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Autism, mitochondria and polybrominated diphenyl ether 
exposure

Sarah Wonga and Cecilia Giulivia,b

aDepartment of Molecular Biosciences, School of Veterinary Medicine, University of California 
Davis, CA 95616

bMedical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California 
Davis, CA 95616

Abstract

Background—Autism spectrum disorders (ASD) are a growing concern with more than 1 in 

every 68 children affected in the United States by age 8. Limited scientific advances have been 

made regarding the etiology of autism, with general agreement that both genetic and 

environmental factors contribute to this disorder.

Objective—To explore the link between exposure to PBDE, mitochondrial dysfunction and 

autism risk.

Results—Perinatal exposures to PBDEs may contribute to the etiology or morbidity of ASD 

including mitochondrial dysfunction based on (i) their increased environmental abundance and 

human exposures, (ii) their activity towards implicated in neuronal development and synaptic 

plasticity including mitochondria, and (iii) their bioaccumulation in mitochondria.

Conclusions—In this review, we propose that PBDE, and possibly other environmental 

exposures, during child development can induce or compound mitochondrial dysfunction, which 

in conjunction with a dysregulated antioxidant response, increase a child’s susceptibility of autism.

Keywords

Autism risk; mitochondrial dysfunction; neuronal development; PBDE exposure; antioxidant 
response; oxidative stress

Introduction

Autism spectrum disorders (ASD) are a growing concern, with more than 1 in every 68 

children affected in the United States by the age of eight years. Complex interactions 

between genes and environmental factors are thought to contribute to ASD risk. Based on a 

study on identical twins, exposure to shared environmental factors seems to play a more 
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critical role than genetic heritability in autism [1]. Evidence is accumulating for a potentially 

large role in ASD etiology and/or morbidity for the early in-utero environment, including 

environmental exposures. Among these, polybrominated biphenyl ethers (PBDE) exposure 

is a potential risk factor based on (i) their increased environmental abundance and human 

exposures [2], (ii) their activity towards targets implicated in neuronal development and 

synaptic plasticity [3], including mitochondria [4–16], (iii) their higher accumulation in 

children than adults living in the same quarters [17], and (iv) the demonstrated association 

between PBDE perinatal exposure and developmental/delayed neurotoxicity [3, 18, 19]. This 

study explores the potential detrimental role of PBDE exposures contributing to 

mitochondrial dysfunction and autism risk.

Mitochondria and autism

Given the critical role of mitochondria in bioenergetics [20–24] and immunity [25], it is not 

surprising that mitochondrial dysfunction could contribute to the etiology and/or severity of 

neurological disorders including autism [26–28]. One of the most prevalent metabolic 

disorders associated with ASD is mitochondrial dysfunction. A meta-analysis [20] showed 

that 5% of children with ASD met the criteria for a mitochondrial respiratory chain disorder 

(MRCD) as judged by the modified Walker criterion [29]. This well-established approach 

relies on significant decreases in mitochondrial electron transport Complex activities (e.g., 

30% or less of control values in cultured cells), clinical outcomes (e.g., learning disabilities) 

and/or the occurrence of known pathogenic mitochondrial DNA mutations [29]. When less 

stringent criteria are used, >30% of children in the general ASD population exhibit 

metabolic biomarkers representative of mitochondrial dysfunction [30]. A study [31] 

reported that up to 50% of children with ASD have at least one biomarker of mitochondrial 

dysfunction. Our work showed that 80% of children with autism with high severity scores (8 

and above) demonstrated lower than normal electron transport chain function in 

lymphocytes when compared to neurotypical controls [23]. Our studies have also shown that 

children with autism are more likely to have mtDNA overreplication and mtDNA deletions 

than typically neurodeveloping children [23, 32], indicating that their mtDNA is more 

damaged as a result of an imbalance between increased reactive species production and 

antioxidant responses. The higher incidence of high mtDNA copy number and deletions 

seems to reflect the fact that lymphocytic mitochondria from children with autism produced 

more reactive oxygen species than those from typically neurodeveloping children [23], and 

that oxidative stress enhances mtDNA replication [33, 34]. Evidence for a compromised 

mitochondrial function (altered mitochondrial dynamics) and intracellular redox status in 

pyramidal neurons in ASD brains was provided when analyzing post-mortem BA21 

temporal cortex samples [35]. Furthermore, a higher mtDNA copy number was also 

observed in a pilot study performed on post-mortem samples from brain regions of control 

and children with autism (Table 1). Frontal and temporal cortex from cases exhibited 

mtDNA over-replication compared to typically neurodeveloping children (1.6- and 1.14-

fold; p = 0.004 and 0.04; Table 1) and at similar ratios than those obtained with PBMC and 

in brain structures that had been implicated in autism [36, 37]. These data indicate that 

