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Abstract 
Iron is an essential nutrient for all microorganisms of the marine environment. Iron limitation of primary production has been well 
documented across a significant portion of the global surface ocean, but much less is known regarding the potential for iron limitation of 
the marine heterotrophic microbial community. In this work, we characterize the transcriptomic response of the heterotrophic bacterial 
community to iron additions in the California Current System, an eastern boundary upwelling system, to detect in situ iron stress 
of heterotrophic bacteria. Changes in gene expression in response to iron availability by heterotrophic bacteria were detected under 
conditions of high productivity when carbon limitation was relieved but when iron availability remained low. The ratio of particulate 
organic carbon to dissolved iron emerged as a biogeochemical proxy for iron limitation of heterotrophic bacteria in this system. Iron 
stress was characterized by high expression levels of iron transport pathways and decreased expression of iron-containing enzymes 
involved in carbon metabolism, where a majority of the heterotrophic bacterial iron requirement resides. Expression of iron stress 
biomarkers, as identified in the iron-addition experiments, was also detected in situ. These results suggest iron availability will impact 
the processing of organic matter by heterotrophic bacteria with potential consequences for the marine biological carbon pump. 

Keywords: marine, heterotrophic bacteria, iron, carbon, transcriptomics, biogeochemistry, biological carbon pump, California Current 
System 

Introduction 
Iron (Fe) is an essential cofactor in many enzymes facilitating 
fundamental life processes such as photosynthesis, respiration, 
and nitrogen fixation. Dissolved iron (dFe) is therefore a necessary 
micronutrient for all microbial growth in the marine environment 
and is tightly linked to the cycling of carbon and other macronutri-
ents [1]. However, low solubility coupled with enhanced biological 
uptake of Fe in the surface ocean results in pico- to nanomolar 
concentrations of dFe across the global surface ocean and limits 
primary production by photoautotrophs in more than one-third 
of the surface ocean [2]. One such region, the California Current 
System (CCS), is an eastern boundary current where upwelled 
nutrients fuel high levels of primary production [3]. However, a 
low supply of Fe relative to nitrate (NO3

−) during upwelling events 
can drive the phytoplankton community to Fe limitation [4]. 

This results in high nutrient-low chlorophyll-like regions where 
NO3

− accumulates in surface waters due to incomplete utiliza-
tion by the Fe-limited phytoplankton community. More recently, 
Fe limitation within the southern sector of the CCS has been 
documented [5, 6], and experimental evidence suggests that Fe 
limitation at the deep chlorophyll maximum (DCM) is a persistent 
and widespread feature of this system [7]. 

Although the effects of nutrient limitation on primary pro-
duction in the CCS have been well documented, much less is 
known about the factors controlling heterotrophic bacterial activ-
ity, including the potential for Fe limitation. Marine heterotrophic 
bacteria also have significant Fe requirements, possibly exceeding 
those of marine phytoplankton [8–15]. Most of this Fe resides 
within proteins driving central carbon metabolism, such as those 
of glycolysis, the citric acid cycle, and the respiratory electron 
transport chain, where it facilitates essential redox reactions [16].
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This indicates an important link between Fe availability to het-
erotrophic bacteria and the efficiency of their carbon metabolism. 
It is now recognized that heterotrophic bacteria are a key deter-
minant in the fate of fixed carbon within the marine environment 
[17], acting as a major control on the attenuation of particulate 
organic carbon (POC) produced in the surface ocean [18–20]. 
Despite the small spatial coverage of eastern boundary current 
systems such as the CCS, their disproportionate levels of pri-
mary production make them significant contributors to global 
biogeochemical cycling and marine food webs [21]. Understand-
ing controls on the activity of heterotrophic bacteria will be an 
important step in characterizing the efficiency of the biological 
carbon pump in these systems, the transfer of energy to higher 
trophic levels, and the net effects of eastern boundary currents 
on global biogeochemical cycles. Given the significant role that 
Fe plays in carbon metabolism and its limited availability in the 
marine environment, characterizing “both” the Fe and carbon 
requirements of heterotrophic bacteria will be critical to this 
understanding. 

Fe limitation of heterotrophic marine bacteria has been 
assessed in a number of studies, both in the field [15, 22–27] 
and with cultured isolates [8, 9, 13, 28–30]. Laboratory studies 
have shown that Fe-limited bacterial strains generally exhibit 
decreased rates of respiration, growth, and Fe:C ratios compared 
to Fe-replete cultures [8, 9, 13, 29]. Field studies have shown 
varied responses of this community to Fe additions [27]. However, 
assessing Fe limitation of the heterotrophic community in situ 
can be challenging given that Fe limitation of primary producers 
can indirectly affect the nutritional status and growth response 
of the heterotrophic microbial population. A reduced supply of 
fixed carbon due to photoautotrophic Fe limitation may result 
in a heterotrophic bacterial community that is carbon-limited 
or co-limited by carbon and Fe. Therefore, studies need to be 
designed to distinguish between carbon and Fe limitation of 
the heterotrophic bacterial community in situ. Previous studies 
relying on bulk growth indicators have attempted to isolate the 
heterotrophic bacterial response to Fe availability by conducting 
growth experiments in the dark to eliminate photosynthetic 
activity or by removing the confounding effects of carbon 
limitation with the addition of labile organic substrates. However, 
by doing so, these experiments are no longer reflective of in situ 
environmental conditions or interactions among the microbial 
community, making broader conclusions difficult to achieve. 

