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Abstract

PURPOSE—Selection bias is a form of systematic error that can be severe in compromised study 

designs such as case-control studies with inappropriate selection mechanisms or follow-up studies 

that suffer from extensive attrition. External adjustment for selection bias is commonly undertaken 

when such bias is suspected, but the methods used can be overly simplistic, if not unrealistic, and 

fail to allow for simultaneous adjustment of associations of the exposure and covariates with the 

outcome, when of interest. Internal adjustment for selection bias via inverse-probability-weighting 

allows bias parameters to vary with levels of covariates but has only been formalized for 

longitudinal studies with covariate data on patients up until loss-to-follow-up.

METHODS—We demonstrate the use of inverse-probability-weighting and externally obtained 

bias parameters to perform internal adjustment of selection bias in studies lacking covariate data 

on unobserved participants.

RESULTS—The ‘true’ or selection-adjusted odds ratio for the association between exposure and 

outcome was successfully obtained by analyzing only data on those in the selected stratum (i.e. 

responders) weighted by the inverse probability of their being selected as function of their 

observed covariate data.

CONCLUSIONS—This internal adjustment technique using user-supplied bias parameters and 

inverse-probability-weighting for selection bias can be applied to any type of observational study.
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INTRODUCTION

Selection bias is a form of systematic error that can be severe in compromised study designs 

as in case-control studies with inappropriate selection of cases or control series (e.g., 

Berksonian bias or non-response bias) or in follow-up studies that suffer from extensive loss 

of contact with participants (e.g., loss to follow-up, follow-up bias). Adjusting for selection 

bias in a study requires knowledge of, or plausible assumptions about the factors that affect 

the selection mechanism. If the parameters of the selection mechanism are known or can be 

assumed reasonably, a selection factor can be used to adjust the biased measure of 

association, typically the sample odds ratio [1–5]. This method is formulaic, requiring 

external adjustment of crude and adjusted outcome models in a bias analysis [6]. In studies 

affected by follow-up bias (as opposed to response bias), inverse probability of censoring 

weighted (IPCW) fitting of the target model can be used to create a pseudo-population that 

mimics the underlying cohort (including those who were lost to follow up) [7–10]. This 

form of internal adjustment entails modeling censoring as a function of the last fully 

observed exposure and measured risk factor history that affect both censoring and the 

endpoint under study, which requires having said factors measured for both the censored and 

uncensored. This method generates record-level selection probabilities and their inverse can 

be used as a weighting factor incorporated into the analytical dataset before any outcome 

models are run. A distinct advantage of record-level estimation of the selection probabilities 

is that internal adjustment allows for the bias parameters to vary with individual covariate 

levels. Additionally, this approach allows end-users to conduct different analyses without 

and with adjustment for selection bias for different association or effect measures of interest 

using any statistical software and conventional regression modeling methods. In many 

epidemiologic studies, data on censored or non-selected participants are unknown, limiting 

IPCW methods to longitudinal studies that document data on everyone up until loss-to-

follow-up.

In this paper, we formalize and demonstrate a method of internal adjustment for selection 

bias without the need for data on censored patients. This can be done using externally 

obtained bias parameters combined with data on respondents, or uncensored participants, to 

simulate or impute the corresponding selection probability for each respondent under the 

assumed selection and data generating mechanism, as would be depicted in a directed 

acyclic graph (DAG). Selection bias can then be adjusted using IPCW fitting of any planned 

outcome regression. Unlike IPCW, this technique is applicable to any observational study. 

This work is an extension of IPCW, because rather than reliance on data from a censored 

population, the relationships depicted in the causal diagram can be used to inform 

specification of selection bias parameters. Externally derived parameters (i.e., from a 

validation study) can also be used to generate selection probabilities. We formalize our 

method using probability and illustrate its use with a series of simulations.
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NOTATION AND METHODS

Let X be a binary exposure, Y a binary disease outcome, Z be a set of confounding variables 

that are common causes of both X and Y, and S be a binary selection factor affected by both 

X, Y and at least one Z, such that exposure in the population can be represented by the 

probability of P(X=1 | Z=z), prevalence of disease among the unexposed can be represented 

by the probability P(Y=1 | X=0, Z=z), and those selected into the study population can be 

represented by the probability P(S=1 | X=x, Y=y, Z=z). Assuming no unmeasured 

confounding, the causal odds ratio can be represented by the conditional odds ratio, ORYX|Z.

