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Abstract

Previous work in visual cognition has extensively explored the
power of parts-based representations of objects for recogni-
tion, categorization, and functional reasoning. We propose a
novel. parts-based representation of objects, where the parts of
an object are found by grouping together object elements that
move together over a set of images. The distribution of object
configurations is then succinctly described in terms of these
functional parts and an orthogonal set of modal transforma-
tions of these parts. If the distribution has a natural set of prin-
cipal axes. the computed modes are stable and functionally
significant. Moreover, the representation is always unique and
robustly computable because it does not rely critically on the
properties of any particular element in any particular instance
of the object. Most importantly, the representation provides a
set of direct cues to object functionality without making any
assumptions about object geometry or invoking any high-level
domain knowledge. This robustness and functional transpar-
ency may be contrasted with standard representations based on
geometric parts, such as generalized cylinders (Marr and Nish-
ihara, 1978) or geons (Biederman, 1987), which are sensitive
to accidental alignments and occlusions (Biederman. 1987),
and which only support functional reasoning in conjunction
with high-level domain knowledge (Tversky and Hemenway,
1984).

Geometric Parts and Functional Parts

Previous work in visual cognition has extensively explored
the power of parts-based representations of objects.
Representations that make explicit the parts of objects and the
relationships between parts have been hypothesized to
underlie visual object recognition (e.g. Marr and Nishihara,
1978; Hoffman and Richards, 1982; Biederman, 1987;
Shapira and Ullman, 1991; Dickinson, Pentland, and
Rosenfeld, 1992), as well as more abstract operations such as
categorization and reasoning about function from structure
(e.g. Tversky and Hemenway, 1984; Stark and Bowyer,
1991). Conventional notions of part in visual cognition are
geometric. Objects in a static scene are typically segmented
into parts at points of extreme curvature, either cusps or
concavities, and a set of deformable models are then fit to the
extracted parts. Proposed models for geometric parts include
two-dimensional contour primitives such as codons
(Hoffman and Richards, 1982), and three-dimensional
volumetric primitives such as generalized cylinders (Marr
and Nishihara, 1978), superquadrics (Pentland, 1986), or
geons (Biederman, 1987).
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Tversky and Hemenway (1984) argue that parts bridge the
gap between structure and function because they are both
perceptually salient and functionally significant aspects of
objects. But in general, the geometric parts that are
perceptually salient in a static scene do not necessarily
correspond to the functional aspects of objects in a simple
way. For instance, compare the drawings of two everyday
objects in Figure 1. The geometric parts of a hand and a fork
are very similar, consisting in both cases of a broad body and
several long, thin projections. But some crucial functional
information is missing from this static scene. Whereas the
tines of a fork are all rigidly joined to the body of the fork, the
fingers of a hand can move independently of the palm and of
each other, to assume a wide range of possible configurations.
That is, the geometric parts of a fork always function
together, but the geometric parts of a hand can and often do
function independently. We could say that the hand has
several distinct functional parts, while the fork really has only
one functional part.

Figure 1. A hand and a fork have similar geometric part
structures, but different functionality.

This distinction between geometric parts and functional
parts is fundamental to how we perceive, think about, and
even talk about objects. The Gestalt psychologists showed
that even very dissimilar or disconnected visual elements
may be grouped by correlated motion, or “common fate”
(Kohler, 1947). Developmentally, infants parse the world
into objects based on functional properties such as correlated
motion before they are sensitive to object boundaries defined
by static, geometric properties (Spelke, 1990). Our adult
language also supports the distinction between functional and
geometric parts. Consider the linguistic representations of
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the parts of a hand and the parts of a fork. “Finger" and
“palm” are common, basic-level terms, whereas “tine” is a
much less ordinary term, and there is no term to describe the
“palm” of a fork. Moreover, the individual fingers of a hand
have individual, functionally-oriented names, such as “index
finger”, “pointer”, or “ring finger", while one never even
refers to an individual tine of a fork. We do not mean to push
this point on language too far, but simply to motivate the
proposal that functional parts, and not just geometric parts,
should provide the link between vision and cognition.