High-throughput sequencing of transcriptomes can query 
Fe limitation in the marine heterotrophic bacterial community 
independently of the photoautotrophic community, thus pro-
viding insight on the in situ nutritional status of heterotrophic 
bacteria. Like other microorganisms, heterotrophic bacteria 
have molecular strategies for coping with limited Fe availability 
and the wide array of chemical forms in which it can be 
found in the marine environment [31, 32]. Culture studies have 
identified genetic biomarkers of these molecular strategies, 
which are differentially expressed by heterotrophic bacteria 
in consistent and unique patterns under low-Fe conditions 
(Fig. 1). These biomarkers broadly fall into three categories— 
Fe acquisition pathways, Fe-containing enzymes, and Fe-free 
metabolic replacements. The majority of dFe in the ocean is 
complexed by a pool of highly diverse organic ligands [33] 
(generally referred to as FeL), but trace amounts of inorganic 
Fe(III) are also present [34], and inorganic Fe(II) can accumulate 
in low-oxygen environments [35]. Fe speciation, therefore, acts as 
a strong control on Fe bioavailability, and heterotrophic bacteria 
must utilize a specific cellular transport system to access each of 

these forms of Fe (Fig. 1) [32, 36, 37]. In culture, these transport 
systems are consistently observed to be highly expressed under 
Fe-limiting conditions [13, 30, 38–41]. Once acquired by a bacterial 
cell, Fe is primarily found as a cofactor in enzymes of central 
carbon metabolism as well as within pathways for managing 
oxidative stress (Fig. 1). In culture, Fe-limiting conditions result in 
reduced expression of enzymes with Fe-containing cofactors as 
well as increased expression of Fe-free metabolic replacements 
[13, 30]. Combined, the expression patterns of such biomarkers 
in response to Fe availability can detect Fe stress in the 
heterotrophic bacterial community independently from that 
of the photosynthetic community and allow us to distinguish 
between multiple types of nutrient limitation [42], increasing 
our understanding of the nutritional status of the heterotrophic 
bacterial community in situ. 

Materials and methods 
Study site 
The current study was conducted in the southern portion of 
the CCS (Fig. 2). Samples were collected during two California 
Current Ecosystem Long Term Ecological Research (CCE LTER) 
process cruises, P1408 and P1706, taking place from 08 August 
– 09 September 2014 aboard the R/V Melville and aboard the 
R/V Roger Revelle between 03 June – 30 June 2017. Sampling was 
conducted in a Lagrangian fashion within a single water mass 
over the course of 2 to 4 days [43]. Each sampling period within 
a single water mass has been termed a Cycle, as referred to 
throughout the text. During each Cycle, the water mass was 
tracked by the deployment of a drifter array with a subsurface 
drogue centered at 15 m. Samples were collected from Cycles 2 
through 4 during P1408 which individually sampled three distinct 
regions and productivity regimes. During P1706, samples were 
collected from Cycles 1 through 4 which collectively captured a 
recently upwelled water mass from its origin at the coast as it aged 
and moved offshore. See the Supplemental Materials and Methods 
for detailed descriptions of sampling procedures and analyses of 
biogeochemical parameters. 

On-array Fe-addition incubations 
On both the P1408 and P1706 cruises, Fe-addition experiments 
were conducted in situ on the drifter array to assess the response 
of the microbial community to Fe additions via changes in 
gene expression. Whole seawater was collected from the DCM 
(P1408) or surface mixed-layer (P1706) using a powder-coated 
rosette equipped with Niskin-X bottles (Ocean Test Equipment) 
deployed on a coated hydrowire and subsequently processed 
inside a Class 100 clean van. These depths were targeted on 
respective cruises using residual in situ NO3

− concentrations as 
an indicator of potential Fe limitation within the phytoplankton 
community. Upon collection of seawater, replicate in situ samples 
were immediately processed by filtering ∼2.7 L of whole seawater 
onto 0.2 μm Sterivex filters (MilliporeSigma), which were stored 
in liquid nitrogen until processing onshore. At the same time, 
incubation experiments were initiated by dispensing whole 
seawater into 1 L acid-cleaned (trace metal grade hydrochloric 
acid) polycarbonate bottles (Nalgene). A final concentration of 
10 nmol L−1 FeCl3 was added to replicate treatment bottles 
representing typical dFe concentrations of upwelled water masses 
within the CCS [44]. The remaining replicate bottles were left 
as unamended controls. Treatment bottles and control bottles 
were each prepared in duplicate on P1408 and in triplicate on 
P1706. Bottles were sealed and secured in mesh bags to the
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Figure 1. Summary of Fe stress biomarkers in heterotrophic marine bacteria identified in culture studies. (A) Simplified view of components of the 
three main Fe transport systems found within marine heterotrophic bacteria for the acquisition of organically complexed Fe (FeL), inorganic Fe(III), 
and inorganic Fe(II). Although only a generic transport system for the acquisition of FeL is displayed, a specific TBDT, SBP, and ABCT are necessary for 
each distinct FeL complex, which means that a high diversity of specific FeL transporters may be present within a bacterial community. FeL complexes 
include exogenously produced ligands as well as siderophores, strong Fe-binding ligands produced specifically by heterotrophic bacteria for Fe 
acquisition. The Fe-storage protein, bacterioferritin, enables luxury uptake of Fe and can significantly contribute to cellular Fe quotas in heterotrophic 
bacteria. (B) Pathway for management of cellular oxidative stress utilizing the Fe-containing enzymes superoxide dismutase and catalase, highlighted 
in blue. A nickel-containing superoxide dismutase is a non-Fe containing metabolic replacement present in some species. (C) Simplified summary of 
central carbon metabolism within a cell represented by glycolysis, the citric acid cycle, and oxidative phosphorylation with Fe-containing enzymes 
highlighted in blue. The individual steps of glycolysis are not displayed and specific pathways vary across species but can include Fe-containing 
enzymes such as 6-phosphogluconate dehydratase in the Entner-Doudoroff pathway. The Fe-containing succinate dehydrogenase complex is a 
component of both the citric acid cycle and oxidative phosphorylation. Class II fumarases (fumarase c) are Fe-free enzymes which can serve as 
metabolic replacements for class I fumarases (fumarase a and b). The glyoxylate shunt, an alternative to the traditional citric acid cycle which 
bypasses the loss of carbon as CO2, is marked with dashed arrows. Flavodoxin, an Fe-free metabolic replacement for ferredoxin within photosynthetic 
electron transfer reactions, is discussed in the text but is not pictured here as it is specific to Cyanobacteria. Across all panels, Fe-containing proteins 
are highlighted in blue, and the expression of genes encoding these proteins has been observed to be decreased in marine bacteria under Fe-limiting 
conditions in culture studies. In contrast, proteins that have been observed to have increased expression under low-Fe conditions in culture studies 
are highlighted in red and include the Fe transport systems, non-Fe containing metabolic replacements, and enzymes of the glyoxylate shunt. 
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Figure 2. CCE LTER study region during the P1408 and P1706 process cruises. Plots display monthly averages of satellite derived sea surface 
temperature (SST, ◦C) and chlorophyll a concentrations (Chl a, μg L−1) during August 2014 (P1408) and June 2017 (P1706). Stations where on-array 
Fe-addition experiments were conducted are marked with a black circle and labeled according to the corresponding Cycle number. 

drifter array at the depth at which water was initially collected 
( Table 1) and  incubated at  in situ temperatures and light levels for 
24 hours. Upon retrieval of the bottles, samples were immediately 
processed for RNA preservation by filtering the entire 1 L of 
seawater onto 0.2 μm Sterivex filters, which were stored in liquid 
nitrogen until processing onshore. 

