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Formal Verification of Neural Network Controlled
Autonomous Systems

Xiaowu Sun Haitham Khedr Yasser Shoukry

Department of Electrical and Computer Engineering

University of Maryland, College Park

{xsun24,hkhedr}@umd.edu,yshoukry@ece.umd.edu

ABSTRACT

In this paper, we consider the problem of formally verifying the

safety of an autonomous robot equipped with a Neural Network

(NN) controller that processes LiDAR images to produce control

actions. Given a workspace that is characterized by a set of poly-

topic obstacles, our objective is to compute the set of safe initial

conditions such that a robot trajectory starting from these initial

conditions is guaranteed to avoid the obstacles. Our approach is to

construct a finite state abstraction of the system and use standard

reachability analysis over the finite state abstraction to compute the

set of the safe initial states. The first technical problem in computing

the finite state abstraction is to mathematically model the imaging

function that maps the robot position to the LiDAR image. To that

end, we introduce the notion of imaging-adapted sets as partitions

of the workspace in which the imaging function is guaranteed to be

affine. Based on this notion, and resting on efficient algorithms in

the literature of computational geometry, we develop a polynomial-

time algorithm to partition theworkspace into imaging-adapted sets

along with computing the corresponding affine imaging functions.

Given this workspace partitioning, a discrete-time linear dynamics

of the robot, and a pre-trained NN controller with Rectified Linear

Unit (ReLU) nonlinearity, the second technical challenge is to ana-

lyze the behavior of the neural network. To that end, and thanks

to the ReLU functions being piecewise linear functions, we utilize

a Satisfiability Modulo Convex (SMC) encoding to enumerate all

the possible segments of different ReLUs. SMC solvers then use a

Boolean satisfiability solver and a convex programming solver and

decompose the problem into smaller subproblems. At each iteration,

the Boolean satisfiability solver searches for a candidate assignment

for the different ReLU segments while completely abstracting the

robot dynamics. Convex programming is then used to check the

feasibility of the proposed ReLU phases against the dynamic and

imagining constraints, or generate succinct explanations for their

infeasibility to reduce the search space. To accelerate this process,

we develop a pre-processing algorithm that could rapidly prune

the space feasible ReLU segments. Finally, we demonstrate the ef-

ficiency of the proposed algorithms using numerical simulations

with increasing complexity of the neural network controller.
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1 INTRODUCTION

From simple logical constructs to complex deep neural network

models, Artificial Intelligence (AI)-agents are increasingly control-

ling physical/mechanical systems. Self-driving cars, drones, and

smart cities are just examples of such systems to name a few. How-

ever, regardless of the explosion in the use of AI within a multitude

of cyber-physical systems (CPS) domains, the safety and reliabil-

ity of these AI-enabled CPS is still an under-studied problem. It is

then unsurprising the failure of these AI-controlled CPS in several,

safety-critical, situations leading to human fatalities [1].

Motivated by the urgency to study the safety, reliability, and

potential problems that can rise and impact the society by the de-

ployment of AI-enabled systems in the real world, several works

in the literature focused on the problem of designing deep neural

networks that are robust to the so-called adversarial examples [2–8].

Unfortunately, these techniques focus mainly on the robustness

of the learning algorithm with respect to data outliers without

providing guarantees in terms of safety and reliability of the deci-

sions taken by these neural networks. To circumvent this drawback,

and motivated by the wealth of adversarial example generation

approaches for neural networks, recent works focused on three

main techniques namely (i) testing of neural networks, (ii) falsifica-

tion (semi-formal verification) of neural networks, and (iii) formal

verification of neural networks.

Representatives of the first class, namely testing of neural net-

works, are the work reported in [9–18] in which the neural network

is treated as a white box, and test cases are generated to maximize

different coverage criteria. Such coverage criteria include neuron

coverage, condition/decision coverage, and multi-granularity test-

ing criteria. On the one hand, maximizing test coverage give system

designers confidence that the networks are reasonably free from

defect. On the other hand, testing do not formally guarantee that a

neural network satisfy a formal specification.

Unfortunately, testing techniques focuses mainly on the neural

network as a component without taking into consideration the

effect of its decisions on the entire system behavior. This moti-

vated researchers to focus on falsification (or semi-formal verifica-

tion) of autonomous systems that include machine learning compo-

nents [19–21]. In such falsification frameworks, the objective is to

generate corner test cases that will lead the whole system to violate

a system-level specification. To that end, advanced 3D models and

image environments are used to bridge the gap between the virtual

world and the real world. By parametrizing the input to these 3D

models (e.g., position of objects, position of light sources, intensity

of light sources) and sampling the parameter space in a fashion

that maximizes the falsification of the safety property, falsification

frameworks can simulate several test cases until a counterexample

is found [19–21].

While testing and falsification frameworks are powerful tools

to find corner cases in which the neural network or the neural

network enabled system will fail, they lack the rigor promised by
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formal verification methods. Therefore, several researchers pointed

to the urgent need of using formal methods to verify the behavior

of neural networks and neural network enabled system [22–27]. As

a result, recent works in the literature attempted the problem of

applying formal verification techniques to neural network models.

Applying formal verification to neural network models comes

with its unique challenges. First and foremost is the lack of widely-

accepted, precise, mathematical specifications capturing the correct

behavior of a neural network. Therefore, recent works focused en-

tirely on verifying neural networks against simple input-output

specifications [28–33]. Such input-output techniques compute a

guaranteed range for the output of a deep neural network given

a set of inputs represented as a convex polyhedron. To that end,

several algorithms that takes advantage of the piecewise linear na-

ture of the Rectified Linear Unit (ReLU) activation functions (one of

the most famous nonlinear activation functions in deep neural net-

works) have been proposed. For example, by using binary variables

to encode piecewise linear functions, the constraints of ReLU func-

tions are encoded as a Mixed-Integer Linear Programming (MILP).

Combining output specifications that are expressed in terms of Lin-

ear Programming (LP), the verification problem eventually turns to

a MILP feasibility problem [32, 34].

Using off-the-shelf MILP solvers does not lead to a scalable ap-

proach to handle neural networks with hundreds and thousands of

neurons [29]. To circumvent this problem, several MILP-like solvers

targeted toward the neural network verification problem are pro-

posed. For example, the work reported in [28] proposed a modified

Simplex algorithm (originally used to solve linear programs) to

take into account ReLU nonlinearities as well. Similarly, the work

reported in [29] combines a Boolean satisfiability solving along

with a linear over-approximation of piecewise linear functions to

verify ReLU neural networks against convex specifications. Other

techniques that exploit specific geometric structures of the specifi-

cations are also proposed [35, 36]. A thorough survey on different

algorithms for verification of neural networks against input-output

range specifications can be found in [37] and the references within.

Unfortunately, the input-output range properties, studied so

far in the literature, are simplistic and fails to capture the safety

and reliability of cyber-physical systems when controlled by a

neural network. Therefore, in this paper, we focus instead on the

problem of formal verification of a neural network controlled robot

against system-level safety specifications. In particular, we consider

the problem in which a robot utilizes a LiDAR scanner to sense

its environment. The LiDAR image is then processed by a neural

network controller to compute the control inputs. Such scenario

is common in the literature of behavioral cloning and imitation

control in which the neural network is trained to imitate the actions

generated by experts controlling the robot [38]. With the objective

to verify the safety of these robots, we develop a framework that can

take into account the robot continuous dynamics, the workspace

configuration, the LiDAR imaging, and the neural network, and

compute the set of initial states for the robot that is guaranteed to

produce robot trajectories that are safe and collision free.

