Title
Relationship between Segmental Dynamics Measured by Quasi-Elastic Neutron Scattering and Conductivity in Polymer Electrolytes

Permalink
https://escholarship.org/uc/item/9qg4r3rk

Journal
ACS Macro Letters, 7(4)

ISSN
2161-1653

Authors
Mongcopa, KIS
Tyagi, M
Mailoa, JP
et al.

Publication Date
2018-04-17

DOI
10.1021/acsmacrolett.8b00159

Peer reviewed
Relationship between Segmental Dynamics Measured by Quasi-Elastic Neutron Scattering and Conductivity in Polymer Electrolytes

Katrina Irene S. Mongcopa,† Madhusudan Tyagi,‡§ Jonathan P. Mailoa,‖ Georgy Samsonidze,‖ Boris Kozinsky,‖ Scott A. Mullin,‖ Daniel A. Gribble,‖ Hiroshi Watanabe,‖ and Nitash P. Balsara,‡,§,∥

†Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
‡National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
§Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
‖John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
¶Seeo Inc., Hayward, California 94545, United States
‖Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
∥Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

Supporting Information

ABSTRACT: Quasi-elastic neutron scattering experiments on mixtures of poly(ethylene oxide) and lithium bis(trifluoromethane)sulfonimide salt, a standard polymer electrolyte, led to the quantification of the effect of salt on segmental dynamics in the 1–10 Å length scale. The monomeric friction coefficient characterizing segmental dynamics on these length scales increases exponentially with salt concentration. More importantly, we find that this change in monomeric friction alone is responsible for all of the observed nonlinearity in the dependence of ionic conductivity on salt concentration. Our analysis leads to a surprisingly simple relationship between macroscopic ion transport in polymers and dynamics at monomeric length scales.

The mechanism of ion conduction in conventional liquid electrolytes, e.g., mixtures of solvents with high dielectric constants such as alkyl carbonates and salts such as LiPF₆ used in current lithium-ion batteries, is well established.¹,² At low salt concentrations, ionic conductivity increases linearly with salt concentration due to an increase in charge carrier concentration. Charge screening, usually modeled using the Debye–Hückel theory,³ results in deviation from this linear dependence. At high enough concentration, the viscosity of the solution increases significantly, and conductivity decreases with increasing concentration. The dependence of conductivity on salt concentration is thus characterized by a maximum.⁴,⁵

One approach for improving the performance of rechargeable lithium batteries is to replace the flammable liquid electrolyte with a high molecular weight polymer.⁶ The prototypical polymer electrolytes are mixtures of polyethers such as poly(ethylene oxide) (PEO) and lithium bis(trifluoromethane)sulfonimide (LiTFSI) salt.⁷ Similar to the case of liquid electrolytes, conductivity versus salt concentration also exhibits a maximum.⁸ However, the conductivity of polymer electrolytes is independent of viscosity; the viscosity of polymers, η, increases sharply with molecular weight, M, as η ∼ M⁴,⁹ while ionic conductivity at a fixed salt concentration is independent of M (for M ≥ 4 kg/mol).⁹ Instead, the conductivity of high molecular weight polymers is determined by segmental dynamics which slow down due to associations between polymer chains and salt molecules.¹⁰,¹¹ The purpose of this paper is to clarify the origin of the conductivity maximum observed in polymer electrolytes. In particular, we will address the relative importance of screening and segmental dynamics.

Quasi-elastic neutron scattering (QENS) has emerged as a powerful tool for studying segmental dynamics in polymers.¹²–¹⁴ The relevant processes occur on length scales between 5 and 50 Å and on time scales between 0.1 and 2 ns. In simple liquids, the mean-square displacement of the monomers due to local segmental motion is characterized by

\[\langle r^2(t) \rangle \propto t \] ¹⁵ In the long chain limit, the mean-square displacement of monomers due to local segmental motion is characterized by

\[\langle r^2(t) \rangle \propto t^{1/2} \] ¹⁶ In pioneering work, Mao et al. showed that segmental dynamics in amorphous PEO-based electrolytes was slowed down by the addition of salt.¹⁷ More complex behavior is seen in crystalline PEO-based...
electrolytes, but this is outside the scope of the present study which focuses on amorphous systems.

