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Abstract: Controlled low-strength materials (CLSMs) have been developed using various byproducts
for backfilling or void-filling around pipelines or culvert boxes. However, these CLSMs have encoun-
tered issues related to their inadequate placement around underground facilities, despite satisfying
the performance requirements, especially flowability, recommended by the American Concrete Insti-
tute (ACI) 229 committee. In this study, a new CLSM is developed to ensure a significantly higher
flowability, lower segregation, and faster installation compared with previously developed CLSMs.
This is achieved through a series of laboratory tests. To enhance the flowability and prevent segrega-
tion, a calcium-sulfoaluminate-based binder and fly ash are used in combination with two types of
additives. The measured flowability of the new CLSM is 700 mm, while its compressive strength and
bleeding satisfy the general criteria specified by the ACI 229R-13. In addition, the performance of
the developed CLSM is compared with that of predeveloped CLSMs. The new CLSM was not only
shown to exhibit the highest flowability, but also to satisfy the specified requirements for compressive
strength and bleeding. Overall, it is anticipated that the developed CLSM can significantly reduce
the costs related to the disposal of old pavements, the installation of new pavements, and other
construction expenses compared to the costs related to the conventional method, even though the
expenses for the backfill materials could increase due to the higher production costs of CLSMs than
soil. In addition, there is a need to investigate its field applicability in order to evaluate the precise
costs, maintenance, and long-term stabilities after installation.

Keywords: controlled low-strength material; high flowability; backfilling; fly ash; calcium-sulfoaluminate-
based binder

1. Introduction

In metropolitan cities, ground sinking generally occurs due to the deterioration, crack-
ing, and breakage of sewage pipes (Figure S1), as well as the inadequate compaction
of backfill materials (Figure S2). These factors can lead to the formation of void spaces
around sewage pipes and culvert boxes. Subsequently, ground sinking occurs as void
spaces become larger. Jo et al. [1] reported that the vibration transmitted by vehicles in
metropolitan cities could cause the collapse of enlarged underground void spaces. The con-
ventional method involves compacting well-graded soils around sewage pipes or culvert
boxes using mechanical equipment (e.g., a vibrator) to prevent ground sinking. However,
due to the limitation of mechanical equipment, the area adjacent to sewage pipes and
culvert boxes is typically left uncompacted, in some cases leading to ground sinking. The
foregoing is recognized as one of the causes of ground sinking in metropolitan cities. Ac-
cordingly, the utilization of controlled low-strength materials (CLSMs) has emerged as a
highly effective solution for backfilling or void-filling around pipelines or culvert boxes
and underneath roads.

The American Concrete Institute (ACI) 229 committee defined CLSMs as self-compacting
cementitious backfill materials. Other terms used to describe CLSMs include flowable
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fill, unshrinkable fill, controlled density fill, flowable mortar, plastic soil cement, soil–
cement slurry, and K-Krete. CLSMs have been widely used for numerous applications
(e.g., backfilling, road bases, pipeline and culvert filling, void filling, tank fills, insulation,
and isolation filling) in lieu of conventional compact fillers [2–5]. Table 1 summarizes the
guidelines set out by the ACI 229R-13 that need to be satisfied by each CLSM application.
In accordance with these guidelines, CLSMs should exhibit a high flowability, low bleeding,
early cementation, and sufficient strength [3,6,7]. The ACI 229R-13 document [8] is not
only the main guideline used in the USA, but has also been widely referenced in many
countries. Ling et al. [9] also noted that apart from the USA, there have been no specific
standards or CLSM specifications published by other countries. Therefore, many countries
have developed their own CLSM guidelines based on the ACI 229R-13 document.

Table 1. General criteria and requirements for CLSM application and target performance in this study.

References CLSM Application Criteria and Requirements to Be Fulfilled

ACI 229R-13

General backfilling
(void filling, filling abandoned
underground structures, etc.)

High degree of flowability (>200 mm spread)
Setting time and early strength are not critically essential

Twenty-eight-day compressive strength should be less
than 0.5 MPa

Excavatable backfilling
(underground water, sewer and

storm drainage pipelines,
roadway trenches, etc.)