PBMC possess biomarkers of mitochondrial dysfunction found in brain tissues, providing 
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strong rationale for launching systematic studies of mitochondrial dysfunction in autism 

using readily available PBMC.

Some children with ASD have increased activities of certain Complexes within the 

mitochondrial electron transport chain rather than deficits [23, 38]; however, this situation is 

also interpreted as a mitochondrial dysfunction given that the appropriate ratio of Complexes 

allows the correct oxidation of substrates for obtaining ATP. Some of the ASD cases with 

reported mitochondrial dysfunction present higher lactate-to-pyruvate ratios in plasma, 

which indicates higher fluxes of glucose going through glycolysis than via mitochondria [23, 

24], and another study presented evidence of higher lactate in brain of a subset of subjects 

with autism [39]. The finding that not all individuals with mitochondrial dysfunction show 

high lactate-to-pyruvate ratios is not surprising considering that increases in this ratio in 

plasma usually reflect a significant co-occurrence of a myopathy [23, 38, 40], which may 

not be necessarily present in some ASD children. Even when a child presents a typical 

mitochondrial respiratory chain disorder, its diagnosis still constitutes a challenge to 

clinicians, especially because the clinical presentation in children shows an enormous 

variation [41]. Further evidence of mitochondrial dysfunction in ASD has demonstrated in 

human studies of genetic disorders associated with ASD and animal models, including 

fragile X disorders [42–44], phosphatase and tensin homolog (PTEN) haploinsufficiency 

[45] or mutations [45], Rett syndrome [46–48], succinic semialdehyde dehydrogenase 

deficiency [49, 50], 15q11–q13 duplication syndrome [51, 52], Down’s syndrome [53, 54], 

among others [55, 56]. Taken together, these studies suggest that mitochondrial dysfunction 

may be present in a considerable number of children with ASD and, based on the broad 

phenotype of mitochondrial chain respiratory disorders, that such dysfunction might be 

manifested as a spectrum of clinical outcomes.

Evidently the 7- to 8-fold increase in the incidence of autism in California from the early 

1990s through the present [57] cannot be attributed solely to changes in diagnostic criteria, 

the inclusion of milder cases, an earlier age at diagnosis or genetic causes suggesting that yet 

unidentified environmental exposures could contribute to the escalating diagnostic risks. The 

etiology of mitochondrial dysfunction in ASD is unknown with limited evidence for a 

contribution from pathogenic mtDNA mutations [58–61]. This suggests that mitochondrial 

dysfunction in ASD may be de novo or acquired. In this regard, it has been proposed that 

ASD may arise from environmental triggers [1] in genetically predisposed subpopulations 

[62, 63]. This notion is supported by a study of dizygotic twins that estimated that the 

environment contributed more to the risk of developing autism (55%) than that attributed 

solely to genetic factors (37%) with these factors contributing about equally for the broader 

ASD diagnosis [1]. Mitochondria are central to this concept since mtDNA polymorphisms 

can result in increased disease predisposition [64, 65]. However, mitochondrial dysfunction 

can also result from dietary habits such as maternal folate [66, 67] and iron [68–70] status or 

environmental exposures previously implicated in ASD including heavy metals [71–74], 

chemicals [75], polychlorinated biphenyls [76], pollution [77–79], pesticides [80, 81] or 

maternal infection during pregnancy [28, 82–89].