In this work, we quantify the underlying segmental dynamics at 363 K in polymer electrolytes consisting of PEO (35 kg/mol) and LiTFSI salt concentrations, \(r_s = 0, 0.08, 0.15, \) and 0.20 (\(r_s \) is the molar ratio of \(\text{Li}^+ \) to ethylene oxide monomers), and establish the quantitative relationship between segmental dynamics and ionic conductivity. We characterize segmental dynamics measured by QENS using the monomeric friction coefficient, first introduced by Ferry, and show its direct correspondence with ionic conductivity.

Quasi-elastic neutron scattering provides information on the dynamics by measuring the change in energy of the scattered neutrons, \(\hbar \omega. \) We used the NG2 high-flux backscattering spectrometer (HFBS) at the NIST Center for Neutron Research. Data are collected over time scales ranging from 0.1 to 2 ns and reciprocal space ranging from \(Q = 0.25 \) to 1.75 \(\text{Å}^{-1} \), where \(Q \) is the magnitude of the scattering vector defined as \(Q = 4\pi \sin(\theta/2)/\lambda \), where \(\theta \) is the scattering angle and \(\lambda \) is the nominal wavelength of the incident neutrons. Due to the large incoherent scattering cross section of hydrogen, the scattering intensity is primarily dominated by the incoherent scattering from the polymer backbone. Previous studies have shown that at low \(Q \) values (\(Q \leq 0.25 \text{ Å}^{-1} \)) the scattering signal from pure PEO has a significant coherent scattering contribution. We thus focus our analysis on \(Q > 0.25 \text{ Å}^{-1} \) and correspondingly short time scales.

The dependence of the normalized incoherent structure factor \(S_{\text{inc}}(Q,\omega) \) on energy, \(\hbar \omega \), obtained at a representative scattering vector \(Q = 0.47 \text{ Å}^{-1} \) from these electrolytes is shown in Figure 1a. The instrumental resolution is obtained by measuring the sample at 20 K and appears as a purely elastic signal (solid black line) in the QENS spectra. The decreased width of the structure factor with increasing salt concentration is a signature of the slowing down of segmental dynamics due to associations between polymer segments and salt.

It is convenient to re-express \(S_{\text{inc}}(Q,\omega) \) in the time domain using a Fourier transform. A program provided by NIST (DAVE) was used to transform the data and account for instrumental resolution. The results are shown in Figure 1b where we plot \(S_{\text{inc}}(Q,t)/S_{\text{inc}}(Q,0) \) as a function of time. It is standard to use a stretched exponential function, or the Kohlrausch–Williams–Watts (KWW) function, to fit the data

\[
\frac{S(Q,t)}{S(Q,0)} = \exp\left[-(\frac{t}{\tau})^\beta\right]
\]

where \(\beta \) is the stretched exponential and \(\tau \) is the relaxation time. The curves in Figure 1b represent KWW fits through the data with \(\beta = 0.5 \) and \(\tau \) as an adjustable parameter. Note that our measurements do not capture relaxation processes on time scales smaller than 0.1 ns; \(S_{\text{inc}}(Q,t)/S_{\text{inc}}(Q,0) \) does not approach 1 as \(t \) approaches 0. Previous studies have shown that these processes are unrelated to segmental relaxation. KWW fits are used to analyze data from all the electrolytes in the range \(Q = 0.37 \text{ Å}^{-1} \) to \(Q = 0.62 \text{ Å}^{-1} \). For completeness, the resulting \(\tau \) values are given in the Supporting Information.