High degree of flowability
Less subsidence and quick setting time

Easy to re-excavate—manually or mechanically
Twenty-eight-day compressive strength should be less

than 2.1 MPa

This study
(Target performance)

General and excavatable
backfilling (void filling)

Considerably high degree of flowability (>400 mm spread)
Less subsidence (<5% bleeding)

Quick setting time (>0.1 MPa at 4 h)
Easy to re-excavate—manually

Twenty-eight-day compressive strength ≤ 1.0 MPa

Since the 2000s, previous researchers have developed CLSMs using various waste
materials/industrial byproducts (e.g., fly and bottom ashes, ground granulated blast
furnace slag, waste foundry sand, cement kiln dust, steel slag, waterworks and paper
sludges, waste rubber tires, and red mud) [7,10–29]. However, the application of these
previously developed CLSMs to underground facility backfilling has been challenging
due to three primary reasons: (a) previous CLSMs have relatively long durations for
hardening; (b) poorer flowability than grout mortar; (c) large equipment is needed for
the placement of CLSMs. In addition, these CLSMs only satisfied the acceptable level of
flowability recommended by the ACI 229R-13 (i.e., more than 200 mm spread, as listed in
Table 1) [5,6,11,23,30–33].

Even though the performance of predeveloped CLSMs satisfied the requirements
set out by the ACI 229R-13, especially flowability, those CLSMs could lead to problems
of insufficient placement around underground facilities (i.e., pipes and culverts) and
cause inconvenience to citizens in metropolitan cities due to the relatively long hardening
time [5,6,23,34]. Therefore, there is a need to develop a new CLSM with much higher
performance (i.e., high flowability, low bleeding/segregation, and quick setting time) than
predeveloped CLSMs.

In this study, a new CLSM with high flowability, low segregation, and quick setting
time is developed. The target performance criteria for the developed CLSM are summa-
rized in Table 1. In particular, the water volume increased and the materials (i.e., binder
and byproduct) volume was minimized in order to facilitate the placement of the CLSM.
To achieve the foregoing, a series of laboratory tests were conducted to measure the flowa-
bility, density, bleeding, and compressive strength of the new CLSM in accordance with
test standards [35–38]. A sensitivity analysis was performed to compare the flowability,
bleeding, and compressive strength of the new CLSM according to the water–material ratio



Appl. Sci. 2023, 13, 9377 3 of 12

(W/M). Finally, the performance of the newly developed CLSM was compared with that of
predeveloped CLSMs based on soils and bottom ash collected in South Korea.

2. Materials and Methods
2.1. Preparation of Binder

A CLSM is typically composed of a binder, cement, byproduct materials (e.g., bot-
tom/fly ashes and other recycled materials), an aggregate, and water. Schmitz et al. [39]
reported that the characteristics of CLSMs can vary depending on the type of binder. In
this study, calcium sulfoaluminate (CSA) was selected as the primary binder due to its
quick hardening and early strength characteristics. Table 2 summarizes the amounts of
CSA, anhydrous gypsum (AG), and water used to determine the optimal mixture ratio
for the binder. To enhance the early strength and quick hardening, CSA and AG, with
relatively high specific surface areas (more than 500 m2/kg), were used. The powders were
premixed and then mixed with water for 2 min. The paste was cured in a 50 mm cubic
square mold at ambient conditions. The early compressive strength of the binder specimen
was tested at 4 h from mixing in the water. The amount of water was fixed, and AG was
used to supply sulfate ions (SO4

2−), which could produce ettringite by reacting with CSA.
Ordinary Portland cement (OPC), classified as a type 1 cement, was added into the CSA
mixtures (i.e., CSA-6~10) in order to accelerate the generation of ettringite. Figure 1a shows
the binder specimens manufactured based on the mixture proportions in Table 2.

Table 2. Mix proportions of CSA-based binder for each specimen.

Specimen CSA (g) AG (g) OPC (g) Water (g)

Without
OPC

CSA-1 900 100 -

350

CSA-2 800 200 -
CSA-3 700 300 -
CSA-4 600 400 -
CSA-5 500 500 -

With
OPC

CSA-6 720 180 100
CSA-7 640 160 200
CSA-8 560 140 300
CSA-9 490 210 300
CSA-10 480 120 400
CSA-11 400 100 500
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Figure 1. Specimens for compressive strength tests: (a) CSA-based binders; (b) CLSMs. Figure 1. Specimens for compressive strength tests: (a) CSA-based binders; (b) CLSMs.