Among these exposures, PBDEs may be viewed as suitable candidates to promote or 

enhance adverse outcomes of subclinical conditions based on (i) their increased 
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environmental abundance and human exposures [2], (ii) their activity towards targets 

implicated in neuronal development and synaptic plasticity [3] including mitochondria [4–

16], (iii) their higher accumulation in children than adults living within the same quarters 

[17], (iv) the association between developmental/delayed neurotoxicity and perinatal 

exposure to PBDEs [3, 18, 19], and (v) the relatively high intracellular and mitochondrial 

bioaccumulation [7]. Although autism is a complex neurobehavioral syndrome with many 

risk genes [90–98], current data indicates that over-excitation of local networks is a common 

etiologic factor [99, 100]; however, the prevalence of mitochondrial dysfunction [20, 22–24, 

98, 101] and increased oxidative stress [32, 45, 101–105] observed in autism may also set 

the basis for a disrupted network, and evidenced more upon exposure to environmental 

triggers with a neurotoxic component. If perinatal PBDE exposure were one of the 

precipitating factors in autism -in line with the “second-hit stress hypothesis”- the severity of 

this background would set the perinatal oxidative phosphorylation capacity, and thus, the 

relative severity of the disease at birth. Individuals with initially high oxidative 

phosphorylation capacities would require multiple exposures (or a combination of triggers) 

to cross oxidative phosphorylation thresholds and thus remain asymptomatic until late in 

life. Individuals starting with a lower initial capacity and requiring fewer exposures (or 

combinations) to have the same effect would develop symptoms early in life. This 

differential effect of the PBDE-induced bioenergetic decline could be further accentuated in 

individuals with partial oxidative phosphorylation defects as reported in autism [20–24, 32, 

38, 98, 101, 105–109]. This concept is supported by the findings that mitochondrial 

dysfunction in neurons with PTEN deficiency, a genetic background shared by a subset of 

children with autism [27], in significantly enhanced by nanomolar concentrations of 

BDE-49, one of the least abundant PBDEs.

General background on PBDEs

PBDEs represent an important group of high volume chemicals extensively used in plastics, 

textiles, furniture, and electronic devices [110]. Global production of PBDEs has reached 

approximately 148 million lb/year [110]. PBDEs are used as additive flame-retardants in 

plastics to which they are not chemically bound and can thus leach from polymers and 

pervasively accumulate in the built environment and ecosystem [110–113]. PBDEs share 

structural similarity to the persistent non-coplanar polychlorinated biphenyls and have high 

heat stability, high lipid solubility, and low vapor pressure, which contribute to their 

environmental persistence and bioaccumulation [114] impacting individual- [115] and 

population-level health outcomes [116]. The extent of toxicity by PBDE congeners can be 

dependent upon conformational differences, position and degree of halogenation and 

hydroxylation [117].

In contrast to the polychlorinated biphenyls, whose levels in environmental samples are 

slowly decreasing [118], PBDE residues in environmental media and in human tissues 

appear to be increasing [119]. Recent studies are demonstrating a world-wide increase in 

PBDEs’ concentrations in the human diet [120–137], especially in seafood and fish [120–

122, 125, 126, 130–134, 138], regardless of the cooking method [139], which may result in 

dietary exposures and PBDE body burdens in humans [110, 111, 131, 132]. For example, 

PBDE congeners in human breast milk from Swedish women have increased exponentially 
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over the last two decades [140, 141], and studies in US populations have demonstrated the 

presence of PBDEs in human breast milk, adipose tissue, and blood [142, 143]. 

Interestingly, the levels of PBDEs in breast milk of US women reflect a body burden that far 

exceeds that reported in the Scandinavian studies [140–142]. In particular, PBDE levels in 

northern California women are among the highest levels reported to date [144, 145], as 

expected for the San Francisco Bay area, one of the most contaminated regions worldwide 

[146–149]. PBDE levels in breast adipose tissue from women living in this area were 3- to 

25-times higher than those in other regions of the world [144, 145]. The average ∑PBDEs 

was 86 ng/g fat with BDE-47, -154, -153, -99, and -100 as the major congeners in 1990 

[150]. Data collected from women from 1995–1998 showed that the total level was 2-times 

higher than that from 1990, with 2- to 3-fold higher concentrations of congeners -47, -99, 

and -100 [145]. Figure 1 depicts the three-dimensional chemical structures of some PBDEs, 

such as BDE-47, -49, -85, -99, and -100.

