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ABSTRACT OF THE THESIS 

 A comparison study of motor-imagery-based brain-computer interfaces with allocentric and 

egocentric visual feedback in virtual reality 

 by  

Dylan Lee Davis 

Master of Science in Bioengineering 

University of California San Diego, 2022  

Professor Tzyy-Ping Jung, Chair 

 Professor Gert Cauwenberghs, Co-Chair 

 

 

Motor Imagery based Brain Computer Interfaces (MI BCI) have been studied as 

applications for the improving rehabilitation and recovery, as well as augmenting existing 

function. The feedback in these MI BCI systems is traditionally presented in an egocentric 

reference frame, with allocentric reference frame stimuli restricted to supplementary stimuli or 

Mirror Therapy. This study proposes to assess whether the use of an allocentric reference 

frame for stimulus presentation is comparable to egocentric stimuli, by evaluating both 

allocentric and egocentric stimuli presented in a dynamic Virtual Reality (VR) environment 

during the execution of left-handed and right-handed grasping motor imagery. When assessed 

in terms of inter-rater agreeability and precision, there were comparable results between the 

allocentric and egocentric reference frame tasks. The Cohen’s kappa score of the classified 
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activity was not significantly different between the two reference frames. Additionally, when the 

data was trained on the first VR Dynamic trial and evaluated cross-reference frame and session, 

the precision and Cohen Kappa score increased compared to the 2D calibration derived 

classifier. The results suggest that Allocentric reference frames can serve as a viable MI BCI 

framework, outside of mirror therapy, and should be explored further in environments that 

invoke VR Body Ownership Transference (BOT). 
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Chapter 1. Introduction 

Brain computer interfaces (BCIs) serve as a system of communication between the mind 

and a target device, for rehabilitation, augmentation, compensation of lost functions, and 

additionally for new methods of interaction [1], [2]. In clinical conditions, BCIs are used largely to 

address conditions such as amyotrophic lateral sclerosis (ALS), strokes [3] [4] and Glaucoma 

[5], but they have also been used to aid patients recovering from stroke and motor impairment 

[6]. BCI has been used for performance enhancement and as an alternative control device 

outside of clinical settings 

Electroencephalography (EEG) serves as a low cost, non-invasive method of capturing 

brain activity, with high temporal resolution that can use both evoked and spontaneous designs 

in indirect and direct applications [7], [8]. Within the multiple control paradigms employed in 

EEG-based BCIs, motor imagery (MI), in which the imagined movements of a subject are 

translated to direct commands, has provoked the most interest due to both its science-fiction 

origins and the potential uses it has across the spectrum of BCI applications [6], [9]–[11]. MI 

itself relies upon the mirror neuron systems (MNS), which are a distinct class of neurons that 

discharge during intent centric action and observation of comparable actions, involve in 

recognizing action intent via generalized components as well as imitation [3], [4], [12]. Subjects 

using MI paradigms have reported difficulty executing visualization needed to perform MI tasks, 

which necessitates trial and error via feedback congruent to that of the presented stimuli [13], 

[14]. 

Dynamic and object-directed visual feedback within a Virtual Reality (VR) environment 

has been used to improve the performance of Motor Imagery-based BCI (MI-BCI), as shown in 

[15]–[18]. As mentioned, the core of MI is the MNS which is also directly connected to the 

advent of VR and its link to body ownership transference (BOT). VR allows a subject to immerse 
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themselves within a new or modified perspective, embodying a new frame of reference [12], 

[19]–[23]. These designs use an egocentric reference frame for visual feedback, relaying the 

visual stimuli within a first person object-self reference system [4], [21], [24]. Allocentric 

reference frames, which use an object to object referencing system , have been traditionally 

restricted to mirror-therapy based applications, however the impact of allocentric reference 

frames within VR environments plays a large role when it comes to navigation and dynamic 

movement, with recent research focusing on its impact within cognitive and spatially grounded 

tasks [25]–[29]. 

While studies have shown that BOT, agency and localization, components associated 

with the somatosensory illusions such as the rubber hand illusion (RHI) and virtual rubber hand 

illusion (VRHI) are more effectively elicited in egocentric reference frames [12], [20], [30], the 

usage of allocentric reference frames and the impact of coupled stimuli have been successfully 

employed [31]–[33]. These results were improved when considerations for the environmental 

consistency, avatar embodiment-adaptation, and components of how the illusions were 

displayed regarding the VR-BCI hardware [27], [34]–[38] . 