To carry out the prescribed formal verification problem, we need

a mathematical model that captures the LiDAR imaging process.

This is the process that generates the LiDAR images based on the

robot pose relative to the workspace objects. Therefore, the first

contribution of this paper is to introduce the notion of imaging-

adapted sets. These are workspace partitions within which the

map between robot pose and LiDAR images are mathematically

captured by an affine map. Given this notion, and thanks to the

advances in the literature of computational graphics, we develop a

polynomial-time algorithm that can partition the workspace into

imaging-adapted sets along with the corresponding affine maps.

Given the partitioned workspace along with a pre-trained neu-

ral network and the robot dynamics, we compute a finite state

abstraction of the closed loop system that enjoys a simulation re-

lation with the original system. The main challenge in computing

this finite state abstraction is to analyze the behavior of the neu-

ral network controller. Similar to previous works in the literature,

we strict our focus to neural networks with Rectified Linear Unit

(ReLU) nonlinearities and we develop a Satisfiability Modulo Con-

vex (SMC) programming algorithm that uses a combination of a

Boolean satisfiability solver and a convex programming solver to

iteratively reason about the neural network nonlinearity along with

the dynamics and the imaging constraints. At each iteration, the

boolean satisfiability solver searches for a candidate assignment de-

termining whether ReLU units are active while ignoring the neural

network weights, the robot dynamics, and the LiDAR imaging. The

convex programming solver is then used to check the feasibility of

the proposed ReLU assignment against the neural network weights,

the robot dynamics, and the LiDAR imaging. If the ReLU assignment

is deemed infeasible, then the SMC solver will generate succinct

explanations for their infeasibility to reduce the search space. To

accelerate the process, we develop a pre-processing algorithm that

can reduce the space of ReLU assignments.

Once the finite state abstraction is computed, we use standard

reachability analysis techniques to compute the set of safe initial

states. To summarize, the contributions of this paper can be sum-

marized as follows:

1-A framework for formally proving safety properties of autonomous

robots controlled by neural network controllers that process LiDAR

images to compute control inputs.

2- A notion of imaging-adapted sets along with a polynomial-time

algorithm for partitioning the workspace into such sets while com-

puting an affine model capturing the LiDAR imaging process.

3- An SMC-based algorithm combined with an SMC-based pre-

processing for computing finite abstractions of the neural network

controlled autonomous robot.

2 PROBLEM FORMULATION

2.1 Notation

The symbols N, R,R+ and B denote the set of natural, real, positive

real, and Boolean numbers, respectively. The symbols ∧,¬ and →
denote the logical AND, logical NOT, and logical IMPLIES operators,

respectively. Given two real-valued vectors x1 ∈ Rn1
and x2 ∈

Rn2
, we denote by (x1,x2) ∈ Rn1+n2

the column vector [xT
1
,xT

2
].

Similarly, for a vector x ∈ Rn , we denote by xi ∈ R the ith element

of x . For two vectors x1,x2 ∈ Rn , we denote by max(x1,x2) the
element-wise maximum. For a set S ⊂ Rn , we denote the boundary
and the interior of this set by ∂S and int(S), respectively. Given two

sets S1 and S2, f : S1 ⇒ S2 and f : S1 → S2 denote a set-valued and
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Figure 1: Pictorial representation of the problem setup un-

der consideration.

ordinary map, respectively. Finally, given a vector z = (x ,y) ∈ R2,
we denote by atan2(z) = atan2(y,x).

2.2 Dynamics and Workspace

We consider an autonomous robot moving in a 2-dimensional poly-

topic (compact and convex) workspace W ⊂ R2. We assume

that the robot must avoid the workspace boundaries ∂W along

with a set of obstacles {O1, . . . ,Oo }, with Oi ⊂ W which is as-

sumed to be polytopic. We denote by O the set of the obstacles

and the workspace boundaries which needs to be avoided, i.e.,

O = {∂W ,O1, . . . ,Oo }. The dynamics of the robot is described by

a discrete-time linear system of the form:

x (t+1) = Ax (t ) + Bu(t ), (1)

where x (t ) ∈ X ⊆ Rn is the state of robot at time t ∈ N and

u(t ) ⊆ Rm is the robot input. The matrices A and B represent the

robot dynamics and have appropriate dimensions. For a robot with

nonlinear dynamics that is either differentially flat or feedback

linearizable, the state space model (1) corresponds to its feedback

linearized dynamics. We denote by ζ (x) ∈ R2 the natural projection
of x onto the workspaceW, i.e., ζ (x (t )) is the position of the robot

at time t .

2.3 LiDAR Imaging

We consider the case when the autonomous robot uses a LiDAR

scanner to sense its environment. The LiDAR scanner emits a set

of N lasers evenly distributed in a 2π degree fan. We denote by

θ
(t )
lidar

∈ R the heading angle of the LiDAR at time t . Similarly,

we denote by θ
(t )
i = θ

(t )
lidar
+ (i − 1) 2πN , with i ∈ {1, . . . ,N }, the

angle of the ith laser beam at time t where θ
(t )
1
= θ

(t )
lidar

and by

θ (t ) = (θ (t )
1
, . . . ,θ

(t )
N ) the vector of the angles of all the laser beams.

While the heading angle of the LiDAR, θ
(t )
lidar

, changes as the robot

poses changes over time, i.e.:

θ
(t )
lidar
= f (x (t ))

for some nonlinear function f , in this paper we focus on the case

when the heading angle of the LiDAR, θ
(t )
lidar

, is fixed over time and

we will drop the superscript t from the notation. Such condition

is satisfied in many real-world scenarios whenever the robot is

moving while maintaining a fixed pose (e.g. a Quadrotor whose

yaw angle is maintained constant).

For the ith laser beam, the observation signal ri (x (t )) ∈ R is

the distance measured between the robot position ζ (x (t )) and the

nearest obstacle in the θi direction, i.e.:

ri (x (t )) = min

Oi ∈O
min

z∈Oi
∥z − ζ (x (t ))∥2

s.t. atan2(z − ζ (x (t ))) = θi . (2)

The final LiDAR image d(x (t )) ∈ R2N is generated by processing

the observations r (x (t )) as follows:

di (x (t )) =
(
ri (x (t )) cosθi , ri (x (t )) sinθi

)
,

d(x (t )) =
(
d1(x (t )), . . .dN (x (t ))

)
. (3)

2.4 Neural Network Controller

We consider a pre-trained neural network controller fNN : R2N →
Rm that processes the LiDAR images to produce control actions

with L internal and fully connected layers in addition to one output

layer. Each layer contains a set ofMl neurons (where l ∈ {1, . . . ,L})
with Rectified Linear Unit (ReLU) activation functions. ReLU acti-

vation functions play an important role in the current advances in

deep neural networks [39]. For such neural network architecture,

the neural network controller u(t ) = fNN(d(x (t ))) can be written

as:

h1(t ) = max

(
0, W 0d(x (t )) +w0

)
,

h2(t ) = max

(
0, W 1h1(t ) +w1

)
,

...

hL(t ) =max
(
0, W L−1hL−1(t ) +wL−1

)
,

u(t ) =W LhL(t ) +wL , (4)

whereW l ∈ RMi×Ml−1 andwl ∈ RMl are the pre-trained weights

and bias vectors of the neural network which are determined during

the training phase.