2.2. Properties of the CLSM
2.2.1. Flowability

High flowability is a crucial characteristic, enabling the CLSM to exhibit self-flowing
properties during backfilling. It eliminates the necessity for compaction while effectively
filling voids around civil utilities (e.g., pipelines and culvert boxes). The high flowability
of the CLSM offers several advantages, including the ability to preserve the alignment of
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pipes and reduce the likelihood of ground sinking [40–42]. In addition, since the CLSM
is injected to fill voids around pipelines, culverts, and underneath roads, it is essential
to ensure sufficient flowability. This enables the CLSM to reach specific spots quickly,
facilitating the efficient and precise placement of the material.

The flowability of the CLSM is influenced by the water content, with an increase in
water content generally resulting in a higher flowability. However, it is crucial to maintain
a balance, because an excessive water content can cause segregation and bleeding. To
resolve this problem, the inclusion of high volumes of fine particles is recommended. These
fine particles aid in reducing the segregation and enhancement of the overall stability
of highly flowable CLSM mixtures. Ling et al. [9] reported that adequate materials and
mixture proportions were important to achieve the required flowability (>200 mm) without
segregation and bleeding. In this study, the flowability of the CLSM was evaluated based
on ASTM D 6103. Figure 2 shows the flowability test, and the description and standard
limit are listed in Table 3.
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Table 3. Test methods and acceptance criteria for determination of CLSM mixtures.

Property Method Description Standard Limit

Flowability ASTM D 6103 [34] 75 × 150 mm openended cylinder
modified flow test

Low flowability: <150 mm
Normal flowability: 150–200 mm

High (good) flowability: >200 mm

Compressive
strength

ASTM C 109 [35]
(For binder)

Determination of compressive
strength of hydraulic cement

mortars using 50 × 50 × 50 mm
cube specimens

Do not consider manifestly faulty specimens
Maximum permissible range between specimens

from the same mortar batch, at the same test age is
8.7% of the average compressive strength

ASTM D 4832 [36]
(For CLSM)

Procedures for the preparation,
curing, transporting, and testing of

the cylindrical specimen
(150 × 300 mm) of CLSM for the

determination of
compressive strength

Special care may be needed because
the specimens are often

very-low-strength and fragile

Maintaining strengths at a low level and allowing
for excavation is an important

consideration for CLSMs.
Strengths between 0.3 and 2.1 MPa are allowed for
future excavation. Even less than 0.3 MPa is also

acceptable for future excavation

Density ASTM D 6023 [37]
Test method for unit weight, yield,

and air content (gravimetric)
of CLSM

Density of normal CLSM in place is in the range of
18.0–22.8 kN/m3, which is greater than most

compacted materials. However, a CLSM mixture
with only fly ash, cement, and water should have a

density of 14.1–15.7 kN/m3
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2.2.2. Compressive Strength

Compressive strength is one of the essential properties for CLSMs. In general, the
ACI 229 committee defined that the 28-day compressive strength of CLSMs should be
8.3 MPa or less to be sufficient. Moreover, they stated that a long-term compressive strength
of less than 2.1 MPa is also allowed to enable future excavation. In this study, a compressive
strength of 1.0 MPa or less was set as the target value (Table 1). Compressive tests were
conducted based on the ASTM C 109 [36] for the binders and ASTM D 4832 [37] for the
CLSM. Figure 1 shows the binder and CLSM specimens for the compressive strength tests.
The description and standard limit are summarized in Table 3.

2.2.3. Density and Bleeding

The ACI 229 committee specified that the density of a normal CLSM in place should
be in the range of 18.0–22.8 kN/m3, which is greater than most compacted materials.
However, a CLSM mixture with only fly ash, cement, and water should have a density of
14.1–15.7 kN/m3. The density of the CLSM developed in this study was also measured
based on ASTM D 6023 [38], and the measured value was described in Section 4.3. The
description and standard limit are shown in Table 3. The bleeding of the CLSM was
measured based on ASTM C 940 [43] at 2 h from mixing.

2.3. Filler

The specific characteristics of each CLSM can depend on the fillers and binders used.
In general, byproducts and coarse or fine aggregates are used as the fillers. In particular, fly
ash in a CLSM can improve its flowability and strength. Fly ash can also reduce bleeding,
shrinkage, permeability, and volume changes because its particle shape is spherical and it
has a low specific gravity and pozzolanic reactivity. Moreover, it functions as a binder or
fine aggregate in CLSMs [11,25,44–46].