The strength and dimensionality of the illusion (and its transferred sensations) have a direct 

impact on the importance of the Allocentric and Egocentric processing regions of the brain [38] , 

with the latency of the experiences fed to the MNS inversely correlated to the complexity of the 

signal for goal and intent interpretation [24]. Additionally, existing signals weaken the strength of 

the illusion, with aspects of proprioception and sensory input definitively reducing the signal 

responses observed in motion control paradigms versus MI-BCIs. Because of this, any 

proposed method of teleoperation or avatar embodiment as reliant upon a system that has the 

greatest complexity of sensory inputs from the illusion, with reduced input from the existing body 

[23]. 
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These control schema and general investigative aims into the impact of VR in MNS also 

explore the concept of error monitoring systems within MNS, which affects the recruitment and 

construction of MNs for intent detection and recognition [12]. The next steps in determining 

whether allocentric VR embodiment can be equivalent to that of first-person VR embodiment is 

to determine the levels of immersion required for BOT and the learning rate/capacity for MNS 

development when these new systems can. In the same manner that both one experiences a 

dissociation of ownership during changes in temporal delay and in the more explored artificial 

processes for spatial encoding that occur from immersive VR. 

As such, this study proposes that a third-person perspective-controlled avatar in a VR 

environment could create an artificial sense, in which the state of BOT could be fully expressed. 

In order to investigate this, and the efficiency of allocentric versus egocentric reference frames 

as visually dynamic MI-based VR-BCI feedback, an environment in which both a third person 

and first-person perspective can be viewed across the same task was designed. Subjects 

performed object-oriented motor imagery while situated in a seated VR environment and 

observed visual feedback from egocentric and allocentric reference frames.  

The results of this study show that there was comparable performance between the 

implementation of allocentric and egocentric reference frames and justify further investigation of 

VR MI BCI with supernumeral stimuli.. 

Chapter 2. Background 

2.1 BCI 

The general process for a BCI application is outlined in Figure 1, consisting of five 

components: signal acquisition, preprocessing, feature extraction, classification, and translation. 

Brain activity is captured via sensor data, which can be obtained via EEG, positron emission 

tomography, functional magnetic resonance imaging, magnetoencephalography, 
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electrocorticography, or functional near-infrared spectroscopy, which then have preprocessing 

applied to remove motion artifacts and noise, such as blinking. The signals are then described 

by features dependent upon the paradigm used for the BCI and classified via machine learning 

to ultimately be translated to a command within the application [8]. Of the signal acquisition 

methods, the most widely used modality is EEG, which can employ paradigms for evoked 

potential and spontaneous paradigms. 

A variety of paradigms are used within BCI devices, depending on the nature of the 

signals, the desired controls and the application, ranging from direct and indirect to evoked and 

spontaneous potentials. Subjects employing the spontaneous motor imagery paradigms have 

reported difficulty in execution of the visualization needed to perform MI tasks, and requires trial 

and error via feedback congruent to that of the stimuli given. 

 Within BCI specific frequency bands are associated with activity, ranging from 

awareness to active thinking specifical in delta (.5 to 4 Hz) which is associated with deep sleep, 

theta (4-8 Hz) for awareness, alpha/mu (8-13 Hz) for relaxation, beta ( 13-30 Hz for active 

thinking, and gamma (>30 Hz) for hyperactivity and somatosensory activity [8] 

2.2 Mirror Neuron System 

The mirror neuron systems (MNS) are composed of a distinct class of neurons that 

discharge during intent centric action and observation of comparable actions.  The MNS is 

involved in recognizing action intent via generalized components that can semantically form 

intent forgoing respect of the executing agents or direct imitation [39]. The agent, intent and 

Figure 1 taken from [8], shows the general framework of a BCI 
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consequence form a context with which intent can be relayed, via a flexible symbolic model 

based upon parietal mirror neuron activities and the fate of the action as it relates to motivation.  

The MNS primarily activates within the 15-30 Hz beta band of activity during action 

observation, originating from the M1 region in the primary motor cortex, with beta band power 

modulations during action observation, with attenuation of the ipsilateral sensorimotor cortex 

corresponding to allocentric vs egocentric perspective, modulated by egocentric processing not 

allocentric processing [21], [24]. 