RNA library preparation, sequencing, and 
bioinformatic analysis 
RNA was extracted using a NucleoMag RNA kit (Macherey Nagel), 
with the lysis step performed inside the Sterivex unit. Lysate was 
transferred to a 96-well plate and the remainder of the proto-
col was performed on an epMotion liquid handling workstation 
(Eppendorf). RNA was analyzed on a TapeStation system (Agilent) 
using the high-sensitivity RNA ScreenTape assay. Ribosomal RNA 
was removed using RiboZero Magnetic kits (Epicenter) following 
the manufacturer’s low input protocol. cDNA was synthesized 
using the Ovation RNA-seq System V2 (NuGNE), and Agencourt 
RNAClean XP beads were used for cDNA purification. cDNA was 
fragmented using the Covaris E210 focused ultrasonicator, target-
ing 300 bp fragments. Library preparation was conducted with the 
Ovation Ultralow System V2 (NuGEN). After end repair, ligation, 
and amplification, libraries were quantified by qPCR with the 
KAPA Library Quantification Kit on the 7900HT Fast Real-time PCR 
System (Applied Biosystems). Pooled libraries were sequenced on 
a HiSeq 4000 platform (Illumina) using a 2×150 bp paired-end 
sequencing protocol at the Institute for Genomic Medicine at the 
University of California, San Diego. 

Metatranscriptomes were constructed using the RNAseq 
Annotation Pipeline v0.4 (RAP) as described previously [45], and 
ab initio open-reading frames (ORFs) were predicted. Individual 
libraries were then merged to create a single assembly of the 
entire dataset used for downstream taxonomic and functional 
annotations. ORFs were annotated via BLASTP [46] to the phyloDB 

protein database, and pfam and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) annotations were used for functional 
identifications. Taxonomy was assigned to ORFs based on a 
lineage probability index [47]. The terms ORF and gene will be 
used interchangeably throughout the text. Differential expression 
under varying experimental conditions was assessed using 
DESeq2 [48] within the R environment [49] and was considered 
significant for fold-change values with an FDR < 0.05 (Benjamini– 
Hochberg adjusted P value). ORF abundances from in situ samples 
were normalized using the variance stabilizing transformation 
(vst) function in DESeq2 before downstream ordination and 
clustering analyses using the vegan package [50] within R. 

Results 
In situ biogeochemical conditions 
P1408 took place following the onset of anomalous warming in 
the CCS, and surface waters were 0.8–1.5◦C above average [51, 52] 
(Fig. 2). Each Cycle of P1408 sampled a distinct water mass, and 
rates of primary production, POC concentrations, and chlorophyll 
a (Chl a) concentrations indicate that productivity sequentially 
decreased from Cycle 2 to Cycle 4 (Fig. 3A,C and E). Overall, mea-
sures of production in the upper 30 m were below summer 
mean values for this region as determined by the long-term 
California Cooperative Oceanic Fisheries Investigation (CalCOFI) 
dataset (Fig. S1A). In particular, concentrations of accumulated 
POC (�POC) were low, remaining near or below zero during Cycles 
3 and 4 (Fig. 3D), indicating POC concentrations were within the 
bottom 10th percentile of those measured over the course of the 
CalCOFI timeseries. Measures of secondary production, as deter-
mined by bacterial cell abundances and carbon production (BCP) 
also decreased sequentially from Cycle 2 to Cycle 4 (Fig. 3B and F), 
and there was a tight coupling between POC concentrations and 
measures of primary and secondary production (Fig. S1B).

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
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During P1408, dFe concentrations were sub-nanomolar in the 
upper 100 m of the water column, and NO3 

− concentrations were 
generally <1 μmol L−1 in the upper 30 m (Fig. 3G, H). In the CCS, 
Fe is likely to be the proximate limiting nutrient when NO3

−:dFe 
ratios are >10 μmol:nmol, indicating incomplete utilization of 
available NO3

− due to low Fe availability [5, 6]. Fe limitation of 
the diatom community is indicated by Si:NO3

− ratios <1 mol:mol 
as a result of the preferential uptake of silicic acid by diatoms 
relative to NO3

− under Fe limitation [4]. At the DCM, NO3
−:dFe 

ratios exceeded a value of 10 μmol:nmol only at Cycle 3 whereas 
Si: NO3

− ratios <1 mol:mol were observed at both Cycles 2 and 3 
(Table 1). 

P1706 took place after the anomalously warm period of 2014– 
2016 in the CCS and captured a representative upwelling event 
from its source at the coast as it aged and moved offshore (Fig. 2). 
Overall, measures of productivity were significantly higher during 
P1706 compared to P1408 and exceeded summer mean values for 
the region in the near surface (Fig. 3A-E, Fig. S1A). Measures of 
primary production generally decreased from Cycle 1 to Cycle 4; 
however, POC concentrations remained elevated in both Cycles 
1 and  2 (Fig. 3C). Across all Cycles, POC concentrations were 
nearly equal to �POC concentrations (Fig. 3D), an indicator of 
upwelled, higher-density water masses at the surface, fueling 
high levels of production. Measures of BCP followed a similar 
pattern to that of POC (Fig. 3B), and POC was again strongly 
correlated with measures of primary and secondary production 
(Fig. S1B). 

Residual NO3
− concentrations at the surface were detected 

across the study region during P1706 (Fig. 3H), indicating the 
potential for widespread Fe limitation of the photosynthetic 
community. Average surface dFe concentrations at the beginning 
of Cycle 1 were ∼ 2 nmol L−1 but quickly decreased to sub-
nanomolar levels moving offshore beyond the shelf break 
(Fig. 3G). NO3

−:dFe ratios >10 μmol:nmol and Si:NO3
− ratios 

<1 mol:mol were observed in surface waters at Cycles 2–4 
(Table 1). 

