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Transition in motility mechanism due to inertia in a model self-propelled two-sphere
swimmer
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We propose a model reciprocal swimmer composed of two unequal spheres that oscillate with
respect to each other, and we use computer modeling to study its motility for 0 ≤ Re ≤ 150. We
show that our model switches swimming direction from a small-sphere-leading to a large-sphere-
leading regime at Re ≈ 30. Thus, although the relative oscillation of the spheres is the same in all
cases, the two flow regimes yield distinct motility mechanisms. The generated flows are qualitatively
similar to pullers and pushers in Stokes flows, except that here inertial forces play an important role
in the system dynamics. We relate both motility mechanisms to the classical nonlinear phenomenon
of steady streaming, suggesting that steady streaming can be an important physical mechanism in
swimming at intermediate Re. As a step towards classifying swimming at intermediate Reynolds
numbers, we introduce the concepts of steady streaming pullers and steady streaming pushers.

PACS numbers: May be entered using the \pacs{#1} command.

Diverse biological motion occurs in fluid environments
across a broad range of scales. Examples include ac-
tive and passive transport at subcellular scales as well as
swimming bacteria, tunicates, seahorses, jellyfish, sharks,
and whales. [1–3]. Understanding biological motility
requires connections between fundamental physics and
biology and has many applications, including drug-
delivering nanomachines [4, 5] and autonomous underwa-
ter vehicles [6–8]. Swimming regimes can be classified by
the Reynolds number (Re), which characterizes the rela-
tive importance of inertial and viscous forces. Although
there is a large body of work on motility in Stokes flows
(Re = 0), in which viscous forces dominate, and at high
Re, in which inertial forces dominate, less is known about
the intermediate regime Reint ∼ 1 – 1000.

The intermediate Re regime encompasses an enor-
mous diversity of organisms, ranging from larvae (fish,
squid, ascidian) and large ciliates, to nematodes, cope-
pods, and jellyfish, that exhibit a variety of motility
mechanisms: jet propulsion [9, 10], anguilliform (eel-like)
locomotion [11–15], rowing [16, 17], aquatic flapping
flight [18], and ciliate beating [19, 20]. Previous work
to develop and classify model swimmers has focused on
Stokes flows [21, 22], as with the spherical squirmer model
of pushers and pullers [23–30]. The breadth of the motil-
ity mechanisms encountered in nature, together with the
lack of analytical solutions to the Navier-Stokes equa-
tions at Reint, has made it difficult to develop a similar
classification system in the intermediate regime. Conse-
quently, most prior studies at Reint have focused on the
details of specific organisms [9–12, 14–20, 31–33], some-
times treating Reint swimmers under Stokes assumptions
for simplicity [13, 34]. The squirmer model was recently
extended to include inertia, which is providing useful in-

sights [35–38]. However, there is still no quantitative clas-
sification of model swimmers at Reint. It is important to
develop general models that make few a priori assump-
tions, so that the underlying physical mechanisms and
characteristics of these swimmers can be identified and
understood. Only then can we make progress in better
understanding the biology and designing artificial swim-
mers.

In this paper we propose a spherobot model reciprocal
swimmer that is composed of two unequal spheres that
oscillate with respect to each other (Fig. 1(a)), and com-
putationally studied its motility for 0.001 ≤ Re ≤ 150
as well as in Stokes flow. For Re = 0, the spherobot
cannot swim because of Purcell’s scallop theorem [39];
its reciprocal stroke does not break time-reversible sym-
metry. For Re ≥ 0.001 the spherobot begins swimming
with the small sphere leading, and then switches direc-
tion at Re ≈ 30 to swim with the large sphere leading.
We analyzed the flow fields for each regime of swimming
direction and showed that they qualitatively correspond
to the flow fields of Stokesian pullers and pushers, respec-
tively. Unlike Stokesian swimmers, however, the spher-
obot uses steady streaming to swim, which is characteris-
tic of oscillatory flows at Reint [40, 41]. We suggest that
steady streaming can be an important physical mecha-
nism present more generally in motility at Reint [42–45].