2.2.1 MNS and VR 

Within VR BOT, the mental representation is synchronized to the optical stimulation of 

the virtual environment in the form of a virtual hand illusion (VHI), where intensity of the illusion 

depends upon the dimensionality of the sensory simulacra [19]–[23]. Multisensory integration 

provided the strongest illusion. When presenting MNS visual stimuli, limb presence does not 

affect the activity of the MNS, and MNS based feedback serves to access the motor system in a 

manner dependent majorly upon the visual presentation of the stimuli, though integrated 

multisensory stimuli increase the efficiency of the feedback provided [22], [35], [36]. Social 

interaction and perceptual motor coupling across group dynamics is also supported by the MNS, 

reflecting adaptation and interaction and translation, which is possibly degraded by disruptions 

from media and virtual interaction [36].  
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Chapter 3. Methods 

3.1 Experimental Procedure 

 

The experimental procedure consists of two components, a 2D calibration procedure 

and with visually dynamic feedback. At the beginning of each session the subject was asked to 

acknowledge that they understand the calibration protocol, the stimuli designation, and the 

execution of motor imagery. The headset was fitted and the Unity component, which contains 

the VR environment developed for the MI tasks in C#, was launched showing the Main menu 

screen (Figure 2A), after again confirming their understanding of the procedure, the subject is 

then directed to 2D calibration screen (2B). With the calibration after a 5-second delay, the first 

stimulus was presented in a cue-based BCI paradigm, consisting of the imagination of 

movement of grasping an object with the left hand (class 1) and right hand (class 2) and a 

resting state (class 3) over 1 session of 3 runs. The subject was shown either a blue square on 

the left hand side (Figure 3 C), or a red (Figure 3 B) square on the right hand side of their view. 

When the stimulus is shown, the subject was instructed to perform a motor imagery task of 

Figure 2. Unity component main menu and calibration screen. (2A) From the main 
menu, the subject can enter both live modes of testing and the calibration mode. 
Below (2B) is the calibration menu, showing the 2 stimuli and the fixation cross prior to 
calibration 
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grasping an object in front of them with either the left hand (blue stimulus) or right hand (red 

stimulus). After 4 seconds a fixation cross (Figure 3 A) was shown with a rest period of 2 

seconds. One run consists of 60 pseudo-randomized trials with 2 seconds of breaks in between 

each stimulus (20 for each class), yielding a total of 360 trials per session per subject. The 

timings of the trial are recorded within unity and streamed over the labstreaminglayer (LSL) to 

LabRecorder (figure 3D), where it is combined with the signal from the headset is and sent to 

Python as a stream data object. Once calibration data was recorded, a filter bank common 

spatial pattern filter (FBCSP) and support vector machine (SVM) classifier was generated and 

saved.  

For the visually dynamic component of the experiment, each subject was randomly 

assigned 4 sessions over a single 1-hour experiment period, in either the allocentric or 

egocentric reference frames, each consisting of three runs of 30 trials (10 trials per class) for 

360 trials over the 4 sessions. Consistent with the calibration procedure, the stimuli were shown 

for 4 seconds each with 2 seconds in between. Within this component, the Robot Kyle Unity 

asset was used as an avatar of the user and provided visual feedback of the grasping motor 

imagery. The egocentric view of the VR visual feedback and a left handed feedback stimuli is 

Figure 3. Calibration stimuli and LabRecorder. (A-C) The stimuli shown in the calibration are depicted. (D) Within LabRecorder, 
the experimenter will need to select the stream and start the recording. 
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shown in Figure 4A and 4C respectively, while the allocentric VR visual feedback of the same 

stimuli is shown in Figure 4B and 4D. 

 

3.2 Environment and BCI design 

A MI-based VR-BCI was designed as shown in figure 5. The 3D environment was 

designed within Unity that communicated to an external Python BCI and processed the 

incoming EEG signals from the EEG headset. In the experimental setup, a Samsung Odyssey 

headset was used, employing a Windows Mixed Reality platform, while a BioSemi ActiveTwo 

system was used for the EEG recording. For the 3D environment, Unity was used to design 

both the calibration and experimental environments.  Python 3.8.6 was used for the 

classification and processing of the EEG data and was modeled after components of the mother 

of all BCI module (MOABB) [40], the neurophysiological toolkit MNE-Python and ScikitLearn, as 

well as the UCSD designed PyLSL, which was used to communicate between the EEG 

Figure 4. Live egocentric and allocentric testing. (A) The live egocentric testing view before and during (C) classification of a class 1 
left hand motor imagery task. The same task is shown for the allocentric task (B & D).  
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headset, Python, and the 3D unity environment. The additional software of LabRecorder and 

BioSemi Actiview were used to connect the headset to LSL in addition to PyLSL. Within the 

Unity component, the environment contains the 2D calibration screen, the menu for mode 

selection, and the 3D environment, scripted in C#. Unity allowed for direct interfacing with the 

Steam VR platform and WMR headset, with the behavioral scripts for task swapping and display 

of stimuli executed alongside streaming of the signals between Unity, Python and the 

LabRecorder software. 