In situ gene expression of the bacterial 
community 
Across the dataset, an average of 53.3 ± 44.3 million high-quality 
read pairs were generated per sample, yielding an average of 
8.8 ± 3.1 million mRNA read pairs per sample. Across the P1408 
dataset, this ranged from 7.5 to 16.3 million total read pairs per 
sample, with 4.3–12.0 million read pairs per sample attributed to 
mRNA. Across the P1706 dataset, 74.2–138 million total read pairs 
per sample were generated. However, due to inefficient rRNA 
removal, 1.4–18.8 million mRNA read pairs were obtained per 
sample, on par with the P1408 dataset. mRNA reads were merged 
and co-assembled into a metatranscriptome, across which 
3 096 711 unique ORFs were detected. Of these, 1 275 520 (41.2%) 
could be assigned a functional annotation and 99% of functionally 
annotated ORFs were also assigned a taxonomic annotation. 
Unannotated ORFs were sparingly expressed; 1 375 843 (75.5%) 
of the unannotated ORF set recruited <50 reads across the entire 
dataset. Of the annotated ORF set, 245 850 unique ORFs (19.3%) 
were determined to be likely bacterial proteins and used for 
downstream analysis. The relative abundance of total mRNA 
reads attributed to Bacteria was overall higher in P1408, but with 
the exception of P1408 Cycle 2, a majority of mRNA reads mapped 
to ORFs belonging to Eukaryota (Fig. S2). 

Principal component (PC) analysis of in situ bacterial mRNA 
expression showed a distinct separation between P1408 and P1706 
along PC1, accounting for 89.2% of the total variation between

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data


6 | Manck et al.

Figure 3. Depth profiles of biogeochemical parameters during each Cycle of the P1408 and P1706 CCE LTER process cruises. (A) Rates of primary 
production (μmol C L−1 day−1). (B) Rates of bacterial carbon production (BCP, μmol C L−1 day−1). (C) Concentrations of particulate organic carbon 
(POC, μmol L−1). (D) Concentrations of accumulated POC (�POC, μmol L−1). (E) Concentrations of chlorophyll a (Chl a, μg L−1). (F) Heterotrophic 
bacteria cell abundances (cells mL−1). (G) Concentrations of dissolved Fe (dFe, nmol L−1). (H) Concentrations of nitrate (NO3

−, μmol L−1). For all 
panels, sampling locations correspond to Cycles (Fig. 2) and values represent the mean value of all measurements taken across the duration of a Cycle 
(2–4 days) at a given depth. In most panels, different x-axis scales have been used for each cruise. 

samples ( Fig. 4). Increases in rates of BCP, POC concentrations, 
NO3

− concentrations, and the NO3
−:dFe ratio correlated (P value 

<0.05, linear surface fit) with the ordination of samples from 
P1706 (R2 = 0.53, 0.48, 0.40, and 0.34, respectively), whereas the 
Si:NO3

− ratio positively correlated with the ordination of samples 
from P1408 (R2 = 0.85). Ordination of the most abundant bacterial 
orders associated Cyanobacteria, Marinimicrobia, SAR11, Rhodospir-
illales, and  Rhodobacterales with P1408 along PC1 whereas SAR92, 
Flavobacteriales, SAR86, a group of unclassified Gammaproteobac-
teria, and  Alteromonadales were affiliated with P1706, consistent 

with the contrast in productivity between these two years. 
During P1408, cyanobacterial transcriptional activity was domi-
nated by Prochlorococcus (75%–96%). Similar patterns in taxonomic 
distributions were observed based on the relative abundance of 
mRNA and 16S rRNA reads (Fig. S3). The taxonomic distribution 
of the phytoplankton community also reflected the differences 
in productivity between P1408 and P1706 (Fig. S4). Cyanobacteria 
contributed to 26.7 ± 23.8% of mRNA reads of photosynthetic 
taxa in P1408, whereas diatoms were prevalent during P1706 
(36.6 ± 15.1%).

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
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Figure 4. In situ gene expression of the bacterial community during the P1408 and P1706 CCE LTER process cruises. Ordination plot displays the 
principal component analysis of vst-normalized mRNA read abundances belonging to a bacterial taxonomic group aggregated at the order level. The 
ordination of in situ samples collected at the onset of each Fe-addition experiment are displayed as open symbols while the ordination of the most 
abundant bacterial orders from these samples are displayed as colored points. Replicate samples are displayed and labelled with corresponding Cycle 
number. Arrows display the surface linear fitted vectors of continuous environmental variables to the ordination space. Direction of arrows 
corresponds with the direction in the ordination space towards which a given environmental variable increases most rapidly, and the length of arrows 
is proportional to the R2 value of the fit between the variable and ordination space. (∗∗∗) P value < 0.001, (∗∗) P value < 0.01, (∗) P value < 0.05. 

Differential gene expression of the heterotrophic 
bacterial community in response to Fe additions 
During each of the seven Cycles sampled (Fig. 2), experiments 
were conducted under in situ temperature and light conditions 
to track the transcriptional response of the surface microbial 
community to Fe additions. In five of the seven experiments 
conducted, statistically significant differential gene expression 
by bacteria was detected in response to Fe additions, and 
this response was dominated by heterotrophic bacteria (Fig. 5, 
Dataset S1). Differential gene expression is presented as the 
log2fold-change in ORF abundance, comparing control treatments 
to Fe-amended treatments such that a positive fold-change 
indicates higher expression under unamended, low-Fe conditions. 
Results compare expression after the control and Fe-addition 
treatments were incubated for 24 hours to account for changes 
in gene expression due to growth or potential bottle effects. 

Across all Cycles, genes from Fe acquisition pathways repre-
sented 45 ± 22% of the total number of differentially expressed 
genes but just 0.8 ± 0.1% of the total number of unique bacterial 
ORFs detected in situ. The significant enrichment of Fe trans-
port genes within the differentially expressed gene set (P value 
< 0.001, hypergeometric distribution) indicates the transcriptomic 
response of the heterotrophic bacterial community was a result 
of Fe availability and suggests that the in situ community was 
experiencing Fe stress. At P1408 Cycle 4 and P1706 Cycle 1, statis-
tically significant differential gene expression was not detected 
in response to Fe additions by any member of the bacterial 
community, indicating that Fe was not a primary limiting nutri-
ent to the heterotrophic bacterial community in these Cycles. 
When considering the ordination of all bacterial ORFs detected 
following 24 hours of incubation (including those that were not 
differentially expressed), the dissimilarity of the transcript pools 
between Cycles remained greater than the dissimilarity between 
experimental treatments within each Cycle (Fig. S5), indicating 
that Fe additions did not cause large shifts in the overall dynamics 
of the microbial community within 24 hours. 