2.5 Robot Trajectories and Safety Specifications

The trajectories of the robot whose dynamics are described by (1)

when controlled by the neural network controller (2)-(4) starting

from the initial condition x0 = x (0) is denoted by ηx0 : N → Rn

such that ηx0 (0) = x0. A trajectory ηx0 is said to be safe whenever

the robot position does not collide with any of the obstacles at all

times.

Definition 2.1 (Safe Trajectory). A robot trajectory ηx0 is called
safe if:

ζ (ηx0 (t)) < Oi ∀Oi ∈ O, ∀t ∈ N.
Using the previous definition, we now define the problem of

verifying the system-level safety of the neural network controlled

system as follows:

Problem 2.2. Consider the autonomous robot whose dynamics are
governed by (1) which is controlled by the neural network controller
described by (4) which processes LiDAR images described by (2)-(3).
Compute the set of safe initial conditions Xsafe ⊆ X such that any
trajectory ηx0 starting from x0 ∈ Xsafe is safe.

3
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Figure 2: Pictorial representation of the proposed framework.

3 FRAMEWORK

Before we describe the proposed framework, we need to briefly

recall the following set of definitions capturing the notion of a

system and relations between different systems.

Definition 3.1. An autonomous system S is a pair (X ,δ ) consist-
ing of a set of statesX and a set-valuedmap δ : X ⇒ X representing

the transition function. A system S is finite if X is finite. A system

S is deterministic if δ is single-valued map and is non-deterministic

if not deterministic.

Definition 3.2. Consider a deterministic system Sa = (Xa ,δa )
and a non-deterministic Sb = (Xb ,δb ). A relation Q ⊆ Xa × Xb is

a simulation relation from Sa to Sb , and we write Sa ≼Q Sb , if
the following conditions are satisfied:

(1) for every xa ∈ Xa there exists xb ∈ Xb with (xa ,xb ) ∈ Q ,
(2) for every (xa ,xb ) ∈ Q wehave thatx ′a = δa (xa ) in Sa implies

the existence of x ′b ∈ δb (xb ) in Sb satisfying (x ′a ,x ′b ) ∈ Q .

Using the previous two definitions, we describe our approach as

follows. As pictorially shown in Figure 2, given the autonomous

robot system SNN = (X,δNN), where δNN : x 7→ Ax + BfNN(d(x)),
our objective is to compute a finite state abstraction (possibly non-

deterministic) SF = (F ,δF) of SNN such that there exists a simu-

lation relation from SNN to SF , i.e., SNN ≼Q SF . This finite state
abstraction SF will be then used to check the safety specification.

The first difficulty in computing the finite state abstraction SF
is the nonlinearity in the relation between the robot position ζ (x)
and the LiDAR observations as captured by equation (2). However,

we notice that we can partition the workspace based on the laser

angles θ1, . . . ,θN along with the vertices of the polytopic obsta-

cles such that the map d (which maps the robot position to the

processed observations) is an affine map. Therefore, as summa-

rized in Algorithm 1, the first step is to compute such partitioning

W∗
of the workspace (WKSP-PARTITION, line 2 in Algorithm 1).

WhileWKSP-PARTITION focuses on partitioning the workspace

W, one need to partition the remainder of the state spaceX (STATE-

SPACE-PARTITION, line 5 in Algorithm 1) to compute the finite

set of abstract states F along with the simulation relation Q that

maps between states in X and the corresponding abstract states in

F , and vice versa.

Unfortunately, the number of partitions grows exponentially in

the number of lasers N and the number of vertices of the poly-

topic obstacles. To harness this exponential growth, we compute an

aggregate-partitioning W ′
using only few laser angles (called pri-

mary lasers and denoted byθp ). The resulting aggregate-partitioning
W ′

would contain a smaller number of partitions such that each

partition in W ′
represents multiple partitions in W. Similarly, we

can compute a corresponding aggregate set of states F ′
as:

s ′ = {s ∈ F | ∃x ∈ W ′, (x , s) ∈ Q}

Algorithm 1 Verify-NN(X,δNN)
1: Step 1: Partition the workspace

2: (W∗, W′) =WKSP-PARTITION(W, O, θp, θp )

3: Step 2: Compute the finite state abstraction SF
4: Step 2.1: Compute the states of SF
5: (F, F′, Q ) = STATE-SPACE-PARTITON(W∗, W′

)

6: for each s and s′ in F do

7: δF .ADD-TRANSITION(s, s′)
8: Step 2.2: Pre-process the neural network

9: for each s and s′ in F do

10: Xs = {x ∈ X | (x, s) ∈ Q }
11: CEs = PRE-PROCESS(Xs , δNN)
12: Step 2.3: Compute the transition map δF
13: for each s in F and s′ in F′

where s < s′ do
14: Xs = {x ∈ X | (x, s) ∈ Q }
15: Xs′ = {x ∈ X | (x, s∗) ∈ Q, ∀s∗ ∈ s′ }
16: Status = CHECK-FEASIBILITY(Xs , Xs′, δNN, CEs )
17: if Status == INFEASIBLE then
18: for each s⋆ in s′ do
19: δF .REMOVE-TRANSITION(s, s⋆)
20: else

21: for each s⋆ in s′ do
22: Xs⋆ = {x ∈ X | (x, s∗) ∈ Q }
23: Status = CHECK-FEASIBILITY(Xs , Xs⋆, δNN, CEs )
24: if Status == INFEASIBLE then
25: δF .REMOVE-TRANSITION(s, s⋆)

26: Step 3: Compute the safe set

27: Step 3.1: Mark the abstract states corresponding to obstacles and

workspace boundary as unsafe

F0

unsafe
= {s ∈ F | ∃x ∈ X : (x, s) ∈ Q, ζ (x ) ∈ Oi , Oi ∈ O}

28: Step 3.2: Iteratively compute the predecessors of the abstract un-

safe states

29: Status = FIXED-POINT-NOT-REACHED
30: while Status == FIXED-POINT-NOT-REACHED do
31: Fk

unsafe
= Fk−1

unsafe
∪ Pre(Fk−1

unsafe
)