3.3 EEG acquisition and analysis 

3.3.1 EEG Signal Processing  

The EEG data was across 64, with references at the common mode sense (CMS) and 

driven right leg (DRL) recorded at 2048 Hz and subsampled at 512 Hz. In this study, the 

recorded data was epoched via MNE dependent upon the event marker stream, into 4 

second windows of data, with each epoch containing the data from a single event 0.1 

seconds after initiation and 0.1 seconds after the conclusion of the stimuli. Each epoch is 

regarded as a sample used to extract features for classification. All remaining preprocessing 

occurs within the bandpass filters of the FBCSP. 

Figure 5 Architecture of the proposed VR MI-BCI. The 64 channel EEG signals and event markers are combined into a 
stream object and separated into filter banks with a width of 4 hz then a CSP is applied across each and classified with an 
SVM 
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3.3.2 Feature extraction and Classification Algorithm 

The common spatial pattern (CSP) algorithm was implemented based upon the existing 

MNE CSP commonly used to extract features from EEG signals, across nine 4 Hz width 

bandpass filters from 4 to 40 Hz in accordance with [41]–[43]. The FBCSP maximizes 

dissimilarity between classes with CSP features specific towards each bandpass, detecting 

event-related desynchronization and event related synchronization [42]. All features from the 

nine bands were used to train the classifier, a multiclass SVM. Multiclass SVM has been 

shown to perform the best out of classical non-Bayesian machine learning classifiers across 

MI tasks[44], and was implemented via ScikitLearn[45]. For the model, the radial basis 

function (RBF) was used as the kernel function with a cost function parameter of C=10 and 

a γ of .07 for the RBF as determined by grid optimization method. 

3.3.3 Data Analysis Methods 

The calculation of the Cohen’s Kappa and precision of the data are as follows from [45]: 

𝜅 = (𝑝𝑜 − 𝑝𝑒)/(1 − 𝑝𝑒 ) 

𝑝𝑒 =
1

𝑁2
∑ 𝑛𝑘1𝑛𝑘2𝑘 , 

where 𝑝𝑜 is the probability of agreement and 𝑝𝑒 is the expected agreement across two raters 

over the class labels, with 𝜅 = 1 representing complete agreement and 𝜅 = 0 representing 

chance level.  
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Chapter 4. Results 

4.1 Against the Calibration Classifier 

The classification accuracy results of study as compared are shown in table 1, 

with the color coding for the trial type. When evaluating the visually dynamic feedback 

against the 2D calibration, the egocentric reference framed data had an average Cohen 

kappa of 0.1876 0.0567 greater that of the allocentric reference frame. Table 2 groups 

the task categorization into allocentric and egocentric reference frames across all 

subjects, with the precision for each classifier per trial, represented as the ratio of true to 

total positive classifications. Across the calibration classification, the average precision 

Table 1. Results from the calibration based classification of the MI-BCI tasks. The Cohen kappa score and precision are shown 
for each task. Allocentric tasks are shown in blue, and egocentric in grey. 

Table 2. Calibration classified results divided into egocentric and allocentric tasks 
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of the left hand and null classifier was greater in the allocentric reference frame than that 

of the egocentric reference frame, by 0.0596 and 0.0396 respectively while the right-

hand classifier was 0.0291 greater in the egocentric reference frame. These differences 

however were non-significant, due to the high variance in the individual subjects’ 

capabilities to reproduce MI, the low subject count, and the possible considerations for 

embodiment. 

4.2 Inter-session and cross frame 

 

 

In the intersession classification, the Cohen kappa value of the egocentric 

reference frame was .0066 greater than the allocentric reference frame. The average 

precision of the left- and right-hand classifiers within the allocentric reference frame was 

0.1063 and 9.97 E-3 greater than that of the egocentric, with the null classification 

0.10003 greater in the egocentric frame of reference. Generating a classifier from the VR 

feedback motor imagery resulted in an increase in the average Cohen kappa score 

across both reference frames, as shown in table 3 and increased precision across all but 

the null classifier in the allocentric task. As with the calibration classified performance, 

Table 3. Results from the cross session and reference frame classification of the MI-BCI tasks. The Cohen kappa score 
and precision are shown for each task. Allocentric tasks are shown in blue, and egocentric in grey. 
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the efficiency of the egocentric and allocentric reference frames across the subject 

population were comparable between the tasks.