During P1408, differential expression by heterotrophic bacteria 
in response to Fe additions was strongest in Cycle 3 (Fig. 5). 
Differentially expressed genes (n = 30) consisted almost entirely of 
those encoding known Fe transport pathways, which were upreg-
ulated in unamended treatments. These included genes encoding 

the solute binding protein (SBP) of Fe(III) ATP-binding cassette 
transport (ABCT) systems (K02012) from members of the SAR11 
clade as well as TonB-dependent transporters (TBDT) for the 
acquisition of FeL complexes (K02014) from an unclassified group 
of Gammaproteobacteria, SAR86, Marinimicrobia, and  Rhodobacterales. 
A smaller number of differentially expressed genes (n = 11), pri-
marily of unknown function, were also detected in Cycle 2. Despite 
its significant contribution to the in situ bacterial transcript pool 
during P1408, differential gene expression in response to Fe addi-
tions was not detected for Prochlorococcus in any Cycle. 

During P1706, a strong transcriptomic response by het-
erotrophic bacteria to Fe additions was detected across Cycle 2 
(n = 79 genes), Cycle 3 (n = 45 genes), and Cycle 4 (n = 77 genes) 
(Fig. 5). Differentially expressed genes consisted of a wider 
diversity of both taxonomic and functional annotations compared 
to that of P1408 but continued to include genes encoding known 
Fe transport pathways and were indicative of an initially Fe-
stressed community. During Cycle 2, genes encoding Fe(III) 
SBPs (K02012) were upregulated in unamended conditions and 
came from members of the SAR11 clade, Rhodobacterales, and  
unclassified Gammaproteobacteria. Genes encoding FeL TBDTs 
(K02014) were upregulated across Cycles 2–4 and came from 
unclassified members of Gammaproteobacteria as well as from 
the orders Alteromonadales, Flavobacteriales, SAR86, Marinimicrobia, 
Oceanospirillales, Methylococcales, and  Sphingomonadales. A putative 
Fe(II) transport system (pfam09375) from unclassified members 
of Gammaproteobacteria was also upregulated in Cycles 2 and 3. 

In line with culture studies, genes involved in carbon 
metabolism also showed patterns of differential expression 
consistent with Fe stress during P1706. During Cycles 2 and 4 there 
was a downregulation of the Fe-containing enzymes succinate 
dehydrogenase (K00239), aconitase (K01682), formate dehydro-
genase (K00123), and Class II fructose-bisphosphate aldolase 
(K01624) coming from members of Flavobacteriales, Rhodobacterales, 
Sphingobacteriales, and the SAR116 clade. Additionally, genes from 
Alteromonadales encoding enzymes of the glyoxylate shunt— 
malate synthase (K01638) and isocitrate lyase (K01637)—were 
upregulated in unamended conditions during Cycles 2 and 
3. Finally, the hydrolytic enzymes chitinase and β-glycosidase 
showed decreased expression in unamended treatments during 
Cycles 3 and 4.

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
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Figure 5. Differential gene expression of the heterotrophic bacterial community detected in response to Fe additions across the P1408 and P1706 study 
regions. The log2fold-change in expression for a given gene is plotted against its normalized mean abundance on a log10 scale for a given Cycle where 
differential gene expression was detected in response to Fe additions and separated according to the most abundant bacterial taxonomic orders. 
Cyanobacteria are included in the “other” category. Log2fold-changes were calculated based on ORF abundances in unamended treatments relative to 
those with Fe additions following 24 hours of incubation such that a positive value indicates upregulation of a given ORF under low-Fe conditions. 
Only ORFs with an FDR < 0.05 are displayed (n = 2 for P1408 and n = 3 for P1706). Colors indicate ORFs known to be Fe stress biomarkers (Fig. 1). The 
complete list of annotated, differentially expressed genes for each of the five Cycles displayed can be found in Dataset S1. Differential gene expression 
in response to Fe additions (FDR < 0.05) was not detected in P1408 Cycle 4 or P1706 Cycle 1. Abbreviations are consistent with those used throughout 
the text and KEGG/pfam orthology identifiers used for functional annotations are as follows – FeL TBDT: K02014, Fe(III) SBP: K02012, Fe(II) permease: 
K04759, K07243, and pfam09375, glyoxylate shunt: K01637 and K01638, hydrolysis: K03791, glycolysis/citric acid cycle: K00123, K00239, K01624, and 
K01682.

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
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POC:dFe ratios across the CCS 
Across these Fe addition experiments, the ratio of POC to dFe 
concentrations (POC:dFe) emerged as a consistent indicator 
of heterotrophic Fe stress. In all Cycles where the POC:dFe 
ratio exceeded 20 μmol:nmol at the onset of the experiment, 
differential gene expression of the bacterial community was 
detected in response to Fe additions (Fig. 6). Sampling locations 
can be arranged by NO3

− concentrations, indicating the influence 
of coastal upwelling at each Cycle. Within this frame of reference, 
POC:dFe ratios peaked in the transition zone of the California 
Current (P1408 Cycles 2–3 and P1706 Cycles 2–4), whereas the 
lowest values were present at the extremes of both highly 
productive (P1706 Cycle 1) and oligotrophic (P1408 Cycle 4) 
waters. The POC:dFe ratio during Cycle 2 of P1408 lies right at 
the proposed Fe-stress threshold of 20 μmol:nmol, which is also 
reflected in the modest transcriptomic response to Fe additions 
detected here relative to other Cycles. The POC:dFe ratio was 
also examined across three GEOTRACES transects spanning 
the Peru-Humboldt Current System, the Atlantic sector of the 
Southern Ocean, and the North Atlantic (Supplemental Results). 
This analysis demonstrated consistent patterns of the POC:dFe 
ratio and identified additional regions of the global surface 
ocean where the POC:dFe ratio exceeds 20 μmol:nmol (Fig. S6, 
Table S1). 