32: if Fk
unsafe

== Fk−1
unsafe

then

33: Status = FIXED-POINT-REACHED
34: F

safe
= F \ F

unsafe

35: Step 3.3: Compute the set of safe states

36: X
safe
= {x ∈ X | ∃s ∈ F

safe
: (x, s) ∈ Q }

37: Return X
safe

where each aggregate state s ′ is a set representing multiple states

in F . Whenever possible, we will carry out our analysis using the

aggregated-partitioningW ′
(and F ′

) and use the fine-partitioning

W only if deemed necessary. Details of the workspace partitioning

and computing the corresponding affine maps representing the

LiDAR imaging function are given in Section 4.
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The state transition map δF is computed as follows. First, we

assume a transition exists between any two states s and s ′ in F
(line 6- 7 in Algorithm 1). Next, we start eliminating unnecessary

transitions. We observe that regions in the workspace that are ad-

jacent or within some vicinity are more likely to force the need of

transitions between their corresponding abstract states. Similarly,

regions in the workspace that are far from each other are more

likely to prohibit transitions between their corresponding abstract

states. Therefore, in an attempt to reduce the number of compu-

tational steps in our algorithm, we check the transition feasibility

between a state s ∈ F and an aggregate state s ′ ∈ F ′
. If our al-

gorithm (CHECK-FEASIBILITY) asserted that the neural network

δNN prohibits the robot from transitioning between the regions

corresponding to s and s ′ (denoted by Xs and Xs ′ , respectively),
then we conclude that no transition in δF is feasible between the

abstract state s and all the abstract states s⋆ in s ′ (lines 13-19 in
Algorithm 1). This leads to a reduction in the number of state pairs

that need to be checked for transition feasibility. Conversely, if our

algorithm (CHECK-FEASIBILITY) asserted that the neural network

δNN allows for a transition between the regions corresponding to

s and s ′, then we proceed by checking the transition feasibility

between the state s and all the states s∗ contained in the aggregate

state s∗ (lines 21-25 in Algorithm 1).

Checking the transition feasibility (CHECK-FEASIBILITY) be-
tween two abstract states entail reasoning about the robot dynamics,

the neural network, along with the affine map representing the Li-

DAR imaging computed from the previous workspace partitioning.

While the robot dynamics is assumed linear, the imaging function is

affine; the technical difficulty lies in reasoning about the behavior of

the neural network controller. Thanks to the ReLU activation func-

tions in the neural network, we can encode the problem of checking

the transition feasibility between two regions as formula φ, called
monotone Satisfiability Modulo Convex (SMC) formula [40, 41],

over Boolean and convex constraints representing, respectively, the

ReLU phases and the dynamics, the neural network weights, and

the imaging constraints. In addition to using SMC solver to check

the transition feasibility (CHECK-FEASIBILITY) between abstract

states, it will be used also to perform some pre-processing of the

neural network function δNN (lines 9-11 in Algorithm 1) which

is going to speed up the process of checking the the transition

feasibility. Details of the SMC encoding are given in Section 5.

Once the finite state abstraction SF and the simulation relation

Q is computed, the next step is to partition the finite states F into

a set of unsafe states F
unsafe

and a set of safe states F
unsafe

using

the following fixed-point computation:

F k
unsafe

=


{s ∈ F | ∃x ∈ X : (x , s) ∈ Q,

ζ (x) ∈ Oi ,Oi ∈ O} k = 0

F k−1
unsafe

∪ Pre(F k−1
unsafe

) k > 0

F
unsafe

= lim

k→∞
F k
unsafe

F
safe
= F \ F

unsafe
.

where the F 0

unsafe
represents the abstract state corresponding to

the obstacles and workspace boundaries while F k
unsafe

with k > 0

represents all the states that can reach F 0

unsafe
in k-steps where:

Pre(s) = {s ′ ∈ F | s ∈ δF(s ′)}.
The remaining abstract states are then marked as the set of safe

states F
safe

. Finally, we can compute the set of safe states X
safe

as:

X
safe
= {x ∈ X | ∃s ∈ F

safe
: (x , s) ∈ Q}.

These computations are summarized in lines 27-36 in Algorithm 1.

4 IMAGING-ADAPTEDWORKSPACE

PARTITIONING

We start by introducing the notation of the important geometric

objects. We denote by Ray(w,θ ) the ray originated from a point

w ∈ W in the direction θ , i.e.:

Ray(w,θ ) = {w ′ ∈ W | atan2(w ′ −w) = θ }.
Similarly, we denote by Line(w1,w2) the line segment between the

pointsw1 andw2, i.e.:

Line(w1,w2) = {w ′ ∈ W | w ′ = νw1 + (1 − ν )w2, 0 ≤ ν ≤ 1}.
For a convex polytope P ⊆ W, we denote by Vert(P), its set of
vertices and by Edge(P) its set of line segments representing the

edges of the polyhedron.

4.1 Imaging-Adapted Partitions

The basic idea behind our algorithm is to partition the workspace

into a set of polytypic sets (or regions) such that for each region R
the LiDAR rays will intersect the same obstacle/workspace edge

regardless of the robot positions ζ (x) ∈ R. To formally characterize

this property, let O⋆ =
⋃

Oi ∈O Oi be the set of all points z in the

workspace in which an obstacle or workspace boundary exists. Con-

sider a workspace partition R ⊆ W and a robot position ζ (x) that
lies inside this partition, i.e., ζ (x) ∈ R. The intersection between

the kth LiDAR laser beam Ray(ζ (x),θk ) and O⋆
is a unique point

characterized as:

zk,ζ (x )(R) = arg min

z∈W
∥z − ζ (x)∥2 s.t. z ∈ Ray(ζ (x),θk ) ∩ O⋆.

(5)

By sweeping ζ (x) across the whole region R, we can characterize

the set of all possible intersection points as:

Lk (R) =
⋃

ζ (x )∈R
zk,ζ (x )(R). (6)

Using the set Lk (R) described above, we define the notion of

imaging-adapted set as follows.

Definition 4.1. A set R ⊂ W is said to be an imaging-adapted

partition if the following property holds:

Lk (R) is a line segment ∀k ∈ {1, . . . ,N }. (7)

Figure 3 shows concrete examples of imaging-adapted partitions.

Imaging-adapted partitions enjoys the following property:

Lemma 4.2. Consider an imaging-adapted partition R with cor-
responding sets L1(R), . . . ,LN (R). The LiDAR imaging function
d : R → R2N is an affine function of the form:

dk (ζ (x)) = Pk,Rζ (x) +Qk,R , d = (d1, . . . ,dN ) (8)

5
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Figure 3: (left) A partitioning of the workspace that is not
imaging-adapted. Within region R1, the LiDAR ray (cyan ar-

row) intersects different obstacles edges depending on the

robot position. (right) A partitioning of the workspace that

is imaging-adapted. For both regions R1 and R2, the LiDAR

ray (cyan arrow) intersects the same obstacle edge regardless

of the robot position.

for some constant matrices Pk,R and vectorsQk,R that depend on the
region R and the LiDAR angle θk .

4.2 Partitioning the Workspace

Motivated by Lemma 4.2, our objective is to design an algorithm

that can partition the workspace W into a set of imaging-adapted

partitios. As summarized in Algorithm 2, our algorithm starts by

computing a set of line segments G that will be used to partition

the workspace (lines 1-5 in Algorithm 2). This set of line segments

G are computed as follows. First, we define the set V as the one

that contains all the vertices of the workspace and the obstacles, i.e.,

V = ⋃
Oi ∈O Vert(Oi ). Next, we consider rays originating from

all the vertices inV and pointing in the opposite direction of the

angles θ1, . . . ,θN . By intersecting these rays with the obstacles and

picking the closest intersection points, we acquire the line segments

G that will be used to partition the workspace. In other words, G
is computed as:

Gk = {Line(v, z) | v ∈ V, z = arg min

z∈Ray(v,θk+π )∩O⋆
∥z −v ∥2}

G =
N⋃
k=1

Gk (9)

Thanks to the fact that the vertices v are fixed, finding the inter-

section between Ray(v,θk + π ) and O⋆
is a standard ray-polytope

intersection problem which can be solved efficiently [42].