In the language of DAGs, selection bias is the result of collider bias, which occurs when the 

exposure (or cause of the exposure) and outcome (or cause of the outcome) both directly or 

indirectly affect selection into the study. The use of DAGs to express these causal 

relationships imparts a basic set of rules that have been extensively described elsewhere 

[11–16]. The minimal structure for collider bias is depicted in Figure 1.

This figure shows that the marginally independent exposure X and outcome Y can become 

conditionally dependent given selection S=1. Figure 2 shows another example.

Figures 3 and 4 show scenarios 1 and 2, respectively, where selection is cause by exposure 

X, confounding variable set Z = [Z1, Z2, Z3, and Z4] and outcome Y. In either scenario, the 

joint probability of S=1, y, x, and z is given by:

(1)

The term P(S=1|y,x,z) is the probability of selection given the observed data on Y, X and Z. 

To obtain the selection-bias-free joint probability P(y, x, z) or P(S=1)P(y, x, z), we re-weight 

the observed P(S=1, y, x, z) by the inverse of P(S=1 | y, x, z) or P(S=1 | y, x, z)/P(S=1). This 

entails weighting all records in the S=1 sample by either 1/P(S=1 | y, x, z) or P(S=1)/P(S=1 | 

y, x, z) (the latter being the stabilized version of the inverse probability weight) in a 

procedure known as inverse-probability-weighting. We will call this procedure inverse-

probability-of-selection-weighting (IPSW), a generalization of IPCW.

The conditional probability of selection P(S=1 | y, x, z) is unknown, but it can be modeled 

using a logistic equation with bias parameter set β as follows:

(2)

Where:

a. βS is the log odds of selection S=1 when Y=0, X=0 and Z=0 (indicating a degree of 

selection that is independent of Y, X, and Z);

b. βSY is the log odds ratio (OR) relating selection S and Y when X=Z=0;

c. βSX is the log odds ratio relating S and X when Y=Z=0;

d. βSZ is the log odds ratio relating S and Z when Y=X=0;
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e. βSYX is the logarithm of the ratio of (i) the odds ratio relating S and Y among X=1 

and Z=0 to (ii) the odds ratio relating S and Y among X=0 and Z=0 (that is, 

log(ORSY|X=1,Z=0/ORSY|X=0,Z=0) = log(ORSX|Y=1,Z=0/ORSX|Y=0,Z=0), by the 

symmetry of the odds ratio);

f. βSYZ is the logarithm of the ratio of (i) the odds ratio relating S and Y when Z=1 

and X=0 to (ii) the odds ratio relating S and Y when Z=0 and X=0 (that is, 

log(ORSY|Z=1,X=0/ORSY|Z=0,X=0) = log(ORSZ|Y=1,X=0/ORSZ|Y=0,X=0));

g. βSYZ is the logarithm of the ratio of (i) the odds ratio relating S and X when Z=1 

and Y=0 to (ii) the odds ratio relating S and X when Z=0 and Y=0 (that is, 

log(ORSX|Z=1,Y=0/ORSX|Z=0,Y=0) = log(ORSZ|X=1,Y=0/ORSZ|X=0,Y=0)); and

h. βSYXZ is the logarithm of the ratio of two ratios, namely the ratio of (i) the ratio of 

the odds ratio relating S and Y when X=1 and Z=1 and the odds ratio relating S and 

Y when X=0 and Z=1 to (ii) the ratio of the odds ratio relating S and Y when X=1 

and Z=0 and the odds ratio relating S and Y when X=0 and Z=0 (that is, 

log[(ORSY|X=1,Z=1/ORSY|X=0,Z=1)/(ORSY|X=1,Z=0/ORSY|X=0,Z=0)]). This βSYXZ is 

alternatively given by log[(ORSX|Y=1,Z=1/ORSX|Y=0,Z=1)/(ORSX|Y=1,Z=0/

ORSX|Y=0,Z=0)] = log[(ORSZ|Y=1,X=1/ORSZ|Y=0,X=1)/(ORSZ|Y=1,X=0/

ORSZ|Y=0,X=0)].

The expit transform, expit(logit(P(S=1|y,x, z))), yields the selection probability P(S=1|y,x,z) 

for each actually selected (S=1) record in the dataset conditional on their Y, X and Z values 

and given the externally obtained β above. An important advantage of using the logistic 

model to estimate the selection probability is that it will be bounded by 0 and 1, as a 

probability should be. In some scenarios, the product term parameters might be presumed to 

be null, but if a selection mechanism involves product terms this might result in insufficient 

bias adjustment.