In situ expression of Fe stress biomarkers 
Given the indication of heterotrophic bacterial Fe stress based 
on differential gene expression, patterns in the in situ expression 
of Fe stress biomarkers (Fig. 1) were investigated. The expression 
of Fe stress biomarkers was detected in situ at every Cycle (Fig. 7 
and Fig. S7), and the abundance of specific orthologous groups 
clustered according to expression by taxonomic class (Fig. 7A, 
Fig. S7B and C, Supplemental Results). Hierarchical clustering 
(Fig. 7A) divides the expression of Fe stress biomarkers by order 
into two primary groups. The first contains Alphaproteobacteria 
and Cyanobacteria identified by the above-average expression of 
Fe(III) SBPs (K02012). The second consists of Gammaproteobacteria, 
Flavobacteria, Marinimicrobia, and  Rhodospirallales characterized by 
the above-average expression of FeL TBDTs (K02014). In the case 
of nickel-containing superoxide dismutase (NiSOD) (K00518), 
flavodoxin (K03839), Fe(II) permeases (K04759, K07243), and 
ferritin (K02217), expression by a single bacterial order fell outside 
the 95% confidence interval of the mean expression across all 
taxa. Thus, the in situ distribution of specific Fe stress biomarkers 
often significantly correlated with shifts in the taxonomic 
distribution of the overall transcript pool (P value <0.05, linear 
regression) (Fig. 7B). However, the abundance of bacterioferritin 
(K03594), fumarase c (K01679), FeL TBDTs, and Fe(II) permeases 
did not significantly correlate with the overall taxonomic 
distribution (Fig. 7B). Of these orthologous groups, fumarase c, 
an Fe-free metabolic replacement within the citric acid cycle 
(Fig. 1), was expressed by the highest diversity of bacterial orders 
as well as the most evenly across bacterial orders (Fig. S7C). It 
was also the only Fe stress biomarker detected in situ that signif-
icantly correlated with the POC:dFe ratio (P value <0.05, linear 
regression) (Fig. 7C). ORFs coming from siderophore biosynthetic 
pathways were also searched for across this dataset (pfam04183, 
pfam00501, pfam00668, and pfam00550). However, only two 
ORFs, homologs to dhbF and entF (coming from bacillibactin 
and enterobactin biosynthetic pathways, respectively), were 
identified and detected sparingly in situ, recruiting fewer than 
10 reads each. 

Figure 6. Relative availability of Fe and organic carbon as an indicator of 
Fe stress in heterotrophic bacterial communities of the CCS. Plots 
display the (A) ratios of the concentrations of particulate organic carbon 
to dissolved Fe (POC:dFe, μmol:nmol), (B) concentrations of particulate 
organic carbon (POC, μmol L−1), (C) concentrations of dissolved Fe (dFe, 
nmol L−1), and (D) concentrations of nitrate (NO3

−, μmol L−1) at the  
onset of each Fe-addition experiment conducted in the CCS. 
Experiments are arranged in order of decreasing NO3

− concentrations 
as an indicator of relative upwelling strength at each Cycle. Shaded gray 
area indicates Cycles at which Fe stress of the heterotrophic bacterial 
community was indicated based on the detection of differential gene 
expression in response to Fe additions. The y-axis in (A) is on a log10 
scale and the dashed line marks the 20 μmol:nmol POC:dFe threshold. 

Discussion 
Differential gene expression indicates the 
nutritional status of marine heterotrophic 
bacteria 
In this work, we examined the differential gene expression of the 
heterotrophic bacterial community across the southern CCS in 
response to Fe additions, and the observed expression patterns 
indicate that this community was experiencing Fe stress under 
in situ conditions. This response was particularly prevalent during 
P1706 where biogeochemical parameters and growth experiments 
also demonstrated widespread Fe limitation of the photosynthetic 
community [53, 54]. However, the disproportionate response of 
genes specific to Fe acquisition in the heterotrophic bacterial 
community, along with the rapid timeframe of this response, 
suggests that heterotrophic bacteria were specifically responding 
to Fe availability rather than secondary effects resulting from 
an Fe-limited photosynthetic community. The concurrent Fe lim-
itation of both the heterotrophic and photosynthetic microbial 
communities supports the idea that these two groups are indeed 
competing for scarce Fe resources in the sunlit waters of the 
surface ocean [14, 15, 45, 55].

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
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Figure 7. In situ expression of bacterial Fe stress biomarkers. (A) Heatmap displays normalized ORF abundances from orthologous groups of known Fe 
stress biomarkers for a given bacterial order across all in situ samples. Values are displayed as row z-scores and bacterial orders (x-axis) and 
orthologous groups (y-axis) are clustered based on Pearson correlations using Ward’s minimum variance method. Column color bar denotes bacterial 
class for each order while row color bar denotes whether the given orthologous group is involved in Fe acquisition, storage, or conservation. Cells 
marked with an asterisk are those for which the in situ expression was 1.96σ greater than or less than the row mean value, indicating expression by a 
single bacterial order that falls outside of the 95% confidence interval for a given orthologous group. (B) The relative abundance of mRNA reads from 
specific Fe stress biomarkers within the total transcript pool is plotted against the relative abundance of all mRNA reads within the transcript pool 
from bacterial orders that significantly contributed to the expression of the Fe stress biomarker. In situ expression from replicate samples at every 
Cycle are plotted from both P1408 and P1706. Linear regressions are displayed with the R2 and P values given. Linear regressions denoted with “n.s.” are 
not statistically significant (P value >0.05). The number of bacterial orders included in the taxa relative abundance for each plot is given by n as 
determined from (A) and Fig. S7. (C) The relative abundance of fumarase c within the total transcript pool is plotted against the POC:dFe ratio 
measured at each Cycle. Mean values from replicate samples at each Cycle are displayed and error bars represent ±1 standard deviation from the 
mean (n = 2 for P1408 and n = 3 for P1706). A single linear regression is displayed with the R2 and P values given. The x-axis is displayed on a log10 scale. 
For all panels, abbreviations are consistent with those used throughout the text and KEGG orthology identifiers used for functional annotations are as 
follows – NiSOD: K00518, isocitrate lyase: K01637, fumarase c: K01679, Fe(III) SBP: K02012, FeL TBDT: K02014, ferritin: K02217, bacterioferritin: K03594, 
flavodoxin: K03839, Fe(II) FeoB: K04759, Fe(II) FTR1: K07243. 