Therefore, in this study, fly ash was used as the filler material. Table 4 shows the
chemical composition, specific surface area, and density of the fly ash and other materials
used in this study. The chemical composition was investigated with X-ray fluorescence
(XRF) and the specific surface area was determined with the Blaine test.

Table 4. Chemical composition and physical characteristics of materials used in this study.

Materials
Chemical Composition (%) Physical Characteristics

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O LOI S.S.A. * (m2/kg) Specific Gravity

Fly ash 58.42 18.42 0.89 17.4 0.83 1.8 0.05 0.28 2.41 342.6 2.36

CSA 8.67 33.5 1.75 42.51 1.43 8.45 0.14 0.31 0.7 535.0 2.88

AG 1.41 0.31 0.36 40.0 0.75 53.3 0.36 0.55 1.75 526.2 2.94

OPC 21.1 5.24 3.85 62.1 2.31 2.1 0.10 0.44 2.71 321.0 3.14

* Abbreviation of specific surface area.

3. Determination of Binder

Binder strength can vary depending on the proportions of ingredients, and can influ-
ence the strength of the CLSM. The optimum proportion of binder necessary for the rapid
consolidation of the CLSM was determined in this section. In laboratory tests, the targeted
initial compressive strength of the binder was 10 MPa in order to minimize the amount of
binder in the CLSM composition.

Figure 3 summarizes the 4 h compressive strength of CSA-based binders without OPC
(i.e., CSA-1~5 in Figure 3) and with OPC (i.e., CSA-6~11 in Figure 3). The 4 h compressive
strength after curing the binder specimens was measured. This was because attaining
sufficient compressive strength in the early stage was necessary for quick hardening and a
short setting time in order to prevent the segregation of the highly flowable CLSM.
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The mixed proportions are summarized in Table 2. The compressive strength of CSA-1,
4, and 5 was below the target strength (i.e., 10 MPa), whereas that of CSA-2 and 3 exceeded
10 MPa. The highest compressive strength was measured (i.e., CSA-3 in Figure 3) as the
amount of AG reached 300 g. The reasons related to the foregoing were analyzed as follows:
(a) the CSA produced ettringite when sufficient calcium hydroxide and sulfate existed
during hydration [47–49]; (b) the compressive strength of CSA-2 and 3 was accelerated due
to the supply of sufficient sulfate, facilitating the production of ettringite; (c) specimens
CSA-4 and 5 contained a smaller amount of CSA compared with specimens CSA-2 and 3;
consequently, the strength increase in CSA-4 and 5 was lower than that of CSA-2 and 3;
(d) AG accelerated the hydration of CSA.

The measured compressive strength of the CSA-based binder with OPC (i.e., CSA-6~11
in Figure 3) was larger than the target compressive strength of 10 MPa, except for CSA-6.
Overall, the compressive strength of the CSA-based binders with OPC was larger than that
of CSA-based binders without OPC. This was because OPC can accelerate the hydration
of CSA-based binders through calcium hydroxide (Ca(OH)2), which is induced by OPC.
However, due to the short curing time of 4 h, the observed compressive strength of the
binders could potentially have been influenced by the free lime content of OPC rather than
the hydration products. The highest compressive strength was measured (i.e., CSA-9 in
Figure 3) when the amount of CSA, AG, and OPC was 490 g, 210 g, and 300 g, respectively.
Subsequently, the compressive strength reduced as the amount of CSA and OPC decreased
and increased, respectively. Pelletier et al. [48] stated that CSA was the main component to
increase the compressive strength of the binders and an increased amount of OPC could
lead to a reduction in compressive strength due to the increase in the porosity of the binders.
In particular, their analysis showed that if the OPC content was high and CSA content
was low, the production of ettringite and microcrystalline aluminum hydroxide, which are
considerably related to the compressive strength of binders, could be reduced. In this study,
the mix proportion of CSA-9, shown in Figure 3, was the most adequate for the CLSM
development, because the performance of CSA-9 achieved the goal of a quick hardening
binder with the highest and early-stage compressive strength.

4. Development of CLSM

In general, the mix design of CLSMs has previously been established by engineers
based on experience or the trial-and-error method. Mostly, they were designed to achieve
a sufficiently low compressive strength (i.e., less than 2.1 MPa) and high flowability
(i.e., more than 200 mm spread) to allow re-excavation in the future, as well as to pro-
vide sufficient backfilling and void-filling [9,45,50–52].

