountering them for the first time. This observation introduces

an interesting concept: the idea that agents can record their successful strategies and recall

them when encountering similar situations in the future. This capability would enable these

agents to make decisions more swiftly and efficiently, eliminating the necessity to navigate

through the same extensive and complex reasoning processes again.

8.1.2 Aligning AI Decisions with Human Experts

As aforementioned, current foundation models are capable of conducting effective decision-

making in the form of planning. A more challenging setting is when complex and rapid

decision-making is required in dynamic situations where no single correct answer exists. For

instance, two experienced military leaders or medical experts may choose different tactical

actions or triage decisions when confronted with the same battlefield scenario and challenging

options. As AI systems evolve to collaborate more closely with humans, fostering appropri-

ate human trust in the AI’s decision-making abilities is crucial. Capturing the essential

characteristics of expert human decision-making in dynamic environments and representing

that data computationally in algorithmic decision-makers could be a critical component in

ensuring that algorithms make reliable choices in challenging circumstances.

1https://news.agpt.co/
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8.1.3 Enabling Lifespan Learning of AI Agents

Although significant efforts have been made to enhance the human-like qualities of large lan-

guage models, there has been a notable absence of thorough discussion on current methods

and efforts aimed at creating ways that can self-update in response to a rapidly evolving

environment. These systems should be capable of assimilating information from their sur-

roundings and producing responses that integrate both recent inputs and past experiences,

similar to human cognitive processes. Four implementations have been widely adopted, in-

cluding Retrieval-Augmented Generation with Knowledge Bases, Long Context Methods,

External Memory Utilization, and Continual Learning. The four instances each stand out in

different use cases. However, building a unified agent requires a fully principled integration

of these implementations, and how to integrate remains challenging yet exciting.
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cioni, François Yvon, et al. “Bloom: A 176b-parameter open-access multilingual
language model.” arXiv preprint arXiv:2211.05100, 2022.

[WSM19] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R Bowman. “Glue: A multi-task benchmark and analysis platform for
natural language understanding.” In ICLR’19, 2019.

153



[WTB22] J Wei, Y Tay, R Bommasani, et al. “Emergent Abilities of Large Language
Models.” arXiv preprint arXiv:2206.07682, 2022.

[WW22] Jason Wei, Xuezhi Wang, et al. “Chain-of-Thought Prompting Elicits Reasoning
in Large Language Models.” In NeurIPS, 2022.

[WWL23] Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Zhongnan Qu,
Shen Yan, Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, et al. “Efficient large
language models: A survey.” arXiv preprint arXiv:2312.03863, 1, 2023.

[WWQ22] Jianing Wang, Chengyu Wang, Minghui Qiu, Qiuhui Shi, Hongbin Wang, Jun
Huang, and Ming Gao. “KECP: Knowledge Enhanced Contrastive Prompting
for Few-shot Extractive Question Answering.” arXiv preprint arXiv:2205.03071,
2022.

[WYK20] Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sanghai, D Sivakumar, Bin Shu,
Zac Yu, and Jon Elsas. “Learning to extract attribute value from product via
question answering: A multi-task approach.” In KDD’20, pp. 47–55, 2020.

[WZ16] Kuan-Chieh Wang and Richard Zemel. “Classifying NBA offensive plays using
neural networks.” In Proc. of MIT Sloan Sports Analytics Conference, volume 4,
2016.

[WZ19] Jason Wei and Kai Zou. “EDA: Easy Data Augmentation Techniques for Boost-
ing Performance on Text Classification Tasks.” In EMNLP’19, pp. 6382–6388,
2019.

[WZQ23] Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen,
Chuan Qin, Chen Zhu, Hengshu Zhu, Qi Liu, et al. “A Survey on Large Language
Models for Recommendation.” arXiv preprint arXiv:2305.19860, 2023.

[XDH20] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. “Unsupervised
data augmentation for consistency training.” In NeurIPS’20, pp. 6256–6268,
2020.