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
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The diversity of Fe stress biomarkers within the genomes of 
heterotrophic bacteria, particularly those involved in cellular Fe 
transport, represents an opportunity as well as a challenge in 
efforts to detect in situ Fe stress within this community. The 
results presented here highlight the effectiveness of short-term 
incubations using differential gene expression in response to Fe 
additions as a means to detect in situ Fe stress. The expression 
of Fe stress biomarkers, particularly that of Fe transport systems, 
was sensitive to Fe additions. Furthermore, these additions did not 
result in large or artificial changes to the overall transcript pool 
within 24 hours–in situ environmental conditions and the overall 
dynamics of the microbial community appeared to be largely 
preserved. Even so, the ability to detect in situ Fe stress using 
transcriptomic techniques independently of incubations would 
allow for a better understanding of the nutritional status of het-
erotrophic bacteria on a larger scale. Across this study, the expres-
sion of Fe stress biomarkers by the heterotrophic bacterial com-
munity was consistently detected in situ. However, the distribution 
of specific biomarkers was often largely a factor of the taxonomic 
distribution of the overall transcript pool, likely due to adapta-
tions in Fe transport capacity of specific taxa to distinct ecological 
niches [37, 56, 57]. For example, the expression of specific Fe 
acquisition pathways was distinct between background-adapted 
clades such as SAR11 and copiotrophic groups like Alteromonadales 
and Flavobacteriales, as has been observed in previous genomic 
and transcriptomic analyses [31, 32, 36]. Thus, as a first order, 
the expression of a given bacterial Fe stress biomarker in situ 
may be the result of trophic state. Methods for determining an 
Fe stress response in situ will, therefore, need to control for micro-
bial community composition and the taxonomic distribution of 
specific Fe stress biomarkers [57, 58]. In order to evaluate Fe 
stress at a community-wide scale based on in situ expression, 
biomarkers such as fumarase c, which was expressed by a wide 
diversity of bacterial taxa in this study and correlated with trends 
in the relative availability of carbon and Fe, may make an effective 
choice. 

The POC:dFe ratio as a biogeochemical proxy for 
Fe limitation of heterotrophic bacteria 
Based on the transcriptomic response of the heterotrophic com-
munity to Fe additions across P1408 and P1706, marine het-
erotrophic bacterial activity appears to be a factor of organic 
carbon as well as Fe availability. Indeed, where Fe limitation of the 
heterotrophic community has been tested previously, responses 
to Fe additions are often only observed with the simultaneous 
addition of organic carbon, suggesting co-limitation between Fe 
and carbon is common [15, 23, 24, 27]. The range of productivity 
in the CCS across P1408 and P1706 created a natural laboratory 
in which to explore this hypothesis. Under coastal upwelling 
conditions, nutrients delivered to surface waters fueled high rates 
of primary production, increasing the availability of organic mat-
ter to heterotrophic bacteria and likely relieving carbon limita-
tion. However, as these upwelled water masses moved offshore, 
Fe availability decreased relative to the availability of freshly 
produced organic matter, and the heterotrophic bacterial com-
munity exhibited signs of Fe stress. Consistently high levels of 
production in eastern boundary upwelling systems such as the 
CCS may mean that Fe limitation of the heterotrophic bacterial 
community is a persistent feature in these systems (Supplemental 
Results, Fig. S6). In contrast, in regions such as the Southern 
Ocean or oligotrophic gyres where primary production is chroni-
cally nutrient-limited, heterotrophic bacteria may predominantly 

experience carbon limitation, being driven to Fe limitation only 
during episodic bloom events [27]. 

In order to quantify the relationship between carbon and 
Fe availability as controlling factors of heterotrophic bacterial 
growth, we explored the ratio of POC:dFe concentrations as a 
biogeochemical proxy for in situ Fe stress that can complement 
molecular-based approaches. The ratio of nutrients available 
within a system can be a useful indicator of nutrient limitation 
[6, 7, 59, 60], and the threshold indicative of limitation for such a 
proxy will depend on the ratio at which two nutrients are utilized 
by dominant microbial groups within a given environment. In 
this dataset, POC:dFe ratios >20 μmol:nmol were indicative of 
Fe-limited heterotrophic bacterial communities. Values above 
this threshold, therefore, represent conditions where carbon is in 
excess relative to Fe based on cellular requirements. Thus, even 
within an Fe-limited phytoplankton community that may respond 
to Fe additions with increased productivity, the heterotrophic 
bacterial community would be expected to respond to Fe rather 
than carbon availability when the in situ POC:dFe ratio exceeds 
20 μmol:nmol. 

Relatively few studies have attempted to characterize the Fe 
requirements of marine heterotrophic bacteria either in culture 
or natural communities [8–13, 15, 61]. However, across these 
studies, values for the cellular C:Fe stoichiometry of heterotrophic 
marine bacteria range from ∼1 to  >2000 μmol:nmol – likely 
varying as a factor of growth conditions, lifestyle strategies, the 
potential for luxury Fe storage, and methodologies employed. 
However, culture studies focused on strains from the copiotrophic 
groups Alteromonas and Pseudoalteromonas report C:Fe stoichiome-
tries between ∼7 and 62  μmol:nmol under replete growth condi-
tions [13, 61]. During P1706 in particular, copiotrophic strains such 
as these comprised a significant portion of the bacterial transcript 
pool and rates of BCP and growth [62, 63] were elevated, altogether 
indicating a fast-growing bacterial community where carbon lim-
itation had been relieved. Under these conditions, POC:dFe ratios 
exceeding values of 20 μmol:nmol would be consistent with a 
nutrient regime indicative of Fe limitation, driven by the relatively 
high Fe demands (lower C:Fe ratio) of copiotrophic members of the 
microbial community. Although there are no current estimates 
available for the cellular Fe demand of the SAR11 clade, this group 
also responded to Fe additions at POC:dFe ratios >20 μmol:nmol, 
suggesting similar Fe requirements for this ubiquitous clade of 
heterotrophic bacteria. The reported cellular C:Fe quotas of copi-
otrophic bacteria are similar to those of marine diatoms [64], 
further highlighting the competition for Fe between the dominant 
microbial groups present during P1706. In contrast, the lack of a 
transcriptional response from Prochlorococcus during P1408 is con-
sistent with the lower cellular Fe requirements reported for this 
cyanobacterial group [65, 66]. A better understanding of cellular 
quotas of Fe and carbon in specific groups of heterotrophic marine 
bacteria will be critical to furthering our understanding of the 
nutritional status of the microbial community throughout the 
marine environment. 