Bias parameters should be defined using knowledge of the selection process, or the 

underlying source population. In most cases, however, these parameters will not be known, 

and the selection bias adjustment should use a range of plausible bias parameters to conduct 

robust bias analysis. We reiterate that the key difference between this technique (IPSW) and 

the now-conventional IPCW used in longitudinal data with censoring is that the betas, or 

bias parameters, are externally estimated (either using validation data, similar studies, etc.) 

and supplied to the dataset in our technique while they are estimated from observed data in 

IPCW. In most epidemiologic studies, data are rarely collected on non-respondents; hence, 

the specification of a bias model from a range of assumed parameters using our technique or 

something similar is often the only option.

ILLUSTRATION 1: PROOF OF CONCEPT SIMULATION USING “CORRECT” BIAS 
PARAMETERS

Illustration 1 provides a proof of principle using a valid, empirically derived set of bias 

parameters from a hypothetical cohort in which both strata S=1 and S=0 were simulated. 

Using the equation in expression (2), and IPSW techniques, we demonstrate the ability to 

recovery of the true ORYX in an analysis involving only the S=1 stratum. To do this, we 
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simulated a large cohort (N=100,000) with one dichotomous exposure variable (X), two 

dichotomous confounders (Z1 and Z2), one continuous confounder (Z3), one trichotomous 

confounder (Z4), and a dichotomous outcome (Y). The data generating mechanism was 

based on the relationships between these variables as depicted in the causal structures in 

Figures 3 and 4. In scenario 1 (Figure 3), after control for the sufficient set of Z 

confounders, Y is marginally independent of X; in scenario 2 (Figure 4), X causes Y.

Z1 and Z2 were generated by random draws from independent Bernoulli distributions with 

success probability of P(Z1=1) = 0.3 and P(Z2=1) = 0.3. Z3 was generated from the normal 

distribution such that Z3 ~N (0, 1). Z4 was generated from two conditional Bernoulli 

distributions such that the resulting two indicator variables combined make an exclusive 

categorization with mean population distributions P(Z4=1) = 0.4, P(Z4=2) = 0.3 and P(Z4=0) 

= 0.3. The probability of exposure was generated as a function of variables Z1…Z4, and the 

exposure variable was generated from random draws from a corresponding Bernoulli 

distribution.

The disease variable was generated from random draws from a Bernoulli distribution as a 

function of the background risk of disease (P(Y=1 | X=0, Z1=0, Z2=0, Z3=0, Z4=0) = 0.3), 

the exposure status, and Z1…Z4.

Finally S was generated by drawing from a Bernoulli distribution as a function of X, Y, and 

Z1 with varying levels of P(S=1 | Y=0, X=0, Z1=0, Z2=0, Z3=0, Z4=0).

Next, we ran logistic regression of Y on X, Z1, Z2, Z3, and Z4 for the entire cohort to 

estimate the “true” OR relating Y and X conditional on Z1, Z2, Z3, and Z4 (ORYX|z). We 

then fit a binary logistic model for S=1 as a function of the other DAG variables in the full 

cohort, including all 2-way, 3-way, 4-way and 5-way product terms according to expression 

(2). We then restricted the cohort to those subjects where S=1 and ran a logistic regression 

of Y on X, Z1, Z2, Z3, Z4 to estimate the biased OR relating Y and X conditional on Z 

among the S=1 records, ORYX|z,S=1. Finally, we generated each selected records’ P(S=1 | y, 

x, z) using the bias parameters β estimated from the full data as described above.

We then ran logistic regression of Y on X, Z1, Z2, Z3, and Z4 using data on the S=1 records, 

with 1/P(S=1 | y, x, z) as the regression weight to estimate the “adjusted” ORYX|z,S-adj. We 

repeated this illustration for different hypothetical selection bias scenarios. Trials A1-A8 

correspond to Figure 3, trials B1-B8 correspond to Figure 4 with no modification of the S-Y 

relationship by X, and trials C1-C4 correspond to Figure 4 with an added parameter for the 

modification by X on the S-Y relationship in the data generation process. We evaluated 

model performance by calculating bias and RMSE comparing “true” ORYX|z and “adjusted” 

ORYX|z,S-adj.