[XLZ23] Weiwen Xu, Xin Li, Wenxuan Zhang, Meng Zhou, Wai Lam, Luo Si, and Lidong
Bing. “From Cloze to Comprehension: Retrofitting Pre-trained Masked Lan-
guage Models to Pre-trained Machine Reader.” In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

[YLN19] Chao Yu, Jiming Liu, and Shamim Nemati. “Reinforcement learning in health-
care: A survey.” arXiv preprint arXiv:1908.08796, 2019.

[YMF20] Yiben Yang, Chaitanya Malaviya, Jared Fernandez, Swabha Swayamdipta, Ro-
nan Le Bras, Ji-Ping Wang, Chandra Bhagavatula, Yejin Choi, and Doug
Downey. “Generative Data Augmentation for Commonsense Reasoning.” In
Findings of EMNLP’20, pp. 1008–1025, 2020.

154



[YQZ18] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan
Salakhutdinov, and Christopher D Manning. “HotpotQA: A Dataset for Diverse,
Explainable Multi-hop Question Answering.” In EMNLP’18, pp. 2369–2380,
2018.

[YSK22] Chen Yanai, Adir Solomon, Gilad Katz, Bracha Shapira, and Lior Rokach. “Q-
Ball: Modeling Basketball Games Using Deep Reinforcement Learning.” In
AAAI, pp. 8806–8813. AAAI Press, 2022.

[YXL19] Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li,
and Jimmy Lin. “End-to-End Open-Domain Question Answering with BERT-
serini.” In ACL’19, System Demonstrations, pp. 72–77, 2019.

[ZBL13] Tong Zhao, Naiwen Bian, Chunping Li, and Mengya Li. “Topic-level expert
modeling in community question answering.” In SDM’13, pp. 776–784, 2013.

[ZC23] Lianmin Zheng, Wei-Lin Chiang, et al. “Judging LLM-as-a-judge with MT-Bench
and Chatbot Arena.” arXiv preprint arXiv:2306.05685, 2023.

[ZCJ24] Yu Zhang, Xiusi Chen, Bowen Jin, Sheng Wang, Shuiwang Ji, Wei Wang, and
Jiawei Han. “A Comprehensive Survey of Scientific Large Language Models and
Their Applications in Scientific Discovery.” arXiv preprint arXiv:2406.10833,
2024.

[ZEP07] Omar Zaidan, Jason Eisner, and Christine Piatko. “Using “Annotator Ratio-
nales” to Improve Machine Learning for Text Categorization.” In NAACL, 2007.

[ZFC21] Zexuan Zhong, Dan Friedman, and Danqi Chen. “Factual Probing Is [MASK]:
Learning vs. Learning to Recall.” In NAACL’21, pp. 5017–5033, 2021.

[ZGS19] Jie Zhao, Ziyu Guan, and Huan Sun. “Riker: Mining rich keyword representa-
tions for interpretable product question answering.” In KDD’19, pp. 1389–1398,
2019.

[ZLC21] Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi Tan, Fei
Huang, and Huajun Chen. “Differentiable Prompt Makes Pre-trained Language
Models Better Few-shot Learners.” In ICLR’21, 2021.

[ZLW21] Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and
Tat-S Chua. “Retrieving and Reading: A Comprehensive Survey on Open-
Domain Question Answering.” arXiv preprint arXiv:2101.00774, 2021.

[ZMT23] Eric Zelikman, Wanjing Ma, Jasmine Tran, Diyi Yang, Jason Yeatman, and
Nick Haber. “Generating and Evaluating Tests for K-12 Students with Lan-
guage Model Simulations: A Case Study on Sentence Reading Efficiency.” In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 2190–2205, 2023.

155



[ZMW16] Ye Zhang, Iain Marshall, and Byron C Wallace. “Rationale-Augmented Convo-
lutional Neural Networks for Text Classification.” In EMNLP, 2016.

[ZWM22] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. “Star: Bootstrapping
Reasoning with Reasoning.” In NeurIPS, 2022.

[ZY23] Xuanyu Zhang and Qing Yang. “Self-QA: Unsupervised Knowledge Guided Lan-
guage Model Alignment.” arXiv preprint arXiv:2305.11952, 2023.