Now, if the functional parts of objects are not perceptually
salient in scenes such as Figure 1, must we abandon the
attractive position of Tversky and Hemenway (1984), that
parts bridge the gap between structure and function by virtue
of their perceptual salience and functional significance? No,
but we do have to revise what we mean by “perceptually
salient,” to include information that is unavailable in single,
static images, and that only becomes salient over a set of
images. This paper proposes a novel, parts-based
representation of objects, where the parts of an object are
found by grouping together object elements that move
together over a set of images. In the simplified, two-
dimensional cases considered here, “‘object elements” are
edge elements, or “edgels” for short, but in the more general,
three-dimensional case, functional parts may be extracted by
grouping surface elements that move together. This approach
assumes that the problem of edgel correspondence across the
set of images has already been solved by lower level
processes, so that we know which edgels correspond in any
two configurations of an object.

Figure 2 illustrates the basic idea: a simplified, two-
fingered hand assumes several different configurations as the
fingers pivot, and since the fingers can move independently,
the orientations of the edgels are perfectly correlated only
within each finger. When a fork assumes different
configurations, however, the tines cannot pivot
independently, so the orientations of all edgels are always
perfectly correlated. By looking at the covariance patterns of
edgel orientations, the visual system can infer the different
functional part structures of the hand and the fork.

Of course, there is more to function than just correlated
motion. A part's geometric shape certainly places strong
constraints on its possible functions. Nonetheless, correlated
motion is one of the most direct, and hence one of the most
important, visual cues to functionality. The links between
shape or texture and function may be somewhat subtle, but
motion indicates the basic units of function without requiring
any high-level knowledge. Functional part-based
representations should not replace geometric part-based
representations, but rather supplement them for the purposes
of functional reasoning. The goal of this preliminary paper is
to demonstrate how much useful information about function
can be extracted from patterns of edgel covariance, without
making any assumptions about object geometry or invoking
any high-level domain knowledge.
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Figure 2. As functional parts are articulated by rotating, the
orientations of their component edgels covary. The
orientations of hand edgels are only correlated within
each finger, while the orientations of all fork edgels are

perfectly correlated. Dots schematically separate
individual edgels along contours.

Constructing Functional Representations

We begin with a set £ of N instances of an object in various
configurations (e.g. the set of two-fingered hands in Figure
2). We represent the ith instance of an object as a vector, v, ,
of edgel properties. For example, v might be a list of edgel
lengths and orientations. If the object consists of K edgels,
each with P properties, then v; has dimension KxP, and the set
of instances is a (KxP) by N matrix, defined by [v; v;... vyl
Ultimately, we seek a representation that most simply
accounts for the variability in object configuration across X.
Let v be the average instance, defined by

N
; = N Z U"
i=1
The ith instance then differs from the average by u; = v, - v.

Then the full variability across is embodied in the edgel
covariance matrix

LN
z u,.uf'

C

N

I

However, a functional parts-based representation can

describe this variability across £ much more succinctly, by

making only two weak assumptions about how an object's
configuration may vary.

1. An object is composed of one or more functional parts,
each of which always moves or deforms as a unit.

2. When a part moves or deforms, i.e. when a parameter of a
part changes, a corresponding change occurs in some

parameter of each of the part's component edgels.

These two conditions respectively provide the motivation and



the basis for extracting functional parts by grouping together
edgels that move together. Note first that the edgel
parameters must reflect the transformations by which we
expect functional parts to be articulated. If parts are
articulated by rotation, then we need to represent edgel
orientation explicitly in the instance vectors v;, because the
orientation of all edgels in a part will covary as the part
rotates. If parts are articulated by translation, then we need to
represent edgel position; if parts are articulated by stretching,
then we need to represent edgel length; and so on. Functional
parts become simply clusters of covariance. Then, instead of
characterizing the variability across Z in terms of how the
properties of each edgel covary with the properties of every
other edgel, as in the full edgel covariance matrix C, we
group edgels into functional parts and describe the same
variability in terms of how the properties of these parts
covary. We use the term function in a very specific sense to
refer to the allowed relations between functional parts that
determine the possible configurations of the object. Since the
number of functional parts will generally be much less than
the number of edgels, a representation in terms of functional
parts and functions amounts to a significant simplification of
the full edgel covariance matrix C.

Mathematically, we simplify C by means of principal
components analysis (PCA). PCA and other modal
representations of shape have recently become popular in the
computer vision literature (Cootes er al., 1992; Sclaroff and
Pentland, 1993), but this paper is the first effort to make
functional parts and functions explicit through PCA. If all the
edgels within a single functional part move as a unit, then all
the rows (and columns) of C corresponding to these edgels
will be essentially the same. Thus, C will have a dominant
block structure which can be extracted by finding its
dominant eigenvectors. The eigenvectors will correspond to
functions and will articulate the individual functional parts.