Circulating levels of PBDEs in children aged 2 to 5 years living in northern California from 

the Childhood Autism Risks from Genetics and the Environment (CHARGE) Study at the 

University of California Davis were reported to be 10-to 1000-fold higher than similar aged 

populations in Mexico and Europe, 5-times higher than similar aged children across the 

U.S., and 2- to 10-fold higher than U.S. adults [151]. This higher exposure may be partially 

explained by the fact that infants can accumulate 2- to 4-times more PBDEs than adults 

within the same geographical area [152]. In addition, California regulations require all 

furnishings to pass flammability tests for fire safety [153]. Although no specific flame-

retardants are mandated, it is quite likely that PBDEs are added to polyurethane foam used 

in furnishings [2]. Then the main source for PBDE exposure in California compared to that 

of other regions would be hand-to-mouth contact with consumer products and ingestion/

inhalation of dust in indoor microenvironments. In support of this argument, a study 

performed with women living in northern California, indicated that individual PBDE 

congeners correlated with each other, but correlations across PBDE and polychlorinated 

biphenyls congeners were modest [145], suggesting that maternal exposures to PBDEs came 

primarily from non-dietary sources [2, 150]. However, processed foods (especially pork and 

chicken products) and exposure to new upholstered furniture were the major predictors of 

blood levels of PBDEs in 2–5 year olds from CHARGE Study [151] suggesting that both 

diet and environmental exposure might be relevant in this population of children from 

northern California.

Reports using animal models, as well as epidemiological and human tissue studies, indicate 

that certain environmental chemicals and drugs can cross the placenta during pregnancy and 

interact with fetal cell targets leading to disorders, which arise later in development [154–

156]. PBDE concentrations in maternal blood predict the level of fetal exposures for some 

BDE congeners [157], suggesting maternal transfer to the developing fetus during 

pregnancy. Studies demonstrating induction of cytochrome P4501A in rat fetal livers whose 

mothers underwent PBDE exposures [158] and the presence of several PBDE congeners in 

human fetal liver [19] substantiates transplacental exposure to PBDEs in rodents and 

humans. The maternal transfer of both lipophilic PBDEs and their less lipophilic 

hydroxylated congeners are likely to cause developmental neurotoxicity [3, 18, 159–162]. 
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For instance, BDE-49 and its hydroxylated metabolite, not typically measured in human 

samples, have been recently detected in gestational tissues from women in Michigan at 

levels comparable to commonly detected BDE-47 (17% of total PBDEs; [163]). This 

observation is consistent with reports identifying BDE-49 as a major contributor to PBDE 

load in fish [164, 165], including one study on Great Lakes fish that identified BDE-49 as 

the most abundant congener [166]. These data significantly underscore the importance of 

meta- and para-bromination substitutions in determining the bioaccumulation of highly 

neurotoxic congeners during gestation, and the possible contribution of hydroxylated 

metabolites to adverse outcomes. Similar to structurally related non-coplanar 

polychlorinated biphenyls [162], PBDEs have a stringent structure-activity relationship 

towards altering Ca2+ signaling pathways via interactions with microsomal ryanodine 

receptors, with BDE-49 and hydroxylated metabolites being most active [161]. Chronic, 

low-level maternal and fetal exposures to specific PBDE congener profiles during pregnancy 

could affect signaling systems essential for activity dependent dendritic growth and proper 

development of excitatory and inhibitory networks in the fetus [3, 161]. An imbalance of 

excitatory and inhibitory neurotransmission has been implicated in the etiology of a number 

of syndromic and idiopathic developmental disorders, including autism [100].