4.1. Compressive Strength, Flowability, and Bleeding

In this section, the optimal mixture ratio between the binder and fly ash was investi-
gated in order to develop the CLSM, satisfying the target fluidity, strength, and bleeding.
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Ling et al. [9] reported that CLSMs typically consist of cement (Type 1 Portland), fly ash
(Class C or F), a fine aggregate, and water. In this study, fly ash was selected as the filler, and
two types of additives were supplemented to reduce the settlement of the mixtures. These
materials were Na–montmorillonite as the settlement inhibitor and potassium carbonate
(K2CO3) as the accelerator. As mentioned in Section 3, CSA-9 in Figure 3 was selected as
the binder to develop the new CLSM. The water–material ratio was set to be 1:1 (i.e., W/M
is equal to 100%).

Figure 4 shows the compressive strength at 4 h, 8 h, 1 d, 3 d, 7 d, and 28 d, the
flowability after mixing, and bleeding at 2 h of each CLSM specimen. Detailed information
related to the composition of the CLSM is shown in Table 5. The compressive strength
(qc) typically increased as the proportion of the binder increased, and the qc of the entire
specimen satisfied the target strength (i.e., 28-day compressive strength had to be less
than 1.0 MPa in Table 1). The qc of CLSM-5 and CLSM-1 showed the highest and lowest
compressive strengths (i.e., 0.784 MPa and 0.099 MPa) because the proportion of binder
was the highest and lowest, respectively (Figure 4a). As shown in Figure 4b, the flowability
of the specimens satisfied the target value (i.e., more than 200 mm spread in Table 1).
The flowability increased as the amount of binder reduced. Therefore, the flowability of
CLSM-1 and CLSM-5 was the highest and lowest, respectively, contrary to the results of
the compressive strength.
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Bleeding was generated in seven specimens (i.e., CLSM-1, 2, 3, 4, 6, 8, and 9). The
bleeding of CLSM-1 and CLSM-2 was approximately 20% (Figure 4c). This suggested the
following: (1) bleeding can increase as the amount of binder decreases; (2) the binder content
of more than 10% in CLSMs can prevent segregation caused by a high water content.

Overall, CLSM-10 exhibited the best performance based on laboratory tests. This
specimen satisfied the target performance established in this study (Table 1). It showed a
high degree of flowability (700 mm), no bleeding (0%), and an adequate 28-day compressive
strength (0.533 MPa). The compressive strength of CLSM-5 satisfied the target strength,
but the flowability of CLSM-5 was less than that of CLSM-10, even though the bleeding of
CLSM-5 was 0%. The flowability and bleeding of CLSM-7 satisfied the target performance,
but the compressive strength of CLSM-7 was only 0.2 times that of CLSM-10. The results
indicated that fillers composed of small particles (e.g., fly ash) and the quick-hardening
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binder could prevent bleeding in spite of a high water content (i.e., water content was more
than 100%). Furthermore, the incorporation of finer particles had the potential to reduce
the required binder content and/or increase the water content within the CLSM mixture.
This could increase the flowability of the CLSM and decrease the bleeding, as well as secure
a sufficient compressive strength.

Table 5. The composition of CLSM specimens.

Specimen
Composition (g)

Binder Fly Ash Additive Water
I II

CLSM-1 50 950 - -

1000

CLSM-2 75 925 - -
CLSM-3 100 900 - -
CLSM-4 125 875 - -
CLSM-5 150 850 - -
CLSM-6 98 900 2 -
CLSM-7 96 900 4 -
CLSM-8 98 900 - 2
CLSM-9 96 900 2 2

CLSM-10 96 900 3 1

4.2. Sensitivity Analysis

The compressive strength, flowability, and bleeding of the CLSM were measured
depending on the water–material ratio (W/M). In Figure 5, specimen B is CLSM-10. The
W/M was changed by varying the amount of water, whereas the amount of the CLSM was
fixed. The compressive strength decreased and the flowability and bleeding increased as
the proportion of water increased. In addition, the compressive strength and flowability
of specimens A and B were similar, and bleeding was equal to 0%. This indicated that
the CLSM could be produced by changing the W/M from 90 to 100% depending on the
objectives of construction and the geological properties at the sites of interest.
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4.3. Geotechnical Strength Parameters of the Developed CLSM

Table 6 shows the geotechnical strength parameters (i.e., friction angle, cohesion, and
total unit weight) of the CLSM developed in this study (i.e., CLSM-10 in Figure 4). The
friction angle and cohesion were determined through a triaxial compression test, and the
total unit weight was measured based on ASTM D 6023 [38]. These parameters are planned
to be used for future studies (i.e., numerical analysis).

