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1Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA

2Department of Ophthalmology and Vision Science, School of Medicine, University of California 
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Abstract

Optical Coherence Tomography Angiography (OCTA) refers to a powerful class of OCT scanning 

protocols and algorithms that selectively enhance the imaging of blood vessel lumens, based 

mainly on the motion and scattering of red blood cells (RBCs). Though OCTA is widely used in 

clinical and basic science applications for visualization of perfused blood vessels, OCTA is still 

primarily a qualitative tool. However, more quantitative hemodynamic information would better 

delineate disease mechanisms, and potentially improve the sensitivity for detecting early stages of 

disease. Here, we take a broader view of OCTA in the context of microvascular hemodynamics 

and light scattering. Paying particular attention to the unique challenges presented by capillaries 

versus larger supplying and draining vessels, we critically assess opportunities and challenges in 

making OCTA a quantitative tool.

Keywords

optical coherence tomography; angiography; scattering; red blood cells; rheology; imaging; 
hemodynamics; blood flow

1. Introduction

The microcirculation comprises a network of blood vessels that delivers oxygen and 

nutrients to surrounding tissues, removes waste products and heat, and otherwise supports 

tissue viability [1–3]. Red blood cells (RBCs) are the main carriers of oxygen in blood. 

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license 
(http://creativecommons.org/licenses/by/4.0/).
*Correspondence: vjsriniv@ucdavis.edu; Tel.: +1-530-752-9277. 

Featured Application: Optical Coherence Tomography Angiography (OCTA) is a technique for label-free vascular imaging in fields 
such as ophthalmology, gastroenterology, cancer biology, and neuroscience. Here, we discuss advances that relate OCTA more 
rigorously to underlying blood physiology and hemodynamics, which promise to make OCTA an even more powerful quantitative 
tool.

Author Contributions: Jun Zhu and Vivek J. Srinivasan conceived the paper. Conrad W. Merkle, Marcel T. Bernucci, and Shau Poh 
Chong generated data for the figures. ConradW. Merkle and Vivek J. Srinivasan processed the data. Jun Zhu, ConradW. Merkle, Shau 
Poh Chong, and Vivek J. Srinivasan made the figures for the paper. All authors wrote and reviewed the paper.

Conflicts of Interest: Vivek J. Srinivasan receives royalties from Optovue, Inc.

HHS Public Access
Author manuscript
Appl Sci (Basel). Author manuscript; available in PMC 2018 July 12.

Published in final edited form as:
Appl Sci (Basel). 2017 July ; 7(7): . doi:10.3390/app7070687.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/4.0/


“Optical Coherence Tomography Angiography (OCTA)” is a term for the specialized 

Optical Coherence Tomography (OCT) scanning protocols and post-processing algorithms 

that mainly enhance the motion contrast of red blood cells (RBCs) in OCT images to 

selectively highlight these vessels. By enabling the visualization of cell-perfused vasculature 

without an exogenous contrast agent, OCT angiography has generated enormous interest in 

ophthalmology [4–11], gastroenterology [12,13], cancer biology [14,15], and neuroscience 

[16,17] over the past decade. It has been particularly useful in studying diseases where the 

microvascular morphology or presence of perfusion changes over time. However, with few 

exceptions [18–20], the majority of published studies have used OCT angiography 

qualitatively, primarily as a means of visualization. Here, we review the relevant basic 

hemodynamic principles, fundamentals of OCTA, categories of OCTA scanning protocols, 

and classes of OCTA algorithms. We argue that a rigorous and model-based relationship 

between hemodynamic parameters, light scattering theory, and measurement observables 

[21] in OCT angiography will pave the way towards more quantitative imaging of 

hemodynamics by OCTA and related methods, with the potential to enhance all applications.

2. OCTA Fundamentals

A unifying feature of all OCTA algorithms is that they visualize objects that are both moving 

and backscattering. Hence, we begin our review with a discussion of hemodynamics and 

light scattering properties of blood. Importantly, we distinguish between capillaries (<10 μm 

in diameter), where RBCs flow in a line and hematocrits are low, and macrovasculature, 

where RBCs flow side-by-side and hematocrits approach systemic levels, with the 

understanding that non-capillary microvessels (10–100 μm in diameter) represent an 

intermediate case between the two extremes discussed here [2,3].

2.1. Hemodynamic Parameters

What are the main hemodynamic parameters that impact observed OCTA signals? In 

capillaries (Figure 1A), the RBC flow is single-file, with plasma gaps in between [22,23]. 

RBC speed (distance/time), flux (#/time), and linear density (#/distance) are thus primary 

hemodynamic parameters in capillaries. Due to the plasma gaps between cells, flux can 

often be determined by imaging individual capillaries and counting RBCs traversing a single 

location [23]. Assuming single-file capillary flow, microvascular tube hematocrit (Htube), or 

RBC volume fraction, is related to linear density (ϱ) by ϱ = HtubeA/VRBC, where VRBC is 

the red blood cell volume and A is the vessel cross-sectional area. Capillary tube hematocrit 

is generally a factor of ~2–3× lower than systemic levels [24], but hematocrit can vary 

considerably between capillaries. In macrovessels (Figure 1B), which include supplying 

arteries and draining veins, the blood velocity varies across the vessel cross-section. In 

contrast to microvessels, macrovascular hematocrit approaches systemic levels of ~40–45% 

[25]. Flow is typically laminar with some degree of blunting [24], with the largest shear rate, 

or velocity gradient, at the edge of the vessel. In macrovessels, RBC velocity or speed 

(distance/time), flow rate (volume/time), and hematocrit (volume/volume) are the primary 

hemodynamic parameters. All hemodynamic parameters vary over time with respiration and 

the heartbeat of the subject [24].
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2.2. Light Scattering from Red Blood Cells

What are the physical properties of RBCs that enable their detection by OCTA? RBC 

scattering and absorption properties derive from the presence of hemoglobin and its complex 

refractive index [26]. Major absorption bands of hemoglobin, related to the imaginary part of 

the complex refractive index, predominate at visible and shorter wavelengths, while 

hemoglobin absorption becomes negligible at near-infrared wavelengths, where scattering 

dominates. The light scattering properties of individual RBCs are determined by the 

refractive index contrast with respect to the surrounding plasma, as well as their shape and 

size relative to the medium wavelength. The real part of the complex refractive index, or 

refractive index, of hemoglobin is larger by ~3–6% relative to the surrounding plasma [26–

28]. RBCs are biconcave disks (Figure 2), with a diameter of 6–8 μm and thickness of ~2 

μm, although their shape changes under external stress. Due to the large volume fraction of 

RBCs and their refractive index mismatch relative to plasma, RBCs are the main scattering 

constituent in blood [27,29,30].