PBDEs, mitochondria, and autism

Several key factors could relate PBDE exposure to autism susceptibility. Among them, 

maternal transfer of PBDEs to the fetus transplacentally during gestation, early postnatal 

exposure to PBDEs via maternal milk (especially those highly hydrophobic) and exposure to 

PBDEs during early postnatal development. Although the mechanisms responsible for 

PBDE-induced injury are not well understood, recent research has focused on the ability of 

PBDEs to disrupt thyroid hormone status, leading to abnormalities in fetal growth and 

development in laboratory animals [18, 167–170] as well as disrupting intracellular Ca2+ 

homeostasis especially in excitable cells [4, 5, 8, 9, 11, 14–16, 171]. In this regard, BDE-47 

and hydroxylated derivatives had been shown to release Ca2+ from or inhibit calcium uptake 

by endoplasmic reticulum and mitochondrial stores in PC12 cells [5, 9], human 

neuroblastoma cell line SH-N-SH [11], cerebellar fractions and cerebellar granule cells [8, 

15], exhibiting a preferential effect on mitochondria [4, 8, 15, 171]. A growing body of 

evidence suggests that PBDE or their hydroxylated metabolites can induce mitochondrial 

dysfunction by promoting inhibition of the electron transport chain or uncoupling electron 

transport with ATP synthesis [9, 172], mitochondrial depolarization [6, 10, 173], altered 

mitochondrial morphology [174], release of cytochrome c and apoptosis [10, 11], and 

increased oxidative stress [6, 7, 10, 11, 173, 175] in vivo [173, 176, 177] or in vitro [5, 6, 9, 

10, 14–16] in a variety of biological systems. mitochondrial dysfunction has been reported 

in individuals with autism or ASD [23, 24, 38, 98, 101, 105, 107–109, 178, 179]. Our 

studies showed that Complex IV and V are inhibited by BDE-49 at low nM concentrations 

and that these effects are enhanced in the presence of PTEN deficiency, background shared 

by a subset of children with autism [27]. Given that the levels of PBDEs in blood samples 

from children aged 2–5 years from CHARGE were not significantly different than those 

from age-matched typically neurodeveloping children [180], it is tempting to propose that 

the response to a perinatal PBDE exposure differs between these diagnostic groups, 
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compounded by the bioaccumulation of PBDE in mitochondria [7]. This bioaccumulation of 

PBDEs implicated in neurotoxicity [3, 161] may enhance the pre-existing mitochondrial 

dysfunction and/or initiate it, contributing to the onset or morbidity of ASD.

Antioxidant responses and autism

The capacity of cells to maintain homeostasis during oxidative stress resides in the induction 

of protective enzymes, as well as non-enzymatic defenses such as glutathione [181–186], 

playing Nuclear Factor, Erythroid 2-Like 2 (Nrf2) as an important role in the regulation of 

these processes [187–189]. Nrf2 induces antioxidant and detoxifying enzymes through its 

binding to the antioxidant response element (ARE) [190, 191]. Nrf2 is sequestered in the 

cytoplasm as an inactive complex with its cytosolic repressor Kelch-like ECH associated 

protein-1 (Keap-1). The dissociation of Nrf2 from Keap-1 is crucial for its nuclear 

translocation, followed by binding to DNA and activation of cytoprotective genes [191]. 

Nrf2 phosphorylation has been described as a critical event for the nuclear translocation of 

this transcription factor and its transcriptional activity [191, 192]. To date, multiple signaling 

kinases related to cell survival/proliferation have been reported to regulate Nrf2, including 

extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), 

phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC) [191, 193]. Indeed, the 

phosphorylation of Nrf2 by these different kinases at multiple sites seems to be an important 

mechanism in Nrf2-mediated ARE activation and in regulating the stability of this 

transcription factor [194]. Post-translational modification of Nrf2 by various protein-kinase 

signaling pathways can affect its nuclear translocation. Some of the kinases identified as 

responsible for Nrf2 phosphorylation are ERK, JNK, PI3K and PKC [191].

Nrf2 has an important role in the protection against induced-organ injury [191] by regulating 

the response to cellular stress and cell survival/proliferation [188, 195–197]. Therefore, the 

Nrf2-ARE pathway could act as a sensor and respond to chemical stress before the onset of 

cytotoxicity. In line with this, Nrf2 could be activated in response to PBDE exposure as an 

adaptive response against oxidative and inflammatory cell damage; however, a dysregulated 

Nrf2-mediated response might not be enough to overcome PBDE-mediated mitochondrial 

damage, considering the high susceptibility to oxidative stress by certain complexes and 

mitochondrial enzymes [198–200]. In support of this concept, lower gene expression of Nrf2 

has been reported in granulocytes of children with autism suggesting lower response to 

activate the antioxidant response capacity and possibly linked to the increased mtDNA 

deletions [201]. Nrf2 may also define the initial threshold for toxicity by controlling, at least 

in part, constitutive aspects of cell defense [190, 195, 196]. In this regard, it has been 

described that an agent could stimulate the nuclear accumulation of Nrf2 at non-cytotoxic 

concentrations or after a short time of incubation, although at longer times of exposure, it 

could induce significant cytotoxicity [195].