The average mean-square displacement can be obtained from our measurements using eq 2

\[
S_{\text{inc}}(Q,t) = \exp\left[-\frac{Q^2}{6} \langle r^2(t) \rangle\right]
\]

For completeness, the values of \(\langle r^2(t) \rangle \) thus obtained from the electrolys at a representative value of \(Q = 0.47 \text{ Å}^{-1} \) are shown in Figure 2a. Over most of the available time window, \(\langle r^2(t) \rangle \) scales as \(t^{1/2} \). This is a standard signature of segmental dynamics. In some cases, we found deviations from the expected scaling. In such cases, the fitted range was reduced (e.g., the \(r_s = 0 \) data set in Figure 2a). These deviations are due to the proximity of the fast dynamics of neat PEO to the instrumental time resolution and do not affect our fitting parameters. The fitted ranges are given in the Supporting Information.

The solid lines in Figure 2a represent the least-squares fit through the data and are used to determine the Rouse parameter, defined as \(p_R = \langle r^2(t) \rangle/t^{1/2} \). In principle, \(p_R \) should be independent of \(Q \). Our data are consistent with this expectation, as shown in Figure 2b, where \(p_R \) is plotted as a function of \(Q \). The dashed lines in Figure 2b represent the average values of \(p_R \) at each salt concentration. The Rouse model, wherein a polymer chain is described in terms of a coarse-grained bead-spring model, yields the following relationship between \(p_R \) and the monomeric friction coefficient, \(\zeta \):

\[
\zeta = \frac{12k_B T\ell^2}{p_R^2 \pi}
\]
The equation used to obtain the coefficients (eq 3) is strictly valid in the context of pure homopolymers only. The presence of salt may alter the relationship between ζ and l. Molecular dynamics simulations may shed light on this relationship. In addition, l is likely to change in the presence of salt, due to salt-induced conformational changes. Separate small-angle neutron scattering experiments are required to quantify these effects in PEO/LiTFSI system.

In Figure 3, we plot the normalized monomeric friction coefficient, $\zeta(r_x)/\zeta(0)$, as a function of salt concentration. It is evident that the monomeric friction coefficient increases exponentially with salt concentration; at $r_x = 0.20$, ζ of the electrolyte is a factor of 10 larger than that of neat PEO. The curve in Figure 3 quantifies the dependence of ζ on r_x according to

$$\frac{\zeta(r_x)}{\zeta(0)} = \exp\left[-\frac{r_x}{0.085}\right]$$

where the dimensionless constant 0.085 quantifies the exponential slowing of segmental relaxation due to the presence of salt in PEO/LiTFSI at 363 K. The values of ζ determined from P_R reflect the friction experienced by a coarse-grained Rouse segment, and both glassy and rubbery relaxation processes contribute to this ζ. Experimental data indicate that at temperatures well above the glass transition temperature (true for systems examined in this study) the friction coefficients associated with these two processes exhibit similar temperature dependencies. Thus, at fixed temperatures, the ratio $\zeta(r_x)/\zeta(0)$ can be utilized to quantify the effect of salt on segmental dynamics.

In Figure 4, we plot the conductivity of the electrolytes, measured by ac impedance spectroscopy, as a function of salt concentration. The data exhibit a maximum in the vicinity of $r_x = 0.08$, consistent with the literature. The curve in Figure 4 represents eq 5

$$\sigma = 0.043r_x\left[\exp\left(-\frac{r_x}{0.085}\right)\right] S/cm$$

where we have combined the expected effects of increasing r_x: a linear increase in charge carrier concentration and slowing of segmental dynamics measured by QENS. The prefactor, 0.043 S/cm, is the specific conductivity of dilute PEO/LiTFSI electrolytes (with the electrolyte concentration, r_x being a dimensionless quantity). To our knowledge, eq 5 represents the first attempt to quantify, on a purely experimental basis, the relationship between ionic conductivity and segmental relaxation. It is evident in Figure 4 that the data are consistent with the proposed relationship. The wide concentration range over which our result is valid is noteworthy; eq 5 applies to PEO/LiTFSI electrolytes with salt concentrations ranging from 0 up to 4.5 molal. While this expression applies to data at 363 K, it is likely to change in the presence of salt; for electrolytes with different salt concentrations, the ratio $\zeta(r_x)/\zeta(0)$ can be utilized to quantify the effect of salt on segmental dynamics.