The easiest way to appreciate the special structure of C is
to consider a simple example. Figure 3 shows six instances
of a stick-figure hand with two “fingers”. The orientation of
the left finger is randomly distributed about -30° with a
variance of 30° and the orientation of the right finger is
randomly (and independently) distributed about +30°, also
with variance 30°. Figure 4 shows the distribution of finger
orientations for 30 such objects. Each finger in Figure 3 is
represented by ten edgels, with constant length but varying
orientation. Because parts are only articulated by rotation, we
only need to keep track of the orientation of each edgel. So
each instance is represented by a 20 dimensional vector of
edgel orientations. In order to demonstrate that the
representation is robust in the presence of perceptual noise,
the orientation of each edgel is randomly perturbed about the
true finger orientation, with a variance of 7.5° (25% of the
whole finger variance).

The full edgel covariance matrix, C, is depicted graphically
in Figure 5. The block structure corresponding to the two
functional parts is clearly evident, and these functional parts
can be extracted by standard techniques of cluster analysis.
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Figure 3. Six instances of a stick-figure hand with two
fingers. Dots separate the 20 individual edgels.
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Figure 4. Distribution of finger orientations for 30 two-
fingered hands. The sample mean is indicated by 'x".

Having found the functional parts, we can then completely
characterize the variability in the original set of 30 instances
merely by specifying how these two parts interact. PCA
provides a natural framework for this step. When the
eigenvectors of C are computed, we find that the first two
principal components dominate the other modes, accounting
for over 95% of the variance in the original data. This is to
be expected, given that we began with essentially two
independent degrees of freedom, plus noise. Figure 6 shows
how the mean shape deforms in the two significant modes.
Note that the modes articulate the two functional parts,
reflecting the block structure of C. Starting from only the
orientations of 20 edgels in each of 30 object configurations,
we have recovered a concise representation of the object's
functionality in terms of its two functional parts and a set of
two orthogonal transformations of these parts.

Figure 5. Graphical representation of C, the edgel
covariance matrix for the two-fingered hand. For each
pair of 20 edgels, the shading of a square indicates the
magnitude of covariance. White indicates maximal
covariance, black indicates weak covariance.



Mode 2

Mode 1

Figure 6. The two significant principal components of the
distribution in Figure 4, depicted as deformations of the
mean shape.

Functional Modes

The modes, or principal components, of C account for how
the functional parts interact to produce the range of object
configurations observed in Z. Ideally, we would like to
identify these modes with functions; that is, we would like the
observed modes to have some functional significance.
Looking at Figure 6, it is not at all clear what functional
significance can or should be attributed to these modes. We
might view the individual modes as roughly representing the
function of the hand as a whole, with the first mode
representing “hand orientation” and the second mode
representing “hand shape,” the relative angle between the two
fingers. But this interpretation is not particularly compelling,
because while both fingers do participate in each mode, they
do not participate equally. In mode 1, the left finger pivots
significantly more than the right finger, and vice versa for
mode 2. Thus neither mode truly reflects a simple parameter
of the whole hand. Alternatively, we might view the

individual modes as roughly representing the function of

individual parts, with mode 1 being the “left finger” mode
and mode 2 being the “right finger” mode. But this
interpretation is even less compelling, because although one
finger predominates in each mode, both fingers also
participate significantly in each mode. In fact, not only do the
computed modes for this object defy a straightforward
functional interpretation, they are also quite unstable. The
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Figure 7. Distribution of finger orientations for two-fingered
hands, with finger 1’s joint stiffer than finger 2’s joint.
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modes are liable to be completely different if we compute
them again for a different set of 30 instances drawn from the
same distribution.

The functional ambiguity and the instability of the modes
are deeply related. Both difficulties result from the fact that
the generating distributions of the object's two functional
parts are completely independent and have equal variance.
PCA will only give a stable, functionally meaningful solution
when the distribution of object configurations scatters more
in some directions than in others, giving a natural set of
principal axes. The functional character of the solution will
depend on the orientation of this distribution, which is not
well-determined for data that scatter roughly equally in all
directions, as in Figure 4.