The scattering properties of both individual RBCs and ensembles of RBCs are important in 

OCTA. Due to their irregular shape, the probability of light scattering in a given direction for 

a particular RBC depends on both its orientation and the direction of incident light. An 

ensemble of RBCs with different orientations can be characterized by a scattering coefficient 

(μs), the scattering probability per unit distance; a scattering phase function (P(θ)), the 

probability of scattering in a given elevation direction θ per unit solid angle; and a scattering 

anisotropy (g = E[cos(θ)]), the expectation or average (E[ ]) of cos(θ) over solid angle. 

These parameters characterize scattering of whole blood, which comprises an ensemble 

volume of RBCs with random orientations. In whole blood, empirically measured g and μs 

include dependent and multiple scattering effects [31]. With a hematocrit of around 45%, 

whole blood is found to be highly forward scattering between 750 and 950 nm, with a 

scattering coefficient (μs) between 65 and 80 mm−1, and anisotropy (g) between 0.97 and 

0.99 [29,32–34]. Exemplary phase functions [30,32,35] for tissue (Henyey-Greenstein with 

g = 0.9) and blood (Gegenbauer-Kernel with g = 0.972 and α = 0.49 [36]) are shown in 

Figure 2A on a logarithmic scale. Tissue has a higher probability of back scattering than 

blood, while blood is considerably more forward scattering.

In OCTA (Figure 2B,C), detected light ideally results from paths with single RBC 

backscattering (θ = 180°) events (blue). However, the high RBC anisotropy (Figure 2A) 

makes detection of multiple scattered light (green) likely. Probable light paths can be 

understood through the principles of radiative transport. In capillaries, where RBC flow is 

single-file, light forward scattered from RBCs is also backscattered from extravascular tissue 

(Figure 2B), creating axial multiple scattering tails (Figure 2D left box). In macrovessels, 

there are two important effects. First, RBCs tend to align their flat face parallel to the shear 

force, i.e., facing outwards along the vessel circumference (Figure 2C). The largest 

backscattering cross-section occurs when the shortest RBC dimension is aligned with the 

incident light. Therefore, the signal is enhanced at the top and bottom of the vessel lumen 

and reduced at the side (Figure 2D right box) [37]. At higher shear rates, RBCs elongate and 

the backscattering pattern disappears [38]. Second, for vessel lumens larger than a scattering 
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length (1/μs), multiple intravascular dynamic scattering events (green) can occur before 

detection.

As OCTA images are created by post-processing OCT data, OCTA has an image penetration 

depth comparable to or less than OCT. This is typically ~0.5–1.5 mm in most tissues, 

depending on the source wavelength and the sample optical properties [39,40]. It is 

important to note that while OCTA visualizes blood vessels, the penetration depth of OCTA 

may be determined by the attenuation of both intravascular and extravascular tissue.

3. OCTA Signal

In this section, we provide a unifying framework for the OCT signal to facilitate the 

discussion of OCTA algorithms in Section 4. Commonly-used symbols or variables and their 

definitions are summarized in Table 1, while other symbols are defined in the text.

All standard OCTA algorithms [41,42] start from the complex OCT signal. The complex, 

depth-resolved OCT signal can be expressed as:

S(x, z, t) = ∣ S(x, z, t) ∣ exp {i ∅ (x, z, t)} . (1)

Note that S(x, z, t) is related to the depth-resolved optical field, integrated over a resolution 

element (coherence volume). Therefore, the depth-resolved intensity, I(x, z, t), is equivalent 

to the magnitude square of the field, i.e., I(x, z, t) = |S(x, z, t)|2. OCTA algorithms may 

operate on either S(x, z, t), ∅(x, z, t), or I(x, z, t) as the “signal”, and accordingly, can be 

categorized into complex field-based techniques, phase-based techniques, and intensity-

based techniques. In its simplest form, OCTA employs differences between OCT signals at 

the same spatial position over a series of time points to highlight scatterer motion. As 

discussed in Section 2.2, RBCs are the main blood scattering component. Due to the 

dynamic motion of RBCs, the overall field, phase, and intensity fluctuate. For the field, these 

variations are determined, in a statistical sense, by the first-order field autocorrelation 

function, r(τ), in which r(τ) = R(τ)/R(0) and R(τ) = E[S(x, z, t + τ)S * (x, z, t)], where E[ ] 

represents expectation and τ is the time lag. Under some circumstances, all other signal 

variations, including those of the intensity and phase, derive their statistical properties from 

the field autocorrelation [43].

OCT complex signal dynamics are illustrated in Figure 3. The complex signal is treated as a 

complex summation of backscattered fields from individual scatterers within the coherence 

volume. The coherence volume is defined by the beam waist in the transverse direction and 

the coherence length in the axial direction. Changes in the fields from individual scatterers 

over time leads to changes in the total signal over time (Figure 3A,B). In many practical 

situations, scatterers may be further classified as “dynamic” and “static” depending on 

whether they move or not, with both scatterer types contributing to the signal in the same 

coherence volume (Figure 3C,D).

The nature of scatterer dynamics plays a major role in determining the OCT signal changes 

(Figure 4). Generally, scatterer motion is accompanied by both a Doppler shift and 
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decorrelation [44]. When the scatterer has an axial velocity component, moving towards or 

away from the incident beam, the complex field rotates, tracing a helix over time (Figure 

4A–C). This effect can be described as a linear phase shift over time due to the Doppler 

effect, or a “Doppler phase shift”. When the scatterer is undergoing a dynamic 

conformational change, rotation, or translational motion through the coherence volume, both 

the OCT signal intensity and phase change randomly (Figure 4D–F). This random change of 

the complex field is known as decorrelation. Doppler shifts are associated with a change in 

the phase of the complex field autocorrelation, while decorrelation is associated with a 

decrease in the magnitude of the complex field autocorrelation, |R(τ)|, with increasing τ.