Table 1. Monomeric Friction Coefficient, ζ, from QENS at Different Salt Concentrations

<table>
<thead>
<tr>
<th>r_x</th>
<th>monomeric friction coefficient, $\zeta \times 10^{-7}$ (g/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.32 (±0.06)</td>
</tr>
<tr>
<td>0.08</td>
<td>0.87 (±0.20)</td>
</tr>
<tr>
<td>0.15</td>
<td>1.87 (±0.12)</td>
</tr>
<tr>
<td>0.20</td>
<td>3.16 (±0.63)</td>
</tr>
</tbody>
</table>

Figure 2. (a) Mean-square displacement, $\langle r^2 \rangle$, as a function of time, t, from QENS experiments at $Q = 0.47$ Å$^{-1}$ with solid lines representing fits to the Rouse scaling, $\langle r^2 \rangle \sim t^{1/2}$. (b) Rouse parameter, P_R, plotted as a function of Q for electrolytes with different salt concentrations, r_x. Dashed lines represent average values of P_R. Error bars represent a 95% confidence interval.

Figure 3. Normalized friction coefficient, $\zeta(r_x)/\zeta(0)$, as a function of salt concentration, r_x. $\zeta(0)$ is the friction coefficient of neat PEO. The solid curve represents eq 4. Error bars represent the standard deviation of the measurements.
K, we expect the same form to apply at other temperatures in which the conductive media forms a single phase.

The reported dependence of conductivity on salt concentration in Figure 4 is consistent with the vast literature on PEO/LiTFSI mixtures.\(^8,9,36,37\) Likewise, our QENS data are also consistent with previous studies.\(^27,38\) The main advance is that we conducted ac impedance and QENS on the same polymer samples and sought to relate results from these separate experiments. While many have noted the correlation between ion transport and segmental motion,\(^8,41\) the direct connection between conductivity and monomeric friction that eq 5 embodies has not been recognized.

It is important to realize that eq 5 is not a fit through the conductivity data. The agreement between eq 5 and the data in Figure 4 indicates that all of the nonlinearity of the dependence of conductivity on salt concentration can be explained by monomeric friction coefficients measured independently by QENS. In other words, the slowing of ion transport and segmental motion due to salt-polymer interactions is accurately reflected in the motion of hydrogen atoms on the polymer backbone. Deviations from the linear scaling of conductivity with salt concentration thus do not arise due to charge screening, as is the case in conventional liquid electrolytes.\(^44\)

In summary, we have used QENS to quantify the effect of salt on segmental dynamics in a standard polymer electrolyte, PEO/LiTFSI. The Rouse model was used to determine the effect of salt addition on the monomeric friction coefficient. The deviation from linearity of the dependence of ionic conductivity on salt concentration is quantitatively consistent with changes in the monomeric friction coefficient determined by QENS. While the importance of segmental dynamics in polymer electrolytes has been noted by many,\(^39,40,45\) we are not aware of any previous study that suggests that it is the only effect that is responsible for the nonlinear dependence of conductivity on salt concentration. Ion transport in binary electrolytes such as PEO/LiTFSI is characterized by three transport coefficients: conductivity, salt diffusion coefficient, and the transference number. Our work thus far only addresses the effect of monomeric friction coefficient on conductivity. In a future work, we will study the effect of the monomeric friction coefficient on the other two transport properties.

Supporting Information

References

Figure 4. Conductivity, \(\sigma \), measured at 363 K from ac impedance spectroscopy plotted as a function of salt concentration, \(c_s \). The solid curve represents eq 5. Error bars represent the standard deviation of the measurements.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Bosch Energy Research Network grant. Access to the HFBS was provided by the Center for High Resolution Neutron Scattering, a partnership between the National Institute of Standards and Technology and the National Science Foundation under Agreement No. DMR-1508249.