Table 4. Cross session and reference frame classified results divided into egocentric and allocentric 
tasks 
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Chapter 5. Discussion 

Allocentric stimuli for BCI has been viewed as less effective in eliciting motor imagery, both 

due to mirror effect and the presentation of the stimuli [33], [38], and did not evaluate VR and 

direct comparisons with appropriate stimuli that fully encapsulated the visual feedback required. 

Ono et al. 2018 [33] demonstrated the usage of stimuli for altered perspectives, however the 

stimuli were not appropriate for the purpose of eliciting VR BOT including embodiment, agency, 

and translocation [20], [22]. This study applied appropriate reference frames for the visual 

stimuli, showing no significant difference between the reference frames, however the results are 

highly skewed by the low subject number, single day session, variability within the subject’s 

capacity to produce MI, and their comfort within the experimental procedure. Subjects reported 

slight discomfort from the egocentric reference frame due to having to look down for the 6 

minutes of each run. As MI is directly impacted by posture and comfort that may have 

contributed to increased variability, alongside their initial ability to produce MI [46]. Additionally, 

the electrodes used during the initial 5 subjects were replaced after partial damage was 

discovered after the data from the subjects was recorded, which may have impacted the results 

of subjects 4 and 5.  

As the usage of allocentric stimuli and the effectiveness of allocentric vs egocentric 

referenced VR-BCI is tied to the environment and the display of the stimuli, both regarding 

accuracy of the representation to natural movement and the choice of avatar for the subject, the 

paradigms required needed to be constructed in the same environment with stimuli that are 

directly comparable to those the subjects have experienced [37], [46]–[48]. [34] shows that 

manipulation of characteristics of VR “including screen size, duration of exposure, the realism of 

the presentation, and the use of animated avatar, i.e., a third-person view of the user that 

appears as a player in the VR” while [12], [17] demonstrated increased mu suppression in 

synchronized and congruent conditions, which was increased for subjects who responded better 
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to the spatial illusion and had an increased tendency for empathy. As such, a questionnaire to 

evaluate both the empathy and familiarity of the subjects with VR and BCI, a training period 

where the subject adjusted to the avatar, and an avatar that was provoked a higher sense of 

embodiment to the subject by being a closer approximation of a human figure with pre-defined 

bounds for the animation constraints would have elicited higher responses of BOT [21], [22]. 

The questionnaire would have allowed for weighting of the BOT experienced within the VR 

experience across both frameworks and reduced variability. 

Regardless of the high variability, within the 3 classes, the mean precision of the classifiers 

was greater than that of random chance, with all but the precision of the null and right 

classifications in the allocentric reference frame greater than 0.4. Generating the classifier from 

the visually dynamic stimuli in the VR environment also increased the precision across both 

cross-reference frame and inter session, and as such recording the initial calibration data with 

visually dynamic stimuli instead of the 2D Cue and fixation cross may have increased the 

accuracy of the initial classification. Using the FBCSP allowed us to analyze the contributions of 

the signal across the spectrum of 8 frequency banks, however without reducing the 

dimensionality the contributions of the individual filter banks, and differentiating between the mu, 

beta and gamma bands associated with MI, MNS and VR spatial components[49]. 

In this study, though there is much to improve in the methodology, the results of the VR 

enhanced MI-BCI suggest that there was no significant difference between the reference frames 

both across multiple sessions and no significant impact from training bias, though that is 

potentially due to the impact of fatigue and posture. Future improvements upon the study as 

noted prior, would involve increasing the experience of embodiment and improving the 

presentation of the stimuli, as well as having consistent presentation of the stimuli in the VR 

environment. Additionally, incorporation of an online BCI in which the subject would receive an 

ERD feedback that modified the speed and strength of the stimuli was planned, however due to 
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constraints of time this component was removed. Lastly the usage of multiple frames of 

reference within a single BCI, to evaluate multiple stimuli in a singular sense or multi-sensory 

stimuli has been shown to improve the classification accuracy of MI BCI. 
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