The spherobot is composed of two unequal sized
spheres, which are coupled to one another by prescrib-
ing the distance between their centers d(t) = d0 +
Ar sin(2πft), in which d0 is the distance between the
sphere centers in the middle of the cycle, Ar = 0.5(dmax−
dmin) is the relative amplitude of the spherobot, and
f is the frequency of oscillation (Fig. 1(a)). To model
this computationally, we tethered the two spheres using
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FIG. 1. (a) Reciprocal oscillation of the spherobot swimmer
over one cycle. Spheres’ centers of mass (COM)(blue circles)
and the spherobot COM (green circle) are indicated. The
distance between the spheres’ centers, d(t), is d0, d0 − Ar,
and d0 + Ar at the midpoint, minimum, and maximum dis-
tances, respectively. (b) Displacement of the spherobot COM
for different Reynolds numbers (0, 5, 15, 30, 60, 150) over
one cycle of oscillation after steady swimming velocity. Line
color indicates overall direction of swimming; swimming in
the direction of the small sphere (red), large sphere (green),
and no net displacement (black, yellow). Body length is
R1 +R2 + d0 = 120 cm.

an active spring with a time-dependent equilibrium dis-
tance that was chosen to equal the prescribed distance
between the spheres, d(t). As a result, equal and oppo-
site (spring) forces are applied to the spheres that act
to keep them approximately at the prescribed distance
apart. Because the spheres have different masses, the
small sphere has a larger amplitude than the large sphere,
and in our model, the ratio between the amplitudes was
8; see also Supplemental Material IC [46]. The model
ensures a geometrically reciprocal cycle (error ≈ 10−7m)
and a force-free swimmer. To simulate the spherobot in
a fluid, we used an exactly constrained immersed bound-
ary (CIB) method [47, 48]. The CIB scheme is imple-
mented in the IBAMR software [49], which provides sev-
eral variants of the immersed boundary (IB) method [50]
for fluid-structure interaction. The IB method has been
used for a variety of fluid-structure interaction problems
at low [51–61], intermediate [10, 62–69], and high [49, 70–
73] Reynolds numbers. Further details on our model and
method are given in the Supplemental Material IA [46].
The radii of the spheres were fixed at R1 = 30 cm and
R2 = 15 cm, and both were neutrally buoyant with re-
spect to the surrounding fluid of density ρfluid = 2.0 kg-

FIG. 2. Swimming speed of the spherobot COM, Vswim, as a
function of the Reynolds number. In Regime I the spherobot
swims with the small sphere leading (red). At Re ≈ 30 (yellow
mark), there is a switch in direction, and in Regime II, it
swims with the big sphere leading (green). The spherobot
does not swim in Stokes flow, Re = 0 (black). Inset shows
data on a logarithmic scale.

m−3. The other parameters were fixed at d0 = 75 cm,
Ar = 24 cm, f = 8 Hz. Re was varied from 0.001 to 150
by changing the fluid kinematic viscosity from 0.02 to
2900 m2s−1. The maximum (Re = 150) and minimum
(Re = 0.001) were chosen so as to cover a few orders of
magnitude within the intermediate range, but the spe-
cific values have no particular significance. We used the
streaming Reynolds number, defined as Re = A2

rω/ν,
which characterizes the time-averaged (steady) flow gen-
erated by oscillations at Reint [41, 74] and we used di-
mensionless time, τ = tf .

Results. For Re > 0, the coupled periodic recipro-
cal oscillation of the two spheres resulted in the spher-
obot swimming (i.e., there was a net displacement of the
spheres’ center of mass (COM) over one cycle, ∆yCOM)
except for Re ≈ 30. Fig. 1(a) shows a diagram of the
spheres’ oscillation, and Fig. 1(b) shows the correspond-
ing COM displacements at different Re. Positive and
negative displacements, here, are in reference to the start-
ing position of the COM at 0. Note that the COM effec-
tively follows the trajectory of the large, more massive
sphere. For Re = 0, there is no net displacement over
the cycle: because the cycle is reciprocal, the COM oscil-
lates but returns to its starting position (Fig. 1(b), black
curve), as required by Purcell’s scallop theorem. As Re
increases, we see a net negative displacement over a cycle
for Re = 5, 15 (Fig. 1(b), red curves) and a net positive
displacement for Re = 60, 150 (Fig. 1(b), green curves).
Re = 30 is a special point: the COM oscillates but re-
turns to its starting position with no net displacement
(Fig. 1(b), orange curve).