Determining bioavailable pools of both organic carbon and 
Fe will be another important consideration in establishing an 
appropriate biogeochemical proxy for in situ Fe limitation of het-
erotrophic bacteria. Although POC is a combination of both living 
microbial biomass as well as detrital organic material—a portion 
of which will be available for degradation and consumption by 
heterotrophic bacteria, POC concentrations have been shown to 
be a reliable indicator of freshly produced carbon within the CCS 
[67]. In contrast, labile dissolved organic carbon, accounting for 
∼50% of marine net primary production [68], is processed via

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae061#supplementary-data
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the microbial loop on the timescale of minutes to days [69] —  
making it difficult to capture fluctuations in the availability of 
this pool of organic matter. Thus, although POC is not necessarily 
a direct measure of the carbon available to heterotrophic bacteria, 
we propose that its production and accumulation in the surface 
ocean is an accurate reflection of the amount of labile carbon 
within the system. Likewise, the dFe pool is a complex mixture 
of different forms of Fe, which are not uniformly available to 
microorganisms. However, changes in the concentration of dFe are 
thought to broadly correlate with the bioavailability of Fe within 
a system [70]. Furthermore, a wide range of taxa exhibited signs 
of Fe stress across this study, regardless of niche specialization 
in transport capacity for either inorganic Fe or FeL complexes. 
The applicability of the POC:dFe ratio as an indicator of Fe stress 
within the heterotrophic bacterial community across other ocean 
ecosystems will require further testing (Fig. S6). However, the CCS 
encompasses a wide range of environmental conditions and asso-
ciated microbial communities, spanning multiple orders of mag-
nitude in productivity from the edge of the oligotrophic subtrop-
ical gyre to highly productive coastal upwelling environments— 
making this study a promising starting point. 

Potential consequences of heterotrophic bacterial 
Fe limitation on carbon cycling in the marine 
environment 
Fe is an important cofactor of carbon metabolism in heterotrophic 
bacteria [16]. Therefore, given that heterotrophic bacteria are 
major facilitators of particle degradation and organic matter rem-
ineralization in the marine environment, Fe availability to this 
community may be expected to have downstream effects on 
remineralization processes and carbon export efficiencies. This 
may be particularly relevant in environments like the CCS, where 
sinking particles are the main contributor to carbon export [71]. 
Although the bulk growth response to Fe additions was not mea-
sured, changes in gene expression in this study suggest Fe avail-
ability impacted central carbon metabolism and growth via mech-
anisms consistent with previous work. For example, the reduced 
expression of Fe-containing enzymes within glycolysis, the citric 
acid cycle, and the electron transport chain under low Fe condi-
tions has been observed in cultured isolates where it has been 
associated with reduced rates of cellular respiration and growth 
[13, 30, 72–75]. Additionally, expression of the glyoxylate shunt is 
linked to Fe-limiting conditions [13, 29, 30, 76–78]. The glyoxylate 
shunt bypasses the two steps within the citric acid cycle where 
carbon is lost as CO2 and additional reducing agents are gener-
ated (Fig. 1). Typically, the glyoxylate shunt is associated with the 
metabolism of fatty acids and allows intermediates from the citric 
acid cycle to be diverted to biosynthesis pathways [79, 80]. Its role 
under Fe-limiting conditions remains intriguing. Previous culture 
work suggests that the glyoxylate shunt helps cells to compensate 
for the reduction in growth resulting from Fe limitation, perhaps 
by directing electron flow through succinate dehydrogenase while 
bypassing Complex I of the electron transport chain [29]. Complex 
I has the highest Fe requirement of all respiratory proteins and 
can potentially harbor up to 50% of the total cellular Fe quota 
[16]. 

Whether due to the reallocation of carbon from respiration 
to biomass production or simply an overall reduction in total 
carbon demand due to reduced growth, bacterial Fe limitation 
would be expected to impact the fate of fixed carbon within 
an Fe-limited ecosystem, possibly leaving a higher percentage of 
organic carbon available for export or transfer to higher trophic 
levels. Fe limitation of phytoplankton is currently linked to higher 

export efficiencies within the CCS [53], including during P1706 
[54], and has been attributed to increased silica ballasting of 
diatoms under Fe limitation [81]. Reduced rates of respiration due 
to Fe limitation of heterotrophic bacteria offers a complementary 
mechanism by which export efficiencies could be increased in Fe-
limited systems, which will merit further investigation. 

Conclusion 
Carbon and Fe are tightly coupled in the metabolism of marine 
heterotrophic bacteria. A thorough understanding of the bacterial 
requirements of both of these nutrients will be a challenging yet 
important step in understanding the cycling of organic matter in 
the marine environment. Based on the transcriptional response of 
the heterotrophic bacterial community in a series of Fe-addition 
incubations, we suggest that this community is subject to in situ 
Fe stress. We found that the potential for Fe limitation within the 
heterotrophic bacterial community is the greatest during periods 
of high productivity with elevated organic matter availability but 
low Fe concentrations, as indicated by the ratio between POC:dFe. 
We hypothesize that this is largely driven by an increase in 
the activity of copiotrophic taxa that respond to high levels of 
available organic matter, thereby increasing the Fe demand of 
the heterotrophic bacterial community in support of increased 
levels of carbon metabolism. Patterns of gene expression under 
Fe limitation were characterized by high expression of Fe trans-
port systems but also by shifts in the expression of enzymes 
within central carbon metabolism, suggesting that Fe limitation 
of heterotrophic bacteria results in changes to respiration and 
growth. Future work will be needed in order to determine the 
exact relationship between carbon and Fe requirements for given 
heterotrophic groups and, ultimately, the effects of these dynam-
ics on the efficiency of the marine biological carbon pump. 
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