The next step is to compute the intersection pointsP between the

line segmentsG and the edges of the obstaclesE = ⋃
Oi ∈O Edge(Oi ).

A naive approach will be to consider all combinations of line seg-

ments in G ∪ E and test them for intersection. Such approach is

combinatorial and would lead to an execution time that is exponen-

tial in the number of laser angles and vertices of obstacles. Thanks to

the advancements in the literature of computational geometry, such

intersection points can be computed efficiently using the Plane-

Sweep algorithm [42]. The plane-sweep algorithm simulates the

process of sweeping a line downwards over the plane. The order

of the line segments G ∪ E from left to right as they intersect the

sweep line is stored in a data structure called the sweep-line status.

Only segments that are adjacent in the horizontal ordering need

to be tested for intersection. Though the sweeping process can be

visualized as continuous, the plane-sweep algorithm sweeps only

the values in which the endpoints of segments in G ∪ E, which are

given beforehand, and the intersection points, which are computed

on the fly. To keep track of the endpoints of segments in G ∪ E
and the intersection points, we use a balanced binary search tree

as data structure to support insertion, deletion, and searching in

O(loд n) time, where n is number of elements in the data structure.

The final step is to use the line segments G∪E and their intersec-

tion points P, discovered by the plane-sweep algorithm, to compute

the workspace partitions. To that end, consider the undirected pla-

nar graph whose vertices are the intersection points P and whose

edges are G ∪ E, denoted by Graph(P,G ∪ E). The workspace

partitions are equivalent to finding subgraphs of Graph(P,G ∪ E)
such that each subgraph contains only one simple cycle

1
. To find

these simple cycles, we use a modified Depth-First-Search algo-

rithm in which it starts from a vertex in the planar graph and then

traverses the graph by considering the rightmost turns along the

vertices of the graph. Finally, the workspace partition is computed

as the convex hull of all the vertices in the computed simple cycles.

It follows directly from the fact that each region is constructed from

the vertices of a simple cycle that there exists no line segment in

G ∪ E that intersects with the interior of any region, i.e., for any

workspace partition R, the following holds:

int(R) ∩ e = ∅ ∀e ∈ G ∪ E (10)

This process is summarized in lines 8-16 in Algorithm 2. An impor-

tant property of the regions determined by Algorithm 2 is stated

by the following proposition.

Proposition 4.3. Consider a partitionR computed by Algorithm 2
and satisfies (10). The following property holds for any LiDAR ray
with angle θk :

∃e ∈ E : Lk (R) ⊆ e

where Lk (R) defined in (6). In other words, the LiDAR ray with angle
θk intersects the same obstacle edge regardless of the robot position.

We conclude this section by stating our first main result, quanti-

fying the correctness and complexity of Algorithm 2.

Theorem 4.4. Given a workspace with polytopic obstacles and a set
of laser angles θ1, . . . ,θN , then Algorithm 2 computes the partitioning
R1, . . . ,Rr such that:

(1) W =
⋃r
i=1 Ri ,

(2) Ri is an imaging-adapted partition ∀i = 1, . . . , r ,
(3) d : Ri → R2N is affine ∀i = 1, . . . , r .

Moreover, the time complexity of Algorithm 2 isO(M log M+I log M),
whereM = |G ∪ E| is cardinality of G ∪ E, and I is number of inter-
section points between segments in E ∪ E.

5 COMPUTING THE FINITE STATE

ABSTRACTION

Once the workspace is partitioned into imaging-adapted regions

W⋆ = {R1, . . . ,Rr } and the corresponding imaging function is

identified, the next step is to compute the finite state transition

abstraction SF = (F ,δF) of the closed loop system along with

the simulation relation Q . The first step is to define the state space

F and its relation to X. To that end, we start by computing a

1
A cycle in an undirected graph is called simple when no repetitions of vertices and

edges is allowed within the cycle.
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Algorithm 2WKSP-PARTITION (W,O,θ ,θp )

1: Step 1: Generate partition segments

2: O⋆ =
⋃

Oi ∈O Oi , V = ⋃
Oi ∈O Vert(Oi ), E = ⋃

Oi ∈O Edge(Oi )
3: for k ∈ {1, . . . , N } do
4: Use a ray-polygon intersection algorithm to compute:

Gk = {Line(v, z) | v ∈ V, z = arg min

z∈Ray(v,θk+π )∩O⋆
∥z − v ∥2 }

5: G = ⋃
k∈θ Gk , G′ =

⋃
k∈θp Gk

6: Step 2: Compute intersection points

7: P = PLANE-SWEEP(G ∪ E), P′ = PLANE-SWEEP(G′ ∪ E)

8: Step 3: Construct the partitions

9: Cycles = Find-Vertices-Of-Simple-Cycle(Graph(P, G ∪ E))
10: Cycles’ = Find-Vertices-Of-Simple-Cycle (Graph(P′, G′ ∪ E)).
11: for c ∈ Cycles do

12: R = Convex-Hull(c)
13: W⋆ .ADD(R)
14: for c ∈ Cycles

′
do

15: R′ = Convex-Hull(c)
16: W′.ADD(R′)
17: Return W⋆, W′

partitioning of the state space X that respects W⋆
. For the sake

of simplicity, we consider X ⊂ Rn that is n-orthotope, i.e., there
exists constants x i ,x i ∈ R, i = 1, . . . ,n such that:

X = {x ∈ Rn | x i ≤ xi < x i , i = 1, . . . ,n}
Now, given a discretization parameter ϵ ∈ R+, we define the state
space F as:

F = {(k1,k3, . . . ,kn ) ∈ Nn−1 | 1 ≤ k1 ≤ r ,

1 ≤ ki ≤
x i − x i

ϵ
, i = 3, . . . ,n} (11)

where r is the number of regions in the partitioning W⋆
. In other

words, the parameter ϵ is used to partition the state space into ϵ
hyper-cubes. A state s ∈ F represents the index of a region inW⋆

followed by the indices identifying a hypercube in the remaining

n−2 dimensions. Note that for the simplicity of notation, we assume

that x i − x i is divisible by ϵ for all i = 1, . . . ,n. We now define the

relation Q ⊆ X × F as:

Q = {(x , s) ∈ X × F | s = (k1,k3, . . . ,kn ),x = (ζ (x),x3, . . . ,xn ),
ζ (x) ∈ Rk1 ,x i + ϵ(ki − 1) ≤ xi < x i + ϵki ,

i = 3, . . . ,n}. (12)

Finally, we define the state transition function δF of SF as fol-

lows:

(k ′
1
,k ′

3
, . . .k ′n ) ∈ δF((k1,k3, . . .kn )) if

∃x = (ζ (x),x3, . . . ,xn ) ∈ Rk1 ,x i + ϵ(ki − 1) ≤ xi < x i + ϵki ,

x ′ = (ζ (x ′),x ′
3
, . . . ,x ′n ) ∈ Rk ′

1

,x i + ϵ(k
′
i − 1) ≤ x ′i < x i + ϵk

′
i ,

s.t. x ′ = Ax + BfNN (d(x)). (13)

It follows from the definition of δF in (13) that checking the transi-

tion feasibility between two states s and s ′ is equivalent to searching
for a robot initial and goal states along with a LiDAR image that

will force the neural network controller to generate an input that

moves the robot between the two states while respecting the robots

dynamics. In the reminder of this section, we focus on solving this

feasibility problem.