[ZYZ20] Xinshi Zang, Huaxiu Yao, Guanjie Zheng, Nan Xu, Kai Xu, and Zhenhui Li.
“Metalight: Value-based meta-reinforcement learning for traffic signal control.”
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
1153–1160, 2020.

[ZZL23] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. “A Survey of Large
Language Models.” arXiv preprint arXiv:2303.18223, 2023.

[ZZZ18] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. “DRN: A deep reinforcement learning framework for
news recommendation.” In WWW, pp. 167–176, 2018.

156


	Introduction
	Motivation
	My Research Overview
	My Research Contributions

	I Knowledge-Enhanced Reasoning
	Gotta: Generative Few-shot Question Answering by Prompt-based Cloze Data Augmentation
	Abstract
	Introduction
	Related Work
	Gotta: The Proposed Framework
	Entity-aware Text Masking
	Prompt-style Data Augmentation
	Generative Prompt-Tuning

	Experiments
	Experimental Setup
	Performance Comparison
	Analysis and Discussions

	Conclusion and Future Work

	Learning a Small Student from Multiple Large Language Models
	Abstract
	Introduction
	Related Work
	Method
	Preliminary
	Obtaining Rationales from Teachers
	Learning a Small Student

	Experiments
	Experimental Setup
	Performance Comparison
	Efficiency Analysis of Training Set Size in Knowledge Transfer
	Ablation Study
	Parameter Sensitivity
	Case Study

	Conclusion
	Limitations


	II Minimally Supervised Data Generation and Selection
	MinPrompt: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering
	Abstract
	Introduction
	Related Work
	MinPrompt: Graph-based Prompt Data Augmentation for Few-shot QA
	Named Entity Recognition & Entity Typing
	Sentence Graph Construction
	Minimal Dominating Set Approximation
	Question Generation
	Prompt-style Data Augmentation
	Training

	Experiments
	Experimental Setup
	Implementation Details
	Performance Comparison
	Effect of Deriving the Dominating Set
	Case Study
	Comparisons against Unsupervised Domain Adaption

	Conclusion
	Limitations
	Appendix
	Baseline Details
	QA data acquisition
	Evaluation Metrics
	Comparisons against MQA-QG
	Additional Discussions



	III Automatic Constitution Discovery and Self-alignment
	IterAlign: Iterative Constitutional Alignment of Large Language Models
	Abstract
	Introduction
	Related Work
	Self-alignment
	Red Teaming LLMs

	Preliminary
	The Proposed Framework
	Framework Overview
	Red Teaming
	Constitution Proposal
	Constitution-induced Self-reflection
	Supervised Fine-Tuning (SFT)

	Experiments
	Red Teaming Datasets
	Evaluation Datasets & Protocols
	Base Models
	Implementation Details
	Performance Comparison
	Comparisons to CAI and RLHF
	Iterative Improvement
	Proposed Constitutions
	Human Evaluation

	Conclusion
	Limitations
	Generalizability of IterAlign

	Base Model Selection


	IV Agents Planning
	ReLiable: Offline Reinforcement Learning for Tactical Strategies in Professional Basketball Games
	Abstract
	Introduction
	Related Work
	Preliminaries
	Notation and background
	Problem Formulation

	Methodology
	Making Tactical Decisions on-the-fly with RL framework 

	Experiments
	Dataset
	Experimental setting
	Baseline Methods
	Performance Comparison
	Ablation study
	Case study

	Conclusion & Future work

	PlayBest: Professional Basketball Player Behavior Synthesis via Planning with Diffusion
	Abstract
	Introduction
	Preliminary
	Diffusion Probabilistic Models
	Trajectory Optimization Problem Setting in Basketball Strategy
	Problem Description

	The PlayBest Framework
	Framework Overview
	Environmental Dynamics Modeling with Diffusion
	Value Function Training for Reward Model
	Guided Planning as Conditional Sampling

	Experiments
	Experimental Setup
	Implementation Details
	Overall Performance
	Analysis
	Case Study

	Related Work
	Conclusion
	Limitation

	Conclusion
	Future Research Agenda
	Building More Capable AI Agents
	Aligning AI Decisions with Human Experts
	Enabling Lifespan Learning of AI Agents


	References