ILLUSTRATION 2: PERFORMANCE OF A REDUCED ALGORITHM

Illustration 2 assesses the performance of the algorithm applied in illustration 1 under less 

flexible equations not accounting for any 2-way, 3-way-, 4-way, or 5-way interaction 

coefficients other than βSYX in the bias parameter set (β). To do this, we repeated the DAG-

directed simulation of our selection weights for the hypothetical population described in 
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illustration 1, excluding all interaction terms in our modeling of P(S=1 | y, x, z) from the full 

cohort, using the following modified version of equation (2):

(3)

This resulted in a reduced bias parameter set βr which was used in the IPSW process to 

weight the outcome model in the S=1 stratum. As in illustration 2, we ran logistic regression 

of Y on X, Z1, Z2, Z3, and Z4 using data on the S=1 records, with 1/P(S=1 | y, x, z) as the 

regression weight to estimate the “adjusted” ORYX|z,S-adj. We repeated this illustration for 

the same selection bias scenarios as illustration 1, varying the effect of X and Y on selection.

Trials A1-A8 correspond to Figure 3, trials B1-B8 correspond to Figure 4 with no 

modification by X on the S-Y relationship, and trials C1-C4 correspond to Figure 4 with an 

added parameter for the modification by X on the S-Y relationship in the data generation 

process. We evaluated the reduced model algorithm performance by calculating bias and 

RMSE comparing “true” ORYX|z and “adjusted” ORYX|z,S-adj.

ILLUSTRATION 3: MISSPECIFIED PARAMETERS

Illustration 3 demonstrates the performance of the algorithm using external bias parameters 

that are an imperfect measure of the true bias. We repeated the DAG-directed simulation of 

our probability of selection weights for a hypothetical population (N=100,000) 

corresponding to the DAG in Figure 4, with ORYX|Z = 2. This time we applied bias 

parameters with slight misspecification (−20% to +20%) of the empirical bias parameters. 

For illustration, true prevalences in the hypothetical population were held constant as 

follows: P(S=1 | Y=0, X=0, Z=0) = 0.2, P(X=1 | Z=0) = 0.3 and P(Y=1 | X=0, Z=0) = 0.5. 

The trials were performed twice, once with a strong level of selection bias: eβSX = 5.0, eβSY = 

5.0, eβSZ1 = 5.0 and eβSY X = 5.0 (trials D1-D21), and once with a weak to moderate level of 

selection bias: eβSX = 2.0, eβSY = 2.0, eβSZ1 = 2.0, and eβSY X = 0.8 (trials E1-E21). In both 

sets of trials, these parameters were “misspecified” by multiplying or dividing by 0.1 and 0.2 

to represent the bias adjustment under incorrect externally applied bias parameters. As in 

illustrations 1 and 2, we evaluated model performance by calculating bias and RMSE 

comparing “true” ORYX|z and “adjusted” ORYX|z,S-adj.

RESULTS

Tables 1 and 2 include results from simulated populations based on the DAGs pictured in 

Figures 3 and 4 and used IPW to correct for the selection bias effect that was the result of 

conditioning on the collider at the S node. All bias parameters were empirically derived 

from the underlying hypothetical population. Generally, we observed a downward bias in 

any model that included a positive relationship between exposure and selection and disease 

and selection. If for the relationship of interest at least one of these direct effects were 

negative, the bias was upward. As has been demonstrated in the literature [8, 9], bias 

adjustment using IPSW was adequate in all models. Variation in the population 

characteristics P(S=1 | Y=0, X=0, Z=0), P(X=1 | Z=0), and P(Y=1 | X=0, Z=0) did not result 

in any discernible pattern of bias adjustment accuracy. Increasing the eβSX and eβSY resulted 
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in slightly reduced accuracy of the bias adjustment. Addition of the interaction parameter, 

eβSY X, also slightly degraded bias adjustment performance.

In Table 3 we carried forward the simulation from DAG 4, this time including a varying 

degree of misspecification of the bias parameters (−20% to +20%). We did this twice, once 

for a strong selection bias (trials D1-D21) and once for a moderate to weak selection bias 

(trials E1-E21). In both scenarios, misspecification of the βS or the eβSYX parameters did not 

greatly inhibit bias adjustment. Misspecification of the eβSX and eβSY resulted in inadequate 

bias adjustment in the presence of strong selection bias (trials D1-D21).

DISCUSSION

We have demonstrated a method of sensitivity analysis for selection bias adjustment using 

record level data augmentation, which is based on the recoverability of the joint distribution 

given data on the S=1 stratum and prior knowledge or beliefs about the S=0 stratum [17], 

and can be implemented in absence of data on the S=0 stratum. In our simulations, we used 

imputed probabilities with IPSW and were able to produce unbiased estimates of the causal 

odds ratio using only the selected stratum. This method is distinct from IPCW because it 

need not be based on data from censored individuals in the underlying cohort, and thus may 

be applicable to case-control studies. As has been done previously, we used DAGs to 

visualize the selection bias mechanisms and considered selection (or collider) bias to be a 

form of nonignorable missing data [15, 18, 19].