5.1 SMC Encoding of NN

We translate the problem of checking the transition feasibility in δF
into a feasibility problem over a monotone SMC formula [40, 41]

as follows. We introduce the Boolean indicator variables blj with

l = 1, . . . ,L and j = 1, . . . ,Ml (recall that L represents the number

of layers in the neural network, whileMl represents the number of

neurons in the lth layer). These Boolean variables represents the

phase of each ReLU, i.e., an asserted blj indicates that the output of

the jth ReLU in the lth layer is hlj = (W l−1hl−1 +wl−1)j while a
negated blj indicates that h

l
j = 0. Using these Boolean indicator vari-

ables, we encode the problem of checking the transition feasibility

between two states s = (k1,k3, . . . ,kn ) and s ′ = (k ′
1
,k ′

3
, . . . ,k ′n ) as:

∃ x ,x ′ ∈ Rn ,u ∈ Rm ,d ∈ R2N , (14)

(bl ,hl , t l ) ∈ BMl × RMl × RMl , l ∈ {1, . . . ,L}
subject to:

ζ (x) ∈ Rk1 ∧ x i + ϵ(ki − 1) ≤ xi < x i + ϵki , i = 3, . . . ,n (15)

∧ζ (x ′) ∈ Rk ′
1

∧ x i + ϵ(k
′
i − 1) ≤ x ′i < x i + ϵk

′
i , i = 3, . . . ,n (16)

∧ x ′ = Ax + Bu (17)

∧ dk = Pk,Rk
1

ζ (x) +Qk,Rk
1

, k = 1, . . . ,N (18)

∧
(
t1 =W 0d +w0

)
∧

( L∧
l=2

t l =W l−1hl−1 +wl
)

(19)

∧
(
u =W LhL +wL

)
(20)

∧
L∧
l=1

Mj∧
j=1

blj →
[(
hlj = t lj

)
∧
(
t lj ≥ 0

)]
(21)

∧
L∧
l=1

Mj∧
j=1

¬blj →
[(
hlj = 0

)
∧
(
t lj < 0

)]
(22)

where (15)-(16) encodes the state space partitions corresponding

to the states s and s ′; (17) encodes the dynamics of the robot; (18)

encodes the imaging function that maps the robot position into

LiDAR image; (19)-(22) encodes the neural network controller that

maps the LiDAR image into a control input.

Compared to Mixed-Integer Linear Programs (MILP), monotone

SMC formulas avoid using encoding heuristics like big-M encodings

which leads to numerical instabilities. SMC decision procedures fol-

low an iterative approach combining efficient Boolean Satisfiability

(SAT) solving with numerical convex programming. When applied

to the encoding above, at each iteration the SAT solver generates

a candidate assignment for the ReLU indicator variables blj . The

correctness of these assignments are then checked by solving the

corresponding set of convex constraints. If the convex program

turned to be infeasible, indicating a wrong choice of the ReLU

indicator variables, the SMC solver will identify the set of “Irre-

ducible Infeasible Set” (IIS) in the convex program to provide the

most succinct explanation of the conflict. This IIS will be then fed
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back to the SAT solver to prune its search space and provide the

next assignment for the ReLU indicator variables. SMC solvers was

shown to better handle problems (compared with MILP solvers) for

problems with relatively large number of Boolean variables [41].

5.2 Pruning Search Space By Pre-processing

While a neural network withM ReLUs would give rise to 2
M

com-

binations of possible assignments to the corresponding Boolean

indicator variables, we observe that several of those combinations

are infeasible for each workspace region. In other words, the Li-

DAR imaging function along with the workspace region enforces

some constraints on the inputs to the neural network which in

turn enforces constraints on the subsequent layers. By performing

pre-processing on each of the workspace regions, we can discover

those constraints and augment it to the SMC encoding (15)-(22) to

prune several combinations of assignments of the ReLU indicator

variables.

To find such constraints, we consider an SMC problem with the

fewer constraints (15), (18)-(22). By iteratively solving the reduced

SMC problem and recording all the IIS conflicts produced by the

SMC solver, we can compute a set of counter-examples that are

unique for each region. By iteratively invoking the SMC solver

while adding previous counter-examples as constraints until the

problem is no longer satisfiable, we compute the set R-Conflicts
which represents all the counter-examples for region R. Finally, we

add the following constraint: ∧
c ∈R-Conflicts

c (23)

to the original SMC encoding (15)-(22) to prune the set of possible

assignments to the ReLU indicator variables. In Section 6, we show

that pre-processing would result in an order of magnitude reduction

in the execution time.

5.3 Correctness of Algorithm 1

We end our discussion with the following results which asserts the

correctness of the whole framework described in this paper. We

first start by establishing the correctness of computing the finite

abstraction SF along with the simulation relation Q as follows:

Proposition 5.1. Consider the finite state system SF = (F ,δF)
where F is defined by (11) and δF is defined by (13) and computed
by means of solving the SMC formula (15)-(23). Consider also the
system SNN = (X,δNN) where δNN = x 7→ Ax + BfNN(d(x)). For the
relation Q defined in (12), the following holds: SNN ≼Q SF .

Recall that Algorithm 1 applies standard reachability analysis

on SF to compute the set of unsafe states. It follows directly from

the correctness of the simulation relation Q established above that

our algorithm computes an over-approximation of the set of unsafe

states, and accordingly an under-approximation of the set of safe

states. This fact is captured by the following result that summarizes

the correctness of the proposed framework:

Theorem 5.2. Consider the safe setXsafe computed by Algorithm 1.
Then any trajectory ηx with ηx (0) ∈ Xsafe is a safe trajectory.

While Theorem 5.2 establishes the correctness of the proposed

framework in Algorithm 1, two points needs to be investigated

Table 1: Scalability results for the WKSP-PARTITION Algo-

rithm

Number of Number of Number of Time

Vertices Lasers regions [s]

8 111 0.0152

8 38 1851 0.3479

118 17237 5.5300

8 136 0.0245

10 38 2254 0.4710

118 20343 6.9380

8 137 0.0275

38 2418 0.5362

12 120 23347 8.0836

218 76337 37.0572

298 142487 86.6341

namely (i) complexity of Algorithm 1 and (ii) maximality of the

set X
safe

. Although Algorithm 2 computes the imaging-adapted

partitions efficiently (as shown in Theorem 4.4), analyzing a neural

network with ReLU activation functions is shown to be NP-hard.