Several studies have shown mitochondrial dysfunction reported in PBMC from children with 

autism [23], deficits accompanied by increased oxidative stress, evidenced by higher rates of 

hydrogen peroxide production [23] and increased mtDNA deletions [32]. The mitochondrial 

electron transport chain is the major intracellular source of reactive oxygen species, and as 

such, mtDNA becomes oxidatively modified as it is evidenced by its relatively high mutation 
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rate [202] and accumulation of deletions with age [203, 204]. Mitochondria can compensate 

for these damages by responding with increased mtDNA replication without increases in 

oxidative phosphorylation [34, 205–209]; however, increases in copy number have also been 

associated with defective transcription, respiratory chain deficiency, and age-related 

accumulation of mtDNA deletions [210]. Not only the production of reactive oxygen species 

is higher in samples from ASD cases but also evidence of lower antioxidant defenses has 

been presented. Glutathione deficits have been reported in plasma, immune cells and post-

mortem brain from ASD children [105, 211–213]. A deficit in glutathione antioxidant 

capacity may limit the ability to catabolize hydrogen peroxide efficiently, increasing both 

oxidative stress-mediated damage and the vulnerability to subsequent pro-oxidant 

environmental exposures [214, 215]. Thus, exposure to environmental stressors could be 

further compounded (second hit hypothesis) in the presence of a pre-existent mitochondrial 

dysfunction. This is demonstrated by the enhanced neurotoxic effect of excitotoxic amino 

acids when oxidative phosphorylation is inhibited [216–219] or the exacerbated neuronal 

mitochondrial toxicity to PBDEs in the presence of an autistic-like background (PTEN 

deficiency) [27]. In this regard, oxidative stress may be a key mechanism by which 

mitochondria are negatively influenced by exposures to pro-oxidant environmental triggers 

[71–76, 80, 81] and/or by medical conditions coexisting with ASD diagnosis such as 

immune dysregulation [201, 220]. Free radicals, when not accompanied by appropriate 

antioxidant defenses, can initiate a cascade of deleterious events, which can promote or 

perpetuate mitochondrial and cellular damage [211, 221].

Concluding remarks

Finally, more research needs to be done to understand the risk factors for autism, specifically 

how environmental exposures impact redox homeostasis and mitochondrial function, and 

how these exposures unveil functionally deficient backgrounds contributing to a feed-

forward cycle of damage. Although a growing body of evidence suggests that PBDE can 

induce mitochondrial dysfunction by a variety of mechanisms, limited effort has been 

devoted to find the differential susceptibility of autism to those most biologically active 

PBDEs, not typically measured, but clearly implicated in neurotoxicity. Therapies seeking to 

decrease oxidative stress-mediated damage, improve mitochondrial function or minimize 

symptoms observed in some ASD cases need to be carefully evaluated if a careful 

biochemical and metabolic characterization of the subject has not been done to avoid 

deleterious side effects or refractory outcomes [222, 223]. This is relevant considering that 

reactive oxygen species do not solely elicit damage to biomolecules but also exhibit a role in 

signal transduction pathways significant to bioenergetics and cellular metabolism [224–226].
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Figure 1. 
Three-dimensional chemical structures of selected PBDEs
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Table 1

mtDNA copy number in brain regions from control children and children with autism.*

Cortex region mtDNA copy number

Typically developing Autism

Frontal 2803 ± 92 4414 ± 241*

Temporal 3706 ± 103 4232 ± 124*

*
Samples obtained from the Autism Tissue Program brain bank were collected with a post-mortem interval of 24-h or less. Ages ranged from 6–15 

years for both groups. Causes of death were multisystem organ failure, drowning, smoke inhalation, and gunshot.

*
p <0.05.
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