For 0.001 ≤ Re ≤ 150, we calculated the spherobot
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FIG. 3. The velocity of the COM of the spherobot plotted as
a function of time over 1.5 cycles for (a) Re = 0, (b) Re = 5,
(c) Re = 30, and (d) Re = 150. Shaded area under the
curve indicates positive (green) or negative (red) displace-
ment. Power and recovery strokes are labeled “P” and “R”.
Arrows on the schematic diagram on the right indicate overall
direction of swimming.

swimming velocity, defined as Vswim = ∆yCOMf . Plot-
ting the velocity as a function of Re (Fig. 2) allowed us
to identify two regimes and two transitions: Regime I,
0.001 ≤ Re < 30, in which the spherobot swims with
the small sphere at the front and the swim velocity is
non-monotonic with a maximum at Re ≈ 5 (Fig. 2, red
symbols); and Regime II, Re > 30, in which the spher-
obot swims with the large sphere at the front (Fig. 2,
green symbols). The regimes occurred through two tran-
sitions: (1) between Re = 0 and Re = 0.001 (our lowest
non-zero Re value), in which the spherobot transitions
from rest to locomotion; and (2) at Re ≈ 30, in which
the spherobot switches swimming directions.

A classical approach to analyze swimmer motility is
to divide the periodic motion into power and recovery
strokes [2]. We defined power strokes as time intervals
when the instantaneous velocity of the COM of the spher-
obot, VCOM, was in the mean swimming direction, and
recovery strokes as time intervals when VCOM was op-
posite to the mean-swimming direction. For Re = 0
(Fig. 3(a)), there was no distinction between power and
recovery strokes, because the spherobot did not swim; in-
stead, it moved up and down equal amounts (Vswim = 0).
In Regime I (Fig. 3(b)), power and recovery strokes pro-
duce large displacements back and forth (jerky motion),
resulting in a small Vswim. The back-and-forth displace-
ments diminish with increasing Re and become approx-
imately equal at Re ≈ 30 (areas under the curves in
Fig. 3(c)). In Regime II, as Re increases, the recovery
stroke becomes both shorter in duration and smaller in
amplitude compared to the power stroke, and compared
to the recovery strokes of Regime I (Fig. 3(b)). The result
is that for the higher Re (e.g., Re = 150) in which Vswim

is large, the recovery stroke hardly exists (Fig. 3(d)), and
we see less of the back-and-forth jerky motion.

To gain insight into the flow fields in each regime, we
investigated instantaneous vorticity fields (Fig. 4, Sup-
plemental Movie S1 [46]). In both regimes, there are
always two vortices near the surface of each sphere. Be-
cause the flow is axisymmetric about the oscillation axis,
these vortices are actually vortex rings. We shall refer
to those near the sphere as inner votex rings. In Regime
I (Fig 4 (a)), every time a sphere changes direction, a
new inner vortex ring is generated around each sphere,
pushing away the one that was there previously (now
outer vortex ring) and swirling in the opposite direc-
tion (Fig. 4(a.ii)-(a.iv)). The inner vortex ring expands
spatially and dominates over the outer vortex ring un-
til the spheres change direction and the same process is
repeated. Thus, for a part of the cycle, there is a sin-
gle vortex ring per sphere (Fig. 4(a.iii)), and for another
part of the cycle, there are two vortex rings (inner and
outer) per sphere (Fig. 4(a.ii)). In Regime II (Fig 4 (b)),
the vortex structures near the surface of the spheres are
generated and oscillate in a similar way as in Regime I,
but with one important difference: there is an additional
outer vortex ring below the small sphere that does not
switch direction and is never dominated by the inner vor-
tex ring, as in Regime I. This vortex ring induces a push
of fluid away from the small sphere at all times of the
cycle (Fig 4 (b.i)-(b.iv), (b.vi)).

To discern the cumulative effect of the instantaneous
flows in each regime, we also calculated time-averaged
vorticity (Fig. 4 (v)) and velocity (Fig. 4 (vi)) fields
over four cycles of oscillation. It is clear that the time-
averaged flow field around the spherobot is dominated by
the small sphere, i.e., the magnitudes of both the vortic-
ity and the velocity around the small sphere are higher
than for the large sphere. We attribute this to the fact
that the small sphere has a larger oscillation amplitude.
In Regime I, the fluid, on average, pulls in towards the
spheres along the direction of swimming and pushes out
in the perpendicular-to-swimming direction, away from
the gap between them (Fig. 4 (a.v),(a.vi)). In Regime
II, the fluid, on average, does the opposite: it pushes
away from the spheres along the direction of swimming
(with a strong downward jet below the small sphere)
and pulls in towards the gap between them in the di-
rection perpendicular-to-swimming (Fig. 4 (b.v),(b.vi)).
We thus observe that the flows around the spherobot in
Regimes I and II resemble those of Stokesian pullers and
pushers, respectively [23–25], even though Re is in the
intermediate range. (Note that the flows in all cases are
symmetric about the oscillation axis).