Exacerbating the problem, Algorithm 1 entails analyzing the neural

network a number of times that is exponential in the number of

partition regions. In Section 6, we experiment the efficiency of using

SMC decision procedures to harness this computational complexity.

As for the maximality of the computed X
safe

set, we note that

Algorithm 1 is not guaranteed to search for the maximal X
safe

.

6 RESULTS

We implemented the proposed verification framework as described

by Algorithm 1 on top of the SMC solver named SATEX [43]. All

experiments were executed on an Intel Core i7 2.5-GHz processor

with 16 GB of memory.

6.1 Scalability of the Workspace Partitioning

Algorithm:

As the first step of our verification framework, imaging-adapted

workspace partitioning is tested for numerical stability with in-

creasing number of laser angles and obstacles. Table 1 summarizes

the scalability results in terms of the number of computed regions

and the execution time grows as the number of LiDAR lasers and

obstacle vertices increase. Thanks to adopting well-studied com-

putational geometry algorithms, our partitioning process takes

less than 1.5 minutes for the scenario where a LiDAR scanner is

equipped with 298 lasers (real-world LiDAR scanners are capable

of providing readings from 270 laser angles).

6.2 Computational Reduction Due to

Pre-processing

The second step is to pre-process the neural network. In particular,

we would like to answer the following question: given a partitioned

workspace, howmany ReLU assignments are feasible in each region,

and if any, what is the execution time to find them out. Recall that

a ReLU assignment is feasible if there exist a robot position and the

corresponding LiDAR image that will lead to that particular ReLU

assignment.
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Thanks to the IIS counterexample strategy, we can find all feasi-

ble ReLU assignments in pre-processing. Our first observation is

that the number of feasible assignments is indeed much smaller

compared to the set of all possible assignments. As shown in Ta-

ble 2, for a neural network with a total of 32 neurons, only 11 ReLU

assignments are feasible (within the region under consideration).

Comparing this number to 2
32 = 4.3E9 possibilities of ReLU assign-

ments, we conclude that pre-processing is very effective in reducing

the search space by several orders of magnitude.

Furthermore, we conducted an experiment to study the scala-

bility of the proposed pre-processing for an increasing number

of ReLUs. To that end, we fixed one choice of workspace regions

while changing the neural network architecture. The execution

time, the number of generated counterexamples, along with the

number of feasible ReLU assignments are given in Table 2. For the

case of neural networks with one hidden layer, our implementa-

tion of the counterexample strategy is able to find feasible ReLU

assignments for a couple of hundreds of neurons in less than 4

minutes. In general, the number of counterexamples, and hence

feasible ReLU assignments, and execution time grows with the

number of neurons. However, the number of neurons is not the

only deciding factor. Our experiments show that the depth of the

network plays a significant role in affecting the scalability of the

proposed algorithms. For example, comparing the neural network

with one hidden layer and a hundred neurons per layer versus the

network with two layers and fifty neurons per layer we notice that

both networks share the same number of neurons. Nevertheless,

the deeper network resulted in one order of magnitude increase

regarding the number of generated counterexamples and one order

of magnitude increase in the corresponding execution time. Inter-

estingly, both of the architectures share a similar number of feasible

ReLU assignments. In other words, similar features of the neural

network can be captured by fewer counterexamples whenever the

neural network has fewer layers. This observation can be accounted

for the fact that counterexamples that correspond to ReLUs in early

layers are more powerful than those involves ReLUs in the later

layers of the network.

In the second part of this experiment, we study the dependence

of the number of feasible ReLU assignments on the choice of the

workspace region. To that end, we fix the architecture of the neural

network to one with 2 hidden layers and 40 neurons per layer. Ta-

ble 3 reports the execution time, the number of counterexamples,

and the number of feasible ReLU assignments across different re-

gions of the workspace. In general, we observe that the number of

feasible ReLU assignments increases with the size of the region.

6.3 Transition Feasibility

Following our verification streamline, the next step is to compute

the transition function of the finite-state abstraction δF , i.e., check
transition feasibility between regions. Table 4 shows performance

comparison between our proposed strategy that uses counterexam-

ples obtained from pre-processing and SMC encoding without pre-

processing. We observe that SMC encodings empowered by coun-

terexamples, generated through the pre-processing phase, scales

more favorably compared to the ones that do not take counterex-

amples into account leading to 2-3 orders of magnitude reduction

Table 2: Execution time of the SMC-based pre-processing as

a function of the neural network architecture.

Number Total Number of Number of Time

of Hidden Number feasibile Counter [s]

Layers of Neurons ReLU Assignments Examples

32 11 60 2.7819

72 31 183 11.4227

92 58 265 18.4807

102 68 364 43.2459

152 101 540 78.3015

172 146 778 104.4720

202 191 897 227.2357

1 302 383 1761 656.3668

402 730 2614 1276.4405

452 816 4325 1856.0418

502 1013 3766 2052.0574

552 1165 4273 4567.1767

602 1273 5742 6314.4890

652 1402 5707 7166.3059

702 1722 6521 8813.1829

22 3 94 1.3180

42 19 481 10.9823

62 35 1692 53.2246

82 33 2685 108.2584

2 102 58 5629 292.7412

122 71 9995 739.4883

142 72 18209 2098.0220

162 98 34431 6622.1830

182 152 44773 12532.8552

32 5 319 5.7227

3 47 7 5506 148.8727

62 45 72051 12619.5353

4 22 9 205 10.4667

42 5 1328 90.1148

Table 3: Execution time of the SMC-based pre-processing as

a function of the workspace region.

Region Number of Number of Time

Index feasibile Counter [s]

ReLU Assignments Examples

A2-R3 33 2685 108.2584

A14-R1 55 4925 215.8251

A13-R3 7 1686 69.4158

A1-R1 25 2355 99.2122

A7-R1 26 3495 139.3486

A12-R2 3 1348 54.4548

A15-R3 25 3095 121.7869

A19-R1 38 4340 186.6428

in the execution time. Moreover, and thanks to the pre-processing

counter-examples, we observe that checking transition feasibility

becomes less sensitive to changes in the neural network architec-

ture as shown in Table 4.