Both Doppler shifts and decorrelation are present to varying degrees in all vasculature. Note 

that a Doppler shift due to translational axial motion through the coherence volume implies 

decorrelation. On the other hand, decorrelation occurs even for transverse motion or rotation, 

and does not necessarily imply a Doppler shift. To illustrate this, Figure 5 shows a 

comparison between Doppler OCT and OCTA of mouse brain microvasculature. Doppler 

OCT detects phase changes caused by translational axial motion [45]. The requirement for 

axial phase shifts renders Doppler OCT only sensitive to motion parallel to the incident 

beam. Doppler shifts predominate in larger microvessels which are ascending or descending 

(Figure 5A); hence when used for angiography, the Doppler effect provides only a partial 

microvascular map. By comparison, decorrelation involves random deviations of the 

complex field and predominates in vessels with transverse flow. Thus, OCTA, which senses 

decorrelation via intensity and/or phase, more comprehensively shows the vasculature 

(Figure 5B,C).

Finally, it should be noted that the presence of static scattering can significantly alter time 

courses. The OCT field, intensity, and phase time courses due to dynamic scattering in the 

presence of a static scatterer are shown in Figure 6. As suggested by Figure 3D, the presence 

of static scattering confines the field fluctuations to a portion of the complex plane (Figure 

6A). As will be discussed in Section 7.1, the possible presence of static scatterer(s) must be 

considered in order to recover quantitative information about the Doppler phase shift or the 

decorrelation rate in OCTA.

4. OCTA Algorithms

The previous section showed that OCTA signals depend on the type of dynamics (Doppler 

shift or decorrelation), the observed parameter (intensity, phase, or field), and the possible 

presence of static scattering in the coherence volume. With this discussion in mind, we now 

present the main classes of angiography algorithms.

4.1. Intensity- or Amplitude-Based OCTA Algorithms

Intensity-based OCTA algorithms use I(x, z, t) = |S(x, z, t)|2, while amplitude-based OCTA 

algorithms use |S(x, z, t)| in Equation (1).

The first class of intensity-based OCTA algorithms is the speckle variance method. Speckle 

[46] can be described as the random interference of scattering fields (indexed by m) that 

cannot be resolved within a coherence volume:
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S(z) = ∑
m

Sm(z), (2)

Sm represents the fields within a coherence volume, each weighted according to the point 

spread function at the scatterer location (Figure 3). The intensity (as well as the phase and 

field) changes over time as the configuration of scatterers changes, causing decorrelation 

(Figure 4D–F). Decorrelation can occur as RBCs pass through a coherence volume, but may 

also occur due to rotational motion or diffusion. In 2005, Barton and Stromski showed the 

feasibility of flow speed measurement without phase information by evaluating speckle 

pattern changes [47]. In 2008, Mariampillai et al. [48] used interframe speckle variance to 

visualize microcirculation. In [48], speckle variance was defined as:

SV(x, z) = 1
N ∑t = 0

(N − 1)T [I(x, z, t) − I(x, z)]2, (3)

where t = 0, T, 2T, . . . , (N − 1)T represents the OCT acquisition time; T is the time interval; 

N is the total number of acquisitions at the same position; x and z denote lateral and depth 

indices, respectively; and I(x, z) = ∣ S(x, z) ∣2 is the time-averaged intensity at position (x, z). 

This is a temporally averaged, variance-based algorithm without normalization. By ignoring 

the phase in Equation (1), the method is not sensitive to pure Doppler shifts. Consequently, 

speckle variance is not susceptible to phase noise. However, the speckle variance method 

may be compromised due to interframe bulk tissue motion. While in-plane (xz) motion can 

be compensated in principle, out-of-plane motion is more challenging to correct. To 

minimize motion effects, later in 2010, Mariampillai et al. [49] optimized the frame number 

and frame rate for a given level of bulk tissue motion, through maximizing the speckle 

variance signal-to-noise ratio (SNR) between a “dynamic” and “static” pixel. Speckle 

variance SNR is calculated as:

SVSNR(N, I(x, z)) =
SVdynamic(N, I(x, z)) − SVstatic(N, I(x, z))

σdynamic
2 (N, I(x, z)) + σstatic

2 (N, I(x, z))
, (4)

where I(x, z) is the time-averaged intensity for both “dynamic” and “static” pixels, SVdynamic 

and SVstatic are speckle variances calculated from Equation (3), and σdynamic
2  and σstatic

2  are 

variances of SVdynamic and SVstatic, respectively. By optimizing the frame number under 

conditions of low tissue bulk motion, capillaries can be reliably detected [49].

As the dynamic tissue signal has a lower temporal correlation, at a given time lag, than static 

tissue, correlation has been investigated as a parameter for angiography. In 2011, Enfield et 

al. [50] demonstrated in vivo human volar forearm imaging of the capillary density and 

vessel diameter with correlation mapping optical coherence tomography (cmOCT). The 

correlation between OCT frames acquired at time t and t + T at the same position is:
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cmOCT(x, z) = ∑
p = 0

V
∑

q = 0

W [I(x + p, z + q, t) − I(t)][I(x + p, z + q, t + T) − I(t + T)]
[I(x + p, z + q, t) − I(t)]2 + [I(x + p, z + q, t + T) − I(t + T)]2 , (5)

where V and W define the extent of the spatial region for correlation calculation, and I(t)
denotes the spatially averaged intensity over this region. This is a spatially averaged, 

correlation-based algorithm with normalization. After this calculation, a 2D correlation map 

can be formed by applying a threshold to binarize the image into static and dynamic regions. 

In 2012, Jia et al. [51] proposed split-spectrum amplitude-decorrelation angiography 

(SSADA) to image the human macula and optic nerve head. Ensuring a nearly isotropic 

coherence volume size by splitting the spectrum to degrade the axial resolution to equal the 

transverse resolution, they then applied a method similar to cmOCT.

4.2. Phase-Based OCTA Algorithms

Phase-based OCTA algorithms rely on ∅(x, z, t) in Equation (1) to distinguish dynamic and 

static tissue. Doppler OCT, a category of phase-based OCTA, uses a deterministic Doppler 

phase shift for in vivo blood flow measurements [52,53]. While Doppler OCT can quantify 

flow, visualization applications are limited due to its angle dependence (Figure 5A). For 

instance, retinal blood vessels are nearly perpendicular to the optic axis, particularly outside 

of the optic nerve head, yielding insufficient phase shifts for Doppler measurements [42]. 