When the distribution of object configurations strongly
reflects a single functional structure, PCA will find it
Consider a similar two-fingered hand in which both fingers
still move independently, but each finger has a different,
characteristic way of moving. Specifically, the joint on finger
1 is stiffer than the joint on finger 2, so that the distribution of
finger 1 orientation has only half the variance (15°) of the
finger 2 distribution (30°). The bivariate distribution for 30
instances of this object is shown in Figure 7. Now the data
have a natural set of principal axes, corresponding to the two
fingers. As expected, the computed modes align with these
axes and individually articulate the two functional parts
(Figure 8).

Now consider the case in which the two fingers have
equally stiff joints, but they are not articulated independently.
For example, the whole hand may pivot about the vertical
with a variance of 30° but the hand shape, i.e. the angle
between the two fingers, may have a variance of only 15°.
The bivariate distribution for 30 instances of such an object is
shown in Figure 9. Now the natural set of principal axes
corresponds to two properties of the whole hand, rather than
to properties of the individual fingers, which are not
functionally independent units of this object. As expected,
the computed modes articulate these two functional
properties, hand orientation in mode 1 and hand shape in
mode 2 (Figure 10).

Mode 1 Mode 2

Figure 8. The two significant principal components of the
distribution in Figure 7, depicted as deformations of the
mean shape.
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Figure 9. Distribution of finger orientations for two-fingered
hands, with the variance in hand orientation significantly

greater than the variance in hand shape.

A Non-Trivial Example

Finally, in case these examples seem too simplistic, we give
a non-trivial example which demonstrates the power of a
representation based on functional parts. Figure 11 shows 6
instances of a jointed rod composed of six, separately moving
segments. The first segment is constrained to lie within 15°
of the horizontal, and each successive segment is constrained
to lie within 15° of the previous segment. Each segment is
represented by ten edgels, again with constant length but
varying orientation, and thus each instance is represented by
a vector of 60 edgel orientations. The orientation of each
edgel is randomly perturbed about the true segment
orientation, with a variance of 3°. Because these six-segment
objects have more inherent variability than the two-fingered
hands, we carry out our analysis on a larger population of 180
instances.

Figure 12 shows the covariance matrix and Figure 13
shows the six significant principal components. Notice that
the modes correspond roughly to the physical modes of string
vibration, and that they are ordered by frequency. Also note
that individual segments are only weakly articulated in the
strongest modes, and consequently the full edgel covariance
matrix does not have the desired block structure. However,
we can obtain the desired block structure by reweighting the
contribution to C of each principal mode to be independent of
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Mode 1 Mode 2

Figure 10. The two significant principal components of
the distribution in Figure 9, depicted as deformations of
the mean shape.

eigenvalue. Normally, we have C = @ Q @, where ® is an
orthonormal matrix of eigenvectors and Q is a diagonal
matrix of eigenvalues, ordered by frequency of vibration,
which weights the contribution to C of each eigenvector in &.
Suppose that by thresholding on eigenvalue, we have
determined that only the first M modes are functionally
significant, Then define Q' by replacing the first M diagonal
entries of £ with 1, and the remaining diagonal entries with
0. The resulting matrix C' = ® Q' ®7, weights the contribution
of each functional mode equally, regardless of eigenvalue,
but completely eliminates higher frequency modes that are
presumably due to noise. If the between-part variations are
significantly larger than the within-part variations, then this
eigenvalue threshold will ensure that C' displays the desired
block form that makes these parts explicit. Figure 14 shows
that this transformation indeed captures the functional part
structure of the six-segment jointed rod. Finally, we note that
although discussion in this paper is restricted to a linear
analysis of simple artificial objects, ongoing work is
providing evidence that functional part-based representations
play a crucial role in visual cognition for real, everyday
objects such as hands and faces. We are also exploring the
application of nonlinear dimensionality reduction techniques
(e.g. Hinton and Zemel, 1994), in order to extend the range of
potential part structures beyond the limitations of PCA.

Figure 11. Six instances of a six-segment, 60-edgel rod. Each
segment is constrained to lie within 15° of the preceding segment.
For clarity, individual edgels are not shown.
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Figure 12. Graphical representation of C, the edgel
covariance matrix for the six-segment, 60-edgel rod.

Mode 1 Mode 2
Mode 3 Mode 4
Mode 5 Moda 6

Figure 13. The six significant modes of the covariance
matrix in Figure 12, depicted as deformations of the
mean shape. Note that the modes are naturally ordered by
frequency, with the dominant modes expressing the
lowest frequency deformations.
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