7 CONCLUSIONS

Wepresented a framework to verify the safety of autonomous robots

equipped with LiDAR scanners and controlled by neural network

controllers. Thanks to the notion of imaging-adapted sets, we can

partition the workspace to render the problem amenable to formal

verification. Using SMC-encodings, we presented a framework to

compute finite-state abstraction of the system that can be used to

compute an under-approximation of the set of safe robot states. We

demonstrated a pre-processing technique that generates a set of
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Table 4: Performance of the SMC-based encoding for com-

puting δF as a function of the neural network (timeout = 1

hour/)

Number of Total Number Time [s] Time [s]

Hidden Layers of Neurons (Exploit Counter (Without Counter

Examples) Examples)

82 0.5056 50.1263

102 7.1525 timeout

1 112 12.524 timeout

122 18.0689 timeout

132 20.4095 timeout

22 0.1056 15.8841

42 4.8518 timeout

62 3.1510 timeout

82 2.6112 timeout

2 102 11.0984 timeout

122 3.8860 timeout

142 0.7608 timeout

162 2.7917 timeout

182 193.6693 timeout

32 0.3884 388.549

3 47 0.9034 timeout

62 59.393 timeout

counterexamples which resulted in 2-3 orders of magnitude exe-

cution time reduction. Future work includes investigating further

strategies for efficient generation of pre-processing counterexam-

ples along with extending the proposed technique to account to

uncertainties in the LiDAR scanner.
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A PROOF OF LEMMA 4.2

Proof. Consider an arbitrary LiDAR laser with an angle θk and

arbitrary robot position ζ (x) ∈ R. The LiDAR image dk can be

written as:

dk = zk,ζ (x )(R) − ζ (x) (24)

where zk,ζ (x )(R) is defined in (5). It follows from the fact that

R is an imaging-adapted partition that the set Lk (R) is a line

segment. Let ak ,bk ∈ R2 be the vertices of this line segment,

i.e., (ak ,bk ) = Vert(Lk (R)) and recall that zk,ζ (x )(R) satisfies
zk,ζ (x )(R) ∈ Lk (R) and hence zk,ζ (x )(R) lies on the line segment

Line(ak ,bk ). Therefore there exists a νk such that:

zk,ζ (x )(R) = (1 − νk )ak + νbk (25)

where 0 ≤ νk ≤ 1. It follows from the definition of zk,ζ (x )(R) in (5)

that zk,ζ (x )(R) also lies on Ray(ζ (x),θk ) and hence:

tan(θk ) =
z2 − x2
z1 − x1

, (26)

where (z1, z2) are the two elements of zk,ζ (x )(R) ∈ R ⊂ R2 while
(x1,x2) are the corresponding two elements of ζ (x) ∈ R ⊂ R2.
Substituting (25) in (26) yields:

tan(θk ) =
(1 − νk )a2 + νkb2 − x2
(1 − νk )a1 + νka2 − x1

(27)

where (a1,a2) = ak and (b1,b2) = bk are the two elements of ak
and bk , respectively. By solving (27) for νk , we conclude that:

νk = Aνk ζ (x) + bνk , (28)

Aνk =



[
1

b2−a2 0

]
θk = π/2 or 3π/2[

tan(θk )
a2−b2+(b1−a1) tan(θk )−a2

1

a2−b2+(b1−a1) tan(θk )

]
otherwise,

bνk =

{
0 θk = π/2 or 3π/2

a2−a2 tan(θk )
a2−b2+(b1−a1) tan(θk ) otherwise,

where Aνk and bνk are constants that depends on the values of the

constants ak ,bk , and θk . From (24),(25), and (28), we conclude that:

dk (ζ (x)) = Pk,Rζ (x) +Qk,R (29)

with Pk,R = (bk − ak )(A − I ) (where I is the 2 × 2 identity matrix)

andQk,R = ak +bνk (bk −ak ) are constants that depends on ak ,bk
and θk form which we conclude that dk (ζ (x)) is affine. Note that

we added the subscript R to Pk,R and Qk,R to emphasize the face

that these constant matrices depends on the region R. Since we
picked k arbitrary, we finally conclude that d(ζ (x)) is also an affine

function. □

B PROOF OF PROPOSITION 4.3

Proof. We assume, for the sake of contradiction, that there ex-

ists two obstacle edge Line(v1,v2), Line(w1,w2) ∈ E with (v1,v2) ,
(w1,w2) along with rays originating from points p1,p2 ∈ R such

that the intersection points:

z1 = arg min

z1∈Ray(p1,θk )∩O⋆
∥z1 − p1∥

z2 = arg min

z2∈Ray(p2,θk )∩O⋆
∥z2 − p2∥.

satisfy z1 ∈ Line(v1,v2) and z2 ∈ Line(w1,w2).
Now consider the set P1 defined as follows:

P1 = {p ∈ R | p ∈ Ray(z,θk + π ), ∀z ∈ Line(v1,v2)}
It follows from the definition of z1 that p1 ∈ P1. It also follows

from the definition of P1 that P1 ⊆ R. Moreover, it follows from the

definition of the set E along with the fact that Line(v1,v2) ∈ E that

v1 and v2 satisfy v1,v2 ∈ V . It follows from the definition of the

set G in (9) that it contains line segments from the rays originated

at elements of the set V . Hence, there exists v ′
1
,v ′′

1
,v ′

2
,v ′′

2
such

that the line segments Line(v ′
1
,v ′′

1
) and Line(v ′

2
,v ′′

2
) satisfy:

Line(v ′
1
,v ′′

1
) ⊂ Ray(v1,θk + π ) ⊂ P1 ⊆ R, Line(v ′

1
,v ′′

1
) ∈ G
(30)

Line(v ′
2
,v ′′

2
) ⊂ Ray(v2,θk + π ) ⊂ P1 ⊆ R, Line(v ′

2
,v ′′

2
) ∈ G
(31)

However, it follows from (10) that line segments that are elements

of G do not intersect the interior of R. Hence:
Line(v ′

1
,v ′′

1
) ⊂ R

Line(v ′
1
,v ′′

1
) ∩ int(R) = ∅

}
⇒ Line(v ′

1
,v ′′

1
) ⊂ ∂R (32)

Line(v ′
2
,v ′′

2
) ⊂ R

Line(v ′
2
,v ′′

2
) ∩ int(R) = ∅

}
⇒ Line(v ′

2
,v ′′

2
) ⊂ ∂R (33)

Similarly, by consideringw1,w2, z2, we conclude that there exists
line segments Line(w ′

1
,w ′′

1
) ⊂ Ray(w1,θk +π ) and Line(w ′

2
,w ′′

2
) ⊂

Ray(v2,θk + π ) are elements of G and satisfy:

Line(w ′
1
,w ′′

1
) ⊂ ∂R, Line(w ′

2
,w ′′

2
) ⊂ ∂R (34)

It follows from Euclidean geometry that any polygon in R2 can
have at maximum two edges that are “parallel”. It also follows

from (32)-(34) that Line(v ′
1
,v ′′

1
), Line(v ′

2
,v ′′

2
), Line(w ′

1
,w ′′

1
), and

Line(w ′
2
,w ′′

2
) are edges of R. However, it follows from the defini-

tions of the four line segments that they are subsets of rays that

share the same angle, and hence they are all parallel. Hence we

conclude that Line(v ′
1
,v ′′

1
) = Line(w ′

1
,w ′′

1
) and Line(v ′

2
,v ′′

2
) =

Line(w ′
2
,w ′′

2
) from which it is direct to conclude that (v1,v2) =

(w1,w2), a contradiction.
□

C PROOF OF THEOREM 4.4

Proof. Property (1) follows from Proposition 4.3 where (2) fol-

lows from Lemma 4.2. The complexity of the partitioning follows

from the plane-sweep algorithm whose complexity is established

in Theorem 2.4 in [42]. □

D PROOF OF PROPOSITION 5.1

Proof. It follows from Theorem 4.4 that the LiDAR imaging

is affine and the partitions R are convex and hence the encoding

in (15)-(23) is indeed monotone SMC. The result then holds as a

consequence of the correctness of the SMC decision procedure

used to solve (15)-(23) which in turns entails the correctness of

computing δF . □
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