Power Doppler [54,55] and phase variance imaging [56] represent alternative approaches 

that are sensitive to decorrelation, or random non-deterministic Doppler shifts. In 2007, 

Fingler et al. [57] proposed phase variance for motion contrast. In [58], the phase variance at 

position (x, z) is defined as:

PV(x, z) = 1
N − 1 ∑t = 0

(N − 2)T [Δ ∅ (x, z, t) − Δ ∅ (x, z)]2 . (6)

The phase difference at a given location is given by:

Δ ∅ (x, z, t) = ∅ (x, z, t + T) − ∅ (x, z, t), (7)

where T is the time lag. Equation (6) is a temporally averaged, variance-based algorithm 

without normalization. Phase-based OCTA algorithms are advantageous over amplitude- and 

intensity-based algorithms if phase changes but intensity and amplitude do not. However, 

phase-based OCTA loses information about the OCT signal amplitude and intensity. 

Moreover, phase-based OCTA may not detect changes in the presence of a large static 

scattering component. Similar to amplitude- and intensity-based algorithms, phase-based 

OCTA is sensitive to decorrelation (Figure 4E,F). However, as phase is particularly sensitive 

to axial motion, additional bulk motion phase correction is typically required. In [57], before 

phase variance analysis, Fingler et al. removed the bulk motion phase change:
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Δ ∅corr (x, z, t) = Δ ∅ (x, z, t) − Δ ∅bulk (x, t), (8)

where Δ∅corr(x, z, t) denotes the corrected phase change, and Δ∅bulk(x, t) represents the 

phase change due to bulk motion, estimated as:

Δ ∅bulk (x, t) =
∑z = a

b [ ∣ S(x, z, t) ∣ Δ ∅ (x, z, t)]
∑z = a

b [ ∣ S(x, z, t) ∣ ]
(9)

The phase change due to bulk motion is thus calculated by a weighted mean from z = a to z 

= b in one A-scan. Note that bulk phase change estimation based on cross-correlation is also 

possible [16,59].

4.3. Complex Signal-Based OCTA Algorithms

Complex signal-based OCTA algorithms use S(x, z, t), the complex field, which includes 

both the intensity/amplitude and phase in Equation (1). As both intensity and phase 

fluctuations (Figure 4B,C,E,F) arise from field fluctuations (Figure 4A,D), we assert that the 

complex field is more fundamental than either the intensity or phase. In particular, the static 

component can be readily handled in the complex domain (Figure 6). Also, unlike intensity-

based OCTA, complex signal-based OCTA is sensitive to slow flow with only phase changes 

[60]. In 2007,Wang et al. [61] demonstrated complex signal-based OCT angiography, also 

called optical microangiography (OMAG), for the first time, while interframe complex 

OCTA was introduced later [16,62]. The most basic complex OCTA algorithm is based on 

subtraction,

ΔS(x, z, t) = ∣ S(x, z, t + T) − S(x, z, t) ∣ , (10)

where S(x, z, t+T) and S(x, z, t) are complex OCT signals acquired at the same position 

separated by a time lag T. This is a difference-based algorithm without normalization. 

Spatial or temporal averaging may be applied as needed. This expression may also be 

generalized as a variance calculation (or high-pass filter [16]) that eliminates static 

scattering:

ΔS(x, z) = 1
N ∑

t = 0

(N − 1)T
∣ S(x, z, t) − S(x, z) ∣2 . (11)

This is a temporally averaged, variance-based algorithm without normalization. As static and 

dynamic scatterer fields add in the complex domain (Figure 6), the above expression 

correctly eliminates static scattering to quantify the dynamic scattering signal.
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Using a complex signal-based algorithm, several applications of OCTA are demonstrated 

here. Figure 7A,B shows OCTA graphing of the mouse brain vasculature in vivo. 

Longitudinal monitoring of recovery in the mouse brain, one week after an experimental 

ischemic stroke, is shown in Figure 7C. Note the presence of vascular remodeling (yellow 

arrows). Figure 8 shows OCTA of a rodent eye in vivo. Figure 9 presents OCTA of pig ear 

skin, including a cross-sectional intensity image (Figure 9A), cross-sectional angiogram 

image (Figure 9B), color-coded angiogram of superficial and deep vasculature (Figure 9C), 

and angiograms centered at different depths (Figure 9D–I). All figures employ a complex 

interframe subtraction algorithm for angiography.

In 2014, Nam et al. [63] proposed a complex differential variance (CDV) algorithm. This 

differential variance algorithm, applied to the OCT signal at a position (x, z), is:

CDV(x, z) = 1 −
∑t = 0

(N − 2)T ∣ ∑k = − L
L wkS(x, z − k, t)S∗(x, z − k, t + T) ∣

∑t = 0
(N − 2)T ∑k = − L

L wk
1
2 [I(x, z − k, t) + I(x, z − k, t + T)]

, (12)

where wk is a depth-dependent window function of length 2L + 1. Though it is referred to as 

a “variance” method, this algorithm is actually a spatially and temporally averaged, 

correlation-based method with normalization (see the discussion of variance versus 

correlation in Section 4.4). The correlation is estimated by averaging on a complex basis 

axially (in z) and a magnitude basis over time. Also note that the correlation definition is the 

complex conjugate of that used elsewhere in this paper, though due to the absolute value 

operation, this minor discrepancy has no effect on the final CDV.

4.4. Classification of Present OCTA Algorithms

Historically, all of the OCTA algorithms described above were novel at the time they were 

introduced. However, with the benefit of hindsight, we propose basic categories to classify 

OCTA algorithms in Table 2.

The primary distinction between algorithms, discussed in Section 4.1, Section 4.2, Section 

4.3, is the OCT signal(s) employed. The second distinction, which is emphasized in the 

literature, is between variance/difference-based methods and correlation-based methods. 