Discussion . To explain our results, we invoke semi-
nal work on steady streaming (SS), which is the nonzero
time-averaged flow that arises at Reint because of non-
linear effects of inertia for an oscillating sphere of ra-
dius R with amplitude A, with A << R [40]. Riley’s
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FIG. 4. Fluid flow for the two motility regimes characteristically shown for (a) Re=5 and (b) Re=150. Cross section shown
is a plane through the center of the spheres (fluid flow is axisymmetric along the direction of oscillation and swimming).
Instantaneous vorticity at times τ indicated at the top (i-iv); color map indicates direction and magnitude of fluid vorticity
(blue for clockwise, red for counterclockwise). Time-averaged fluid (v) vorticity and (vi) velocity vector field (arrows indicate
the direction of the fluid velocity vector and color indicates the magnitude). The positions of the spheres in (v–vi) indicate
closest, mid-point and farthest distance during oscillation.

SS flow solutions around a sphere were calculated an-
alytically in two cases, R << δ and R >> δ, where
δ =

√
ν/ω is the oscillatory boundary layer thickness,

and were both shown to be symmetric about the oscilla-
tion axis. Even though the spherobot does not operate
under the same assumptions, Riley’s SS flow solutions
qualitatively resemble the two flow regimes around the
spherobot; see Supplemental Material III [46]. Similarly
to Riley’s work [40], we showed that a single oscillating
sphere for R ∼ O(A) generates SS flow for Re = 5 and
Re = 150 (corresponding to the spherobot Regimes I,II),
(Fig. S5 a,b i), [75, 76].

In the case of the spherobot, the generation of SS flow
by the small sphere remains practically independent of
the presence of the large sphere everywhere apart from
the space occupied by, or immediately adjacent to the
large sphere itself, including the gap between the spheres
(Fig. S5 a,b i-ii). The large sphere blocks part of the
SS flow generated by the small sphere, which creates an
asymmetry of the SS flows about the plane perpendicu-
lar to the oscillation axis. As a consequence of this flow
asymmetry, in Regime I, the small sphere on average pulls
fluid inwards along the oscillation axis so that the net flux

of momentum is towards the small sphere, causing small-
sphere-leading swimming (Fig. 4 (a.v)). Conversely, in
Regime II, the small sphere pushes fluid outwards along
the oscillation axis with net flux of momentum away from
the small sphere, causing it to swim in the opposite direc-
tion, i.e., large-sphere-leading swimming (Fig. 4 (b.v)).

We have explained why the spherobot switches swim-
ming direction, transitioning between two motility mech-
anisms: an effective steady-streaming puller for Re < 30
(Regime I, Fig. 2,4a), and an effective steady-streaming
pusher for Re > 30 (Regime II, Fig. 2,4b). We empha-
size that our swimmer is autonomous: its SS flows are
generated by its own motion rather than external stim-
uli [44, 77, 78] or pre-imposed flow fields, as in squirmer
models [37, 38]. Further, our model is geometrically
simple, reciprocal, and has essentially no a priori as-
sumptions regarding its parameters, making it relatively
easy to implement experimentally. For these reasons our
model is a fundamental one and a step towards classifi-
cation of Reint swimmers in general.

Many open questions remain for future investigation.
For example, it would be plausible to seek connections
between our model and the inertial squirmer model in
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Chisholm et al. [37], in which pullers were shown to be
more efficient at low nonzero Re and then became un-
stable at higher-intermediate Re, while pushers became
more efficient. Our swimmer in fact switches from an
SS puller at 0 < Re < 30 to an SS pusher for Re > 30
instead of becoming unstable, as if adapting to the sur-
rounding fluid. Moreover, the Re-based transition in
the observed motility mechanism will allow us to draw
analogies between the spherobot and biological swim-
mers, which, as they grow in size and operate at higher
Re, must change their motility mechanism. For example,
the mollusk C. antartica switches from using cilia to flap-
ping as it grows [79], the brine shrimp transitions from
rowing to gliding with metachronally-beating legs [80],
and the nymphal mayfly transitions from rowing to flap-
ping with its gill plates [81]. Based on our findings, we
suggest that steady streaming can be an important physi-
cal mechanism present more generally in motility at Reint

both in biological organisms but also when designing ar-
tificial swimmers [42, 43, 45].
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