Table 6. The results of triaxial compression test for CLSM developed in this study.

φ (◦) Cu (kPa) γt (kN/m3)

12.4 69.3 13.8

5. Comparison between New and Predeveloped CLSMs

In this section, the performance of the CLSM developed in this study (i.e., CLSM-10
in Figure 4) was compared with that of predeveloped CLSMs by conducting additional
laboratory tests in order to measure their flowability and compressive strength. The
predeveloped CLSMs were based on sandy and clayey soils and bottom ash. Based on
the unified soil classification system (USCS), each soil was classified into silty sand (SM)
and inorganic silt with low-to-medium compressibility (ML). They were collected at a
construction site in Boryeng-si, South Korea. The detailed geotechnical characteristics
and particle size distribution of this soil are shown in Figure S3 and Table S1, respectively.
The bottom ash was collected at a power plant in Pohang-si, South Korea. The chemical
properties of the bottom ash are listed in Table S2.

In order to investigate and compare the flowability and compressive strength of the
predeveloped CLSMs with those of the new CLSM, the specimens were manufactured
based on previous studies by Cho [17] and Saman [52] on soils and Lee [53] on bottom
ash (Figure 6).
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developed in this study and predeveloped CLSMs [17,53].

The CLSM developed in this study showed the highest flowability (Figure 6a). This
indicated that injecting the developed CLSM into desired locations near underground pipes
or culverts could considerably reduce costs. As shown in Figure 6b, the 28-day compressive
strength of the CLSM developed in this study was within the standard limit (i.e., from
0.3 to 2.1 MPa). Overall, the developed CLSM possessed a high flowability, which could
facilitate placement and re-excavation, as well as provide sufficient compressive strength
to support embedded structures, such as pipes, culverts, paved roads, etc.

Even though the new CLSM developed in this study showed good performance, future
studies are needed to analyze several uncertainties as follows: (a) due to its exceptional
flowability (i.e., the flowability was 700 mm), the precise endpoint and total quantity and
installation timeframe of the CLSM injection in fields should be investigated; (b) in terms
of the soundness (i.e., volume stability) of the CLSM specimens, it is less likely that the
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soundness of the binder would be a major concern, because the microstructure of the CLSM
was much looser compared to that of concrete and the proportion of binder was relatively
small. However, the soundness of the CLSM should be analyzed based on the acceleration
test method proposed by Mehta [54] and Kabir [55] for field applicability.

6. Conclusions

In this study, a series of laboratory tests were conducted to measure the flowability,
density, bleeding, and compressive strength of controlled low-strength materials (CLSMs)
to develop a new CLSM that could secure high flowability and low segregation, as well
as a quick setting time in order to reduce the inconvenience of citizens in metropolitan
cities. In addition, the performance of the developed CLSM was compared with that of
three different predeveloped CLSMs. The following conclusions were drawn from the
analysis results.

The optimal binder was developed by mixing calcium sulfoaluminate (CSA), anhy-
drous gypsum (AG), ordinary Portland cement (OPC), and water. As the amounts of CSA
and OPC increased, the compressive strength of the binder increased. Eventually, the
optimal proportion of binder was determined to be 0.25:0.11:0.15:0.5 in the order CSA, AG,
OPC, and water, respectively.

The compressive strength, flowability, and bleeding were measured based on the
developed binder, fly ash, and two types of additives. The compressive strength typically
increased with the binder’s proportion. In contrast, the flowability and bleeding increased
as the binder’s proportion decreased. Overall, most specimens satisfied the target values.
A new CLSM developed in this study showed exceptional flowability (i.e., 700 mm) as
well as no bleeding and a suitable 28-day compressive strength. In addition, the CLSM
could be manufactured by selecting a W/M in the range from 90 to 100%, depending on
the objectives of construction and the geological properties at the sites of interest.

It is anticipated that the developed CLSM could significantly reduce the costs related
to the disposal of old pavements, the installation of new pavements, and other construction
expenses compared to the costs related to the conventional method, even though the
expenses for backfill materials could increase due to the higher production costs for CLSMs
than soil. In addition, there is a need to investigate its field applicability in order to evaluate
the precise costs, maintenance, and long-term stabilities after installation.
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