However, here we argue that in some cases, this distinction is meaningless. Difference-based 

methods are actually estimating the following:

D(T) = E[ ∣ Xt + T − Xt ∣2], (13)

where D(T) denotes the difference at a time lag of T and Xt can be the OCT field, intensity, 

or amplitude at time t. Variance-based methods are estimating the following:

V = E[ ∣ Xt − E(Xt) ∣2] . (14)
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On the other hand, the un-normalized autocorrelation is defined as:

R(T) = E[Xt ∗ Xt + T] . (15)

Further expanding Equation (13), the difference can be written in terms of the 

autocorrelation:

D(T) = E[ ∣ Xt + T ∣2] + E[ ∣ Xt ∣2] − 2Re{E[Xt ∗ Xt + T]} = 2R(0) − 2Re{R(T)} . (16)

Therefore, difference and correlation methods are very closely connected if R(T) is real. If 

R(T) is complex, as would be the case if Xt represented the field and Doppler shifting were 

present, the difference D(T) depends only on the real part of R(T). From Equations (14) and 

(15), it can be readily shown that R(0) = V if E[Xt] = 0. Thus, every difference method 

corresponds to an equivalent correlation method via Equation (16).

The third distinction between algorithms is the way that the expectation, E[ ], is realized in 

practice. One method of realizing the expectation is by averaging over time. Another way is 

by averaging over space, at different tissue locations. Yet another way is spectral or optical 

wavelength averaging, employed in split-spectrum methods [51]. Under the assumption of 

ergodicity [64], all averaging methods are asymptotically equivalent, and in practice, all can 

be used to some degree. However, note that averaging over one dimension will automatically 

degrade the resolution in that dimension.

Fourth, OCTA methods can be distinguished by the use of normalization. The normalized 

correlation is divided by the signal power, R(0):

r(T) = R(T)/E[ ∣ Xt ∣2] = R(T)/R(0) (17)

For the complex signal, the power R(0) is related to the total scattering within a coherence 

volume. In a vessel, this depends on the backscattering cross-section of RBCs (which 

depends on orientation according to Section 2.2), and the RBC density (hematocrit). As 

discussed further in Section 7.1, |R(τ)| is a monotonically decreasing function under certain 

conditions, with the decorrelation rate, or rate of autocorrelation decay, being proportional to 

speed. As difference methods depend on R(0) and R(T), there are two regimes to consider in 

understanding Equation (16). The first is when T is much longer than the intrinsic 

decorrelation time. In this case, R(T) ≪ R(0), and D(T) is proportional to the signal power 

R(0), typically related to backscattering (RBC density and orientation). If T is on the order 

of the intrinsic decorrelation time, the difference D(T) depends on both the signal power 

R(0) and the decorrelation rate. In this case, the interpretation of the difference D(T) 

becomes more ambiguous, and it can be affected by the signal power or decorrelation rate, 

which can be impacted by the RBC density, orientation, and speed. With the normalization 

in Equation (17), r(T) is more directly related to the rate of decorrelation, and hence, the 
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RBC speed. However, to rigorously account for the possible presence of static scattering, 

measurements at several time lags [18] are required.

5. OCTA Scanning Protocols

The efficiency and sensitivity of OCTA measurements are determined by the OCTA 

scanning protocol. At a fundamental level, scanning protocols can be categorized based on 

whether the analysis is performed on consecutive A-scans, frames, or volumes. Figure 10 

shows the so-called MB-scan, BM-scan and intervolume scanning methods. In Figure 10, 

the cube represents the imaged object, and t1, t2, t3 are the first, second, and third OCT 

scanning time scales, respectively, with t3 > t2 > t1. Each protocol can be characterized by 

the time duration for which a single location is observed.

To our knowledge, Fingler et al. [57] were the first to rigorously compare different OCTA 

scanning patterns. They compared the MB-scan (Figure 10A) and the BM-scan (Figure 

10B), using a phase contrast algorithm. An M-scan is a repeated zero-dimensional scan at a 

single position, while a B-scan is a one-dimensional scan along a single axis. An MB-scan 

comprises multiple A-scans taken at one lateral position before switching to the next 

position (Figure 10A), while a BM-scan comprises repetitive B-scans taken along the same 

cross-section (Figure 10B). According to [57], the advantages and disadvantages of the two 

scanning methods are described here.

The MB-scan is an extension of Doppler OCT protocols. By increasing N, the number of A-

scans per M-scan, the dynamic range for the measurement increases. However, the MB-scan 

is not time-efficient, because the total observation time for a single location is ~t1. Unless 

the dwell time is very long, |r(t1)| ~ 1; thus it is challenging to observe decorrelation. 

However, due to the rapid repeated sampling of the same position, the MB-scan can sample 

fast Doppler velocities [57] without aliasing.

On the contrary, a BM-scan compares consecutive frames, thereby more efficiently utilizing 

the total acquisition time. With a BM-scan, the total observation time for a single location is 

~t2. In [57], the BM-scan was able to acquire data 200 times faster than an MB-scan of the 

same size. Even when using fast systems, the BM-scan may suffer from aliasing of fast 

Doppler velocities; however, the decorrelation rate can be obtained if the interframe time is 

short enough, i.e., |r(t1)| > 0, and provided that t2 exceeds the intrinsic decorrelation time.

In a logical extension of the above two scanning methods, in 2016, Wei et al. [65] proposed 

a volumetric optical microangiography method (Figure 10C) which used intervolume OCT 

scans to extract dynamic changes. The total observation time for a single location is ~t3. 

However, in this volumetric protocol, all information about the decorrelation rate is lost as 

speckles decorrelate between volumes (i.e., |r(t2)| ~ 0) for all but the slowest flows. 

Nevertheless, the volumetric OCTA is likely to become more prevalent as imaging speeds 

continue to improve [66].
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6. Empirical Validation of OCTA

A major question in quantitative OCTA is the degree to which the measured signals are 

affected by the RBC speed versus density or orientation. Several authors have attempted to 

answer this question empirically. In 2016, Choi et al. [67] investigated the relationship 

between OMAG (complex difference OCTA) signals and capillary flow. They proposed an 

analytic model that expressed OMAG signals as a function of time interval between 

successive B-scan frames, particle speed, and concentration (the last two determine flux). 

Based on this model, they performed simulations, as well as phantom experiments, using 

microfluidic channels filled with diluted Intralipid solution to model blood vessels. It was 

shown that OMAG signal increases with flow speed within a certain range that depends on 

the time interval between successive B-scan frames, as expected based on Equation (16). 

Furthermore, OMAG signal increased with particle concentration, but was not strictly linear. 

One limitation of this study is that the Intralipid solution and blood possess very different 

scattering properties [68,69]. Su et al. [70] used blood samples in microfluidic channels to 

demonstrate the relationship between SSADA decorrelation signal and the flow speed and 

channel width. They concluded that before saturation, the decorrelation rate was 

proportional to the blood flow speed when the channel width was fixed.