We found via our simulation scenarios that this method provided adequate adjustment of 

selection bias under empirically derived priors, but the framework of the method can be 

adapted to the use of external bias parameters. We found that performance was optimal 

using fully saturated models, but the reduced model forms performed comparably well, and 

with much simpler computational execution. Application of this method under 

misspecification demonstrated that (as would be expected intuitively) reweighting the 

population according to invalid bias parameters produces invalid results.

Although this method performs adequately in our simulation scenarios, it is highly 

dependent on plausible characterization of the magnitude and direction of the bias, most of 

which we derived empirically from the underlying source population. If input data are not 

available from empirical sources, arriving at a set of bias parameters that plausibly 

characterize a completely unknown population of individuals (i.e., the S=0 stratum) may be 

a difficult undertaking. To this end, we suggest (as others have) to always present selection 

bias adjustments as part of a detailed bias analysis [20]. Additionally, using this method 

under extreme levels of selection bias, upon even slight misspecification of these parameters 

the bias adjustment would degrade considerably. Although we did not present examples of 

it, as can be expected, gross misspecification, or misspecification of multiple parameters 

could result in entirely invalid adjusted estimates.

Assignment of bias parameters (i.e., in the absence of a validation sub-study) could be aided 

by the use of signed DAGs. In a signed DAG, edges are marked with the direction (positive 

or negative) of the average effect for each pair of directly connected variables, conditional 
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on other relevant variables. The use of signed DAGs for characterizing the directionality of 

relationships in the diagram and in understanding confounding bias has been described in 

detail [21, 22]. For example, as depicted in Figure 5, if Y increased the probability of 

selection conditional on X and Z1, then the odds ratio eβSY would be assigned a positive 

value(> 1). Similarly, eβSX could be assigned a negative value (<1) on the X→S path 

whereby other paths connecting X and S are blocked by conditioning on Y and Z1. 

Assignment can proceed similarly for eβSZ1 by considering the net sign of all open paths 

between Z1 and S conditional on X and Y. More work is needed to formalize these insights.

In simulating varying scenarios of selection bias in hypothetical populations, we detected a 

discernible pattern of bias direction that may warrant further investigation. When both the 

exposure and disease were positively associated with selection, the bias direction was 

downward. When one was positive and the other was negative, the bias direction was 

upward. If the overall magnitude of bias was small, this rule of directionality was not as 

evident. A thorough evaluation of the expected magnitude and direction of selection bias has 

not yet been published in the epidemiologic literature. Suspected examples of severe 

Berksonian bias have been shown to cause extreme downward bias, to 10-fold decrease in 

effect estimate [23, 24]. Exploration of the potential impact of selection bias in the 

electromagnetic fields (EMF) and leukemia literature has found that this type of bias could 

result in a 2-fold increase in effect estimates [25]. Some theoretical work has been done to 

predict the magnitude of expected bias from controlling on a collider, when bias parameters 

are known [14]. Further research including simulation studies may be warranted in this area.
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ABBREVIATIONS AND ACRONYMS

DAG directed acyclic graph

IPCW inverse probability of censoring weight(ed/ing)

IPSW inverse probability of selection weight(ed/ing)

OR odds ratio

RMSE root mean squared error
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Figure 1. 
A DAG representing marginally independent but conditionally (on S=1) dependent X and Y; 

a simple example of collider-stratification bias.
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Figure 2. 
A DAG representing marginally independent but conditionally (on S=1) dependent X and Y, 

another example of collider-stratification bias in the presence of uncontrolled common 

causes of X-S and Y-S
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Figure 3. 
Scenario 1 – A DAG representing marginally independent but conditionally (on S=1) 

dependent X and Y, with four confounding variables Z1, Z2, Z3, and Z4, one of which 

directly affects S.
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Figure 4. 
Scenario 2 – A DAG representing marginally dependent X and Y with additional conditional 

(on S=1) dependency and four confounding variables Z1, Z2, Z3, and Z4, one of which 

directly affects S.
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Figure 5. 
A hypothetical selection bias mechanism with signed edges indicating the direction of effect 

between each pair of connected variables.
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