Even if flow velocities, channel widths, and particle/cell concentrations are realistic, 

controlled ex vivo experiments are limited in how well they can model the range of 

phenomena that are present in vivo. These include effects such as static scattering and 

multiple scattering involving extravascular tissue (Figure 2B), RBC orientation and transit 

deformation, vascular compliance, and cell-endothelium interactions. So, in vitro 

experiments may verify algorithms under model conditions, but the model might only 

partially capture the range of rheological and hemodynamic phenomena present in vivo.

One proposed in vivo benchmark for OCTA is fluorescence angiography (FA), which is a 

gold standard method for perfusion imaging [7,42]. Comparative OCTA-FA studies [7,55] 

have suggested that the presence of moving blood cells is a prerequisite for detection by 

OCTA. The threshold red blood cell density and speed required for OCTA detection are 

usually determined by the algorithm sensitivity. While FA shows plasma perfusion, limited 

depth resolution and lack of three-dimensional data and quantitative flow information make 

FA a less-than-ideal technique for OCTA validation.

The gold standard for single vessel hemodynamic imaging in deep tissue is multiphoton 

microscopy (MPM) [71,72]. In the simplest implementation, a fluorescent label is injected 

into the bloodstream and volumetric two-photon microscopy (TPM) is performed to acquire 

an angiogram. Vakoc et al. [15] showed that OCTA and two-photon microscopy angiogram 

morphologies correlate well for vessels larger than capillaries, and that OCTA is not 

confounded by dye leakage, which can impair TPM. Aside from morphology, TPM line 

scans enable red blood cell imaging in individual capillaries [22], measuring in vivo speed, 

flux, and linear density quantitatively. In 2012, Srinivasan et al. [18] performed OCTA and 

TPM line scans sequentially in the same vessels in vivo, showing that OCTA decorrelation 

rate increases with RBC speed measured by TPM. Later in 2014, Wang et al. [73] validated 

OMAG (complex difference OCTA) with TPM, finding no significant difference between 
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the respective vessel densities derived from OMAG and TPM, up to the penetration depth of 

TPM.

When comparing OCTA and TPM, it is important to recognize that their contrast 

mechanisms are complementary. As OCTA measures RBC scattering and TPM measures 

plasma tracer fluorescence, measurements of vessel diameter must disagree in small vessels 

due to the plasma only, cell-free layer [2]. Moreover, typically, OCTA has a worse 

volumetric resolution than TPM, and asynchrony in measurements [18] can additionally 

confound comparisons between modalities unless physiology is carefully maintained. Thus, 

rigorous verification of OCTA with simultaneous TPM is a promising topic for further 

investigation.

The most appealing and direct validation approach is to use another OCT modality or 

algorithm to cross-validate OCTA. In 2012, Ren et al. [74] noticed that the passage of a red 

blood cell through the OCT coherence volume led to phase and intensity transients. Based 

on this insight, they developed a particle counting method for measuring the flux, speed, and 

linear density in a capillary. Using particle counting, they developed and validated a phase 

intensity mapping (PIM) algorithm for measuring quantitative cerebral blood flow (CBF) 

[75]. It remains unclear whether individual red blood cell passage can be measured at all 

locations in an image, or whether these results are merely anecdotal. Moreover, the intensity 

pattern created by decorrelation can create random transients that could be easily mistaken 

for RBC passage (e.g., Figures 4E and 6B). Still, particle counting remains an attractive 

approach for validating OCTA in stable preparations.

7. OCTA Measurements of Hemodynamics

Based on dynamic changes in intensity, phase, or complex signal, OCTA algorithms can 

distinguish dynamic tissue from static tissue. Thus, while OCTA can answer the question 

“where is there flow?”, it cannot yet reliably answer the question “how much flow is there?”. 

In recent years, several attempts have been made to further quantify OCTA signals. Many of 

these efforts are based on estimating the autocorrelation function. While the autocorrelation 

function can be estimated, to date, there is no rigorous theory or model for recovering RBC 

flow or speed from OCTA signals. Here, we summarize some promising work towards these 

goals.

7.1. Flow Quantification

In 2010,Wang et al. [19] made an early effort at providing an autocorrelation model to 

measure transverse particle flow speed. Though they focused on intensity transients, here we 

generalize their initial work. The basic principle of their model is that when particles pass 

through the imaging beam, they create OCT signal transients that may provide information 

about the speed of the underlying particles. However, with a large coherence volume, the 

individual transients may overlap in time. The complex signal at position (x, z) is expressed 

as a superposition of particle contributions:
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S(x, z, t) = ∑k = 1
G(x, z)Mk(x, z)REC(x, z, t − tk), (18)

REC(x, z, t) =
1, 0 ≤ t ≤ τ0(x, z)
0, otherwise

, (19)

where k is index of the kth particle, G(x, z) is the total number of particles passing through 

the imaging beam within the signal acquisition period, Mk(x, z) is the complex amplitude of 

the kth particle transient, tk denotes the time when a particle begins to pass through the 

beam, and τ0(x, z) is the position-dependent transit time of the particle.

After expressing the complex OCT signal in terms of particle contributions, the normalized 

autocorrelation function of S(x, z, t) is given by:

R(x, z, τ)
R(x, z, 0) =

1 − τ
τ0(x, z) , τ ≤ τ0(x, z)

0, τ ≥ τ0(x, z)
, (20)

where R(x, z, τ) is the autocorrelation function of S(x, z, t) with time lag τ. Note that this is 

equivalent to the normalized autocorrelation of REC(t). The slope of the normalized 

autocorrelation function in Equation (20) is proportional to the transverse speed (~1/τ0). 

Note that Equation (20) can be further generalized to accommodate other transient shapes.

In 2012, Srinivasan et al. [18] proposed an alternative model to relate the autocorrelation to 

speed. For small particles undergoing isotropic motion through a coherence volume, they 

proposed that the autocorrelation decay is determined by axial and transverse point spread 

functions, while for large particles, the spatial characteristics of the particles themselves 

dominate the autocorrelation as described above. In [76], for small particles, the 

autocorrelation function at time lag τ in cylindrical coordinates (ϱ, φ, z) is:

Rd(τ) = 2 ∣ K ∣2

π2wϱ
4

π

(
vϱ

2

wϱ
2) +

vz
2

wz
2

PA exp −
(vϱτ)2

wϱ
2 −

(vzτ)2

wz
2 exp [i(4πn

λ0
)vzτ], (21)

where wϱ is the transverse beam profile, wz is the axial resolution, K is an arbitrary complex 

constant [77], PA is the power in the random process which describes the field, v is the 

particle’s speed, n denotes the refractive index, and λ0 is the central wavelength. The power 

spectral density, Pd, derived from the temporal autocorrelation function, is expressed as:
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Pd(f) = 2 ∣ K ∣2

πwϱ
4(

vϱ
2

wϱ
2 +

vz
2

wz
2)

PA exp [ −
π2(f −

2nvz
λ0

)
2

(
vϱ
2

wϱ
2 +

vz
2

wz
2)

] . (22)

In the presence of static scattering (Figure 6), the autocorrelation takes the form:

R(τ) = Rd(τ) + Rs(τ), (23)

where Rs(τ) is the autocorrelation of the static component, with a much longer decorrelation 

time than the autocorrelation of the dynamic component, Rd(τ). In practice, Rs(τ) is usually 

constant over time scales of interest. Aside from the Doppler shift, the un-normalized 

autocorrelation Rd(τ) provides two essential observables: the decorrelation rate, which is 

sensitive to speed, and power (PA), which is sensitive to the RBC density. Recent work has 

proposed to quantify OCTA using difference algorithms measured at several time delays 

[20,78], providing the ability to measure blood flow speed. Since difference and correlation 

algorithms are related by Equation (16), these algorithms essentially estimate the un-

normalized autocorrelation. As highlighted in Equation (23), static scattering, if present, 

must also be taken into account in parametric estimations based on the autocorrelation.

Finally, a major limitation of existing models is that they do not account for multiple 

scattering. In particular, multiple dynamic scattering events (Figure 2C, green) increase the 

decorrelation rate relative to the single scattering models described above, as each dynamic 

scattering event causes momentum transfer [79]. In such cases, the decorrelation rate 

depends on the number of scattering events, which in turn is impacted by the RBC density. 

Thus, with multiple intravascular scattering events, decorrelation rate is not a “pure” metric 

of speed. Therefore, decorrelation rate is not a good metric of speed within macrovessels 

where multiple scattering dominates, but may perform better in capillaries where 

hematocrits are lower and singly backscattered light prevails (Figure 2B).

7.2. Hematocrit Quantification

Since OCTA signal depends on the RBC density, can OCTA be used to quantify hematocrit? 

The differences in rheology, geometry, and light scattering in capillaries versus macrovessels 

suggest different approaches for each. In macrovessels, backscattering or attenuation (signal 

slope) are possible observables which may help to determine hematocrit. However, due to 

the high scattering coefficient and anisotropy of RBCs, multiple scattering events are very 

likely, except at superficial path lengths (Figure 2C,D). In particular, at physiological 

hematocrits, dependent scattering and shadowing effects lead to a highly nonlinear 

relationship between the RBC concentration and scattering coefficient [80,81]. This 

nonlinear relationship hampers efforts at quantifying hematocrit based on light scattering 

and the signal slope alone. Additionally, the oxygen saturation dependence of hemoglobin 

refractive index and RBC scattering further complicate efforts to measure hematocrit based 
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on attenuation [26]. The orientation-dependence of light scattering from RBCs (Figure 2C) 

makes quantifying hematocrit from backscattering alone challenging. Thus, quantification is 

challenging in macrovessels.

The single file flow and relatively lower hematocrit in capillaries makes multiple scattering 

within these vessels less problematic. However, RBCs may re-orient themselves and 

possibly deform as they squeeze through the smallest diameter capillaries, thereby changing 

their backscattering cross-sections. Moreover, measuring backscattering directly would need 

absolute calibration, which can be difficult in vivo. However, backscattering may still 

measure relative changes in the red blood cell content in capillaries [82] and, possibly, at the 

surfaces of macrovessels over time. Thus, while quantification of hematocrit changes is 

possible in capillaries, absolute measurements of hematocrit with conventional OCTA are 

currently challenging.

8. Can OCTA Be Made a Quantitative Tool?

OCTA systems can observe dynamic signal power (variance) and decorrelation rate [19,83], 

based on the dynamics of light scattering. As algorithms, imaging system performance, and 

motion tracking/compensation continue to improve, OCTA observables, particularly 

decorrelation rate, can be precisely and accurately measured. These observables may 

generate useful diagnostic information, even if their underlying hemodynamic correlates 

remain unclear. However, if OCTA observables can be directly linked to hemodynamic 

parameters such as blood flow, volume, hematocrit, and speed, OCTA diagnostics could aid 

understanding of pathogenesis. This effort requires an appropriate model to describe OCTA 

signals. The model may be empirical (Section 6), but ideally, should have a theoretical 

foundation (Section 7.1). Current theoretical models are very simple, and only account for 

single scattering [18,19,83,84]. Improvements in OCTA theory to include multiple scattering 

[85] and orientation effects [37] are needed. Empirical models have been developed for flow 

phantoms [67], but they may be limited to in vitro conditions, and their applicability in vivo 

remains uncertain. Better in vivo validation experiments, perhaps in well-controlled and 

stable animal preparations, are needed. Last, due to differences in light scattering and 

hemodynamics (Figures 1 and 2), models for capillaries and macrovessels must be 

developed independently.

In spite of these proposed efforts, the inherent complexity of the rheology and light transport 

in microvasculature may prevent reliable quantification of OCTA. Therefore, we propose 

that alternative optical properties (aside from light scattering) may enable more quantitative 

OCTA. For instance, visible light OCTA [86] enables direct absorption-based measurements 

of hemoglobin concentration, which is expected to correlate well with hematocrit (RBC 

volume fraction) under most conditions [87]. Yet another way to circumvent the pitfalls of 

RBC scattering is to introduce an exogenous contrast agent with more desirable scattering 

properties into the bloodstream [88]. If a more isotropically scattering contrast agent such as 

Intralipid® [89,90] is used, angiograms derived from the contrast agent signal alone do not 

suffer from multiple scattering tails [89,90]. Microbubbles [91,92] are promising for 

enhancing intravascular scattering signals, and may present more well-defined decorrelation 

characteristics than blood. Moreover, if the contrast agent behaves like plasma and the signal 
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can be calibrated and related to concentration [89,90], plasma flow, transit time, and volume 

can all be measured.

9. Conclusions

Despite recent strides in OCTA imaging speed, field-of-view, and measurement of OCTA 

observables, OCTA remains a qualitative tool at present. The obstacles to quantification 

include the irregular shape of RBCs, the consequent orientation-dependence of RBC 

backscattering, and the high anisotropy of the RBC scattering phase function, which leads to 

multiple scattering in large vessels. Quantification of OCTA signals can be achieved only 

through a rigorous understanding of the relationship between hemodynamics, rheology, and 

light scattering of RBCs. Improvements in theoretical models, validated in microvasculature 

in vivo against gold standard techniques and possibly in simulation, may help to improve 

this understanding. Finally, alternative measurements, based on absorption or exogenous 

contrast agents, may help to alleviate some of the confounds associated with RBC scattering 

and enhance the quantitative information provided by OCTA. More quantitative 

interpretation of OCTA would aid the application of this promising technique to study 

pathophysiology, and also potentially enhance the clinical impact of OCTA, making this 

endeavor well worth the effort.
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Figure 1. 
(A) Flow in capillaries (microvessels with diameters of <10 μm) is single-file, usually with 

highly variable hematocrits that fall below systemic levels; (B) On the other hand, 

macrovascular flow often follows a blunted laminar profile at near-systemic hematocrits. 

Consequently, different approaches are required to quantify microvascular versus 

macrovascular hemodynamics via OCTA (Optical Coherence Tomography Angiography) 

imaging.
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Figure 2. 
Single and multiple scattering in the OCTA of capillaries versus macrovasculature. (A) 

Blood has a high scattering anisotropy, leading to a high probability of detecting multiple 

scattered light paths; (B) For capillaries, dynamic RBC (red blood cell) forward scattering 

precedes or follows static tissue backscattering, which leads to “multiple scattering” tails; 

(C) In large vessels, the backscattering cross-section is determined by the shear-induced 

orientation of RBCs with their flat face parallel to the shear force. If the vessel lumen 

exceeds a scattering length, multiple intravascular dynamic scattering events (green) before 

detection are likely; (D) Cross-sectional OCT (Optical Coherence Tomography) angiogram 

of the mouse brain at 1300 nm (complex interframe subtraction method) with a qualitative 

colorbar showing the balance of backscattered light (blue) and multiple scattered light 

(green) in a capillary (left) and macrovessel (right).
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Figure 3. 
The motion of scatterers in a coherence volume gives rise to complex field fluctuations that 

form the basis for OCTA signals. The contributions to the complex field are shown at two 

different points in time (t and t + τ). (A,B) Field fluctuations due to dynamic scatterers in a 

coherence volume. (C,D) Field fluctuations due to a combination of static (blue) and 

dynamic (red) scatterers in a coherence volume.
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Figure 4. 
The major categories of OCT signal fluctuations are Doppler shifts and decorrelation. 

Comparison of complex field, intensity, and phase time courses, for the case of a pure 

Doppler shift (A–C) and a Doppler shift with decorrelation (D–F). For a pure Doppler shift, 

the field traces out a helical pattern (A), whereas decorrelation introduces random deviations 

from this pattern (D).
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Figure 5. 
Doppler OCT and OCTA in the mouse brain. (A) Doppler OCT can visualize flow based on 

Doppler shifts, caused by motion in the axial direction, towards or away from the probe 

beam. On the other hand, OCTA visualizes flow based on decorrelation, usually caused by 

translational motion through the coherence volume, as well as Doppler shifts. The overlay of 

both methods (C) shows that Doppler OCT is mainly limited to ascending venules or 

descending arterioles, where Doppler shifts dominate. On the other hand, OCTA, which is 

sensitive to decorrelation, more comprehensively shows vasculature, including regions with 

predominantly transverse flow. A standard Kasai algorithm was used on transversally 

oversampled images for (A) and a complex interframe subtraction method was used on 

rapidly acquired repeated cross-sectional images for (B).
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Figure 6. 
Comparison of complex field (A), intensity (B), and phase (C) time courses when both static 

and dynamic scattering are present in a coherence volume (with Doppler shift and 

decorrelation of the dynamic component). Such coherence volumes are present at the edges 

of vessels.
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Figure 7. 
OCTA microscopy of the mouse brain enables an assessment of vascular connectivity (A,B) 

and longitudinal monitoring of microvascular remodeling (C) one week after distal middle 

cerebral artery occlusion (yellow arrow).
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Figure 8. 
Ocular OCTA of iris (A), retina (B), and choroid (C). Hessian vesselness enhancement was 

applied to retinal and choroidal vasculature before display. Note that the pupil was dilated 

prior to OCTA acquisition for (B,C).
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Figure 9. 
OCTA of the skin on a pig ear. OCT cross-sectional intensity image (A) and angiogram (B) 

determined by complex subtraction. (C) Overlay of superficial vessels in the epidermis (red) 

with deeper vasculature in the dermis (green). (D–I) Maximum intensity projections 

centered at different axial (z) positions relative to the surface.
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Figure 10. 
Volumetric OCTA scanning protocols can operate with respect to A-scan (A), frame (B), or 

volume (C). A cubic volume is scanned with time scales t1, t2, and t3. Data acquired 

sequentially along time scale t3 are shown in red and green. (A) MB-scan: multiple A-scans 

are obtained at one lateral position before switching to the next lateral position; (B) BM-

scan or interframe scan: multiple B-scans are obtained at one cross-sectional location before 

switching to the next location; (C) intervolume scan: successive scans of the whole volume. 

Each scan achieves a progressively larger observation time for a single spatial position (t3 > 

t2 > t1).
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Table 1

Symbols or variables used and their meaning.

Symbol Meaning

S Complex OCT signal/field

|S| Amplitude of the OCT signal

I = |S|2 Intensity of the OCT signal

∅ Phase of the OCT signal

Sm OCT field from one scatterer

SV Speckle variance

cmOCT Correlation mapping OCT signal

PV Phase variance

Δ∅ Phase difference

ΔS Complex field difference

CDV Complex differential variance

R Autocorrelation function

P Power spectral density
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Table 2

Classification of OCTA algorithms.

Category Classification

OCT signal Field vs. Intensity/Amplitude vs. Phase

Calculation Variance/Difference vs. Correlation

Averaging method Temporal vs. Spatial vs. Spectral

Normalization Normalized vs. Non-normalized
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